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Abstract

Robots are becoming increasingly available and capable, are becoming part of everyday life in
applications: robots that guide blind or mentally handicapped people, robots that clean large
office buildings and department stores, robots that assist people in shopping, recreational
activities, etc.

Localization, in the sense of understanding accurately one’s position in the environment,
is a basic building block for performing important tasks. Therefore, there is an interest in
having robots to perform autonomously and accurately localization tasks in highly cluttered
and dynamically changing environments.

To perform localization, robots are required to opportunely combine their sensors mea-
surements, sensors models and environment model. In this thesis we aim at improving the
tools that constitute the basis of all the localization techniques, that are the models of these
sensors, and the algorithms for processing the raw information from them. More specifically
we focus on:

• finding advanced statistical models of the measurements returned by common laser
scanners (a.k.a. Light Detection and Rangings (Lidars)), starting from both physical
considerations and evidence collected with opportune experiments;

• improving the statistical algorithms for treating the signals coming from these sensors,
and thus propose new estimation and system identification techniques for these devices.

In other words, we strive for increasing the accuracy of Lidars through opportune statistical
processing tools.

The problems that we have to solve, in order to achieve our aims, are multiple. The first
one is related to temperature dependency effects: the laser diode characteristics, especially
the wave length of the emitted laser and the mechanical alignment of the optics, change
non-linearly with temperature. In one of the papers in this thesis we specifically address
this problem and propose a model describing the effects of temperature changes in the laser
diode; these include, among others, the presence of multi-modal measurement noises. Our
contributions then include an algorithm that statistically accounts not only for the bias induced
by temperature changes, but also for these multi-modality issues.

An other problem that we seek to relieve is an economical one. Improving the Lidar
accuracy can be achieved by using accurate but expensive laser diodes and optical lenses.
This unfortunately raises the sensor cost, and – obviously – low cost robots should not be
equipped with very expensive Lidars. On the other hand, cheap Lidars have larger biases
and noise variance. In an other contribution we thus precisely targeted the problem of how to
improve the performance indexes of inexpensive Lidars by removing their biases and artifacts
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through opportune statistical manipulations of the raw information coming from the sensor.
To achieve this goal it is possible to choose two different ways (that have been both explored):

1. use the ground truth to estimate the Lidar model parameters;

2. find algorithms that perform simultaneously calibration and estimation without using
ground truth information.

Using the ground truth is appealing since it may lead to better estimation performance. On
the other hand, though, in normal robotic operations the actual ground truth is not available –
indeed ground truths usually require environmental modifications, that are costly. We thus
considered how to estimate the Lidar model parameters for both the cases above.

In last chapter of this thesis we conclude our findings and propose also our current future
research directions.
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Chapter 1

Introduction

1.1 Background

The capability of measuring distances is essential to interact effectively with unknown envi-
ronments. When being in an unknown place, for example, a robot (or animal, or human, it
does not matter) must infer where the obstacles are to be able to move without colliding with
them.

A classic example of the importance of being able to measure distances is given by au-
tonomous cars: they continuously update maps of the surrounding environment and decide
their actions based on the position of the various obstacles. In every industrial and practical
applications where the environment is unknown, from autonomous robots that clean floors
to robots that fly to do aerial inspection and repair, one thus needs to be able to measure
distances.

Among the various distance sensors, Lidars are very promising due to their excellent
performance vs. cost ratios. Indeed they are often the main sensors used in applications
like navigation, object detection, localization and mapping. Lidars are also the main sensor
for Google’s and Volvo’s self-driving cars; for example, Google’s cars are equipped with
a Velodyne 64-beam Lidar system [1] (costing around $70, 000) mounted on the top (see
Figure 1.1) allow vehicles to generate detailed 3D maps of the surroundings (Volvo cars have
instead a cheaper solution based on static sensors; nonetheless the basic idea is the same).

There is obviously an increasing interest to have Lidars that are both not only accurate,
but also cheap: accurate and precise Lidars already exist, but they tend to be expensive, and
thus not suitable for mass-deployments. On the other hand, also cheap Lidars already exist;
of course their negative side is that they have larger biases and noise variances than their
expensive counterparts.

The main objective of this thesis is to provide statistical tools that improve the precision and accuracy
of Lidars , specially the non-expensive ones, through ad-hoc statistical filters and smoothers that process
the raw data collected by the sensors.

Finding these filters and smoothers requires providing accurate statistical models that
can explain and agree with both the operation physics and the evidence collected by these
devices. Notice that our type of improvement is not aimed to improve the performance of
these sensors through increasing the hardware cost (e.g., by adding expensive components or
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Figure 1.1: A simplified drawing shows the various sensors equipped with the self driving
car. The Lidar sensor is mounted on the top to map the surrounding vehicles and objects.

boards): we aim at reaching these improvements using computational manipulations – and
even better if these computations may eventually be performed in the boards that already
drive the sensors, so to achieve an ultimate goal of costless improvement (or little costs, if one
considers the cost of programming new filters in the existing electronic boards).

In this thesis we focus on two different types of Lidars . In the first part we consider
ToF Lidars and proposed a statistical model for this type of sensor that compensates both
temperature effects on the measurement bias and laser diode mode-hopping phenomena
that make the distribution of the measurement noise multi-modal. In brief, we develop
a procedure that requires adding a non-expensive temperature measuring board that has
negligible cost compared with the ToF Lidar , and with this information we improve the
precision and accuracy of the sensor. In the second part of the thesis we focus on triangulation
Lidars , and we propose strategies to improve the performance of the measurement process
that do not require adding extra hardware. The proposed improvement is achieved through
model calibration and estimation procedures that exploit accurate statistical models of the
measurement process.

We now formulate in Section 1.2 more precisely the problem that we face in this thesis.
After that, we will give a very brief description of the working principles for both ToF Lidars
and triangulation Lidars in Section 1.3, to clarify the consequent discussions. We will then
present the related work and literature survey in Section 1.4. Finally, we conclude this chapter
with outlining the remainder of the thesis in Section 1.5.

1.2 Problem Formulation

In words,

we aim at improving Lidar sensors precision and accuracy through opportune statistical processing
tools of the raw measurements coming from the sensor.
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Thus we strive for costless (or quasi-costless) improvement of ToF and triangulation Lidars .
Our strategy, based on signals processing, requires statistical approaches – and these in their
turn require how these sensors work. Therefore, we also aim at:

• developing accurate statistical models that match the evidence collected when using
these devices, and that may partially be based on the physics of the sensor;

• finding statistical calibration procedures to learn the parameters of these models;

• designing and characterizing statistical filters and smoothers that are based on the
calibrated models above and that improve the precision and accuracy of the sensors
measurements when the sensors are used in normal operations.

1.3 Lidar sensors

Before discussing the literature related to the Lidar technologies we describe the basic op-
eration principles for the types of Lidar technologies that will be considered in this thesis.
The first type that we consider (Section 1.3.1) is the pulsed ToF Lidars , that have been also
considered in paper A. Then we will discuss (Section 1.3.2) triangulation Lidars , that have
been also considered in papers B and C.

1.3.1 ToF Lidar

The basic operation of pulsed ToF Lidars is shown in Figure 1.2. In brief, a pulsed infra-red
laser beam is emitted by the laser source, travels out of the device, and then is reflected from
the object surface into the device again, where its arrival time is detected by an opportune
photo-receiver. The time between the transmission and the reception instants is then used to
measure the distance between the scanner and the object. Since the laser beam is deflected by
a rotating mirror, moreover, the sensor can measure distances in a fan-shaped scan pattern.

transmitter

receiver

fixedmirrorrotating
mirror objectlaser scanner

laser beam
laser

junction

laser
cavity

Figure 1.2: Graphical description of the operating principle for pulsed ToF Lidars. A pulsed
infra-red laser beam is first emitted from the transmitter. The case of the transmitter, in dark
gray, encloses a laser junction and a laser cavity. The emitted laser beam is then deflected by
a rotating mirror (resulting in a fan-shaped scan pattern), and finally reflected back by the
object. The time of flight τ between the transmission and the reception of the laser beam is
then used to estimate the distance d between the scanner and the object.
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The measurement of the distance derives from ideal considerations: if the temporal width
of the pulse is null, then the distance d between the sensor and the object should satisfy

d =
c τ

2
(1.1)

where c is the speed of light and τ is the measured ToF between when the laser pulse is
emitted and when it is received. Assume ideally that the laser pulse contains photons with a
unique nominal wavelength λ0. Since

c = λ0f (1.2)

with f the light frequency and λ0 the nominal wavelength, it is sufficient to know λ0. Thus,
from knowing λ0, one can compute d, since τ is measured.

ToF Lidars require fast and expensive electronic counters to measure very small time
differences; they also require precise and calibrated rotating mirrors (also expensive); finally
they also require laser diodes that emit precise and calibrated wave lengths – something
that requires temperature calibration procedures. All these requirements together make ToF
Lidars expensive and bulky devices.

Laser Diode wavelength

The laser diode is the basic element in all ToF Lidars . We now briefly describe the role of its
temperature in determining its lasing wavelength; this dependency is indeed of paramount
importance, given that it implies variability in Equation (1.2).

From [2] we know that the emitted wave length changes with temperature in discrete
steps, as schematically shown in Figure 1.3.

From logical standpoints, this dependency is explained through the following chain of
consequences:

• at every given temperature, each laser diode cavity admits a set of specific and given
lasing modes. The set of lasing modes is the set of wavelengths for which photons with
that specific wavelength are in resonance within the diode cavity;

• certain frequencies cause more pronounced photon avalanche effects than others; the
laser diode medium, thus, exhibits a certain gain profile, as shown in Figure 1.4,

• the cavity lasing mode that has a higher gain profile statistically tends to be the winning
mode and will statistically be the dominant mode produced by the laser (i.e., the laser
pulse will contain coherent photons with identical frequency content). Notice that it is
not a deterministic relation: in practice the probability of having a laser pulse with a
specific frequency content is directly proportional to its associated gain profile;

• now if the temperature of the laser cavity changes, this will shift the cavity modes
(toward increasing or decreasing wavelengths, depending on the temperature change);

• at the same time changing the temperature of the laser cavity shifts the gain curve too;
the shift of the gain curve is nonetheless generally bigger in amplitude than the shift in
the cavity modes. This implies that the modes not only shift in wavelengths, but also
change relative importance.
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Figure 1.3: Plot of single-mode laser diode wavelength vs. case temperature at constant power
operation [2] using a Mitsubishi ML 4402 GaAs index-guided laser diode.

1.3.2 Triangulation Lidar

Triangulation Lidars consist mainly of an infra-red laser transmitter, a pinhole lens, and
a pinhole CCD camera. The working principle is extremely simple, and schematized in
Figure 1.5: first, the transmitted laser beam hits an object and is then reflected back to the
pinhole CCD camera. Then the camera, that is simply a linear sensor, measures the distance
b′k between the dotted line (that is the parallel to the laser beam) and the laser beam reflected
from the object. The similarity between the big and small triangles in Figure 1.5 gives then
the relation

dk =
bd′

b′k
(1.3)

where k is the measurement index, dk is the perpendicular distance to the object, and d′ and b
are constants given by the geometry of the Lidar .

It is clear from (1.3) that b′k is inversely proportional to dk. Obviously, this will induce
quantization issues: uniform quantization in measuring b′k will induce non-uniform quan-
tization in measuring the distance dk. Moreover any additional measurement noise over b′k
that is uniform over the whole length of the CCD sensor will be mapped into a non-uniform
measurement noise over the possible distances dk. The noise of this sensor is thus intrinsically
heteroscedastic, as will be explained in more details in 3.2.

The simple principle of operation of the triangulation Lidars , together with using non-
expensive laser diodes and CCD pinhole cameras, make the cost of the device very low
compared with the ToF Lidars . Triangulation Lidars are also very light, and this enables
using them in aerial applications. However their precision and accuracy is very limited
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cavity modes
gain profile

lasing modes

v1 v2 wavelength

cavity modes
gain profile

laser modes

v1 v2 wavelength

Figure 1.4: The plot explaining the cavity modes, gain profile and lasing modes for typical
laser diode. The upper drawing shows the wavelength v1 as the dominant lasing mode while
the lower drawing shows how both wavelengths v1 and v2 are competing; this latter case is
responsible for the mode-hopping effects.
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Lidarcase

laser beam
b

dk

parallel of
the laser beam

d′b′k

laser

object

pinhole
camera

pinhole
lens

Figure 1.5: Diagram exemplifying the working principle of a triangulation Lidar . The laser
emits an infra-red laser signal that is then reflected by the object to be detected. The beam
passes through a pinhole lens and hits a CCD camera sensor. By construction, thus, the
triangles defined by (b, dk) and by (b′k, d

′) are similar: this means that the distance to the
object is nonlinearly proportional to the angle of the reflected light, and as soon as the camera
measures the distance b′k one can estimate the actual distance dk using triangles similarities
concepts.

compared to ToF Lidars .

1.4 Related Work

1.4.1 Lidar Characterization and Calibration

It is convenient to categorize the algorithms in the existing and relevant literature into:

• procedures for the characterization or calibration of the devices. Here characterization
means a thorough quantification of the measurement noisiness of the device, while
calibration means an algorithm that aims at diminishing this noisiness level;

• when dealing with calibration issues, procedures for the intrinsic or extrinsic calibration.
Here intrinsic means that the focus is on estimating the parameters of the Lidar itself,
while extrinsic means that the focus is on estimating the parameters resulted from sensor
positioning and installation.

We then analyze each item above independently.
Characterization issues: several papers discuss Lidar characterization issues for both ToF [3,

4, 5, 6, 7, 8, 9, 10] and triangulation Lidars [11, 12]. Notice that, at the best of our knowledge,
for triangulation Lidars there exist only two manuscripts: [11], that discusses the nonlinearity
of Neato Lidars , and [12], that analyzes the effect of the color of the target on the measured
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distance. Importantly, [11] models nonlinear effects on the measurements and the variance of
additive measurement noises as two independent effects that can be modeled with a second
order polynomials on the actual distance. From a statistical perspectives the authors, therefore,
decouple the learning process into two separate parts.

Calibration issues: as for the calibration issues there is a relatively large number of papers
describing how to calibrate extrinsic parameters either using additional sensors (such as
cameras) [13, 14, 15, 16], or just requiring knowledge on the motion of the Lidar itself [17, 18,
19, 20].

Still considering calibration issues, there has been also a big effort on how to perform
intrinsic calibration for multi-beam Lidar systems, where the results from one beam is used
to calibrate the intrinsic parameters of other beams [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. As
for single-beam Lidar systems, instead, [28] proposes a method for the intrinsic calibration of
a revolving-head 3D Lidar and the extrinsic calibration of the parameters with respect to a
camera. The technique involves an analytical method for computing an initial estimate for
both the Lidar’s intrinsic parameters and the Lidar-camera transformation, that is then used
to initialize an iterative nonlinear least-squares refinement of all of the calibration parameters.

We also mention the topic of on-line calibration of sensor parameters for mobile robots
when doing Simultaneous localization and mapping (SLAM), very useful in navigation
tasks. In this category, [31] proposes an approach to simultaneously estimate a map of the
environment, the position of the on-board sensors of the robot, and its kinematic parameters.
These parameters are subject to variations due to wear of the devices or mechanical effects like
loading. An other similar methodology for the intrinsic calibration of depth sensor during
SLAM is presented in [32].

1.5 Thesis Outline

This thesis is divided into two parts:

Part I , composed by Chapters 2 and 3, that contains an introduction to the problem and
provides additional background information. The theory provided in Chapter 2 serves
as a foundation and technical background to the actual scientific contributions of Part II.
The discussions in Chapter 3 instead frame the findings in a broader perspective and
delineate what are the most likely (and promising) future research directions;

Part II , that contains the three peer-reviewed research papers that have been the scientific
outcomes of our academic work up to now. Papers A and B, a journal and a conference
papers respectively, have been already published. Paper C, a draft for a journal paper, is
currently under review.



Chapter 2

Estimation Theory

In this thesis we are concerned with estimation problems. Our objectives are to estimate
parameters and states of the measuring systems. In more details, our parameter estimation
problems can be decomposed in the classical sub-problems of system identification, model
structure and model order selection. Our state estimation problems instead require to have
inferred model structures and parameters before attempting to estimate the states. In the
following, thus, when we will mention that we aim at estimating states we assume that either
the problems of system identification, model structure and model order selection have been
already solved, if the model and its parameters are assumed time-invariant, or, otherwise,
that these problems are solved simultaneously with the state estimation issue.

2.1 Estimators and Estimators Properties

In modeling and calibrating Lidars we face the very generic problem of estimating parameter
values from a stream of discrete-time measurements. Mathematically, we assume to be
endowedwith a data sequence {y}N1 that has been generated statistically based on an unknown
model parametrized by θ. We assume probabilistic models, i.e., the fact that y is generated
according to a distribution of the kind

y ∼ P [y | θ ] (2.1)

with P [y | θ ] interpretable either as the probability of observing y when the distribution is
parametrized by θ, or the likelihood of the parameter θ given that we observed y.

Our aim is then to estimate the value of θ based on this dataset and on the knowledge of
model (2.1); the classical approach is to consider our estimate θ̂ as a statistic, i.e., a function of
the data that does not depend on the estimand θ. In formulas, thus, our estimate will always
satisfy a structure of the type

θ̂ = f(y1, y2, · · · , yN) (2.2)

where f(·) is some opportune function of the dataset.
The aim is to have both accurate and precise estimates. These qualities are connected to

the concepts of unbiased and minimum variance estimators. An estimator is then said to be



12 Chapter 2. Estimation Theory

unbiased if on average it will return the true value [33], or, mathematically,

E

[
θ̂
]
= θ , ∀θ ∈ Θ (2.3)

where Θ is the set of admissible (or physically meaningful) θ’s. An unbiased estimator is also
said to be minimum variance estimator if its variance is minimal, i.e., if it has minimumMean
Squared Error (MSE)

MSE(θ) = E

[(
θ̂ − θ

)2
]
. (2.4)

A Minimum Variance Unbiased Estimator (MVUE) is thus considered to be optimal (in the
squared loss sense) in the family of unbiased estimators of the same parameter.

An other important concept is the one of efficient estimator, i.e., an estimator that achieves
the so-called Cramer-Rao bound, equal (in the case of unbiased estimators) to the reciprocal of
the so-called Fisher information matrix

I(θ) := E

[
∂2
P [y | θ ]
∂θ2

]
. (2.5)

The reciprocal of the Fisher information matrix is said to be the Cramér-Rao Lower Bound
(CRLB) for the variance of unbiased estimators, and it provides a lower bound for their
variances. Efficient unbiased estimators are thus for sure MVUE (while the vice-versa is not
true in general). Efficient estimators are also informally said to use all the available information
in the dataset related to the estimand.

2.2 Estimation for static systems

We now consider static systems, i.e., systems in which models are independent on the current
time. To describe the types of problems we will face in the following we consider the simplest
example, i.e., a linear measurement model that satisfies, at the generic time instant k,

yk = θxk + vk (2.6)

where

• θ is the model parameter vector;

• xk is the model state vector;

• vk is the model noise.

We will be interested in these two different types of estimation problems:

1. starting from a sequence of measurements {yk}k∈D and states {xk}k∈D estimate the
model parameter θ;

2. starting from a sequence of measurements {yk}k∈D and the model parameter θ estimate
the states {xk}k∈D.

Before detailing how the two types of problems above apply to our Lidars calibration and
estimation issues, we describe the different types of estimators that we will employ.
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Maximum Likelihood Estimation

In formulas, Maximum Likelihood (ML) estimators are defined starting from the knowledge
of the probabilistic model (2.1) as

θML := argmax
θ∈Θ

P [y | θ ] (2.7)

where Θ is the set of admissible θ’s, and constitutes a form of prior information. In words,
thus, ML estimators correspond to finding in the parameters space Θ that parameter vector
θML that maximizes the likelihood P [y | θ ] given themeasurement sequence {y}N1 – in practice,
find that parameter that fits best the data in the sense of P [y | θ ].

Under mild hypotheses, as the sample size goes to infinity the ML estimator benefits of
two important properties:

Consistency , that means that the ML estimator converges almost surely to the true value of
the unknown, i.e.,

θ̂ML
a.s.−−→ θ (2.8)

Efficiency , that means that it achieves the CRLB when the sample size tends to infinity. This
means that no consistent estimator has lower asymptotic mean squared error than the
ML estimator;

Asymptotic normality , that means that as the sample size increases the distribution of the
ML estimator tends to the Gaussian distribution with mean θ and covariance matrix
equal to the inverse of the Fisher information matrix.

Given the favorable properties above, it is highly desirable to findML estimators. Nonethe-
less not always this type of estimators can be found in closed form, since finding θML corre-
sponds to solve a maximization problem (that may also be non-convex). A simple example
of when it is impossible to find closed form solutions to problem (2.7) is (often) when the
distribution of the model noise vk is not differentiable with respect to θ. In these cases one
must often rely on numerical optimization procedures.
Example 2.1 (the ML estimator for a range sensor subject to Gaussian noise)
Consider the range measurement vector y = [y1, y2, . . . , yN ] generated using the statistical
model

yk = αxk + σvk (2.9)

where α is the parameter of the model that we would like to estimate and the noise vk
satisfies vk ∼ N (0, 1). The noise variance σ2 is assumed known, as long as the state vector
x = [x1, x2, · · · , xN ]

T , representing the true distance from the object. If we want to find the
ML estimator for α, and since we have Gaussian noise, i.e.,

yk ∼ N
(
αxk, σ

2
)

(2.10)

the likelihood function is

P [y | α ] =
N∏
k=1

1√
2πσ2

exp

(−1
2σ2

(yk − αxk)
2

)
(2.11)
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and the log-likelihood is

logP [y | α ] = −N

2
log 2πσ2 − 1

2σ2

N∑
k=1

(yk − αxk)
2 (2.12)

taking the zero of the score
1

2σ2

N∑
k=1

(−2ykxk + 2αx2
k

)
(2.13)

with respect to α gives

α̂ML =
N∑
k=1

ykxk

(
N∑
k=1

x2
k

)−1

(2.14)

Example 2.2 (the ML estimator for the variance of a Gaussian range sensor)
Consider again the measurement vector y = [y1, y2, . . . , yN ] generated using the same model

yk = αxk + σvk (2.15)

where vk ∼ N (0, 1) is white and Gaussian. Assuming both the parameter α and the state
vector x = [x1, x2, · · · , xN ]

T to be known, we want to find the ML estimator for σ. Since we
have Gaussian noises, i.e.,

yk ∼ N
(
αxk, σ

2
)

(2.16)

the likelihood function is

P [y | σ ] =
N∏
k=1

1√
2πσ2

exp

(−1
2σ2

(yk − αxk)
2

)
(2.17)

and the log-likelihood is

logP [y | σ ] = −N

2
log 2πσ2 − 1

2σ2

N∑
k=1

(yk − αxk)
2 (2.18)

taking the zero of the score with respect to σ2 gives

σ2
ML =

1

N

N∑
k=1

(yk − αxk)
2 . (2.19)

Least Squares estimators

When it is not possible to calculate the ML estimator in closed form, either because the distri-
bution of the noise is unknown or because finding the maximum of the likelihood function is
analytically intractable, an alternative approach is to use Least Squares (LS) estimators. This
type of estimation starts from the paradigm of trying to minimize the empirical expected
value of the measurement noise. In general, if

yk = f(xk, θ) + ek (2.20)
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where f(·) is a generic function, xk is the input and ek is the process noise, given a Dataset
of N input and output pairs D = {yk, xk}N1 , the least squares approach aims to find θ̂ that
best explains the data. The last concept can then be explained geometrically: we would like to
find that vector θ̂ that minimizes the Euclidean distance with the manifold formed by f(xk, 	)
assuming 	 ∈ Θ with Θ the set of admissible parameters.

In practice, considering for example the linear system described in Equation (2.7), the LS
estimator for the parameter θ is

θLS := argmin
θ∈Θ
‖y − θx‖22 (2.21)

θLS = argmin
θ∈Θ

N∑
i=1

(yi − θxi)
2 (2.22)

Importantly, for the Gaussian noises case, ML and LS estimators coincide. In the linear case
thus the LS is asymptotically unbiased and (under mild assumptions on the informativeness
of the dataset) consistent; in general cases, nonetheless, these properties may fail, so that may
be an inefficient estimator (i.e., not MVUE).

Maximum A Posteriori (MAP) estimator

The previous estimators were dealing with Fisherian approaches where the estimand θ was
treated as a deterministic quantity. In some cases instead it is meaningful to consider θ as a
random variable on which we have some prior information in the form of a prior distribution
P [θ]. In this case we can use Bayesian formalisms to combine the prior information P [θ]
with the likelihood P [y | θ ] and, by using the Bayes rule, find the estimand as that potential
estimand that maximizes the posterior, i.e.,

θMAP := argmax
θ∈Θ

P [θ | y ] (2.23)

where from the Bayes rule we have

P [θ | y ] = P [y | θ ]P [θ]

P [y]
. (2.24)

Notice that, since the term P [y] is constant for a given dataset, the maximization in Equa-
tion (2.23) is equivalent to

θMAP = argmax
θ∈Θ

P [y | θ ]P [θ] (2.25)

or equivalently,
θMAP = argmax

θ∈Θ
[logP [y | θ ] + logP [θ]] (2.26)

θMAP is called the MAP estimator of θ.
Example 2.3 (the MAP estimator for a Gaussian range sensor with Gaussian prior)
Consider the measurement vector y = [y1, y2, . . . , yN ] generated using the model

yk = α + σvk (2.27)
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and vk ∼ N (0, 1). Assume the noise variance σ2 to be known along with the prior α ∼
N (

α0, σ
2
p

)
. Given this information, we want to find the MAP estimator for α.

Since we have Gaussian noise, the likelihood function is

P [y | α ] =
N∏
k=1

1√
2πσ2

exp

(−1
2σ2

(yk − α)2
)

(2.28)

while the prior is

P [α] =
1√
2πσ2

p

exp

(−1
2σ2

p

(α0 − α)2
)
. (2.29)

Combining the two terms and taking the logarithm returns

logP [y | α ]+logP [α] = −N

2
log 2πσ2− 1

2σ2

N∑
k=1

(yk − α)2−N

2
log 2πσ2− 1

2σ2
p

(α0 − α)2 . (2.30)

Differentiate this w.r.t. to α and then equating to zero gives then the formula

αMAP =

σ2
p

N∑
k=1

yk + σ2α0

σ2
pN + σ2

. (2.31)

2.2.1 The stochastic models used to describe our Lidar sensors

We now list the various models that we use to describe the working principles of the various
Lidar sensors analyzed in our work. Along with the description of these statistical models, we
discuss the challenges that we face in doing estimation with them, and what are the possible
solutions of the various numerical and analytical problems that we may encounter.

Heteroscedastic models

Heteroscedastic models are models where the variance of the noise is a function of the state
of the system. A generic heteroscedastic model with additive noise that we encounter in our
estimation efforts is

yk = f1(xk) + f2(xk)ek (2.32)
where f1(·) and f2(·) are generic nonlinear functions and ek ∼ N (0, σ2) is white. We can
recognize that the term that is responsible for the heteroscedasticity is the function f2(·).
Example 2.4 (An example of heteroscedastic models for triangulation Lidars )
For reasons explained in Paper B it is convenient to model triangulation Lidars as

yk = axk + bx2
kek (2.33)

where a and b are model parameters, ek ∼ N (0, 1), and xk is the true distance between the
object and the sensor that is assumed to be known in this example. We consider the following
two problems:

1) for known b = b0 find the ML estimator for a;
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2) for known a = a0 find the ML estimator for b.

The distribution of the measurement is heteroscedastic

yk ∼ N
(
axk, b

2x4
k

)
. (2.34)

We transform it into homoscedastic by dividing both sides of the model equation by the term
x2
k results in the homoscedastic equation

yk
x2
k

=
a

xk

+ bek (2.35)

which has the distribution
yk
x2
k

∼ N
(

a

xk

, b2
)
. (2.36)

Now on the transformed system we can apply the classical ML procedure

1) the distribution of the transformed system is

yk
x2
k

∼ N
(

a

xk

, b20

)
. (2.37)

Following the same procedure in Example 2.1 we directly obtain

âML =
N∑
k=1

yk
x3
k

(
N∑
k=1

1

x2
k

)−1

(2.38)

2) the distribution of the transformed system is

yk
x2
k

∼ N
(
a0
xk

, b2
)
. (2.39)

Following the same procedure in Example 2.2 we directly obtain

b̂2ML =
1

N

N∑
k=1

(
yk
x2
k

− a0
xk

)2

(2.40)

Gaussian mixture model (GMM)

Some times the distributions of the noises are multi-modal. In this case it is convenient to use
the so-called mixture models [34]. In case of Gaussian distributions, a common approach is
to use GMM [34]. This model has a form of the kind

yk =
m∑
i=1

Πmeik (2.41)

where eik ∼ N (μi, σ
2
i ) and Πm is a mixing parameter such that

∑m
i=1 Πm = 1. Estimation in

Gaussian mixture models frameworks require slight modifications of the analytical strategies
saw up to now, as shown in the next example.
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Example 2.5 (GMM parameter estimation)
Consider the bimodal distribution

yk = Δkek + (1−Δk) vk (2.42)

where ek ∼ N (μ1, σ
2
1) and vk ∼ N (μ2, σ

2
2). Given the measurements y = [y1, y2, . . . , yN ] and

the selection variables Δ = [Δ1,Δ2, · · · ,ΔN ]
T the problem is to find the ML estimator for the

model parameters θ = [μ1, μ2, σ
2
1, σ

2
2,Π1,Π2]

T . To do so, consider that since the distribution of
the measurements is

yk ∼ N
(
Δkμ1 + (1−Δk)μ2,Δkσ

2
1 + (1−Δk)σ

2
2

)
(2.43)

the likelihood is

P [y | θ ] =
N∏
k=1

1√
2π(Δkσ2

1 + (1−Δk)σ2
2)

exp

( −1
Δk2σ2

1 + (1−Δk)2σ2
2

(yk −Δkμ1 − (1−Δk)μ2)
2

)
(2.44)

and the log-likelihood is

logP [y | θ ] = −1

2

N∑
k=1

log 2π(Δkσ
2
1 + (1−Δk)σ

2
2)

−
N∑
k=1

(yk −Δkμ1 + (1−Δk)μ2)
2

Δk2σ2
1 + (1−Δk)2σ2

2

(2.45)

which is equivalent to

logP [y | θ ] = −1

2

N∑
k=1

Δk log 2πσ
2
1 −

1

2

N∑
k=1

(1−Δk) log 2πσ
2
2

− 1

2σ2
1

N∑
k=1

Δk (yk − μ1)
2 − 1

2σ2

N∑
k=1

(1−Δk) (yk − μ2)
2 .

(2.46)

Computing the zero of the score with respect to μ1 and μ2 eventually gives

μ̂1ML =
N∑
k=1

ykΔk

(
N∑
k=1

Δk

)−1

μ̂2ML =
N∑
k=1

yk(1−Δk)

(
N∑
k=1

(1−Δk)

)−1 (2.47)

respectively. Then computing the zero of the score with respect to σ2
1 and σ2

2 instead gives

σ̂2
1ML =

N∑
k=1

Δk (yk − μ̂1ML)
2

σ̂2
2ML =

N∑
k=1

(1−Δk) (yk − μ̂2ML)
2 .

(2.48)
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The mixing parameter Π1,2 is actually the probability that a given measurement comes from
the distribution ek or vk respectively. Therefore,

Π̂1 =

∑N
k=1 Δk∑N

k=1 Δk +
∑N

k=1(1−Δk)
=

∑N
k=1 Δk

N
(2.49)

and
Π̂2 = 1− Π̂1. (2.50)

It is important to notice that it was possible to find the ML estimator for Example 2.5
because the selection variable Δ was given. In practice, this is usually not the case, so that
there is the need to estimate the various Δk’s in order to estimate the remaining model
parameters θ. Finding closed-form ML estimators is in this unknown Δ’s case not feasible,
since the likelihood function is now more complex and bimodal with respect to Δ. In such
cases, where there are non-observed latent variables involved in the estimation process, the
EM algorithm is usually used.

The Expectation Maximization Algorithm

The EM is an iterative method for computing the ML or MAP estimates of a parameter vector
θ where the model depends on both observed and unobserved latent variables [35]. Formally
solving an EM problem corresponds to solving

θ̂ML := {θ ∈ Θ
∣∣P [Y ; θ] � P [Y ; θ′] ∀θ′ ∈ Θ} (2.51)

where P [Y ] is the likelihood of the observed data and Θ is the closed set of candidate param-
eter vectors. If the likelihood depends on another unobserved dataset X , then P [Y ] can be
expressed in terms of the joint probability as

logP [Y ] = logP [X, Y ]− logP [X | Y ] . (2.52)

A procedure to compute θ̂ML is the following [36]: assume to have a current estimate of the
parameters θ, say θ′; then the EM algorithm approximates the joint log likelihood with the
expected value of the log likelihood with respect to the current parameter vector θ′ and given
the measurement vector, i.e., performs the approximation

logP [X, Y ] ≈ Eθ′ [logP [X, Y ] | Y ] . (2.53)

Given this, one can then define the function L(θ, θ′) as

L(θ, θ′) := Eθ′ [logP [X, Y ] | Y ] . (2.54)

It has been shown in [36] that any θ that increases L(θ, θ′) above its value at θ′ must also
increase the likelihood function logP [Y ]. Therefore, maximizing L(θ, θ′) corresponds to
maximizing for logP [Y ]. Given these facts, the EM algorithm can be summarized as in the
following algorithm:

initialization step: start from an initial guess θ′ for the parameter vector θ;
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Expectation step : given the current parameter estimate θ′, estimate the latent variables X as
the expected value of the joint distribution

L(θ, θ′) := Eθ′ [logP [X, Y ] | Y ] . (2.55)

Maximization step: compute that θ in the parameter space Θ that maximizes the log like-
lihood function logP [Y ] or equivalently L(θ, θ′) given the currently estimated X , and
then set θ′ ← θ;

return to the Expectation step until reaching certain termination condition based on a
predefined parameter accuracy.

For simplicity we avoid dealing with details of the various possible termination rules, and
send the interested reader back to [37].
Example 2.6 (estimation of the parameters of a GMM)
Consider the bimodal distribution

yk = Πek + (1− Π) vk (2.56)

where ek ∼ N (μ1, σ
2
1) and vk ∼ N (μ2, σ

2
2). Assume themeasurement vectory = [y1, y2, . . . , yN ]

to be known, and the mixing variable Π to be unknown. The problem is then finding the ML
estimator for the model parameters.

Considering that the distribution of the measurements is

yk ∼ ΠN (
μ1, σ

2
1

)
+ (1− Π)N (

μ2, σ
2
2

)
(2.57)

the log-likelihood is then

logP [y | Π, θ ] =
N∑
k=1

log

[
Π

1√
2πσ2

1

exp

(−1
2σ2

1

(yk − μ1)
2

)
+(1− Π)

1√
2πσ2

2

exp

(−1
2σ2

2

(yk − μ2)
2

)] (2.58)

In this case the latent variables are Δ = [Δ1,Δ2, · · · ,ΔN ]
T , and they are such that Δk = 1 if

yk comes from ek and Δk = 0 when it comes from vk. The joint log likelihood is then

logP [y,Δ | Π, θ ] =
N∑
k=1

log

[
ΔkΠ

1√
2πσ2

1

exp

(−1
2σ2

1

(yk − μ1)
2

)
+(1−Δk)(1− Π)

1√
2πσ2

2

exp

(−1
2σ2

2

(yk − μ2)
2

)] (2.59)

or, in other equivalent forms,

logP [y,Δ | Π, θ ] =
N∑
k=1

Δk log Π
1√
2πσ2

1

exp

(−1
2σ2

1

(yk − μ1)
2

)
+

N∑
k=1

(1−Δk) log(1− Π)
1√
2πσ2

2

exp

(−1
2σ2

2

(yk − μ2)
2

) (2.60)
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logP [y,Δ | Π, θ ] =
N∑
k=1

Δk log Π +
N∑
k=1

Δk log
1√
2πσ2

1

exp

(−1
2σ2

1

(yk − μ1)
2

)
+

N∑
k=1

(1−Δk) log(1− Π) +
N∑
k=1

(1−Δk) log
1√
2πσ2

2

exp

(−1
2σ2

2

(yk − μ2)
2

) (2.61)

Given (2.61) we are able to write down the equations defining the EM algorithm introduced
above. Expectation step: to compute the distribution of Δk given the observations y we start
using the Bayes rule to obtain

P [Δ | y ] = P [Δ]P [y | Δ]

P [y]
. (2.62)

Taking then the expected value

Eθ′ [logP [Δ | y ] | y ] = P [Δ]Eθ′ [logP [Δ | y ] | y ]
P [y]

(2.63)

we can estimate the latent variables as

Δ =

Π
1√
2πσ2

1

(−1
2σ2

1

(yk − μ1)
2

)
Π

1√
2πσ2

1

(−1
2σ2

1

(yk − μ1)
2

)
+ (1− Π)

1√
2πσ2

2

exp

(−1
2σ2

2

(yk − μ2)
2

) (2.64)

Maximization step: taking the zero of the score of the likelihood (2.61) with respect to μ1 and
μ2 gives

μ̂1ML =
N∑
k=1

ykΔk

(
N∑
k=1

Δk

)−1

μ̂2ML =
N∑
k=1

yk(1−Δk)

(
N∑
k=1

(1−Δk)

)−1 (2.65)

respectively. Then taking the zero of the score with respect to σ2
1 and σ2

2 gives

σ̂2
1ML =

N∑
k=1

Δk (yk − μ̂1)
2

(
N∑
k=1

Δk

)−1

σ̂2
2ML =

N∑
k=1

(1−Δk) (yk − μ̂2)
2

(
N∑
k=1

(1−Δk)

)−1 (2.66)

respectively. Performing eventually the same with respect to Π then gives

Π̂ML =
1

N

N∑
k=1

Δk (2.67)

The above quantities are then the novel θ′ to be used again in the expectation step.
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2.3 Estimation for dynamic systems

Consider now the linear time-invariant linear Gaussian dynamic system

xk+1 = Axk +Buk + wk

yk = Cxk +Duk + vk
(2.68)

where

• A, B, C and D are the model parameters matrices,

• xk is the states vector,

• uk is the system input,

• wk ∼ N (0, σ2
x) and vk ∼ N

(
0, σ2

y

)
.

The problem here is estimating the system matrices A, B, C, and D.

2.3.1 Parameter Estimation

Starting from a dataset containing the sequence of measurements yk and states xk we can
estimate the parameters by applying directly ML, LS or MAP estimators.
Example 2.7 (Parameters estimation in dynamical systems)
Consider

xk+1 = axk + wk

yk = cxk + vk
(2.69)

where wk and vk are zero mean Gaussian and independent and identically distributed (iid),
and to know the input sequence y1, · · · , yN and the states sequence x = x1, · · · , xN+1. It is
then required to find an estimator for the parameters a and c.

To solve this task we notice that by solving the first and second equations we can find the
estimators

â = x+x(x+x)
−1

ĉ = yx(x+x)
−1 (2.70)

respectively, where x+ = [x2, · · · , xN+1]
T , x = [x1, · · · , xN ]

T and y = [y1, · · · , yN ]T .

2.3.2 State Estimation

Consider themodel in (2.68)where the parametersA,B,C andD are known. The problem that
we now face is the following: starting from datasets containing the sequence of measurements
and some knowledge on the initial conditions of the system, estimate the state of the system
during its evolution.

It is known that we can perform this task optimally in the mean-squared sense using what
is known as a Fixed-Interval Kalman smoother. There are different implementations for this
strategy; in the next section we will summarize that one proposed [38].
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The Rauch-Tung-Striebel (RTS) Kalman Smother

Consider the linear state space model in (2.68), and assume the noise processes to be dis-
tributed according to [

wk

vk

]
∼ N

([
0
0

]
,

[
Q S
ST R

])
(2.71)

where Q and R are the process and output covariance matrices respectively. Assume that
the initial condition is also Gaussian, i.e., x1 ∼ N (μ, P1). Following the same procedure
described in [36] we can define the parameter vector θ as

θ :=

[
vec

{[
A B
C D

]}T

μT vec
{[

Q S
ST R

]}T

vec{P1}
]

(2.72)

where the vec
{·} operator creates a column vector from a matrix by stacking its columns one

on top of the other. Given these definitions it follows that

• Eθ

[
ykx

T
k | YN

]
= ykx̂

T
k|N

• Eθ

[
xkx

T
k | YN

]
= x̂k|N x̂T

k|N + Pk|N

• Eθ

[
xkx

T
k−1 | YN

]
= x̂k|N x̂T

k−1|N +Mk|N

where x̂k|N , Pk|N andMk|N are calculated backwards in time as

x̂k|N = x̂k|k + Jk(xk+1|N − Āx̂k|k − B̄uk − SR−1yk) (2.73)

Pk|N = Pk|k + Jk(Pk+1|N − Pk+1|k) (2.74)

Jk = Pk|kĀT
k+1|k (2.75)

for k = N, . . . , 1. The matrixMk|N is moreover initialized as

MN |N = (I −KNC)ĀPN−1|N−1 (2.76)

and calculated using

Mk|N = Pk|kJT
k−1 + Jk(Mk+1|N − ĀPk|k)JT

k−1 (2.77)

for k = N − 1, . . . , 1. Finally, the quantities x̂k|k, Pk|k, Pk+1|k and KN can be computed by a
standard Kalman filter for the system described by

Ā := A− SR−1C
B̄ := B − SR−1D
Q̄ := Q− SR−1ST .

(2.78)

Notice that in the special cases considered in the papers presented in Part II we will always
have systems for which S = 0, so that Ā = A, B̄ = B and Q̄ = Q. More details about the
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equations and proofs leading to these can be found in [36]. The Kalman filter equations can
instead be summarized as follows [39]:

Pk|k−1 = APk−1|k−1A
T +Q (2.79)

Kk = Pk|k−1C
T (CPk|k−1C

T +R)−1 (2.80)

Pk|k = Pk|k−1 −KkCPk|k−1 (2.81)

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 − SR−1yk−1 (2.82)

x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1 −Duk) (2.83)

with k = 1, . . . , N .

2.3.3 Joint Parameters and States Estimation

A classic estimation problem is to either estimate the system parameters or perform state
estimation. This is specially true in that cases where the model parameters are not changing
with time: one learns the parameters once, and then performs state estimation the next times.
In practice, tear and wear effects and external conditions may affect the parameters of a model
with time. Therefore, it may be necessary to perform joint parameters-state estimation steps.
In such cases we can apply the EM algorithm to estimate both the states (considered as latent
variables) and the parameters.

Notice that for linear Gaussian systems the expectation step corresponds to perform a
Kalman smoothing to estimate the states using the best available parameters estimate. In the
maximization step, instead, the joint state-measurements likelihood function is maximized
considering the states as calculated in the Expectation step so that to refine the current
parameters estimate.
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Contributions and future directions

3.1 Contributions of the included publications

Paper A: Joint temperature - lasing mode compensation for time-of-

flight Lidar sensors

Summary

We propose an EM algorithm that compensates the mode-hopping effects described in Sec-
tion 1.3.1 by modeling the induced measurement noise as a Gaussian mixture. Thus, from
mathematical perspectives, we introduce some latent variables (namely, from which Gaussian
the noise comes from) as additional estimands. This EM algorithm is also coupled to a tem-
perature compensation filter built on a physics-based linear model for the thermal dynamics
of the laser scanner.

Contributions

Our contributions are:

1. a thorough motivation for why it is meaningful to consider mode-hopping effects in
laser scanners, arising from a physical description of the lasing mechanism in laser
diodes;

2. a thermodynamical model describing the thermal dynamics of a whole laser scanner,
needed by the proposed strategy to account for temperature effects;

3. a statistical model describing the measurement process that decouples the effects of the
mode-hopping from temperature effects;

4. a numerically-efficient EM strategy based on the statistical model above;

5. a validation of the proposed compensation strategy on real devices.
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Paper B: Statistical modeling and calibration of triangulation Lidars

Summary

Weaim at increasing the statistical performance of triangulation Lidars for robotic applications,
with the target of improving their cost-effectiveness through statistical processing techniques.
We thus first propose a statistical model for the measurement process of these devices that
accounts for both nonlinear bias effects and heteroscedasticity in the measurement noise.
After this we thus solve the problem of calibrating triangulation Lidars models off-line, using
ground truth information, and using an approximated ML strategy. Given the results of
this calibration procedure we then propose both ML and LS strategies for solving the on-
line estimation problem, and validate the whole procedure processing data from a physical
device, showing a 17-fold improvement of the empirical MSE of post-calibration data against
pre-calibration data.

Contributions

Our contributions are:

1. a dedicated general model for the measurement process of triangulation Lidars that not
only generalizes the existing models [11, 12], but is also motivated by mechanical and
physical interpretations of the measurement mechanisms;

2. an approximated ML off-line calibration procedure that uses ground truth data (e.g.,
from a Motion Capture (MoCap) system). The calibration procedure extends the one
proposed in [11] by considering a simultaneous calibration of the various parameters
instead of an independent and sequential estimation procedure;

3. two novel ML and LS strategies for correcting the measurements from the sensor with
the model inferred during the calibration stage;

4. a validation of the whole calibration and testing framework on a real device.

Paper C: Calibrating triangulation Lidars without groundtruth information

in terrestrial applications

Summary

The aim is to start from the statistical model proposed in [40] to construct a groundtruth-less
intrinsic parameters calibration procedure that exploit an ad-hoc and approximated EM
algorithm.

In more details we ignore temporal calibration problems and focus explicitly on calibration
procedures for terrestrial robots. The standing assumptions that ensure the feasibility of the
estimation strategy are indeed:

1. the robot moves on a line (even with a time varying speed; the important is that the
movement is a line);

2. the robot has knowledge of the actuation signals it gave to its motors (this precludes
doing calibrations by hand).
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We also describe how to integrate in the calibration scheme other ranging sensors like
odometry and ultrasonic, so to perform simultaneous calibration, and also describe how to
use the results coming from a groundtruth-less calibration procedure to perform Kalman
smoothing during the normal operations of these sensors.

We eventually quantify and compare how these novel groundtruth-less calibration strate-
gies perform compared to the groundtruth-based strategies proposed in [40], plus investigate
the gains obtained combining Lidars , odometers and sonars. The results indicate that the
groundtruth-less leads to results that are similar to the ones obtained with groundtruth-based
strategies (sometimes even better!). This is not totally surprising: we indeed postulate that
the information on the actuation signal given to the robots’ wheels (that was not used in [40])
compensates for the loss of the groundtruth.

Contributions

Our contributions are:

1. an approximated EM and a Kalman smoother-based estimation strategies that allow,
under the assumptions of linear motion and knowledge of which actuation inputs
have been given to the motors of the robot, to jointly (or separately) calibrate sets of
homoscedastic and heteroscedastic sensors such as triangulation Lidars , sonars and
odometers without the need for groundtruth information;

2. a validation of the whole calibration and testing framework on a real device;

3. a relative comparison of the relative effectiveness of groundtruth-based and groundtruth-
less calibration strategies, to quantify how much important is eventually to either know
the groundtruth by means of a motion capture system or the actuation signals that are
given to the robot.

3.2 Related but not appended publications

A. Alhashimi, R. Hostettler and T. Gustafsson, “An Improvement in the ObservationModel for
Monte Carlo Localization,” Informatics in Control, 11th International Conference on Automation
and Robotics (ICINCO), vol. 2, 2014, pp. 498–505.

An ad-hoc modification for the ToF Lidar sensor model to improve the robot Monte Carlo
localization in dynamic environments. The modification is based on filtering (deleting) the
measurements that are close to each other within a specified threshold. These measurements
are known to be problematic for the likelihood function when reflected from un-modeled
dynamic objects.
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3.3 Future directions

We have mainly two separate future directions:

refine our strategies: our calibration techniques consider only one beam at a certain specific
angle, and ignore that a complete Lidar scan is produced through rotating the beam
inside the field of view and sampling it at certain angles with precise angular separa-
tion. We are thus currently ignoring the potential benefits of considering multi-beam
calibrations instead of single-beam ones, and we will address this deficiency right after
completing this thesis. To this aim we notice that cheap Lidars use simple mechanical
rotation system that lead in inaccurate positioning of the beam angles, which in turn
will result in less reliable measurements (with errors increasing for longer distances and
producing evident warping, specially when the scanner scans a flat surface);

make Lidars fly: triangulation Lidars are light weight, have long detection range, have a wide
field of view, and (most important of all, probably) are quite cheap compared to other
Lidar technologies. All these qualities make triangulation Lidars seem appropriate
sensors for flying robots.
However, flying objects are known to be affected by mechanical vibrations and fast
aggressive responses; calibrating and using Lidar devices in such operating conditions
is thus very challenging. Our future plan is to ease the introduction of such sensors in
such harsh conditions. One of our first efforts in this topic will thus be checking how to
extend our Lidar calibration techniques by inserting what are the effects of the novel
dynamics in our models.
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Joint temperature - lasing mode compensation

for time-of-flight Lidar sensors

Anas Alhashimi, Damiano Varagnolo, Thomas Gustafsson

Abstract: We propose an EM strategy for improving the precision of ToF Lidar scanners. The
novel algorithm statistically accounts not only for the bias induced by temperature changes in
the laser diode, but also for the multi-modality of the measurement noises that is induced
by mode-hopping effects. Instrumental to the proposed EM algorithm, we also describe a
general thermal dynamics model that can be learned either from just input-output data or
from a combination of simple temperature experiments and information from the laser’s
datasheet. We test the strategy on a SICK LMS 200 device and improve its average absolute
error by a factor of three.

1 Introduction

ToF Lidars estimate distances by emitting short bursts of laser light and by measuring the
time it takes for the reflected photons to arrive back to the device [1]. Despite being based
on a very simple principle, they are very much both accurate and precise devices [2]: for
example, precisions can reach 10 mm of standard error when the object is 10 m away. Due to
these favorable properties, they are commonly used in critical industrial applications where
there is the need for high quality measurements.

It is well known that these devices need temperature compensation mechanisms, since
changing their temperature leads to changes in the statistics of the returned measurements.
The effect of temperature may be huge: experiments by [3] on an amplitude-modulated
continuous-wave laser radar pointing at a target six meters away from the sensor showed that
measurements at 21 °C and measurements at 45 °C were differing by 40 cm. Since thermal
stabilization of a laser scanner may take up to 30 min [4], it is clear that these sensors are
affected by a warm-up-induced time drift that must be compensated. Manufacturers of ToF
devices thus usually embed opportune algorithms in their products that implement this
temperature compensation mechanism. Unfortunately, temperature is not the only physical
factor that deserves compensation: as described in detail in Section 2, lasers can suddenly
change their lasing mode. This property, called the mode-hopping effect, has a substantial
impact on the measure returned by ToF devices, since changing lasing mode means to change
the spectral content of the laser burst, i.e., change its time of flight. Remarkably, to the best
of our knowledge, the existing literature does not focus on managing this effect, but rather,
considers only temperature compensation mechanisms.

We would like to mention here that there are also other methods with high temperature
compensation at the nano-scale measurement, such as [5]. The method reduces the offset, the
temperature characteristic of the main sensing element, the temperature drift and the noise
by the switching method.
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1.1 Statement of Contributions

We propose an expectation maximization (EM) algorithm that compensates mode-hopping
effects by modeling the induced measurement noise as a Gaussian mixture. Thus, from the
mathematical perspective, we introduce some latent variables (namely, from which Gaussian
the noise comes from) as additional estimands. This EM algorithm is also coupled to a
temperature compensation filter that is built on a physics-based linear model for the thermal
dynamics of the laser scanner. Summarizing, thus, our contributions are, with respect to the
aforementioned literature:

1. A thorough motivation for why it is meaningful to consider mode-hopping effects in
laser scanners, arising from a physical description of the lasing mechanism in laser
diodes;

2. A thermodynamical model for the thermal dynamics of a whole laser scanner, needed
by the proposed strategy to account for temperature effects;

3. A statistical model describing the measurement process that decouples the effects of
the mode-hopping from temperature effects;

4. A numerically-efficient EM strategy based on the statistical model above;

5. A validation of the proposed compensation strategy on real devices.

With the validation, we also show that it is possible to improve the absolute error of a
SICK LMS 200 device by a factor of three.

1.2 Organization of the Manuscript

Section 2 analyzes the effects of the laser temperature on the measured distance. Section 3
proposes a general model for the thermal dynamics of a pulsed ToF Lidar. Section 4 presents
a general measurement model accounting for both temperature and mode-hopping effects.
Section 5 describes how to train the EM algorithm, while Section 6 describes how to use
the same algorithm for testing purposes. Section 7 then proposes a likelihood ratio test for
calibrating the hyperparameters of the EM algorithm. Section 8 presents some numerical
results on commercial devices. Finally, Section 9 draws some conclusions and future research
directions.

2 Effects of the Laser Temperature on the Measured Distance

This section lays down interpretations motivating the structure of the novel compensation
procedures. We thus here describe the functioning principle of ToF scanners, explain why
the measured distance depends on the temperature of the device and motivate why the
measurement noise of a Lidar is intrinsically multi-modal.

Consider then the basic operation of pulsed ToF Lidars in Figure 1 and in its caption.
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Figure 1: Graphical description of the operating principle for pulsed ToF Lidars. A pulsed
infra-red laser beam is first emitted from the transmitter. The case of the transmitter, in dark
gray, encloses a laser junction and a laser cavity. The emitted laser beam is then deflected by a
rotating mirror (resulting in a fan-shaped scan pattern) and, finally, reflected from the object
surface. The time of flight τ between the transmission and the reception of the laser beam is
then used to estimate the distance d between the scanner and the object.

The measurement of the distance derives from ideal considerations: if the temporal width
of the pulse is null, then the distance d between the sensor and the object should satisfy:

d =
c τ

2
(1)

where c is the speed of light and τ is the measured ToF between when the laser pulse is
emitted and when it is received. Assume ideally that the laser pulse contains photons with a
unique nominal wavelength λ0. Since:

c = λ0f (2)

with f the light frequency and λ0 the nominal wavelength, and since the light frequency f
remains the same through different media, to know c, it is sufficient to know λ0. Thus, from
knowing λ0, one can compute d, since τ is measured.

We can already now notice the first effect of the temperature of the device on the measure-
ment: according to its datasheet, the nominal wavelength of the laser diode SPL PL90 from
OSRAM [6] is 905 nm at 25℃, and 907.8 nm at 35℃. Assuming the target to be at a one-meter
distance, this 2.8 nm variation in the wavelength λ then results in a 10.3-ps variation in the
ToF τ , i.e., a variation in the measured distance of approximately 3.1 mm.

The previous consideration is nonetheless simplistic. We can indeed notice another three
distinct effects:

1. In general, lasers do not emit at a unique frequency λ. Indeed, the average spectral
distribution of the laser pulses follows a “comb”-like density, like the one in Figure 2.
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Figure 2: Average spectral distribution for GaAsP lasers at the nominal temperature of 21 ℃
[7].

2. Lasers are affected by the so-called mode-hopping effect [8] and, indeed, oscillate
between different lasing modes (the teeth of the “comb” of Figure 2), for which two
different pulses generated under the same temperature and external conditions may
have different λ’s (e.g., referring to the same figure, the first pulse may contain only
photons with wavelengths λ1, while the second pulse may contain only photons with
wavelengths λ2). In other words, the actual distribution of one specific pulsemay contain
only a subset of the teeth of the average spectral distribution. Using naively Equations
(1) and (2) to estimate d without being aware of the mode hopping, i.e., assuming a
certain λ0 without actually knowing that the average λ jumps between different lasing
modes, reflects thus in a multimodal measurement of d, as clearly shown in Figure 3.

3. The average spectral distribution of the laser pulses is not fixed, but rather depends on
the temperature of the transmitter [9]. More precisely, the positions and amplitudes of
the modes in Figure 2 depend on both the current flowing through the laser junction
and the geometry of the laser cavity, but eventually, these two effects are inter-combined:
the current flow produces heat that will modify the geometry of the cavity. Eventually,
thus, the temperature affects the position and amplitude of the modes of the average
spectral distribution. This temperature effect can be clearly seen in Figure 4: even if
the device is nominally already compensated in temperature, one can clearly see two
different lasing modes shifting in temperature.
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Figure 3: Histogram of consecutive measurements returned by a SICK 200 device in
thermodynamical and electrical equilibrium pointing at a fixed object and in a controlled
environment.
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Figure 4: Dependency of the distance measurements on the device temperature for a SICK
200 device pointing to a fixed object in a controlled environment. Despite the true distance
and other parameters potentially affecting the measurements being constant in time, the
distributions of the measurements are temperature varying. We can notice how the device
compensates for the temperature change by adding a temperature-varying negative bias, but
that it does not compensate the mode-hopping effect.

To summarize, the actual λ of a laser pulse is in general different from the nominal λ0

because of two effects: first, the laser may oscillate between different modes; second, these
positions of these modes vary with temperature.
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3 A General Model for the Thermal Dynamics of a Pulsed

ToF Lidar

Instrumental for compensating the effects of temperature offsets highlighted in the previous
section, we here discuss a general thermodynamicmodel describing the temperature dynamics
of the whole laser scanner that will lead us to being able to represent the temperature changes
of the laser cavity.

3.1 Physical Modeling

Just like any power electronic device, Lidars generate heat that is then exchanged with
the environment, so that the temperature of a scanner depends on the temperature of the
environment. The main sources of heat inside the LiDAR are thus the laser diode, the motor
and the electronic components of the system. The heat generated inside the scanner is then
transferred to the surrounding environment through the case. Since our experience indicates
that motors and other electronic components induce negligible thermal effects, we consider
only the heat produced by the laser diode.

We thus represent the thermal model of a generic scanner as the equivalent electrical
circuit shown in Figure 5, interpretable as follows: when the laser is turned on, the heat
generated by the laser junction is dissipated in the surrounding environment through first
the transmitter case and then, second, through the laser scanner case.

tj tc

PC1 R2 C2

1

R2

ṫa
R1

Figure 5: The proposed thermodynamic model for a generic pulsed ToF Lidar.

Considering the notation:

P Heat power generated by the junction (equal to zero when the device is off)
tj Temperature of the junction
tc Temperature of the transmitter case
ta Temperature of the external ambient
ts Noisy measurement of the temperature of the transmitter case
C1 Thermal inertia of the transmitter case
C2 Thermal inertia of the laser scanner case
R1 Thermal resistance between the transmitter case and the laser scanner case
R2 Thermal resistance between the laser scanner case and the ambient
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It follows that the dynamics for the temperatures of the laser junction and scanner case
when the laser is on are thus:⎧⎪⎪⎨⎪⎪⎩

ṫc =
tj

R1C2

− tc
(

1

R2C2

+
1

R1C2

)
+

1

C2R2

ṫa

ṫj =
P

C1

+
tc

R1C1

− tj

R1C1

(3)

Discretizing the previous dynamics with a discretization step of T s and letting:

tk :=

[
tck
tjk

]
uk :=

{
P if on,
0 if off, νk := tak − tak−1 (4)

implies the following discrete-time state-space representation of the model:{
tk+1 = Atk +Buk +B′νk

tsk = Ctk + μk
(5)

where tsk is a noisy temperature measurement of the case at time k, νk and μk are independent
process and measurement noises, and where:

A =

⎡⎢⎢⎣1−
T

R2C2

− T

R1C2

T

R1C2

T

R1C1

1− T

R1C1

⎤⎥⎥⎦ B =

⎡⎣ 0

T

C1

⎤⎦ B′ =

⎡⎣ T

R2C2

0

⎤⎦ C =
[
1 0

]
(6)

Notice that through Equation (5), we introduce tsk, i.e., a noisy measurement of the tem-
perature of the transmitter case. This correspond to the practical assumption that perfect
knowledge of the actual case temperature tck is in general unavailable, since temperature
sensors attached to the case of the scanner will never give noiseless recordings.

3.2 Identifying Model Equation (5)

If one has a dataset of recorded temperatures tjk, tck and tak, then one may identify Equation (5)
using standard system identification approaches, e.g., a Prediction Error Method (PEM) as
in [10]. For the common case where it may be difficult to obtain direct measurements of the
quantities, we propose to resort to the following general strategy that uses the datasheet of
the laser scanner in conjunction with noisy case temperature measurements tsk.

3.3 Estimating tj from ts

Assume that model Equation (5) has been identified, either from measured data or using
Algorithm 1, and observe that the thermal model is observable, reachable and has stable
dynamics. Due to their favorable theoretical and numerical properties, we thus devise to
estimate tjk from noisy measurements of the case temperature tsk via Kalman smoothers/filters,
as in [12], i.e., to let: [

t̂j1, . . . , t̂
j
K

]
= W [ts1, . . . , t

s
K ] (7)

for an opportune (and potentially time varying) matrix W . As before, notice that the fil-
tering starts from noisy measurements of the case temperature tsk, rather than from perfect
measurements tck.
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Algorithm 1 Identification of model Equation (5) starting from the datasheet of a laser scanner.
1: From the datasheet of the laser scanner infer:

• its thermal resistance R1 (directly from the datasheet);

• its thermal capacity C1 (by estimating the volume of the laser diode from the
datasheet and multiplying it for the heat capacity of the material, also indicated in
the datasheet);

2: From measuring the weight and material of the case, infer its thermal capacity C2;
3: Estimate the generated heat power P by measuring the electrical power absorbed by the

device and multiplying this quantity by 0.5 (for the estimated efficiency of generic laser
diodes [11]);

4: From situations where the scanner is in thermal equilibrium, calculate R2 by calculating
the difference between the measured case temperature tsk and the ambient temperature tak
divided by the estimated generated heat power P .

4 A General Measurement Model Accounting for Temper-

ature and Mode Hopping Effects

We recall that our aim is to model the effect of the temperature of the laser junction tjk on
the measured distance d and understand how noisy case temperature measurements tsk help
improving the accuracy on the final estimate of d. To this aim, we propose the following
measurement model at the generic time instant k:

yk = d+H
(
tjk
)
θ + (1−Δk)w

1
k +Δkw

2
k (8)

where:

• yk is the distance returned by the sensor;

• d is the true distance from the object (assumed deterministic);

• tjk is the temperature of the laser cavity at time k;

• The two modes w1
k ∼ N (μ1, σ

2
1) and w2

k ∼ N (μ2, σ
2
2) account for a bimodal Gaussian

and white additive measurement noise. The Bernoulli random variable (r.v.) Δk ∼ B (π)
selects the active mode at time k, so that π reflects the relative importance of the modes.
Intuitively, Δk represent which lasing mode has been active during measurement yk.
We notice that here, we consider bimodal noises (i.e., only two lasing modes) just for
notational simplicity. It is nonetheless immediate to generalize the subsequent findings
for an M -modal case;

• H (·)θ is a non-linear transformation of the temperature of the laser junction tjk in a
measurement bias. In the following Examples A.1 andA.2, we show howdifferentH (·)’s
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and θ’s express different maps from the junction temperature tjk to the measurement
bias.

Notice that, induced by our experience, we let the measurement noise modes w1
k and w2

k

be independent from the laser junction temperature tjk. Our experiments indeed indicated
that the moments of the noises are not affected by changing temperatures (at least for a
range between 0 °C and 40 °C). Notice moreover that model Equation (8) is linear in θ; this
restrictive assumption is nonetheless essential for building distance estimation algorithms
that are numerically fast.
Example A.1 (Polynomial model)
Let:

Hk = H
(
tjk
)
:=
[
tjk,

(
tjk
)2

, . . . ,
(
tjk
)N] (9)

and θ := [θ1, . . . , θN ]. Then, the generic model Equation (8) specializes into:

yk = d+
N∑

n=1

(
tjk
)n

+ (1−Δk)w
1
k +Δkw

2
k (10)

i.e., a measurement model where the temperature plays the role of an N -th order polynomial bias (see
Figure 6).
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Figure 6: Potential temperature-bias dependencies for the polynomial model of Example A.1.

Example A.2 (Fourier expansion model)
Let:

Hk = H
(
tjk
)
:=
[
cos

(
2πf0t

j
k

)
, sin

(
2πf0t

j
k

)
, . . . , cos

(
2Nπf0t

j
k

)
, sin

(
2Nπf0t

j
k

)]
(11)

and θ := [θ′1, θ
′′
1 , . . . , θ

′
N , θ

′′
N ], where the fundamental frequency f0 is assumed to be known. Then, the

generic model Equation (8) specializes into:

yk = d+
N∑

n=1

(
θ′n cos

(
2nπf0t

j
k

)
+ θ′′n sin

(
2nπf0t

j
k

))
+ (1−Δk)w

1
k +Δkw

2
k (12)

i.e., a measurement model where the temperature plays the role of a bias that is periodic with frequency
f0 (see Figure 7).
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Figure 7: Potential temperature-bias dependencies for the Fourier expansion model of Exam-
ple A.2.

We then use model Equation (8) for practical purposes following the classical scheme:

• Design the model, i.e., decide the structure for H (·) (e.g., between Example A.1, Exam-
ple A.2 or also different ones depending on the need) starting from data collected in a
controlled environment (see Section 7);

• Train the model, i.e., estimate θ and the statistics of w1
k, w2

k and Δk from data collected
in a controlled environment (see Section 5);

• Test the model, i.e., use the previous estimated quantities during the normal operation
of the laser scanner, so as to improve the estimation of d from data collected in a non-
controlled environment (see Section 6).

The following sections are dedicated in detail to how to implement the previous three
points. Notice that Section 7, on the design of the model, is presented after Sections 5 and 6
for notational convenience.

5 Training Model Equation (8)
In this section, we devise a numerical algorithm for learning θ (i.e., the coefficients multiplying
H(·)), μ1, μ2, σ2

1 , σ2
2 , π (i.e., the statistics of the noises w1

k, w2
k and of the random variables Δk)

and the values of the mode selection variables Δk starting from a dataset containing:

• yk for k ∈ {1, . . . , K};

• d, i.e., the real distance;

• tsk, i.e., measurements of the temperature of the laser scanner case (to be transformed
into estimates of tjk through Equation (7)).
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Let then:
y :=

[
y1 · · · yK

]T
ts :=

[
ts1 · · · tsK

]T
tj :=

[
tj1 · · · tjK

]T
Δ :=

[
Δ1 · · · ΔK

]T
θ :=

[
θT μ1 μ2 σ2

1 σ2
2 π

]T
.

(13)

Given the frequentist assumptions on the unknowns, we would like to perform ML esti-
mation for θ, i.e., seek for:

argmax
θ,Δ

P
[
y, tj ; d,θ,Δ

]
(14)

Since the laser junction temperature tj is unavailable, Equation (14) cannot be solved. We
thus resort to solving the approximated problem:(

θ̂, Δ̂
)
:= argmax

θ,Δ
P

[
y, t̂j ; d,θ,Δ

]
(15)

where t̂j is the estimate of tj given ts as in Equation (7). We also notice that, instead of
considering the joint density of y and t̂j , it is sufficient to consider the conditional density of
y given t̂j :

Proposition 1. (
θ̂, Δ̂

)
= argmax

θ,Δ
P

[
y
∣∣∣ t̂j ; d,θ,Δ]

(16)

It is important to notice that the ML problem in Equation (16) contains the latent variables
Δ; to estimate them, we thus resort to a tailored EM approach [13]. To this aim, define then
the auxiliary variables:

Σ1 := diag
(
1− Δ̂k

)
Σ2 := diag

(
Δ̂k

) ỹk := yk − d

ỹ := y − d1
H :=

⎡⎢⎣H1
...

HK

⎤⎥⎦ =

⎡⎢⎣H
(
t̂j1
)

...
H
(
t̂jK
)
⎤⎥⎦ (17)

with 1 being a vector of K ones. The computation of
(
θ̂, Δ̂

)
is performed through the

iteration up to convergence (stopping criteria for EM algorithms are usually based on relative
or absolute changes in the parameter estimate or in the value of the log likelihood; see, e.g.,
[14]; in our implementations, we used the absolute changes in the parameter estimate π̂ < ε;
where ε is a small number 1× 10−5 in the implementation) of the following two steps:

E-step

δk = (1− π̂) N
(
ỹk −Hkθ̂ − μ̂1, σ̂

2
1

)
+ π̂ N

(
ỹk −Hkθ̂ − μ̂2, σ̂

2
2

)
, k = 1, . . . , K

Δ̂k =
π̂N

(
ỹk −Hkθ̂ − μ̂2, σ̂

2
2

)
δk

, k = 1, . . . , K

(18)
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M-step
C = σ̂2

1 Σ1 + σ̂2
2 Σ2

θ̂ =
(
HTC−1H

)−1

HTC−1ỹ

μ̂i =
1TΣi

1TΣi1

(
ỹ −Hθ̂

)
i = 1, 2

σ̂2
i =

(
ỹ −Hθ̂

)T

Σi

(
ỹ −Hθ̂

)
1TΣi1

i = 1, 2

π̂ =
1

K

∑
k

Δ̂k

(19)

In our numerical experiments, we empirically found it convenient to use the following
initial conditions:

θ̂ = 0, μ̂1 = 0.1, μ̂2 = −0.1, σ̂2
1 = 0.1, σ̂2

2 = 0.1, π̂ = 0.5 (20)

As for the convergence of the EM to the trueML estimate, we notice that EM algorithms are
not in general ensured to have convergence properties. A sufficient condition for convergence
is in [15], where the authors show that EM algorithms are convergent if the maximizer of
the M-step is unique (a condition that is almost always satisfied in practice). In our case,
the M-step maximizer is unique as long as in the update for θ̂ in Equation (19), the matrix
HTC−1H admits the inverse. In general, e.g., in both the polynomial case of Example A.1
and in the Fourier expansion case of Example A.2, this translates into the need for at least N
samples associated with N different laser junction temperatures tjk.

6 Testing Model Equation (8)

We now devise a numerical algorithm for estimating d and the values of the lasing mode
selection variables Δk starting from the model trained in Section 5 (i.e., an estimated vector
θ̂ :=

[
θ̂T , μ̂1, μ̂2, σ̂

2
1, σ̂

2
2, π̂

]T
and the statistics of w1

k, w2
k and Δk) and a set of measurements

yk and tsk for k = 1, . . . , K.
Assuming once again to transform the temperature sensor measurements ts into estimated

laser junction temperatures t̂j = W ts through Equation (7), the problem of estimating d and
the Δks can be cast as: (

d̂, Δ̂
)
= argmax

d,Δ
P

[
y
∣∣∣ t̂j ; d, θ̂,Δ]

(21)

As before, we compute this ML estimate through an EM approach:

E-step

δk = (1− π̂)N
(
yk − d̂−Hkθ̂ − μ̂1, σ̂

2
1

)
+ π̂N

(
yk − d̂−Hkθ̂ − μ̂2, σ̂

2
2

)
, k = 1, . . . , K

Δ̂k =
π̂N

(
yk − d̂−Hkθ̂ − μ̂2, σ̂

2
2

)
δk

, k = 1, . . . , K

(22)
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M-step
C = Σ1σ̂

2
1 + Σ2σ̂

2
2

d̂ =
(
1TC−11

)−1

1TC−1
(
y −Hθ̂

) (23)

The same values of μ1, μ2, σ
2
1 and σ2

2 at the end of the training stepwill be used in the testing
step. There is no need to recompute them again. In our experiments, we found it beneficial to

start from the initial conditions d̂ =
1Ty

K
and Δ̂k = 0.5. The convergence properties of this

EM procedure are then very similar to the EM in Section 5.

7 Designing Model Equation (8)

This section is divided into two parts:

1. Section 7.1, suggesting some hints for designing different structures forH (·) (e.g., choos-
ing the order for Example A.1, for Example A.2 or also designing different functional
structures depending on the collected information);

2. Section 7.2, suggesting a numerical algorithm for discriminating between different
competing structures for H starting from data collected in a controlled environment.

7.1 Designing H (·)
The proposed EM algorithms have the numerically-favorable property of having both the E
and the M steps solvable in closed form. It is important to notice that this is induced by the
fact that model Equation (8) is linear in θ, i.e.,

H
(
tjk
)
θ =

[
H1

(
tjk
)
, . . . , HN

(
tjk
)] ⎡⎢⎣ θ1

...
θN

⎤⎥⎦ =
N∑

n=1

Hn

(
tjk
)
θn (24)

Thus, with this structure, the designer can model the effect of the temperature tjk on the
measurement yk as the sum of N independent effects, each one represented as an opportune
generic function of tjk (the weight of which is actually assumed unknown before the training
phase).

As shown in Figures 6 and 7, the structures proposed in Examples A.1 and A.2 have
quite general generalization capabilities. Nonetheless, the designer can tailor H so that it
resembles other structures; our suggestion is to start from raw measured data spanning
different temperatures, check visually how the macroscopic temperature trend behaves and
then decompose this trend as the sum of different functions that will become the various
Hn (·) in model Equation (8).
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7.2 Determining the Best H (·) among Different Competing Potential

Structures

The process described in Section 7.1 may lead to different competing structures for H (·). In
other words, the designer may propose different structures H(1), H(2), etc., and would like to
choose the “best” H(i) given a dataset containing y, ts and the true distance d.

We propose to use the classical approach of discriminating the various H(i)’s considering
their goodness of fit, i.e., to use Generalized Likelihood Ratios (GLRs) [16], for which we first

estimate the best estimates θ̂
(i)

and Δ̂(i) for each H(i) given the dataset and then select the
best hypothesis considering their resulting log-likelihoods. More formally, the suggested
procedure is as in Algorithm 2.

Algorithm 2 Selection of the best H(i).
1: for i = 1, 2, . . . do

2: Compute θ̂
(i)

and Δ̂(i) as in Section 5;

3: Compute


(i) := log(σ̂2
1)1

TΣ11+ log(σ̂2
2)1

TΣ21

+
1

2σ̂2
1

(
y − d1−H(i)θ̂(i) − μ̂

(i)
1 1

)T

Σ
(i)
1

(
y − d1−H(i)θ̂(i) − μ̂

(i)
1 1

)
+

1

2σ̂2
2

(
y − d1−H(i)θ̂(i) − μ̂

(i)
2 1

)T

Σ
(i)
2

(
y − d1−H(i)θ̂(i) − μ̂

(i)
2 1

) (25)

where Σ(i)
1 := diag

(
1− Δ̂

(i)
k

)
and Σ

(i)
2 := diag

(
Δ̂

(i)
k

)
;

4: end for

5: Select that H(i) that corresponds to the maximal 
(i).

8 Experiments

We now validate the proposed thermal model and estimation strategy on real data, aiming
to show their effectiveness. We thus consider the simple scenario where a target is fixed in
front of a sensor, under constant light and electrical conditions, so that the actual distance
between the sensor and the target d is fixed. We consider a SICK LMS 200 Lidar, one of the
most widely-used Lidars in industry and robotics applications.

8.1 Training and Validation of the Thermal Model Equation (5)

To train and validate the thermal model Equation (5), we conducted the experiment summa-
rized in Figure 8: in a thermally-controlled room at 22°, we performed several on-off cycles
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of the device and measured the corresponding case temperature tsk. We then used the data
represented as “training data” in the figure, the data-sheet of the SICK LMS 200 LiDAR and
Algorithm 1 to train model Equation (5). After that, we drove the trained model with the uk

in the “test data” as inputs and obtained a predicted temperature ŷsk. The goodness of fit of
the predicted temperatures, computed as:

100

(
1−

∑
k (ŷ

s
k − ysk)

2∑
k (y

s
k)

2

)
(26)

is then 92.79%. This indicates a very good fit, i.e., a good approximation capability of our
proposed thermal model (and associated learning algorithm).
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Figure 8: Validation of the thermal model Equation (5) on a SICK 200 Lidar.

8.2 Selection of the Optimal H(·) for the SICK 200 Lidar

We used Algorithm 2 on real data from a SICK LMS 200 to discriminate between different
H(i)’s in Examples A.1 and A.2, i.e., the hypotheses:

Hi : y ∼ (1−Δ)N (
d+H(i)θ + μ1, σ

2
1

)
+ΔN (

d+H(i)θ + μ2, σ
2
2

)
(27)

against the null hypothesis:
H0 : y ∼ N (

d, σ2
)

(28)
so that the log likelihood ratio test between two hypotheses can be defined as:

Λi(y) =


(
d̂, σ̂2|y

)


(
d̂, σ̂2

1, σ̂
2
2, μ̂1, μ̂2, θ̂, Δ̂|y, H(i)

) (29)

where we explicitly mention the dependence of the log likelihood 
 from the various parame-
ters of the considered model.

Figures 9 and 10 show the likelihood ratios obtained for different candidates for polynomial
and Fourier expansions, respectively. For the polynomial case, we obtained the highest
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likelihood for the polynomial order N = 16, while for the Fourier case, we obtained the
optimal value for N = 180. We motivate this latter order, much higher than that of the
polynomial case, to be due to the periodic nature of the Fourier model.
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Figure 9: Generalized likelihood ratio (GLR) for Example 10 (polynomial model). The vertical
axis values represent the likelihood ratio, and the horizontal axis represents the polynomial
order used for generating the H(i) matrix.
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Figure 10: GLR for Example 12 (Fourier model) with different orders. The vertical axis values
represent the likelihood ratio and the horizontal axis represents the Fourier series order used
for generating the H(i) matrix.

8.3 Assessment of the Performance Improvement for the SICK 200 Lidar

Assume considering the best model order as in Section 8.2 and applying the main EM esti-
mation algorithm for testing purposes. Figure 11 then shows an example of the outcome of
this test on real data: first, the figure plots for each raw measurement the associated lasing
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modes detected by the EM testing procedure. The same plot shows also the bias induced by
the temperature, i.e., Hθ̂.

Once the raw measurements have been associated with the corresponding lasing modes,
it is then possible to subtract from them the corresponding noise bias μ̂1 or μ̂2; in other
words, it is possible to remove a certain lasing mode-dependent bias from each of the various
measurements. This leads to a new distribution of the measurements, as shown in Figure 12.
This figure shows the cumulative distribution of themeasurements that we plotted in Figure 11
before and after subtracting the biases induced by the lasing modes. It is clearly visible that
after this removal, the cumulative distribution becomes sharper, indicating that the novel
dataset has a smaller variance.
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y k

Δ̂k = 0 Δ̂k = 1 Hθ̂ d̂

Figure 11: Application of the EM testing algorithm on real data, where the rawmeasurements
are plotted versus the temperature of the device. The black dots are the raw measurements
that have been associated with lasing Mode 1, while the gray dots are the measurements
associated with lasing Mode 2. The solid line denotes the temperature-induced bias on the
measured distance.
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Figure 12: Effects of compensating some raw data with the biases corresponding to the lasing
mode of each sample.

8.4 Convergence Properties for the EM Algorithms

We now report some numerical results for the convergence properties of the EM training
and test algorithms. More precisely, Figure 13 shows the evolution of the estimates during
the training phase, while Figure 14 shows the same evolution for the testing phase. We
also plot in Figure 15 the computational burden of performing a fixed number of EM test
steps for different measurement vector lengths and show empirically how the computational
efforts for testing some points are quadratic with the number of samples. Importantly, this
computational effort does not depend heavily on the order of the model.

We show in Figure 16 how the precision and accuracy of the estimate d̂ changes with
the number of samples in the test set. More precisely, we show the following cumulative
distribution: given the set of 20,000 raw measurements, extract every subset of 200, 400 or 800
consecutive measurements and, for each of these subsets, compute an estimate d̂. The result
is intuitive: estimating from more measurements leads to a better estimator (i.e., a cumulative
distribution that steepens in correspondence of the true distance).
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Figure 13: Convergence of the estimated means to their final estimates during the training
phase for a training set containing 4000 raw measurements.
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Figure 14: Convergence of the estimated distance to its final estimate during the test phase for
a test set containing 4000 raw measurements.
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Figure 15: Dependence of the computational complexity for the EM testing phase for two
different Fourier order models as a function of the number of samples in the test set.
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Figure 16: Cumulative distributions of the estimate d̂ for different testing sample sizes. The
device temperature ranged in these experiments between 24.8 °C and 28.8 °C.

We show in Figure 17 the realizations of the errors committed by three different estimators:
d̂ (our estimator), y (the sample average of a window of measurements) and y −Hθ̂ (the
sample average of a window of measurements corrected by the temperature compensation
term Hθ̂). We notice that d̂ commits the smallest errors almost everywhere. To integrate the
information, we also plot the temperature of the device in the lower plot. This helps with
recognizing that d̂ has better performance, especially where the effect of the temperature is
higher.
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Figure 17: Realizations of the errors committed by the three estimators d̂, y and y −Hθ. In
this experiment, the temperature of the device ranged between 24.8 °C and 28.8 °C; the sample
size is 1000 points.

We also plot in Figures 18 and 19 how the statistical moments of the empirical error and of
the empirical absolute error of these estimators behave with the test sample size. Each point
in the plot represents the mean or the variance of an error (or absolute error) sequence similar
to those shown in Figure 17. We see that the performance of d̂ improves monotonically, while
for the other estimators, this does not happen. Similar results happen also in the plots for the
variances, where the proposed estimator outperforms the other two.
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Figure 18: Dependency of the statistical moments of the various estimators on the test sample
size. The upper plot shows the mean error, while the lower plot shows the variance of the
error. In these experiments, the temperature of the device ranged between 24.8 °C and 28.8
°C.
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Figure 19: Dependency of the statisticalmoments of the absolute error of the various estimators
on the test sample size. The upper plot shows the mean absolute error, while the lower plot
shows the variance of the absolute error. In these experiments, the temperature of the device
ranged between 24.8 °C and 28.8 °C.

9 Conclusions

Physical considerations on the mode-hopping effect lead to the consideration that the mea-
surement noise of Time of Flight (ToF) laser scanners is intrinsically multi-modal. In its turn,
this implies that estimating the actual distance between scanners and the surrounding objects
should be performed using latent variable-based statistical models, where the latent variables
correspond to the lasing modes of the laser. Since no literature seems to account for this
multi-modality, we aimed at closing this gap.

We thus proposed an ExpectationMaximization (EM) algorithm on top of amodel that cap-
tures biases on the measured distance induced by temperature changes, plus mode-hopping
effects through an opportune Gaussian mixture on the measurement noise. Importantly,
thanks to a separable model, the EM iterations can be performed analytically. The compu-
tational advantages are clear: non-separable models may indeed need to perform the EM
iterations numerically, and this would lead to a computational burden hindering the usability
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of mode-hopping correction procedures in on-line settings.
The proposed strategy incorporates an accurate model of the temperature dynamics of

the laser diode. Moreover, to account for the fact that it may be difficult to collect temperature
data on the laser, we proposed a strategy for the identification of the parameters of this model
that exploit the datasheet of the laser device and some very simple experiments.

Overall, the proposed temperature compensation strategy led to diminishing the spread
of the distribution of real measurements from a SICK LMS 200 around the true value d, as
shown in Figure 12, with corresponding decays of the variance of the absolute error from 2.0
mm2 to 0.68mm2 and shift of the expected absolute error from 3mm to 1mm, as shown in
Figure 19.

We eventually notice that the proposed strategy is still in its infancy: indeed, we considered
a frequentist case for which the actual distance d is a deterministic and fixed quantity, aiming
at showing that it is possible to improve the overall precision of a laser scanner through
accounting for mode-hopping effects. Nonetheless, in real scenarios, d will vary; we thus
devise future efforts focusing on strategies for which d is a stochastic process that varies
according to some given a priori distribution.
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Statistical modeling and calibration of

triangulation Lidars

Anas Alhashimi, Damiano Varagnolo and Thomas Gustafsson

Abstract: We aim at developing statistical tools that improve the accuracy and precision of the
measurements returned by triangulation Light Detection and Rangings (Lidars). To this aim
we: i) propose and validate a novel model that describes the statistics of the measurements
of these Lidars, and that is built starting from mechanical considerations on the geometry
and properties of their pinhole lens - CCD camera systems; ii) build, starting from this
novel statistical model, a Maximum Likelihood (ML) / Akaike Information Criterion (AIC) -
based sensor calibration algorithm that exploits training information collected in a controlled
environment; iii) develop ML and Least Squares (LS) strategies that use the calibration results
to statistically process the raw sensor measurements in non controlled environments. The
overall technique allowed us to obtain empirical improvements of the normalized Mean
Squared Error (MSE) from 0.0789 to 0.0046.

1 Introduction

Lidars are ubiquitously used for mapping purposes. Different types of Lidar technologies,
such as ToF and triangulation, have different statistical performance. For example, ToF Lidars
have generically lower bias and measurement noise variances than triangulation ones. At the
same time, triangulation Lidars are generally cheaper than ToF ones. The market pull is then
to increase the performance of cheaper Lidars in a cost-effective way.

Improving the accuracy and precision of sensors can then be done in different ways, e.g.,
by improving their mechanical properties. In this paper we have a precise target: improve the
performance indexes of triangulation Lidars by removing their biases and artifacts through opportune
statistical manipulations of the raw information coming from the sensor.

The following literature review analyzes a set of algorithms that are related to our aim.

Literature review It is convenient to categorize the algorithms in the existing and relevant
literature as:

• procedures for the characterization or calibration of the devices. Here characterization
means a thorough quantification of the measurement noisiness of the device, while
calibration means an algorithm that aims at diminishing this noisiness level;

• when dealing with calibration issues, procedures for the intrinsic or extrinsic calibration.
Here intrinsic means that the focus is on estimating the parameters of the Lidar itself,
while extrinsic means that the focus is on estimating the parameters resulted from sensor
positioning and installation.
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Characterization issues: several papers discuss Lidar characterization issues for both ToF
[1, 2, 3, 4, 5, 6, 7, 8, 9] and triangulation Lidars [10, 11]. Notice that, at the best of our knowledge,
for triangulation Lidars there exist only two manuscripts: [10], that discusses the nonlinearity
of Neato Lidars, and [11], that analyzes the effect of the color of the target on the measured
distance. Importantly, [10] models nonlinear effects on the measurements and the variance of
additive measurement noises as two independent effects that can be modeled with a second
order polynomials on the actual distance. From a statistical perspectives the authors, therefore,
decouple the learning process into two separate parts.

Calibration issues: as for the calibration issues there is a relatively large number of papers
describing how to calibrate extrinsic parameters either using additional sensors (such as
cameras) [12, 13, 14, 15], or just requiring knowledge on the motion of the Lidar itself [16, 17,
18, 19].

Still considering calibration issues, there has been also a big effort on how to perform
intrinsic calibration for multi-beam Lidar systems, where the results from one beam is used
to calibrate the intrinsic parameters of other beams [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. As
for single-beam Lidar systems, instead, [27] proposes a method for the intrinsic calibration of
a revolving-head 3D Lidar and the extrinsic calibration of the parameters with respect to a
camera. The technique involves an analytical method for computing an initial estimate for
both the Lidar’s intrinsic parameters and the Lidar-camera transformation, that is then used
to initialize an iterative nonlinear least-squares refinement of all of the calibration parameters.

We also mention the topic of on-line calibration of sensor parameters for mobile robots
when doing Simultaneous localization and mapping (SLAM), very useful in navigation
tasks. In this category, [30] proposes an approach to simultaneously estimate a map of the
environment, the position of the on-board sensors of the robot, and its kinematic parameters.
These parameters are subject to variations due to wear of the devices or mechanical effects like
loading. An other similar methodology for the intrinsic calibration of depth sensor during
SLAM is presented in [31].

Statement of Contributions We focus specifically on triangulation Lidars for robotic ap-
plications, and aim to increase their performance in a cost-effective way through statistical
processing techniques. Our long term vision is to arrive at a on-line automatic calibration pro-
cedure for triangulation Lidars like in [30, 31]; before reaching this above long-term goal, we
must nonetheless solve satisfactorily the problem of calibrating triangulation Lidars off-line.

In this paper we thus:

• propose and assess a model for the measurement process of triangulation Lidars (see
Section 3 andmodel (1)). Our model not only generalizes the model proposed in [10, 11],
but also motivates it starting from mechanical and physical interpretations;

• on top of this model, propose and assess a ML calibration procedure that uses data from
a Motion Capture (MoCap) system. Importantly, our calibration procedure extends the
one proposed in [10]: there authors decoupled the learning process into two separate
stages (corresponding to estimate two different sets of parameters), while here the
calibration is performed simultaneously on both sets of parameters;

• propose and assess novel ML and LS strategies for correcting the measurements from
the sensor with the model inferred during the calibration stage.
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As reported in (31) and (32), the overall strategy is then shown to be capable to improve
the normalized MSE of the raw information from the sensor from 0.0789 to 0.0046.

1.1 Organization of the Manuscript

Section 2 describes the working principles of triangulation Lidars. Based on these working
principles, Section 3 proposes a statistical model of the measurement process of the device.
Section 4 then validates this statistical model using data acquired through a MoCap system.
Section 5 then presents a calibration algorithm for sensors deployed in a test environment.
Section 7 eventually concludes the paper with the description of future research issues.

2 The Triangulation Lidar Range Sensor

We now describe the functioning principle of the triangulation scanners; this discussion will
be useful for explaining why the moments of the measurement noise depend on the actual
measured distance. More details about the constructive details of triangulation Lidars can be
found in [32, 33].

A prototypical triangulation Lidar is the one in Figure 1. Its working principles are then
explained with the diagram in Figure 2 and its caption.

Figure 1: Photo of a triangulation Lidar.

This simple working principle helps keeping the cost of the sensor low1, and making it
commercially usable in low-cost devices like robotic vacuum cleaners. The low cost of the
sensor comes nonetheless with some well-defined mechanical problems [33]:

• low-cost lens, that generate nonlinear distortion effects;

• imprecise pointing accuracy, that is known of at best 6 degrees;

• not rigid physical linkages among lens elements, camera, laser, and laser optics, that
may suffer from distortion effects during the life of the device.

1Incidentally, the sensor was costing $135.00 as of February 2016 in Ebay. Nonetheless, the original industrial
goal was to reach an end user price of $30.00.
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d′b′k
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Figure 2: Diagram exemplifying the working principle of a triangulation Lidar . The laser
emits an infra-red laser signal that is then reflected by the object to be detected. The beam
passes through a pinhole lens and hits a CCD camera sensor. By construction, thus, the
triangles defined by (b, dk) and by (b′k, d

′) are similar: this means that the distance to the
object is nonlinearly proportional to the angle of the reflected light, and as soon as the camera
measures the distance b′k one can estimate the actual distance dk using triangles similarities
concepts.

As it can be seen in Figure 3, all these problems induce measurement errors; more precisely,
triangulation Lidars suffer from strong nonlinearities in both the bias and the standard
deviation of themeasurement noise. This pushes towards finding some signal processing tools
that can alleviate these problems, and keep the sensor cheap while improving its performance.
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Figure 3: Dataset
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3 A novel statistical model for the Lidar measurements

Let yk be the k-th measurement returned by the Lidar when the true distance is dk. Physically,
yk is computed by the logic of the sensor through a static transformation of b′k in Figure 2; we
assume here that this static transformation is unknown, that b′k is not available, and that we
want to improve the estimation for dk from just yk.

Our ansatz for the whole transformation from dk to yk is then

yk = f(dk) + f(dk)
2ek (1)

where

• f(·) is an unknown non-linear function;

• ek ∼ N (0, σ2
e) is a Gaussian and white additive measurement noise.

In the following Section 3.1 we motivate the presence of f(·) from mechanical considera-
tions, while in the following Section 3.2 we motivate the presence of the f(·)2 multiplying the
noise ek starting from physical considerations.

3.1 Explaining the presence of the nonlinear term f(·) in model (1)

The nonlinear term f(·) in (1) is related to what is called the radial distortion in camera calibra-
tion literature [34, 35, 36, 37]. Indeed camera lenses are notoriously nonlinear at their borders,
with this nonlinearity increasing as the light beam passes closer to the lens edges. In our
settings this thus happens when targets are very close or very far.

Radial distortions are usually modeled in the camera calibration literature as a series of
odd powers, i.e., as

f(dk) =
n∑

i=0

αid
2i+1
k (2)

where the αi’s are the model parameters.
As numerically shown during the validation of (1) in Section 4, model (2) does not describe

well the evidence collected in our experiments. Indeed the specific case of triangulation Lidars
lacks of the symmetries encountered in computer vision settings (see (4) and the discussion
on that identity), and thus in our settings there is no need for odd symmetries in the model
(in other words, doubling d does not lead to doubling b′). We thus propose to remove this
constraint and use a potentially non-symmetric polynomial, i.e.,

f(dk) =
n∑

i=0

αid
i
k. (3)

The numerical validations of model (3) shown in Section 4 confirm then our physical intuition.
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3.2 Explaining the presence of the multiplicative term f(dk)
2 in model (1)

Assume for now that there are no lens-distortion effects. The similarity between the triangles
in Figure 2 then implies

dk
b

=
d′

b′k
. (4)

In (4) dk and b′k are generally time-varying quantities, while b and d′ are constants from the
geometry of the Lidar. Assume now that the quantity measured by the CCD at time k is
corrupted by a Gaussian noise, so that zk = b′k + wk with wk ∼ N (0, σ2

CCD) and σ2
CCD constant

and independent of dk. Thus zk ∼ N (b′k, σ
2
CCD); since

yk =
bd′

zk
, (5)

assuming a Gaussian measurement noise on the CCD implies that yk is a reciprocal Gaussian
r.v. This kind of variable is notoriously difficult to treat (e.g., their statistical moments cannot
be derived from closed form expressions starting from the original Gaussian variables). For
this reason we perform a first order Taylor approximation of the nonlinear map (5) above. In
general, if {

zk ∼ N (b, σ2)
yk = φ (zk)

(6)

then the first order Taylor approximation of the distribution of yk is [38, (A.16)]

yk ∼ N
(
φ(b), φ′(b)2σ2

)
(7)

where φ′(·) is the first derivative of φ(·)w.r.t. zk. Substituting the values of our specific problem
into formula (7) leads then to the novel approximated model

yk ∼ N
(
bd′

b′k
,

(−bd′
b′2k

)2

σ2
CCD

)
, (8)

or, equivalently,
yk = dk + d2kek ek ∼ N

(
0, σ2

e

)
(9)

where σ2
e =

σ2
CCD
b2d′2

is a scaled version of σ2
CCD independent of dk and to be estimated from the

data.
Consider now that actually there are some lens distortion effects that imply the presence

of the nonlinear term f(dk). We can then repeat the very same discussion above, and obtain
model (1) by substituting dk with f(dk) in (9).

4 Validation of the approximation (8)
The approximation introduced by the first order Taylor expansion in (8) can be seen as arbitrary.
Nonetheless we show in this section that on the collected datasets it actually corresponds to
the most powerful approximation in a statistical sense.

To this aim we perform this two-step validation:
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1. (check if the noises are independent and identically distributed (iid) and normal) perform a
normality test on the yk’s assuming that measurements are collected at a fixed distance
(i.e., dk is constant): indeed ek is approximately Gaussian as much as yk is;

2. (check the order of the term multiplying ek) compare the following alternative statistical
models for the measurements yk:

H0 : yk = f(dk) + ek

H1 : yk = f(dk) + f(dk)ek

H2 : yk = f(dk) + f(dk)
2ek

H3 : yk = f(dk) + f(dk)
3ek

(10)

and check which one describes better the collected information.
As for point 1 we can use standard iid tests (like the Wald-Wolfowitz runs [39]) and

standard normality tests (like the Shapiro-Wilk normality test). These tests performed on our
registered data showed p-values of 0.56 and 0.42, so we can safely consider the measurement
noises to be iid and Gaussian.

As for point 2, we instead consider the following strategy: for everymodel above, assuming
that measurements are collected at a fixed distance (i.e., dk is constant), we can perform a
simple algebraic manipulation of (1) to obtain

yk − yk−1

f(dk)�
= ek − ek−1 (11)

where 	 indicates the order of the model (that means 	 ∈ {0, . . . , 3}). (11) in its turn indicates
that, since ek and ek−1 are assumed iid,

yk − yk−1

f(dk)�
∼ N (

0, 2σ2
e

)
, 	 ∈ {0, . . . , 3} . (12)

Assume now that the dataset is composed by different batches each corresponding to dk’s
that are constant in the batch, but different among batches. Moreover assume that each batch
is sufficiently rich to make it is possible to estimate with good confidence the unknown f (dk)
through the empirical mean of the yk relative to that batch. By combining the information
from different batches it is then possible to check whichmodel 	 describes better the measured
information.

Indicate then with B the number of batches in the dataset, with b = 1, . . . , B the index of
each batch, and with Bb the set of k’s that are relative to that specific batch b. In formulas, we
thus:

1. estimate, for each model batch b = 1, . . . , B, the distance

f̂b =
1

|Bb|
∑
k∈Bb

yk; (13)

2. estimate, for each model 	 = 0, . . . , 3, the variance of ek as

σ̂2
e :=

1

B

B∑
b=1

⎛⎝ 1

2|Bb|
∑

k,k−1∈Bb

(
yk − yk−1

f̂ �
b

)2
⎞⎠ .

(14)
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3. compute, for each model 	 = 0, . . . , 3, the log-likelihood of the data as

− logP
[
y ; d, σ̂2

e

]
=

B∑
b=1

⎛⎜⎝|Bb| log (f̂ 2�
b σ̂2

e

)
+

Bb∑
k=1

(
yk − f̂b

)2

f̂ 2�
b σ̂2

e

⎞⎟⎠ (15)

where y := [y1, . . . , yN ]
T and d := [d1, . . . , dN ]

T .

In Figure 4 we then show the log-likelihoods for the different models. As it can be seen,
hypothesis H2 is the one that best describes the collected evidence.

H0 H1 H2 H3

6

6.5

7

7.5

8

·104

P

[ y
;
d
,
σ̂
2 �

]

Figure 4: Evaluation of (15) on the collected datasets.

A non rigorous (but graphical and intuitive) argument supporting H2 as the hypothesis
best describing the evidence is then the one offered in Figure 5. The argument goes as follows:
for the exact 	 ∈ {0, . . . , 3} the quantities

yk − yk−1

f(dk)�
	 ∈ {0, . . . , 3} . (16)

should be iid independently of dk. This iid-ness is indeed a necessary condition for iid-ness
of the measurement noises (one of our assumptions).

Since f(·) is actually unknown, this iid-ness test must be performed by means of some
estimate of f(·). In the following we use the estimator defined in Section 5 over an experiment
where we manually increase the true distance dk. As it can be seen, the hypothesis H2 is the
unique one for which the quantities yk − yk−1

f̂(dk)�
are homoscedastic. Thus the normalizing factor

	 = 2 is the unique one guaranteeing iid-ness for the measurement noises. Notice that this
argument is a non rigorous wishful thinking, since we use some estimates as the ground truth;
nonetheless the heteroscedasticity of the noises for 	 = 0, 1, 3 indicates that these hypotheses
are non-descriptive.
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Figure 5: Plots of the quantities yk − yk−1

f̂(dk)�
for 	 = 0, . . . , 3 and for increasing dk and for f̂(·)

computed as in Section 5. The results graphically suggest that f̂(dk)2 is the unique normalizing
factor for which we obtain homoscedastic samples.
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5 Calibrating the Lidar

Our overall goal is not just to propose the statistical model (1) describing the measurement
process of the Lidar but also to find a calibration procedure for estimating the unknowns f(·)
and σ2

e from some collected information.
Once again the long term goal is to calibrate (1) on-line and continuously using information

from other sensors like odometry, ultrasonic sensors, etc. Instrumental to this future direction
we now solve the first step, that is to estimate f(·) and σ2

e from a datasetD = {yk, dk} in which
we know dk (e.g., thanks to a MoCap system).

Given our Fisherian setting, we seek for the ML estimate for both f(·) and σ2
e , where we

recall that (due to the radial distortion hypothesis as the source of f(·), see Section 3.1) f(·)
is modeled as a non-symmetric polynomial, i.e., as f(dk) =

∑n
i=0 αid

i
k as in (3). Since now

model (1) implies
yk − f(dk) ∼ N

(
0, f(dk)

4σ2
e

)
, (17)

it follows immediately that the corresponding negative log-likelihood is proportional to

L := log (detΣ) +
(
y − f(d)

)T
Σ−1

(
y − f(d)

)
(18)

where

• y := [y1, . . . , yN ]
T ;

• d := [d1, . . . , dN ]
T ;

• f(d) := [f(d1), . . . , f(dN)];

• Σ := diag (f(d1)4σ2
e , . . . , f(dN)

4σ2
e).

Finding the ML estimates in our settings thus means:

1. solving
argmin

θ∈Θ
L (θ) (19)

for several different n, with
θ :=

[
α0, . . . , αn, σ

2
e

]
(20)

and Θ the set of θ ∈ R
n+1 for which σ2

e > 0;

2. deciding which n is the best one using some model order selection criterion, e.g., AIC.

Unfortunately problem (19) is not convex, so it neither admits a closed form solution
nor it can be easily computed using numerical procedures. Solving problem (19) is thus
numerically difficult. Keeping in mind that our long-term goal is the development of on-line
calibration procedures, where numerical problems will be even more complex, we strive for
some alternative calibration procedure.
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5.1 An approximate calibration procedure

We here propose an alternative estimator that trades off statistical performance for solvability
in a closed form. We indeed propose to seek an estimate for θ in (20) by using the alternative
model

yk = f(dk) + d2kek, (21)

that differs from (1) only for the fact that the noise is multiplied by d2k instead of f(dk)2. This
approximation is intuitively meaningful, since f(dk) represents a distortion term induced by
the pinhole lens: ideally, indeed, f(dk) should be equal to dk.

Assuming model (21) it is now possible do derive a ML estimator of θ. Indeed dividing
both sides of (21) by d2k we get

yk
d2k

= g(dk) + ek (22)

where (cf. (3))

g(dk) =
n∑

i=0

αid
i−2
k . (23)

Thismeans that the estimation problem can be cast as the problemof estimating the parameters
α := [α0, . . . , αn]

T and the noise variance σ2
e describing the linear system

yk
d2k

=
[
d−2
k . . . dn−2

k

] ⎡⎢⎣α0
...
αn

⎤⎥⎦+ ek, (24)

for which the ML solution is directly

α̂ =
(
HTH

)−1
HT ỹ

σ̂2
e =

1

N
(ỹ −Hα̂)T (ỹ −Hα̂)

(25)

with

H :=

⎡⎢⎣d
−2
1 · · · dn−2

1
... ...

d−2
N · · · dn−2

N

⎤⎥⎦ ỹ :=

⎡⎢⎢⎢⎣
y1
d21...
yN
d2N

⎤⎥⎥⎥⎦ . (26)

Notice that the procedure above does not determine the model complexity n. For inferring
this parameter we then propose to rely on classical model order selection criteria such as AIC.

5.2 Using the calibration results to estimate dk

Once the sensor has been calibrated, i.e., a α̂ and σ̂2
e have been computed, it is possible to

invert the process and use the learned information for testing purposes. This means that
given some measurements yk collected in an unknown environment we can, through α̂ and
σ̂2
e , estimate dk.
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Computing the ML estimate of dk

Rewriting model (3) as

f(dk) = dT
kα dk :=

⎡⎢⎢⎢⎣
d0k
d1k
...
dnk

⎤⎥⎥⎥⎦ (27)

and equating the score of yk parametrized by α and σ2
e to zero leads to the equation(

yk − dkα
)(
yk − dk (I −K)α

)
= σ2

ed
4
k (28)

with
K := diag

(
0,

1

2
, . . . ,

n

2

)
. (29)

This means that estimating dk from yk, α̂ and σ̂2
e can be performed by solving (28) in dk after

substituting the real values α and σ2
e with their estimates.

Since polynomial (28) is quartic for n = 0, 1, 2, and of order at least 6 for any other n, the
ML estimate for dk must then either rely on complex algebraic formulas or numerical roots
finding methods.

Computing the LS estimate of dk

Given our assumption (3) on the structure of f(·), and given an estimate f̂ for f , the problem
of estimating dk from yk is the one of minimizing the squared loss

(
yk − f̂ (dk)

)2. Once again,
the problem is of finding the roots of a polynomial, since the solutions of the LS problem
above are directly

d̂k ∈
{
d̃ s.t. yk − f̂

(
d̃
)
= 0

}
. (30)

Thus if the Lidar has heavy nonlinear radial distortions (that means that it requires high order
polynomials f (·)) then one is again required to compute polynomial roots.

Notice also that some of the roots above may not belong to the measurement range of the
sensor (e.g., some roots may be negative); these ones can safely be discarded from the set of
plausible solutions. The other ones, instead, are equally plausible.

This raises a question on how to decide which root should be selected among the equally
plausible ones. This question is actually non-trivial, and cannot be solved by means of the
frequentist approach used in this manuscript. We thus leave this question unanswered for
now, and leave it as a future research question. Bayesian formulations will be explored to see
if they solve the multiple plausible roots problem.

6 Numerical experiments

Our experiments consist of a robot with the Lidar mounted on top moving with piecewise
constant speeds towards a target. We recorded several datasets for training and testing
purposes, consisting of the Lidar measurements and a ground truth information collected by
a MoCap system (see Figure 6). Training datasets were thus initially used to estimate α and
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Figure 6: Experimental setup used for recording the dataset. The Lidar was mounted over a
Pioneer 3AT robot facing an obstacle; the photo moreover shows some of the cameras of the
MoCap system.

σ2
e as described in Equation (25). As for the model order selection, we empirically detected

that n = 2 was always the best choice when using AIC measures. E.g., for the dataset shown
in Figure 7 we obtained the AIC scores reported in Table 1.
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Figure 7: A typical training set collected in our experiments. The plotted quantities correspond
to the measurement errors and to the polynomial models fitting these errors.

The estimated α and σ2
e were also used for testing purposes to refine the estimate of the

distances dk in non-controlled environments. Notice that the selected model order was always
2, so it was always possible to solve the LS problem in a closed form and also discard one
of the roots in (30), so that the set of roots was always a singleton. As shown in Figure 8, d̂k
is much closer to dk than yk. For example, the empirical normalized MSEs for the test set in



80 Paper B

Table 1: AIC scores for the different models complexities involved in the training set of
Figure 7.

polynomial order AIC score
1 -5.774
2 -7.380
3 -5.824
4 -3.890

Figure 8 were

1

N

N∑
k=1

∥∥∥d̂k − dk

∥∥∥2
‖dk‖2

= 0.0046, (31)

1

N

N∑
k=1

‖yk − dk‖2
‖dk‖2

= 0.0789. (32)
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Figure 8: Effects of the estimation procedure on the original Lidar measurement. It can be
noticed how the overall strategy removes the nonlinearities induced by the pinhole lens -
CCD camera system.
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7 Conclusions

We derived, starting from a combination of physical and statistical considerations, a model
that describes the statistical behavior of the measurements returned by triangulation Lidars.
This statistical model, given in (1), is based on two assumptions:

1. the effects of radial distortions in the pinhole lens can be captured by means of a
polynomial function;

2. the nonlinearities induced by the geometry of the laser-CCD system can be captured by
means of a heteroscedastic noise which standard deviation depends in first approxima-
tion quadratically with the measured distance.

This model, validated through some experiments on real devices, allows to build tailored
triangulation Lidars calibration strategies that follow the classical training-testing paradigm:

• in the training phase, collect information in a controlled environment and use it to
estimate through ML paradigms the parameters defining the statistical behavior of the
sensor;

• in the test phase, use this information and some statistical inference techniques such as
ML or LS to correct the measurements from the sensor when this is in a non-controlled
environment.

It turns then out that both the ML and LS estimation strategies may be numerically
demanding, specially for sensors suffering from strong radial distortions in the pinhole camera.
In this case, indeed, the estimators may require to use numerical root finding procedures and
lead to some computational disadvantages.

Irrespectively of these issues, that can in any case be mitigated by limiting the complexity
of the polynomials describing the radial distortions, the estimation strategies above have been
proved to be effective in our tests. Real-life experiments indeed showed that the techniques
allow to reduce the empirical MSE of the sensor of a factor 17.15.

Despite this promising result, the research associated to triangulation Lidars is not fin-
ished. First of all, the techniques should be modified so to be implementable using recursive
estimation schemes. Moreover, by following a classical training-testing approach, the tech-
niques above present some limitations. Different sensors may in fact differ even if nominally
being constructed in the same way. Moreover sensors may change their statistical behavior
in time, due to aging or mechanical shocks. This means that techniques based on results
from a controlled environment on just one sensor and just once are eventually not entirely
meaningful.

A robust approach must indeed perform continuous learning for each sensor indepen-
dently in a non-controlled environment by performing information fusion steps, e.g., combin-
ing also information from other sensors like odometry, ultrasonic and accelerometers.

This information-fusion continuous-learning algorithm nonetheless must be based on
some preliminary results on what are the statistical models of triangulation Lidars and on
how inference can be performed on them. This paper can thus be seen as the first step towards
more evolved strategies.
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Anas Alhashimi, Damiano Varagnolo, Thomas Gustafsson

Abstract: We aim at improving the usability of triangulation Lidar ranging sensors through
developing and testing a groundtruth-less calibration procedure that does not require tests
in controlled environments for estimating the intrinsic parameters of these sensors. The
calibration procedure corresponds to an approximated EM scheme exploiting statistical het-
eroscedastic models for the triangulation Lidar measurement process plus a simplified model
for the dynamics of terrestrial robots. The procedure can also integrate other common sensors
in robotic applications, such as odometers and sonar rangers, and can simultaneously learn
the parameters of all these sensors. The standing assumption in the calibration procedure is
then that the robotmoves on a straight line (and is thus suitable only for terrestrial applications
where robots move on a flat surface).
The procedure has also been tested by moving a robot in a controlled environment so to be
able to compute the performance indexes of the various estimators. Results show that the
proposed approximated EM strategy leads to effective calibrations that diminish the MSE of
measurements returned by our triangulation Lidar by a factor between 3 and 6, comparable
to the efficiency of state-of-the-art groundtruth-based calibration procedures. Surprisingly,
adding odometric and ultrasonic information further improved the performance index of the
overall estimation strategy, but only by a factor up to 1.2.

Expectation Maximization, Lidar , Calibration

1 Introduction

The easiestway to calibrate a sensor is to compare itwith amore precise sensor (the “groundtruth”)
and learn through this comparison how the original sensor is affected by bias and measure-
ment noises. This strategy unfortunately requires a controlled environment (the groundtruth),
something that may be expensive and time consuming. Moreover the sensor may change its
characteristics in time, and thus require periodical calibrations. One may thus want to avoid
using groundtruth information to calibrate sensors; the questions are then is it possible and
how is it possible.

Different specific applications have obviously different specific answers. Here we focus on
terrestrial robotic applications and thus consider the problem of how to calibrate sensors in
typical terrestrial robots without using groundtruth information.

More precisely we focus on triangulation Lidar distance rangers [1, 2, 3], a relatively
novel cheap and lightweight Lidar technology for measuring distances in the range of meters
which favorable economical and structural properties are counterbalanced by a strong need
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for calibration steps. As the example in Figure 1 shows, indeed, the raw data from a non-
calibrated triangulation Lidar look like suffering from a non-linear bias and a heteroscedastic
measurement noise.
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Figure 1: Example of the errors committed by a non-calibrated triangulation Lidar / odometer
/ sonar in measuring the distance between a robot hosting these sensors and a frontal wooden
obstacle. The robot was moving on a flat floor in an indoor artificially illuminated room.

Before stating our contributions, we review some literature dedicated to calibration of
sensors, specially of Lidars .

Literature review

It is convenient to distinguish between characterizing and calibrating a sensor: the former means
to quantify the measurement noisiness of the device, while the latter means finding how to
process the raw information so to diminish its bias and noisiness levels. The raw information
processing algorithm in its turn may depend on two different types of information: the
intrinsic parameters of the sensor, or the extrinsic ones, i.e., that parameters that result from
how the sensor interacts with the environment (e.g., relative positioning distances).

There is then a relatively large number of papers describing how to calibrate extrinsic
parameters either using additional sensors (such as cameras) [4, 5, 6, 7], or just requiring
knowledge on the motion of robots [8, 9, 10, 11]; all of these nonetheless require groundtruth
information and refer to extrinsic calibration problems, while we deal with intrinsic ones.

There is of course also literature dedicated specially to the intrinsic calibration of multi-
beam Lidar systems, where the technique is often to use one beam to calibrate the intrinsic
parameters of the other beams [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Also this branch of literature
is only partially related to our case, since in our set-up we consider single-beam Lidar systems.

Specific types of Lidars have then specific statistical models, and thus require specific
calibration algorithms. E.g., ToF Lidars have been analyzed in [22, 23, 24, 25, 26, 27, 28, 29, 30],
while triangulation Lidars (the ones we are interested in) have been studied in [1, 2, 3, 31].
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To the best of our knowledge, triangulation Lidars have been analyzed in only the 4
manuscripts cited above: [1], that proposes the technology and performs an early-assessment
of its potential; [2], that discusses the nonlinearities affecting the triangulation Lidars produced
by Neato; [3], that analyzes the effect of the color of the target on the raw data returned
by triangulation Lidars ; and [31], where we proposed a groundtruth-based calibration
procedure based on a statistical model that generalizes the one in [2]. As it will be clear in
the following statement of contributions, our paper differentiates from all the manuscripts
above by proposing the first groundtruth-less calibration procedure dedicated to this type of
sensors.

1.1 Statement of contributions

In brief we start from the statistical model proposed in [31] to construct groundtruth-less
intrinsic parameters calibration procedure based on an approximated EM algorithm.

In more details we ignore temporal calibration problems (i.e., considering also the effects
of uncertainties in the timings of the measurements, see [32]), plus focus explicitly on the
terrestrial robots case. The standing assumptions that ensure the feasibility of the estimation
strategy are indeed:

1. the robot moves on a line (even with a time varying speed; the important is that the
movement is a line);

2. the robot has knowledge of the actuation signals it gave to its motors (this precludes
doing calibrations by hand).

We also propose two ancillary results: the first is a description of how to integrate in the
calibration scheme also other ranging sensors like odometry and ultrasonic, so to perform
simultaneous calibration (and thus enjoy of the potential synergies in the information that
these sensors provide). The second is a description of how to use the results coming from a
groundtruth-less calibration procedure to perform Kalman smoothing during the normal
operations of these sensors.

We eventually quantify and compare how these novel groundtruth-less calibration strate-
gies perform compared to the groundtruth-based strategies proposed in [31], plus investigate
the gains obtained combining Lidars , odometers and sonars. The results indicate that:

1. the groundtruth-less leads to results that are similar to the ones obtainedwith groundtruth-
based strategies (sometimes even better!). This is not totally surprising: we indeed
postulate that the information on the actuation signal given to the robots’ wheels (that
was not used in [31]) compensates for the loss of the groundtruth;

2. adding odometers and sonars tend to improve the overall estimation performance,
but the improvement also tends to be quite contained, indicating that the additional
information brought from these sensors is minimal.

1.2 Organization of the manuscript

Section 2 formulates precisely the problem that we consider. Section 3 presents the statistical
models of the sensors that we considered here, plus generalizes these models so that other
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authors with other sensors may tailor our strategy to their particular case. Section 4 models
the dynamics of the robot. Section 5 derives our calibration procedure. Section 6 presents a
Kalman smoothing based strategy useful to exploit the results from the calibration procedure
during the normal operations of the sensors. Section 7 numerically compares the statistical
performances of the various estimators. Section 8 draws some conclusions and describes our
future research efforts.

2 Problem formulation

We consider the practical need of calibrating a triangulation Lidarmounted on an autonomous
terrestrial robot. We assume that: i) we do not have access to groundtruth information; ii) we
have access to the inputs given from the robot to the wheels’ motors; iii) the robot moves on a
straight line; iv) the surrounding environment does not change. (Optionally, the robot may
also be endowed with other non-calibrated distance-measuring sensors such as odometers
and ultrasound rangers.) In practice, we consider the archetypal situation of an autonomous
vacuum cleaning robot that makes straight moves in an unknown environment.

An other (mild) assumption is that we know the structure of the statistical models of
the various sensors, so that we frame the solution of the calibration problem as a statistical
inference problem. I.e., how to transform a dataset of distances measured by the sensors plus
commands given to the robot’s wheels into a (meaningful) estimate of the sensors’ intrinsic
parameters, under the assumption that the robot moved on a straight line.

3 Sensors Modeling

Sections 3.1, 3.3 and 3.2 describe the specific statistical models of the various sensors used in
our EMcalibration strategy. Section 3.4 instead generalizes the statisticalmodels of Sections 3.1,
3.3 and 3.2 and presents information useful to re-derive the equations of our EM calibration
strategy for other types of ranging sensors.

3.1 Triangulation Lidar sensors models

In [31] we derived and validated, starting from a combination of physical and statistical
considerations, a model of the measurements produced by triangulation Lidars that accounts
for pinhole lens radial distortions effects and nonlinearities induced by the geometry of the
laser-CCD system. The model is then

ylk = αl
0 + αl

1dk + αl
2d

2
k︸ ︷︷ ︸

nonlinear bias

+ βl
2d

2
ke

l
k︸ ︷︷ ︸

heteroscedastic noise

(1)

where ylk is the measurement at time k, dk is the true distance, αl
0, α

l
1, α

l
2 are the parameters

defining the (nonlinear) sensor bias, elk ∼ N (0, 1) is iid, and the term βl
2d

2
k implies that the

measurement noise is heteroscedastic.
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3.2 Odometry sensors model

Several different models describe the statistical properties of the odometers’ measurements,
e.g., [33, 34]. There seems to be consensus in considering, in the common case where robots
have two independent traction wheels, separate errors in the translation of each wheel that
increase linearly with the distance traveled and with the number of input commands given to
the robot, i.e., heteroscedastic models.

Unfortunately our experiments suggest to use a homoscedastic noises (see, e.g., Figure 1).
For this reason we considered in our calibration procedure the model

yok = αo
0 + αo

1dk︸ ︷︷ ︸
linear bias

+ βo
0e

o
k︸︷︷︸

homoscedastic noise

(2)

with eok ∼ N (0, 1). Notice that this choice has been driven by our specific hardware, and thus
has no claim of generality; nonetheless we derived our procedure using general formulas, so
that if readers need to change (2) in favor of more complicated dependencies on eok they can
easily do so.

3.3 Ultrasonic ranging sensors model

Ultrasonic sensors are affected by an affine bias accounting for installation offsets and scaling
of the actual distance induced by the dependency of the sound propagation speed in air on the
air temperature (safely assumable constant during a calibration procedure). Themeasurement
noise is instead typically generated from robot shaking and floor surface variations effects
that generate mechanical vibration of the robot body [35]. Thus the statistical model that we
consider is

yuk = αu
0 + αu

1dk︸ ︷︷ ︸
affine bias

+ βu
0 e

u
k︸︷︷︸

homoscedastic noise

(3)

where the notation and assumptions on euk are similar to the ones in 1.

3.4 Generic sensor model

Generalizing the results obtained in Sections 3.1, 3.3 and 3.2, we may consider a generic
heteroscedastic sensor model

y
(s)
k =

N
(s)
α −1∑
i=0

α
(s)
i dik︸ ︷︷ ︸

bias

+

N
(s)
β −1∑
i=0

β
(s)
i dike

(s)
k︸ ︷︷ ︸

noise

(4)

where dk is the noiseless distance, (s) is the sensor label, e(s)k ∼ N (0, 1) i.i.d., and the coeffi-
cients α(s)

i , β(s)
i , N (s)

α and N
(s)
β define the type of bias and noise affecting that specific sensor

type.
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4 Model of the dynamics of the robot

Consider the case of a robot endowed with S different sensors each satisfying a measurement
model like (4). Since calibrating these sensors means to estimate the coefficients of the
polynomials in (4), the model of the dynamics of the robot should be sufficiently rich to
capture these polynomials.

Let then the transition model for the actual distance dk be linear Gaussian, i.e.,

dk+1 = dk + uk + νk (5)

with uk the scalar input representing the motion commands given to the robot, νk ∼ N (0, σ2
d)

with σ2
d for simplicity assumed known. Define thus p as themaximumorder of the polynomials

appearing in (4), i.e.,
p := max

s

{
N (s)

α , N
(s)
β

}
s∈{1,...,S}

, (6)

and let the (redundant) state vector describing the robot’s motion as xk := [1, dk, · · · , dp−1
k ]T .

The associated (non-minimal) dynamical model is thus[
xk+1

yk

]
=

[
Ak Bk

C O

] [
xk

1

]
+

[
wk

vk(xk)

]
(7)

with yk := [y
(1)
k , . . . , y

(S)
k ]T the measurements vector, O a matrix of zeros and 1 a vector of ones

both with opportune dimensions, and with (padding when necessary the various coefficients
with zeros)

Ak :=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 · · ·
0 1 0 0 · · ·
0 2uk 1 0 · · ·
0 3u2

k 3uk 1 · · ·
... ... . . . . . . . . .

⎤⎥⎥⎥⎥⎥⎦ Bk :=

⎡⎢⎢⎢⎣
0
uk
...

up−1
k

⎤⎥⎥⎥⎦ (8)

C :=

⎡⎢⎣α
(1)
1 · · · α

(1)
p

...
α
(S)
1 · · · α

(S)
p

⎤⎥⎦ (9)

with

• uk (assumed known) conveniently absorbed into the various model matrices;

• the i-th row of Ak exhibiting the coefficients of the binomial formula (dk + uk)
i−1 (but

the first element, that is always 0);

• the measurement noise vk satisfying, given model (4), vk ∼ N (0, R(xk)) with

R(xk) := diag
(
r(1) (xk) , . . . , r

(S) (xk)
)

(10)

and
r(s) (xk) :=

([
β
(s)
0 · · · β(s)

p−1

]
xk

)2

. (11)
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We notice that the definition of xk and the assumption νk ∼ N (0, σ2
d) in (5) implies that

the process noise wk in (7) should not be Gaussian. This, unfortunately, hinders numerical
tractability of the estimation processes based on (7). To overcome this problem we simplify wk

and assume it to be Gaussian, wk ∼ N (0, Q) with Q known and diagonal with small entries.
Moreover, again for the same sake of simplification, we assume the initial state to be Gaussian
too, i.e., x1 ∼ N (μd,Σd) with μd and Σd = O.

We also notice that we may have alternatively defined xk as [dk, · · · , dp−1
k ]T , but this would

have led us into the need for estimating the matrices Bk (and thus system identifiability
problems).

5 An EM-based groundtruth-less calibration procedure

Let u := [u1, . . . , uN ]
T , and

yk :=

⎡⎢⎣y
(1)
k
...

y
(S)
k

⎤⎥⎦ , k = 1, . . . , N, y := [y1, . . . , yN ] (12)

xk :=

⎡⎢⎢⎢⎣
1
dk
...

dp−1
k

⎤⎥⎥⎥⎦ , k = 1, . . . , N + 1, x := [x1, . . . , xN+1] . (13)

Assuming u to be known, model (7) is fully described by the set of parameters

θ :=

{ {
α
(s)
0 , . . . , α

(s)
p−1

}
s∈{1,...,S}

,{
β
(s)
0 , . . . , β

(s)
p−1

}
s∈{1,...,S}

}
.

(14)

Our first aim is thus to estimate θ from a dataset of measurements y, u collected in a non-controlled
environment. In other words, we want to find a statistically meaningful map of the kind

{y,u} 
→ θ̂ (15)

where the unique additional assumption that we pose is that the robot follows a straight line and the
surrounding environment does not change in the while.

We assume a frequentist framework for which θ is a deterministic and unknown quantity.
Given this assumption we strive for finding the ML estimator for θ given {y,u} in (15) (and
thus without assuming that sequence x of the actual states is known at some point). Since
the likelihood p (y,x ; θ) depends on the unknown x, the natural strategy would then be to
maximize the marginal likelihood of the outputs y with respect to θ, i.e., solve

θ̂ML := argmax
θ∈Θ

p (y ; θ) (16)
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where Θ is the (assumed closed) set of admissible candidate parameters vectors, and where
p (y ; θ) is obtained integrating out from p (y,x ; θ) the latent r.v. x. Since solving numeri-
cally (16) in our specific case is not trivial (given that the marginalization task is not trivial) we
attempt to solve (16) numerically by means of an opportune EM scheme. Before presenting
the specific equations of our strategy in Sections 5.2 and 5.3, and for completeness of the
treatment, we briefly discuss the basic machineries behind EM algorithms in the following
Section 5.1. For more details on the EM algorithm see, e.g., [36].

5.1 The Expectation Maximization (EM) algorithm in the general case

The strategy is founded on the basic relationship

p (y ; θ) =
p (y,x ; θ)

p (x |y ; θ)
(17)

and computes θ̂ iterating the two steps (with t being the iteration index):

E step: given θ̂(t) i.e., the estimate of the parameters at iteration t, compute



(
θ, θ̂(t)

)
= Ep(x|y ; ̂θ(t)) [log p (y,x ; θ)] ; (18)

M step: compute
θ̂(t+1) = argmax

θ


(
θ, θ̂(t)

)
. (19)

The EM algorithm is ensured to make θ̂(t) asymptotically converge, by iterating the two steps
above, to a potentially local maximum of p (y ; θ). Among the various plausible stopping cri-
teria, the most common ones are to stop either when

∥∥∥θ̂(t+1) − θ̂(t)
∥∥∥ is below a given threshold,

or after a pre-fixed number of iterations. The following two subsections explicit then the two
previous generic EM steps to our specific case.

5.2 The Expectation step in our specific case

Computing 

(
θ, θ̂(t)

)
requires to find log p (y,x ; θ); consider thus that model (7) implies[
xk+1

yk

]
∼ N

([
Ak Bk

C O

] [
xk

1

]
,

[
Q O

OT R (xk)

])
. (20)

with x1 ∼ N (μ1,Σ1) and with μ1 and Σ1 known. Defining

Σk :=

[
Q O

OT R (xk)

]
(21)

and using both the Bayes rule and the Markovianity of (7) we get

p (y,x ; θ) = p (x1 ; θ)
N∏
k=2

p (yk |xk ; θ) p (xk+1 |xk ; θ) (22)
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that leads immediately to

log p (y,x ; θ) = log p (x1 ; θ)+
N∑
k=2

log p (yk |xk ; θ) +
N∑
k=2

log p (xk+1 |xk ; θ) .
(23)

Given (20) the joint log likelihood thus can be written as

log p (y,x ; θ) ∝ C + log detΣ1 − ‖x1 − μ1‖2Σ1

+
N∑
k=2

(
log detΣk −

∥∥∥∥[xk+1

yk

]
−
[
Ak Bk

C O

] [
xk

1

]∥∥∥∥2
Σk

)
(24)

where ‖	‖2� := 	T �−1 	 and C is a constant independent of the variables y, x, and θ. Ap-
plying then the conditional expectation Ep(x|y ; ̂θ(t)) [·] on both sides, expanding the norms
opportunely and ignoring multiplicative factors yields to (see also [37])



(
θ, θ̂(t)

)
= C +

N∑
k=1

(
log detΣk − tr (Ek)

)
(25)

with, for k = 1,
E1 := Ep(x|y ; ̂θ(t))

[
Σ−1

1 (x1 − μ1) (x1 − μ1)
T
]

(26)

and, for k = 2, . . . , N ,

Ek := Ep(x|y ; ̂θ(t))

[
Σ−1

k

([
xk+1

yk

]
−
[
Ak Bk

C O

] [
xk

1

])
([

xk+1

yk

]
−
[
Ak Bk

C O

] [
xk

1

])T
]
.

(27)

Exploiting the fact that Σk in (21) is block diagonal and expanding opportunely we eventually
find that computing tr (Ek) requires computing quantities of the kind

Ep(x|y ; ̂θ(t))
[
xk+1x

T
k

]
Ep(x|y ; ̂θ(t))

[
xkx

T
k

]
Ep(x|y ; ̂θ(t))

[
R (xk)

−1 Ckxkx
T
kC

T
k

]
Ep(x|y ; ̂θ(t))

[
R (xk)

−1 ykx
T
kC

T
k

]
.

(28)

Given that R (xk) in (28) depend on xk, the quantities above cannot be computed in closed
form, but rather requires numerical integration procedures. Since we aim at algorithms that
can be implemented on cheap hardware, we seek for approximating 


(
θ, θ̂(t)

)
in (25) with

an alternative approximated version 
̃
(
θ, θ̂(t)

)
with closed-form computability qualities.

To this point we notice that if the covariances R (·) were independent of xk then we would
be in the very same situation of [37], and thus we would be able to compute (28) by means of
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a dedicated Kalman smoother. We thus follow this approach, and approximate R (·) by considering
xk being equal to its past estimated value.

More precisely, assume to be at iteration t of the EM algorithm; this means that at time
t− 1we have computed both an estimate of the parameters θ̂(t) and an estimate of the state
x̂
(t−1)
k (with initial condition x̂

(0)
k = [1,mean(yk), . . . ,mean(yk)p−1]). Define thus

R
(t)
k := diag

(
r(1)

(t)
(
x̂
(t−1)
k

)
, . . . , r(S)

(t)
(
x̂
(t−1)
k

))
(29)

r(s)
(t)
(
x̂
(t−1)
k

)
:=
([

β
(s)
0

(t) · · · β(s)
p−1

(t)
]
x̂
(t−1)
k

)2

(30)

and β
(s)
0

(t)
, . . . , β

(s)
p−1

(t)
the set of parameters modeling sensor s estimated at time t by the EM

algorithm. R(t)
k is thus a statistically meaningful approximation of the actual noise covariance

R (xk), and with this we can approximate the quantities in (28) (and thus 

(
θ, θ̂(t)

)
) by means

of the following Algorithm 3. For convenience we indicate with C(t) the estimate of matrix C

in (9) and the process noise covariance defined by the current estimate of the parameters θ̂(t).
Exploiting the results in [38], thus, we can claim that

Ep(x|y ; ̂θt)
[
xkx

T
k

] ≈ x̂k|N x̂T
k|N + Pk|N

Ep(x|y ; ̂θt)
[
xk+1x

T
k

] ≈ x̂k+1|N x̂T
k|N +Mk+1|N

Ep(x|y ; ̂θt)
[
ykx

T
k

] ≈ ykx̂
T
k|N .

(42)

Approximating R (xk) with R
(t)
k thus leads to approximate the expectations (28) with (42),

and thus to approximate 

(
θ, θ̂(t)

)
with an opportune 
̃

(
θ, θ̂(t)

)
obtainable expanding Ek

in (27) into single factors and exploiting the fact that R(t)
k does not depend on xk. Moreover

when Algorithm 3 terminates we can also set x̂(t) =
[
x̂1|N , . . . , x̂N |N

]
.

We notice that approximating 
with 
̂may theoretically disrupt the convergence properties
of our EM strategy (something that we never experienced, though); proving the stability of the
proposed scheme is nonetheless out of scope here and currently under analytical investigation.

5.3 The Maximization step in our specific case

Given the discussion above, we solve the M step by search for that parameter vector that
maximizes 
̃

(
θ, θ̂(t)

)
, i.e., compute

θ̂(t+1) = argmax
θ∈Θ


̃
(
θ, θ̂(t)

)
. (43)

by means of closed form equations and considering the latent variables x to be equal to that
x(t) computed in the Expectation step. Given definition (14), estimating θ means finding the
matrix C (that contains the various

{
α
(s)
0 , . . . , α

(s)
p−1

}
s∈{1,...,S}

), and the matrix R
(
x
(t)
k

)
(that

contains the various
{
β
(s)
0 , . . . , β

(s)
p−1

}
s∈{1,...,S}

).

As shown in the next subsections, the actual equations for solving (43) depend on which
combination of sensors one uses.
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Algorithm 3 Kalman smoother for the Expectation step
1: Requires: C(t), R(t)

1 , . . . , R
(t)
N

2: set (initial conditions for the forward pass)

P1|1 = Σ1 x̂1|1 = μ1 (31)

3: compute, for k = 2, . . . , N (forward pass)

Pk|k−1 = AkPk−1|k−1A
T
k +Q (32)

Kk = Pk|k−1C
(t)T

(
C(t)Pk|k−1C

(t)T +R
(t)
k

)−1

(33)

Pk|k = Pk|k−1 −KkC
(t)Pk|k−1 (34)

x̂k|k−1 = Akx̂k−1|k−1 +Bk1 (35)

x̂k|k = x̂k|k−1 +Kk

(
yk − C(t)x̂k|k−1

)
(36)

4: set (initial conditions for the backwards pass)

MN |N =
(
I −KNC

(t)
)
AkPN−1|N−1 (37)

5: compute, for k = N, . . . , 1 (backwards pass)

Jk = Pk|kATP−1
k+1|k (38)

Pk|N = Pk|k + Jk
(
Pk+1|N − Pk+1|k

)
JT
k (39)

x̂k|N = x̂k|k + Jk
(
x̂k+1|N − Akx̂k|k − Bk1

)
(40)

Mk|N = Pk|kJT
k−1 + Jk

(
Mk+1|N − AkPk|k

)
JT
k−1 (41)

(the last equation being performed only when k 
= N )
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The Maximization step when using just a triangulation Lidar

Having just a triangulation Lidar only, and considering model (1), our aim is to estimate
C =

[
αl
0, α

l
1, α

l
2

]
and βl

2. Given the current estimate of the state provided by the E step, i.e., x̂(t)

with each element x̂(t)
k being the 3-dimensional vector

[
x̂
(t)
k [1] x̂

(t)
k [2] x̂

(t)
k [3]

]
, we can rewrite

model (1) as

ylk =
[
αl
0 αl

1 αl
2

] ⎡⎢⎣x̂
(t)
k [1]

x̂
(t)
k [2]

x̂
(t)
k [3]

⎤⎥⎦+ βl
2x̂

(t)
k [3]elk. (44)

Dividing every term by x̂
(t)
k [3] we find the alternative model homoscedastic model

ỹlk =
[
αl
0 αl

1 αl
2

] ⎡⎢⎣x̂
(t)
k [1]x̂

(t)
k [3]−1

x̂
(t)
k [2]x̂

(t)
k [3]−1

1

⎤⎥⎦+ βl
2e

l
k (45)

where ỹlk := ylkx̂
(t)
k [3]. Estimating the parameters from (45) is now immediate, since the

estimation step can be performed immediately using ML considerations as

C(t+1) =
((

ỹl
)T

H l
)(

H lTH l
)−1

βl
2
(t+1)

=
1

N

(
ỹl −H lC(t+1)

)T (
ỹl −H lC(t+1)

) (46)

with

ỹl :=

⎡⎢⎢⎢⎢⎢⎣
yl1

x̂
(t)
1 [3]
...
ylN

x̂
(t)
N [3]

⎤⎥⎥⎥⎥⎥⎦ H l :=

⎡⎢⎢⎢⎢⎢⎢⎣
x̂
(t)
1 [1]

x̂
(t)
1 [3]

x̂
(t)
1 [2]

x̂
(t)
1 [3]

1

... ...
x̂
(t)
N [1]

x̂
(t)
N [3]

x̂
(t)
N [2]

x̂
(t)
N [3]

1

⎤⎥⎥⎥⎥⎥⎥⎦

T

. (47)

The Maximization step when using both a triangulation Lidar and an odometer

In this case the matrix C is equal to

C =

[
C[1]
C[2]

]
=

[
αl
0 αl

1 αl
2

αo
0 αo

1 αo
2

]
(48)

where the parameters of the triangulation Lidar are given by C[1] and βl
2, and the ones of the

odometer are given by C[2] and βo
0 .

Given that x̂(t) is given by the E step and that the two sensors are independent the esti-
mation of the two sets of parameters can be performed independently. Thus for C[1] and βl

2

we can proceed as in Section 5.3, while for C[2] and βo
0 we proceed considering that, given

model (2) and using again ML interpretations,

C(t+1)[2] =
(
(yo)T Ho

) (
HoTHo

)−1

βo
2
(t+1) =

1

N

(
yo −HoC(t+1)[2]

)T (
yo −HoC(t+1)[2]

) (49)



6. Using the results of the EM calibration algorithm for testing purposes 99

where

Ho :=

⎡⎢⎣x̂
(t)
1 [1] x̂

(t)
1 [2] x̂

(t)
1 [3]

... ...
x̂
(t)
N [1] x̂

(t)
N [2] x̂

(t)
N [3]

⎤⎥⎦
T

(50)

The Maximization step when using a triangulation Lidar , an odometer and a sonar

In this case the matrix C is equal to

C =

⎡⎣C[1]
C[2]
C[3]

⎤⎦ =

⎡⎣αl
0 αl

1 αl
2

αo
0 αo

1 αo
2

αu
0 αu

1 αu
2

⎤⎦ (51)

where the parameters of the triangulation Lidar are given by C[1] and βl
2, the ones of the

odometer are given by C[2] and βo
0 , and the ones of the ultrasonic ranger are given by C[3]

and βu
0 . The situation is as before, where sensors’ parameters can be learned independently;

one may then repeat the procedures in Sections 5.3 and 5.3, and then apply strategy (49)-(50)
for the particular case of the ultrasonic data yu, Hu and C[3].

6 Using the results of the EM calibration algorithm for testing

purposes

The EM algorithm in Section (5) returns two different quantities:

• an estimate x̂ of the latent variables x, from which one can also estimate the various dks;

• an estimate θ̂ of the calibration parameters θ.

The EM strategy thus can be directly used to transform the raw measurements y into some
statistical estimate of the distances dk. Nonetheless the EM algorithmmay be computationally
demanding, and one may prefer to run it only when strictly necessary.

Assume thus to have run the EM calibration algorithm fully once, and to want now to
process some new raw data with a more lightweight estimation strategy. Given that we
have θ̂, at this point to obtain an estimated x̂ (and thus d̂ks) one simply has to run just
once the Kalman smoother defined in Algorithm 3 (again with initial conditions x̂

(0)
k =

[1,mean(yk), . . . ,mean(yk)p−1]).
As will be shown in Section 7, this heuristic is fast and provides results similar to a

dedicated complete EM algorithm when applied to a dataset with small sample size.

7 Numerical results

We consider datasets where the same robot moves with different constant speeds (0.1, 0.2,
and 0.3 m/s) towards a fixed wooden target starting at a distance of 0.5m and ending at a
distance of 4 m (two datasets per each speed). The robot mounts a Lidar, an odometer, and a
sonar sensors, and we collect the groundtruth distances dks using a Vicon motion capture
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system. We measure the statistical performance of an estimate d̂1, . . . , d̂N with the normalized
empirical MSE

NMSE :=
1

N

N∑
k=1

∥∥∥d̂k − dk

∥∥∥2
‖dk‖2

. (52)

7.1 Testing the strategy in Section 5

We now analyze how the groundtruth-less EM calibration procedure compares w.r.t. a
groundtruth-based one, and what is the influence of using more than one sensor. We thus
plot in Figure 2 the normalized MSE for the full EM strategy in Section 5 for different speeds
and different combinations of sensors (raw Lidar data indicating the MSE of the Lidar measure-
ments ylk, while groundtruth-based indicates the MSE obtained when training1 the estimator
proposed in [31]). The collected evidence indicates that combining odometry measurements
does not improve the estimation outcomes while adding the sonar does. Moreover increasing
the speed (that corresponds to diminish the number of samples in the dataset) as expected
leads to a generalized worsening of the estimation performance.
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Figure 2: Comparison of the normalized empirical MSE for various types of estimators testing
using different combinations of Lidar, odometer and sonar sensors.

To give a rough indication of how the computational complexity of our EM strategy
depends on the number of samples in the dataset and on the number of sensors used, we
plot in Figure 3 the convergence time of the algorithm implemented in Matlab on a standard
laptop.

1We considered the training MSE and not the test one so to be even more unfavorable comparisons against
our novel procedure.
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Figure 3: Dependency of the convergence time of the algorithm on the number of samples in
the dataset used for training purposes.

7.2 Testing the strategy in Section 6

We then analyze if it is necessary to run the full EM algorithm every time, or if we can one
do just one calibration once and after that use the Kalman smoother, and (in case) how the
performance of the Kalman smoother based strategy depend on the size of the test dataset.

To answer these questions we use one dataset recorded at 0.1 m/s for the full EM training
step (i.e., the richest dataset in terms of number of samples) and then apply the Kalman
smoother as indicated in Section 6 in the other datasets.

Figure 4 then shows the normalized empirical MSE indices obtained for the various speeds
and estimators (raw Lidar data indicating once again the MSE of the raw Lidar measurement
ylk, and groundtruth-based indicating the MSE obtained testing the estimator proposed in [31]
and trained as in Figure 2). The other three entries instead refer to using the Kalman smoother
on test sets windows that are 12 samples long; for these estimators each bar in the plot thus
represents the average of the MSEs calculated along the whole dataset at a given speed.
We notice how the novel strategy compares favorably against the groundtruth-based one,
indicating that it reaches good generalization capabilities. Also in this plot, combining the
odometer measurements with the Lidar measurements does not improve the MSE in most of
the cases.

Figure 5 eventually answers the question about how the performance of the Kalman
smoother depends on the size of the training set, focusing just on the case where one uses
only the Lidar sensor. We see that larger sample sizes almost always return a smaller MSE,
and that also increasing the robot linear speed seems to decrease the normalized MSE for
speeds smaller than 0.4 m/s.
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Figure 4: Comparison of the test-set performance of various estimators.
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Figure 5: Dependency of the performance of the Kalman smoothing strategy on the size of
the test set.
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8 Conclusions

We designed and tested approximated EM plus Kalman smoother-based estimation strategies
that allow, under the assumptions of linear motion and knowledge of which actuation inputs
have been given to the motors of the robot, to jointly (or separately) calibrate sets of ho-
moscedastic and heteroscedastic sensors such as triangulation Lidars , sonars and odometers
without the need for groundtruth information.

The purpose of our effort is to make possible (and computationally cheap) for terrestrial
robots to autonomously recalibrate their sensors whenever they feel they need, without having
to go back to the factory or requiring the aid of technicians.

The proposed calibration procedure has also been shown to compete with alternative
groundtruth-based strategies, validating thus our efforts at least in our experimental setup.

Despite promising, the strategy hasn’t been fully developed yet: future research efforts are
then directed to both prove the theoretical convergence properties of the overall EM scheme,
plus generalize the strategy towards also aerial robotic applications, where our assumptions
on the robot moving on a line are not valid anymore.
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