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Abstract 
 
The macroscopic failure of composite laminates subjected to tensile increasing load is 
preceded by initiation and evolution of several microdamage modes. The most 
common damage mode and the one examined in this thesis is intralaminar cracking in 
layers. Due to this kind of microdamage the laminate undergoes stiffness reduction 
when loaded in tension. For example, the elastic modulus in the loading direction and 
the corresponding Poisson’s ratio will decrease. 
The degradation of the elastic properties of these materials is caused by reduced stress 
in the damaged layer which is mainly due to two parameters: crack opening 
displacement (COD) and crack sliding displacement (CSD). At fixed applied load 
these parameters depend on the properties of the damaged and surrounding layers, on 
layer orientation and on thickness. When the number of cracks per unit length is high 
(high crack density in the layer) the COD and CSD are reduced because of to crack 
interaction. 
The main objective of the first paper is to investigate the effect of crack interaction 
on COD using FEM and to describe the identified dependence on crack density in a 
simple and accurate form by introducing an interaction function dependent on crack 
density. This interaction function together with COD of non-interactive crack gives 
accurate predictions of the damaged laminate thermo-elastic properties. The 
application of this function to more complex laminate lay-ups is demonstrated. All 
these calculations are performed assuming that cracks are equidistant.  
However, the crack distribution in the damaged layer is very non-uniform, especially 
in the initial stage of multiple cracking. In the second paper, the earlier developed 
model for general symmetric laminates is generalized to account for non-uniform 
crack distribution. This model is used to calculate the axial modulus of cross-ply 
laminates with cracks in internal and surface layers. In parametric analysis the COD 
and CSD are calculated using FEM, considering the smallest versus the average crack 
spacing ratio as non-uniformity parameter. It is shown that assuming uniform 
distribution we obtain lower bond to elastic modulus. A “double-periodic” approach 
presented to calculate the COD of a crack in a non-uniform case as the average of two 
solutions for periodic crack systems is very accurate for cracks in internal layers, 
whereas for high crack density in surface layers it underestimates the modulus 
reduction. 
In the third paper, the thermo-elastic constants of damaged laminates were 
calculated using shear lag models and variational models in a general calculation 
approach (GLOB-LOC) for symmetric laminates with transverse cracks in 90° layer. 
The comparison of these two models with FEM was presented for cross-ply and 
quasi-isotropic laminates.  
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1. Introduction 

Composite is a material which has at least two distinct phases or constituents. This 
material has found usage in many industrial applications and more recently it is 
increasingly being used in aerospace panels and airframes. The use of aligned fiber 
reinforced polymeric composites in the aerospace industry is justified by their 
excellent specific modulus and strength (referred to the property divided by the 
density). 
When a composite laminate is loaded in tension with increasing load it will eventually 
fail (macroscopically). The failure is preceded by initiation and evolution of several 
microdamage modes. On the microscale, a part of the matrix can fail, fibers can fail 
and there can be fiber/matrix interface debonding (Figure 1). On the mesoscale, the 
first mode of damage is usually intralaminar cracking in off-axes layers with respect 
to the main load component. These cracks run parallel to fibers in the layer with the 
crack plane being transverse to the laminate midplane. Intralaminar cracks do not 
usually cause the final failure of a laminate, but may significantly impair the effective 
properties of the composite and serve as a source for other damage modes initiation, 
such as interlayer delamination. Fiber fracture in the adjacent plies is induced only at 
high loads in the case of monotonic loading or for large cycle number in the case of 
fatigue loading.  
Figure 2 shows a cross-ply laminate with three different modes of damage. 

      
Figure 1. Intralaminar crack initiation 

from fiber/matrix interface failure. 
Figure 2. Example of damage modes in 

laminates. 

Since the number of cracks per unit length called crack density increases during 
service life (Figure 3), a complete model that describes the reduction of thermo-elastic 
properties must contain damage evolution modeling. 
In this work the crack evolution is not considered but there are several approaches 
that can be used. One is the deterministic approach that ignores the fact that transverse 
cracking is a progressive damage and predicts appearance of many cracks 
simultaneously when the first cracking strain is reached. There are also more accurate 
models that include the statistical nature of the failure process. 
Due to damage accumulation (transverse cracks) the effective stiffness of the 
damaged layer as well as stiffness of the whole laminate is decreasing (Figure 4). 
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Figure 3. Experimental data for crack evolution with increasing applied strain in 

carbon fiber/epoxy cross-ply laminates 
 

 
Figure 4. Dependence of the elastic modulus of a cross-ply laminate on the applied 

strain level 
 

Numerous analytical and numerical models have been developed to study the stiffness 
degradation due to transverse cracks. The opening and sliding of crack surfaces 
reduce the average strain and stress in the damaged layer, thus reducing the portion of 
the load carried by this layer. It results in reduction of the laminate thermo-elastic 
properties. 
All analytical models are based on approximate solution for the stress state between 
two cracks (repeating element). The simplest type of models leading to linear second 
order differential equation with constant coefficients is called shear lag models [1-4]. 
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General for all shear-lag models is that the equilibrium conditions are satisfied in 
average only and the shear stress free condition on crack surfaces is not satisfied. A 
“shear lag” parameter which is often a fitting parameter is needed in these models. 
The stress distribution and the stiffness degradation calculated according to these 
models in [5,6] are affected by the value of this parameter. 
The first model based on the principle of minimum complementary energy which was 
free of these assumptions was developed by Hashin [7] to investigate the axial 
modulus reduction of cross ply laminate with cracks in inside 90 layers. The 
approximate stress field derived with this approach satisfies all the necessary 
equilibrium as well as the boundary conditions including zero tractions on the crack 
surfaces. Since the approximate nature of the selected stress functions lead to increase 
of the value of the complementary energy, it does not reach the minimum 
corresponding to the exact solution and the displacement continuity is satisfied only 
approximately.  Hashin’s model is relatively simple to use and it renders lower bond 
for the axial modulus of the damaged laminate. 
Refined variational models based on minimum principle of the complementary energy 
with more accurate predictions of axial modulus and Poisson’s ratio were developed 
in [8,9]. 
Homogenization method was used to establish (GLOB-LOC approach) the link 
between the damaged laminate thermo-elastic properties and the microdamage 
parameters (crack face opening displacement (COD) and crack face sliding 
displacement (CSD)) in [10,11]. It was shown that only the average values of COD 
and CSD enter the stiffness expressions directly. In a linear model the average COD 
and CSD values are proportional to the applied load. Consequently, they were 
normalized to be used in stiffness calculations.  
FEM studies were performed to understand which material and geometry parameters 
affect the COD and CSD in [10-12] and simple empirical relationships (power law) 
were suggested. 
The effect of crack density (number of cracks per unit length) on the COD and CSD 
was analyzed in [12] and studied using FEM in [13]. It was shown that the normalized 
COD and CSD are smaller for high crack density. 
All of these models are based on idealized assumptions, for example, assuming linear 
elastic material behavior even in high stress concentration region at crack tip as well 
as linearity in shear loading and assuming idealized geometry of these cracks which 
would not change during the service life. The only correct way to validate these 
assumptions is through experiments.  
 
The effect of material properties on COD was measured experimentally using optical 
microscopy of loaded damaged specimens in [14,15]. It was shown that the measured 
average values of COD are affected by the constraining layer orientation and stiffness.  
The experimental determination of the average COD and CSD requires the 
measurement of the displacement for all points of the crack surfaces, which justifies 
the use of full-field measurement techniques Electronic Speckle Pattern 
Interferometry (ESPI).  ESPI is an optical technique that provides the displacement 
for every point on a surface and offers the possibility to measure both, the in-plane 
and out-of-plane displacement without surface preparation. 
This technique was used in [16,17] to measure the COD for inside cracks on the 
specimen’s edge. It was shown that the profile of the crack on the edge is elliptical. 
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The objectives of the presented licentiate thesis are 
a) to obtain a deeper insight in the mesoscale laminate parameters governing the 
interaction of cracks in terms of  COD’s  
b) to describe the crack interaction by simple functions obtained analyzing results of 
FEM parametric analysis and to use these functions for thermo-elastic properties 
determination of  damaged laminates using the GLOB-LOC approach 
c) to develop and verify methodology for approximate calculation of the complete set 
of thermo-elastic constants using any analytical stress model for laminates with cracks 
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2. Summary of appended papers 
 
In paper 1 the effect of crack interaction on COD is investigated using FEM in 
surface layers (surface cracks) and inside layers (inside cracks). The identified 
dependence on crack density is described in a simple and accurate form by 
introducing an interaction function dependent on crack density. This interaction 
function together with COD of non-interactive crack gives accurate predictions of the 
damaged laminate properties. The application of this function to more complex 
laminate lay-ups is demonstrated. All these calculations are performed assuming that 
cracks are equidistant.  
 
However, the crack distribution in the damaged layer is very non-uniform, especially 
in the initial stage of multiple cracking. In paper 2 the earlier developed model for 
general symmetric laminates is generalized to account for non-uniform crack 
distribution. This model is used to calculate the axial modulus of cross-ply laminates 
with cracks in internal and surface layers. In parametric analysis the COD and CSD 
are calculated using FEM, considering the smallest versus the average crack spacing 
ratio as non-uniformity parameter. It is shown that assuming uniform distribution we 
obtain lower bond to elastic modulus. A “double-periodic” approach presented to 
calculate the COD of a crack in a non-uniform case as the average of two solutions 
for periodic crack systems is very accurate for cracks in internal layers, whereas for 
high crack density in surface layers it underestimates the modulus reduction. 
 
In paper 3 it is shown that a complete set of damaged laminate thermo-elastic 
constants can be calculated using any analytical stress distribution model for a region 
between two cracks, usually developed to calculate only one or maximum two elastic 
constants. The degradation of thermo-elastic properties of cross-ply and quasi-
isotropic laminates with intralaminar cracks in 90° layers is analyzed. Predictions are 
performed using previously derived general expressions for stiffness (GLOB-LOC) of 
symmetric damaged laminates as dependent on crack density and crack face opening 
(COD) and sliding (CSD). It is shown that the average COD can be linked with the 
average value of axial stress perturbation between two cracks. Using this relationship 
analytical shear lag and Hashin’s models, developed for axial modulus, are applied to 
calculate thermal expansion coefficients, Young’s modulus and Poisson’s ratios of 
damaged laminates. The approach is evaluated using FEM and showing that the 
accuracy is rather similar as in axial modulus calculation. 
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Engineering expressions for thermo-elastic constants of laminates 

with high density of transverse cracks 
 

MS. Loukil1,2, J. Varna1 and Z. Ayadi2 

 
1Luleå University of Technology, SE-971 87 Luleå, Sweden 

2Institut Jean Lamour, EEIGM 6 Rue Bastien Lepage, F-54010 Nancy Cedex, France 
 
 
Abstract 
 
Exact analytical expressions for thermo-elastic constants of symmetric and balanced 
laminates with intralaminar cracks in 90-layers are presented. The normalized crack 
opening displacement (COD), which is one of the most important parameters in these 
stiffness reduction expressions, depends on crack density. This dependence is 
described by interaction function in form of tanh() obtained fitting results of FEM 
based parametric analysis for cross-ply laminates with cracks in surface and inside 
layers. It is shown that this interaction function together with COD of non-interactive 
crack, gives high accuracy predictions of reduced properties of any cross-ply 
laminate. The derived interaction function can be used to simulate stiffness reduction 
of more general lay-ups. The application of this function to quasi-isotropic laminates 
is demonstrated. 
 
Keywords: Laminates, Mechanical properties, Transverse cracking, Finite element 
analysis (FEA) 
 
1. Introduction 
 
Intralaminar cracks are caused by in-plane transverse and shear stresses in layers with 
current understanding that the role of transverse stress is much more important. The 
number of cracks increases during service life reducing laminate thermo-elastic 
properties. The stiffness degradation phenomenon can be explained in terms of 
opening and sliding of crack surfaces. Due to crack face relative displacement the 
average stress between cracks is reduced and, hence, the participation of the damaged 
ply in bearing the applied load is reduced. In thermal loading it results in release of 
thermal stresses and dimensional changes of the laminate. In other words the average 
crack face displacements are uniquely linked to the average stress between cracks.  
In modeling, the simplest way to account for reduced average stress in a damaged ply 
is by reducing the thermo-elastic properties of this ply as it is done in the well know 
ply-discount model, commonly used together with Classical Laminate Theory (CLT). 
Physically this approach it is not correct; thermo-mechanical constants in the 
damaged layer material have not changed. Nevertheless, the reduction of elastic 
constants is a simple way to include the effect of reduced average stress in the layer, 
still keeping the concept of iso-strain which in non-bending case builds the basis of 
CLT. However, assumption in this approach that transverse and shear properties of a 
ply with cracks are zero is very conservative and does not reflect the real situation 
where the number of cracks is increasing in a stable manner during the service life. 
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Therefore, development of reliable and refined stiffness reduction models requires a 
good understanding of the effect of each crack on stiffness. At higher density of 
transverse cracks (number of cracks per mm measured transverse to the fiber direction 
in a layer) the local stress states of individual cracks start to overlap and the effect of 
each individual crack on stiffness is reduced. This overlapping of stress perturbations 
we call ”interaction” and cracks at high densities as ”interactive”. Interactive cracks 
have smaller opening. One can visualize it by imagining two existing cracks and a 
new crack (a “cut” in 90-layer) created between them. The “cut” will reduce the stress 
between existing cracks and the displacement of the corresponding faces of these two 
cracks. 
Most of the analytical stress distribution modeling has been performed for cross-ply 
laminates [1,2] with cracks in the 90-layer. The simple variational model by Hashin 
[2], which is free of any fitting parameters, overestimates the stiffness reduction [3]. 
The accuracy has been improved using more sophisticated variational models [3-4]. 
The large group of shear-lag models has one in common: the stress distribution is 
described by second order differential equation with constant coefficients. The 
equilibrium conditions are satisfied in average only and the shear stress free condition 
on crack surfaces is not satisfied. These models contain a rather voluntarily defined 
“shear lag parameter”. Largely different stress distributions and stiffness degradation 
are calculated dependent on the value of this parameter (which is often used as a 
fitting parameter) [4-6].  
Analytical solutions for more complex lay-ups with cracks in arbitrary layers are not 
available (except a straightforward generalization for [S/90]s laminates, where S 
represents the homogenized sublaminate supporting the cracked 90-layer [9]). It is not 
clear how to transfer to general laminates the knowledge and experience gained 
studying cross-ply laminates. 
A different approach (GLOB-LOC approach), which links the macro-constants of 
damaged laminate with geometry of the individual crack surface in deformed state, 
was developed in [7,8]. Exact analytical expressions for thermo-elastic constants of 
general symmetric laminates with cracks in layers were presented. These matrix 
expressions are given in Section 2. In addition to laminate lay-up, layer properties and 
density of cracks in layers they contain two parameters of the deformed crack surface: 
averaged relative opening (COD) and sliding displacements (CSD) in normalized 
form.  
The COD’d and CSD’s can be obtained from any analytical stress distribution model. 
In [7,8] FEM analysis was used to identify parameters affecting these quantities. It 
was found that for low crack densities the average COD and CSD are very robust 
parameters dependent only on the cracked and the neighboring layer stiffness and 
thickness ratios. Simple but rather accurate fitting functions (“power laws”) were 
presented. There is no need to use FEM every time when damaged laminates are 
analyzed: The GLOB-LOC approach can be used instead. The COD and CSD have 
been measured also experimentally [10-13] and trends as well as values are 
confirmed.  
These fitting functions for COD and CSD are not valid in high crack density region: 
due to interaction COD and CSD decrease with crack density. We suggest accounting 
for interaction in a very simple way: introducing crack density dependent interaction 
function which multiplied by the COD and CSD of non-interactive cracks would give 
the opening and sliding at any crack density.  Previously the crack interaction for 
COD was studied in [14], considering cracks only in 90-layer of [0n/90m]s laminate. 
The interaction function, defined based on FEM data analysis was fit with logarithmic 
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function with limited range of applicability in terms of laminate lay-up and crack 
density. 

The objectives of the presented paper are 

a) use FEM to analyze COD’s in cross-ply laminates at high crack density in 
surface layers (“surface cracks”) and inside layers (“inside cracks”) 

b)  to present unified interaction functions for COD of surface and inside cracks 
to be used together with noninteractive crack COD 

c) to demonstrate the accuracy of expressions in stiffness prediction for cross-ply 
and quasi-isotropic laminates 

Features of crack face sliding in the interactive region are not considered in this paper. 
 
2. Material model of damaged symmetric laminates with intralaminar cracks  
 
2.1 Model formulation 
 
The upper part of symmetric N- layer laminate is shown in Fig. 1. The k-th layer of 
the laminate is characterized by thickness kt  , fiber orientation angle  with respect to 
the global x-axis k  and by stiffness in the local axes Q (defined by thermo-elastic 

constants 21121221 ,,,,, GEE ). The total thickness of the laminate, 
N

k
kth

1
. The 

crack density in a layer is  kkk l sin21  where average distance between cracks 
measured on the specimen edge is kl2 . Dimensionless crack density kn is introduced 
as 

kkkn t           (1) 

It is assumed that the damaged laminate is still symmetric et est. the crack density in 
corresponding symmetrically placed layers is the same. The stiffness matrix of the 
damaged laminate is LAMQ  and the stiffness of the undamaged laminate is LAMQ 0 .  

The compliance matrix of the undamaged laminate is 
1

00
LAMLAM QS , LAM

0 is 
the thermal expansion coefficient vector. Constants of the undamaged laminate are 
calculated using CLT. 

  

2lk 

tk 

x 
y 

z 

Symmetry plane  
Figure 1. RVE of the damaged laminate with intralaminar cracks in layers. 
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The expressions for thermo-elastic constants of the damaged laminate presented 
below are exact. 

N

k

LAM
k

k
kn

LAMLAM SK
h
t

ISS
1

00       (2) 

kk
LAM

kn

N

k

kLAM
N

k
k

LAM
kn

kLAM KS
h
t

KS
h
t

I 0
1

0
1

0   (3) 

They were derived in [7,8] expressing the integral effect of cracks in terms of crack 
density and kK which is a known matrix-function dependent on ply properties and 
normalized and averaged crack face opening (COD) and sliding displacements (CSD), 

anan uu 12 ,  which may be different in different layers. In (3) k  is the vector of 
thermal expansion coefficients of a damaged layer in global coordinates. The 

kK matrix for a ply in a laminate is defined as  

kKk
T
kkk QTUTQ

E
K

2

1        (4) 

The involved matrices kT and kQ  are defined according to CLT, upper index T 
denotes transposed matrix and bar over  stiffness matrix indicates that it is written in 
global coordinates. For a layer with fiber orientation angle k  , km cos  and 

kn sin  

22

22

22

2
2

nmmnmn
mnmn
mnnm

T k , 
T

kkk TQTQ 11    (5) 

The influence of each crack is represented in (4) by matrix U k  which contains the 
normalized average COD and normalized average CSD of the crack surfaces in k-th 
layer 

k
an

k
ank

u
G
E

uU

1
12

2

2

00

00
000

2         (6) 

 Simple and reliable determination of anan uu 12 ,  in high crack density region is the 
main subject in this paper.  
 
2.2 Thermo-elastic constants of balanced laminates with cracks in 90-layers 
 
For balanced laminates with cracks in 90-layers, kK  can be calculated analytically. 
Using the result in (2) and (3) the following expressions for laminate thermo-elastic 
constants were obtained. 
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Index 90 is used for thickness, crack density and COD in 90-layer. The quantities 
with lower index x,y are laminate constants, quantities with additional upper index 0 
are undamaged laminate constants. It is noteworthy that 
a)  If Poisson’s effects are neglected 043 cc . In this approximation yE  and y  do 
not change because of damage in 90-ply. 
b) Shear modulus is not related to COD and depends on sliding displacement only. 
The class of laminates covered by these expressions is broader than just cross ply 
laminates or laminates with 90-layers. For example, any quasi-isotropic laminate with 
an arbitrary cracked layer can be rotated to have the damaged layer as a 90-layer. The 
only limitation of (7)-(12) is that the laminate after rotation is balanced with zero 
coupling terms in LAMS 0  . 
Application of (7)-(12) requires values of anan uu 12 , . Simple and rather accurate 
expressions are presented in section 3 where FEM parametric analysis is used. 
 
3. Numerical parametric analysis of COD 
 
3.1 Definitions, interaction mechanisms and FEM model 
 
It is assumed that all cracks in the same layer are equal and equidistant. The average 
CSD and COD are defined as  
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Here iu is the displacement gap between points at both crack faces. Index 1 denotes 
the displacement in fiber direction (sliding) and index 2 in the transverse direction 
(opening). 
In linear model the average displacements k

au2  and k
au1   are linear functions of the 

applied stress and the ply thickness. Therefore, they are normalized with respect to the 
far field (CLT) shear stress k0

12  and transverse stress k0
2  in the layer (resulting from 

the macro-load LAM
0 and temperature difference T ) and with respect to the 

thickness of the cracked layer kt  

  k
k

k
k
a

k
an t

G
uu 0

12

12
11    k

k

k
k
a

k
an t

E
uu 0

2

2
22              (14) 

Elastic constants are introduced in (14) to have dimensionless descriptors. The 
influence of each crack on thermo-elastic laminate constants is represented by k

au2  
and k

au1 , see (2),(3) or (7)-(12). They can be deduced from simple stress models like 
shear lag [1] or variational models [2] as demonstrated in [5], however the accuracy 
of these models is rather low. Instead, in this paper we present much more accurate 
expressions based on extensive FEM parametric analysis. They are applicable for 
wide range of material properties and crack density. Analysis in this paper is limited 
to crack opening displacements leaving sliding for a separate publication. 
When the distance between cracks is much larger than the crack size, the stress 
perturbations of two neighboring cracks do not overlap and cracks in this region can 
be considered as non-interactive. The normalized average COD and CSD in this crack 
density region are independent on crack density. Upper index 0 is used to indicate 
values in this region ( k

anu 0
1 , k

anu 0
2 ). Rather accurate fitting expressions to calculate 

k
anu 0

1 , k
anu 0

2  are given in [7,8].  
When the distance between cracks decreases the stress perturbation regions overlap 
and the normalized average COD and CSD start to decrease. This phenomenon was 
studied in [14], however, considering only COD for “inside cracks” (defined in Fig. 
2b). Here we extend the analysis to damaged surface layers, see Fig. 2a) and present 
more reliable description of interaction. 
As in [14] in this paper we also express k

anu2  through COD of non-interactive cracks, 
k
anu 0

2  by introducing “interaction function” dependent on normalized crack density in 
the layer 

u k
anknk

k
anu 0

22             (15) 

The crack interaction function  depends also on elastic and geometrical parameters 
of the cracked layer and surrounding layers. For non-interactive cracks 1 . 
In [14] the fitting was with logarithmic “master” curve that was rather inaccurate and 
therefore applicable only for medium crack densities. The role of stiffness and 
geometrical parameters on crack interaction was not really understood and therefore 
the “master curve” did not include these parameters. The outcome was a simple 
interaction function on expense of reduced accuracy. 
In the presented paper we analyze the effect of the dimensionless crack density n on 

anu2  using FEM for Sn 890/0  and Sn0/908 laminates (n=1,2,4,8,16,24) shown in 
Fig 2. To have large variation in elastic constants both CF/EP and GF/EP composites 



15 

with constants given in Table 1 were analyzed. Since all expressions contain thickness 
ratios, the thickness of a single ply is irrelevant as long as dimensionless crack density 
is used.
For calculations the commercial code ABAQUS was used. In order to model the 
repeating volume element (see Fig. 2), a 3-D model was created. All plies are 
considered to be transversely isotropic, and hence the thickness direction related 
properties are taken as 32 EE ; 1312 GG and 1312 . 

Table 1. Material properties used in simulations, t is the ply thickness. 
Material E1(GPa) E2(GPa) 12 23 G12 (GPa) 

G23 
(GPa) 

t 
(mm) 

GF/EP 45 15 0.3 0.4 5 6 0.5 
CF/EP 150 10 0.3 0.4 5 6 0.5 

In order to mesh volumes, 3D continuum elements (C3D8) 8-node linear brick were 
used. The same fine mesh with 86400 elements was used in each FE model. The (X, 
Z) plane consisted of 21600 elements, with refined mesh near the crack surfaces. The 
number of elements in y-direction was 4 which as described below is more than 
sufficient for the used edge conditions. 

 
a) surface cracks b) inside cracks 

Figure 2. Load cases used for determination of average crack face opening 
displacement 

 
Constant displacement corresponding to 1% average strain was applied to the 
repeating unit in x-direction. On the front edge (y=0) and the far-away edge (y=w) 
coupling conditions were applied for normal displacements ( yu = unknown constant). 
In this way edge effects are eliminated and the solution does not depend on y-
coordinate. It corresponds to solution for an infinite structure in the width direction. 
Obviously these conditions correspond to generalized plane strain case. The 
displacement in x-direction for the nodes at the crack surface was used to calculate 
the average value of the COD. Varying length 902l of the repeating unit, the average 
strain of 1% corresponds to different values of applied load (laminate stress). Hence, 
performing normalization according to Equation (14) we have to use corresponding 
far field stress 0

2 and 0
12  in the 90° layer. 

Fig. 3a) shows the normalized crack face opening displacement anu2  for Sn0/908  
and Sn 890/0 laminates (n=4,8,16 and 24) for GF/EP and CF/EP materials as a 
function of normalized crack density n  in the 90-layer. 



16 

 
a)  Sn0/908      b)  Sn 890/0  

Figure 3. The anu2 dependence on crack density for GF/EP and CF/EP composites 
with varying layer thickness ratio calculated using FEM 

 
A large variation in anu2 values dependent on the composite elastic properties and 
laminate lay-up is shown in Fig. 3. For the same value of crack density the normalized 
average COD is bigger for GF/EP than CF/EP composite because GF/EP 0-layer 
applies less constraint to COD than the CF/EP 0-layer. The COD decreases with 
increasing crack density. It is interesting to note that the effect of lay-up and material 
is stronger for non-interactive cracks. The effect of increasing crack density can be 
better seen by normalizing the results in Fig. 3 with respect to the COD’s of 
corresponding noninteractive cracks, 0

2anu , obtained by FEM et est. introducing the 
interaction function according to (15).  
As a result of many trials we suggest the following form of the ‘interaction function’ 

)( n   

n
n tanh)(                    (16) 

The form (13) is similar to corresponding term in shear lag model’s solution for 
stiffness but the definition of  (14) is different than that of the shear lag parameter.  
 
3.2 Surface cracks  
 
For surface cracks in cross-ply laminates  

s
s

s

Et
Et

E
EC

2

1 290

4/1

2

                   (17) 

In (17) and also in (18) sE is the elastic modulus of the support layer in the transverse 
direction of the 90-layer. Obviously, 1EEs for cross-ply laminates. C is a material 
and ply geometry independent fitting constant which has different value for “surface” 
and “inside” cracks. Plotting the FEM values of the interaction function 

)( n versus n  for each lay-up and material, the parameter  in (16) is determined 
using free software REGRESSI. In this way data for  dependence on geometrical 
and elastic parameters is obtained. To calculate the constantC , we plot these  data 
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versus 
s

s

s

Et
Et

E
E

2

1 290

4/1

2

  for [908,0n]s laminate (n=1,2,4,8,16,24), using all data 

for CF/EP and GF/EP  materials. According to (17) the relationship has to be linear. 
Indeed it was linear and fitting with linear trend line gives for surface cracks 

187.0C . With this value Eq (16) and (17) can be used as surface crack interaction 
function. 
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Figure 4. Interaction function according to FEM and equation (16) for surface cracks 

in GF/EP and CF/EP cross-ply laminates. 
 
In Fig. 4 the values of the interaction function from direct FE calculations for cracks 
in GF/EP and CF/EP cross-ply laminate surface layer are compared with values 
according to the fitting expression (16), (17). A very good agreement was found. Only 
for GF/EP S0/908  laminate the fitting function is slightly larger than FEM values 
(the interaction is underestimated). 
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3.3 Inside cracks 
 
The interaction function found according to Equation (15) can be seen in Fig. 5. 
Comparing Fig. 5 and Fig.4 one can notice that interaction of inside cracks starts at 
almost two times higher normalized crack density and that the value of interaction 
function at final normalized crack density 2.0 is about two times larger for inside 
cracks. This is not a real trend but more like an artifact caused by the used definition 
of the normalized crack density as ply thickness (crack size) and crack spacing ratio. 
Therefore the same number of cracks per mm in surface and inside layers correspond 
to two times larger normalized crack density in [0n/908]s laminate. 
Using (16) for inside cracks (16) the constant  is defined by slightly different 
expression 

ss

s

Et

Et

E
EC 2

904/1

2

21                  (18) 

Determination of  C  is exactly as for surface cracks leading to 497.0C . 
Using this value of C for inside cracks, equations (16) and (18) was used to calculate 
inside crack interaction function. In Fig. 5 values of the interaction from direct FE 
calculations for inside cracks in GF/EP and CF/EP cross-ply laminate are compared 
with values according to expression (16). 
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Figure 5 . Interaction function according to FEM and equation (16) for GF/EP and 

CF/EP Sn 890/0 cross-ply laminates. 
 
The fitting function values for large 90tts  are very close to FEM but for small ratios 
are larger than FEM. The accuracy still is very good except for the rather extreme and 
non-practical case of GF/EP [0/908]s and [02/908]s laminates where the interaction 
function (16), (18) underestimates the interaction. 
 
4.  Stiffness prediction  
 
In this section equations (7) to (12) are used to calculate elastic constants of damaged 

laminates. In these expressions 290
stth  for surface cracks and Stth 290  for 

inside cracks. To calculate anu2  according to (15) we use the interaction function (16) 
with (17) and 187.0C for surface cracks and with (18) and 497.0C for inside 
cracks. To evaluate the error on stiffness due to inaccuracy of )( n  the COD’s of 
non-interactive cracks in (15) was calculated with FEM considering the value as 
exact. The noninteractive COD’s are given in Table 2. 
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Table 2. FEM calculated values of anu2  for non-interactive cracks. 

Laminate CF/EP GF/EP 
[0/908]s 0.6044 1.0762 
[02/908]s 0.5421 0.8658 
[04/908]s 0.5083 0.7402 
[08/908]s 0.4927 0.6758 
[016/908]s 0.4873 0.6487 
[024/908]s 0.4862 0.6420 
[908/0]s 1.2181 1.9785 
[908/02]s 1.1724 1.7188 
[908/04]s 1.1852 1.5893 
[908/08]s 1.2263 1.5607 
[908/016]s 1.2640 1.5807 
[908/024]s 1.2772 1.5925  

The elastic properties of damaged cross-ply laminates were calculated also directly 
from FEM using the same meshes as for interactive COD determination: a) total force 
and the applied axial strain were used to determine elastic modulus; b) the relative 
displacement of the coupled edge surfaces was used together with the applied axial 
strain to find the Poisson’s ratio. 
 
4.1 Stiffness of cross-ply laminates with damage in surface layers  
 
Elastic modulus and Poisson’s ratio reduction with increasing crack density in 

Sn0/908  GF/EP cross-ply laminates is presented in Fig. 6. Ply discount model 
predictions are also shown as dotted lines. It has to be reminded that normalized crack 
density larger than 1 is extremely high. The elastic modulus reduction calculated 
using Equation (7) to (12) with non-interactive COD’s in Table 2 and the interaction 
function (16) is slightly overestimated for small ratio 90tts , and slightly 
underestimated for large ratio. The same observation holds for Poisson’s ratio 
reduction 
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Figure 6 . Elastic modulus (a) Poisson’s ratio (b) degradation in Sn0/908 GF/EP 

laminate due to cracking in 90-layer. 
 
In carbon fiber/epoxy laminates, see Fig. 7, the elastic modulus reduction due to 
cracks in 90-layer is much smaller, especially for relatively thin 90-layers. The 
accuracy using the interaction function given in Equation (16) is good also for 
Poisson’s ratio prediction. 
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Figure 7. Elastic modulus (a) and Poisson’s ratio (b) degradation in Sn0/908 CF/EP 

laminate due to transverse cracking in 90-layer. 
 
4.2 Stiffness of cross-ply laminates with damage in inside layers 
 
Predicted axial modulus and Poisson’s ratio of cross-ply laminates with cracks in 
inside layers is shown for GF/EP composite in Fig.8 and for CF/EP in Fig. 9. The 
accuracy of predictions at high crack density is better for CF/EP laminates. The same 
trends as before with respect to the use of the interaction function (16) have been 
observed. For large 90tts  ratio the calculated elastic modulus reduction is slightly 
underestimated, but the accuracy is good. The same trend is observed for Poisson’s 
ratio reduction. 
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Figure 8. Elastic modulus (a) and Poisson’s ratio (b) degradation in Sn 890/0 GF/EP 

laminate due to transverse cracking in 90-layer. 
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Figure 9. Elastic modulus (a) and Poisson’s ratio (b) degradation in Sn 890/0  CF/EP  

laminate due to transverse cracking in 90-layer. 
 
4.3 Application for quasi-isotropic laminates 
 
4.3.1 Validation of methodology 
 
The objective of the analysis presented in section 3 was to use FEM to analyze crack 
interaction and to summarize the results in a simple but accurate interaction function. 
This analytical function together with other expressions can be used to predict 
stiffness of damaged laminates without any need to involve FEM in this procedure. 
However, the value of the performed work finding COD interaction function would 
be rather limited if it can be applied for cross-ply laminates only. In this section we 
suggest to use the same interaction function )( n  also for more complex lay-ups, 
describing the input parameters and comparing the result with numerical values of 
crack interaction and stiffness for quasi-isotropic laminates obtained directly from FE 
analysis. 
 In these calculations the commercial code ANSYS 12.1 was used. The 3-D 8-node 
structural solid element SOLID185 with three degrees of freedom for each node was 
used and the number of elements was 86400. Displacement coupling was applied. It 
means that points on the surface at y=0 has the same displacement in x- and z-
directions as the corresponding points on the surface at y=w. In the same way, the 
points on the surface at x=0 and 902lx  have the same displacement in y-direction. 
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The coupling conditions were applied also for normal displacement (Uy=unknown 
constant) on all nodes at the front edge y=0 and the far-away edge y=w respectively.  
CF/EP and GF/EP quasi-isotropic laminates with lay-up [90/0/45/-45]s and [90/45/-
45/0]s  containing cracks in surface layers as well as [45/-45/0/90]s and [0/45/-
45/90]s laminates with cracks in the inside 90-layer were considered. 
Applying (16) to “non-cross-ply” laminates further details have to be given with 
respect to the meaning of sE and st . FEM results show that, when the support layer is 
much stiffer than the 90-layer (for example 0-layer), the major part of the support is 
supplied by this layer and it is not really important what the following layers are. In 
contrary, when the layer closest to the 90-layer is less stiff (for example +45 or -45 
layers), this layer alone can not govern crack interaction and the presence of 
following stiff layer is important (for example, the 0-layer in [0/45/-45/90]s laminate 
affects interaction of cracks in 90-layer). When this is the case, all neighboring layers 
have to be included in sE  (for example, considering [0/45/-45]s as sublaminate). 
Based on these observations the suggestion for sE and st  is as follows 

not if   
neighborclosest   theislayer -0 if  1

subl
x

s E
E

E                 (19) 

For surface cracks 

not if   2

closest  theislayer -0 if  
2

0

subl
s t

tt                  (20) 

For inside cracks 

not if  2

closest  theislayer -0 if  0

subls t
t

t                  (21) 

 
4.3.2 Interaction of surface cracks 
  
The fitting function (16) with (17) was adapted for [90/-45/45/0]s laminate as 
described above. Since the 0° layer is not the closest layer, sE is calculated using LAP 

for [0/45/-45]s sublaminate and 2
st  is ½ of its thickness. The obtained values are 

62.622 GPa for CF/EP and 25.669 GPa for GF/EP (using data in Table 1). For 

[90/0/45/-45]s laminate where the 0° layer is the closest layer, 1EEs and 2
st is the 

thickness of the 0-layer. The values of interaction function are in a good agreement 
with numerical values calculated directly from FEM, see Fig. 10 for GF/EP laminates. 



26 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5

In
te

ra
ct

io
n

 f
u

n
ct

io
n

 (
)

Normalized crack density ( n)

GF/EP
[90/0]s Equation

[90/0/-45/45]s FEM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5

In
te

ra
ct

io
n

 f
u

n
ct

io
n

 (
)

Normalized crack density ( n)

GF/EP
[90/sub]s Equation

[90/-45/45/0]s FEM

 
Figure 10. Interaction function according to FEM and equations (16),(17)  for GF/EP 

laminates.  
4.3.3 Interaction of inside cracks 
 
The fitting function (16) with (18) was adapted for [0/-45/45/90]s laminate as 
described above. Since the 0° layer is not the closest layer, sE is calculated using LAP 
for [0/45/-45]s sublaminate and st  is ½ of its thickness. The obtained values are the 
same as for surface crack case: 62.622 GPa for CF/EP and 25.669 GPa for GF/EP. 
For [45/-45/0/90]s laminate where the 0° layer is the closest layer, 1EEs and st is 
the thickness of the 0-layer. As shown in Fig.11 the interaction function adapted from 
cross-ply case gives very good approximation of the crack interaction. 
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Figure 11. Interaction function according to FEM and equation (16), (18) for GF/EP 

laminates. 
 
4.3.4 Stiffness of damaged quasi-isotropic laminates 
 
4.3.4.1 Quasi-isotropic laminates with cracks in surface layers 
 
Elastic modulus and Poisson’s ratio reduction of quasi-isotropic laminates with cracks 
in surface layers is shown for GF/EP composite in Fig.12 and for CF/EP in Fig. 13. 
Ply discount model predictions are also shown as dotted lines. The elastic modulus 
reduction is calculated using Equation (7) to (12) with non-interactive COD’s in 
Table 2 and the interaction function (16) with suggestions (19) and (20). For 

S45/45/0/90  laminate the accuracy is very good. 
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For S0/45/45/90  laminate the calculated elastic modulus reduction is slightly 
underestimated, but the accuracy is good. The same observation holds for Poisson’s 
ratio reduction. 
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Figure 12. Elastic modulus (a) Poisson’s ratio (b) degradation in GF/EP quasi-

isotropic laminate due to transverse cracking in 90-layer. 
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Figure 13. Elastic modulus (a) Poisson’s ratio (b) degradation in CF/EP quasi-

isotropic laminate due to transverse cracking in 90-layer. 
 
4.3.4.2 Quasi-isotropic laminates with cracks in inside layers 
 
Predicted axial modulus and Poisson’s ratio of quasi-isotropic laminates with cracks 
in inside layers is shown for CF/EP composite in Fig.14 and for GF/EP in Fig. 15. 
The same trends as before with respect to the use of the interaction function (16) with 
(19) and (21) have been observed.  
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Figure 14. Elastic modulus (a) Poisson’s ratio (b) degradation in CF/EP quasi-

isotropic laminate due to transverse cracking in 90-layer. 
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Figure 15. Elastic modulus (a) Poisson’s ratio (b) degradation in GF/EP quasi-

isotropic laminate due to transverse cracking in 90-layer. 
 
5. Conclusions   
 
Expressions for thermo-elastic constants of symmetric and balanced laminates with 
intralaminar cracks in 90-layers are presented as a special case of the GLOB-LOC 
model developed in [7,8]. They can be used provided simple and accurate expressions 
for normalized crack opening (COD) and sliding (CSD) displacements are available. 
At high crack density where cracks interact they depend on distance between cracks. 
 The COD of interactive crack are presented as a product of the COD of non-
interactive crack and an interaction function which value is equal or smaller than one. 
The COD of non-interactive cracks is obtained by FEM.  
In this paper the tanh() form of the interaction function for COD is introduced and 
parameters determined using data generated by FEM for large variety of geometrical 
and material parameters considering cracks in surface as well as inside layers. 
 Comparison with direct FEM calculations show that the interaction function gives a 
very good axial modulus and Poisson’s ratio prediction for all possible crack densities 
and cross-ply laminates. 
The interaction function derived for cross-ply laminates is adapted for more complex 
lay-ups and its accuracy is demonstrated for quasi-isotropic laminates. 
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Abstract 
 
Stiffness reduction simulation in laminates with intralaminar cracks is usually 
performed assuming that cracks are equidistant and crack density is the only 
parameter needed. However, the crack distribution in the damaged layer is very non-
uniform, especially in the initial stage of multiple cracking. In this paper the earlier 
developed model for general symmetric laminates is generalized to account for non-
uniform crack distribution. This model, in which the normalized average crack 
opening (COD) and sliding (CSD) displacements are the main characteristics of the 
crack, is used to calculate the axial modulus of cross-ply laminates with cracks in 
internal and surface layers. In parametric analysis the COD and CSD are calculated 
using FEM, considering the smallest versus the average crack spacing ratio as non-
uniformity parameter. It is shown that assuming uniform distribution we obtained 
lower bond to elastic modulus. 
A “double-periodic” approach presented to calculate the COD of a crack in a non-
uniform case as the average of two solutions for periodic crack systems is very 
accurate for cracks in internal layers, whereas for high crack density in surface layers 
it underestimates the modulus reduction. 
 
Keywords: Laminates, transverse cracking, crack opening displacement, damage 
mechanics 
 
1. Introduction 
 
Intralaminar cracking in laminates is the most typical mode of damage in laminates. 
Initiation, evolution and effect of these cracks on laminate stiffness has been 
discussed in many papers, see for example review papers [1,2]. Intralaminar cracks 
(called also matrix cracks, transverse cracks, inclined cracks etc) are orthogonal to the 
laminate midplane, they run parallel to fibers in the layer, usually cover the whole 
thickness and width of the layer in the specimen.  
In the presence of cracks the average stress in the damaged layer is lower than in the 
same layer in undamaged laminate. The average stress between two cracks depends 
on the distance between them (normalized spacing). Usually the extent of cracking 
(number of cracks and distance between them) is characterized in an average sense by 
average crack spacing and crack density (cracks/mm). Most of the existing stiffness 
models, for example, [3-6] use this assumption. It is convenient for use and is 
expected to give sufficient accuracy. 
However, the crack distribution in the layer may be highly non-uniform as 
schematically shown in Fig.1. This is more pronounced in the beginning of the 
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cracking process when the average crack density is relatively low.  At high crack 
density close to saturation the cracks are more equidistant. The reason is the random 
distribution of transverse failure properties along the transverse direction of the layer. 
At low crack density the stress distribution between two existing cracks has a large 
plateau region and any position there is a site of possible failure. At high crack 
density there is a distinct maximum in the stress distribution and a new crack most 
likely will be created in the middle between existing cracks. 
The discussion in this paper is focused on the possible inaccuracy introduced in 
laminate stiffness prediction by using assumption of uniform spacing between cracks 
in a layer. Numerical results presented here are for two cases: a) when the system of 
cracks is ”non-interactive” in average (low crack density) but some cracks are close to 
each other and interact; b) the crack density is high and cracks interact “in average”. 
There are only a few studies where the effect of non-uniformity is addressed, see for 
example [7-9].  
In [7] hypothesis was introduced that for a non-uniformly cracked laminate, the 
deformation field in the “element” between two neighbouring ply cracks separated by 
a distance kl  is identical to that in a uniformly cracked laminate where the crack 
spacing is kl . Then, for example, the axial strain of the whole Representative Volume 
Element (RVE) can be calculated by the “rule of mixtures” of average strains of 
“elements” leading to simple expressions for RVE axial modulus. In [7] this approach 
was compared with FEM calculations for the whole RVE demonstrating very high 
accuracy. This assumption is reexamined in our paper analyzing crack opening 
displacements (COD) of both crack faces and showing that the average stress in the 
“element” on one side, where the distance to the next crack is smaller, is 
overestimated by this assumption whereas on the other side it is underestimated. In 
[8,9] the non-uniform damage evolution is analyzed in a probabilistic way not 
discussing the effect of non-uniform distribution on stiffness. 
The reduced average transverse stress and in-plane shear stress in the damaged layer 
are responsible for laminate stiffness changes. The average stress change between two 
cracks is proportional to the average crack face opening (COD) and sliding 
displacements (CSD) normalized with far field stress [10,11]. The far-field stress at 
the given load is calculated using laminate theory (CLT). Therefore the damaged 
laminate stiffness can be expressed also in terms of density of cracks and two 
parameters: average COD a CSD as done in the GLOB-LOC model [3,12]. These two 
rather robust parameters depend on the normalized distance to neighboring cracks. 
Therefore for non-uniform crack distribution they are different for each individual 
crack. The values of COD and CSD in the commonly assumed uniform crack 
distribution case correspond to average spacing between cracks and are different than 
the calculated average over COD’s and CSD’s of all individual cracks. 
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Figure 1. Non-uniform distribution of  M cracks in damaged layer shown in its local 

coordinate system. 
 
In this paper we first will generalize the previously developed expressions for 
stiffness reduction in symmetric laminates (GLOB-LOC model [3]) for non-uniform 
spacing case. Then parametric analysis of the effect of geometrical non-uniformity in 
terms of COD and the laminate axial modulus will be performed for particular cases 
of snm 0/90  and smn 90/0 cross-ply laminates with cracks in 90-layers. Cases 
when sliding displacement CSD affects the stiffness are included in the stiffness 
expressions in Section 2.2 but they are not numerically analyzed in this paper. 
Extreme layer thickness ratios and different material anisotropy levels comparing 
carbon fiber (CF) and glass fiber (GF) composites will be discussed. To simplify 
stiffness calculations for an arbitrary non-uniform distribution, routine allowing 
determination of COD’s for any crack as a sum of solutions for two periodic systems 
of cracks, will be formulated and validated (one solution is for periodic system with 
spacing as on the “+” side of the crack and another one for a periodic system with 
spacing as on the “-“ side of the crack, see Fig.1). 
 
2. Material model of damaged symmetric laminates with intralaminar cracks  
 
2.1 Distances between cracks 
 
We consider representative volume element (RVE) of a layer with M cracks as 
shown in Fig. 1. The RVE length is L , the average distance between cracks (spacing) 
is avl , the crack density is  

1

0

M

m
mlL   

M
Llav  

avl
1     (1) 

Stress state between two cracks in a layer ,see Fig. 1 where the cracked layer is shown 
in its local coordinates, and also the opening and sliding displacements of crack faces 
depend on the normalized distance between cracks. Normalization is with respect to 
the layer thickness t  

 
t

l
l m

mn  m=0,1,  ….. M , 
t

l
l av

avn     (2) 

Index k , used in following sections to identify k-th layer in the laminate, is omitted 
here for simplicity. Crack with index m  has two neighbors located at different 
distances 1ml  and ml from this crack. Using notation anan uu 12 ,  for the average 
normalized COD and CSD respectively, we can write for the m -th crack 
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If 1mm ll  the displacements on the “-” side will be larger than on the “+” side.  
If the part of the layer shown in Fig. 1 is smaller than the RVE, the methodology of 
this paper can still be applied but the unknown displacements of the outmost to the 
left (m=1) and the outmost to the right (m=M) positioned cracks are affecting the 
calculated homogenized stiffness. The uncertainty is because COD and CSD of these 
two cracks depend on the distance to the next cracks not shown in Fig. 1 or, in other 
words, on boundary conditions. The uncertainty is avoided if the shown distribution is 
considered as “repeating super-element” with M cracks in it. In this case symmetry 
conditions can be applied on 0x  and Lx 2 . To model this periodic structure we 
have to assume Mll0 . 
 
2.2 Stiffness Model  
 
The upper part of symmetric N- layer laminate with intralaminar cracks is shown in 
Fig. 2. The k-th layer of the laminate has thickness kt  , fiber orientation angle  with 
respect to the global x-axis k  and stiffness matrix Q  in the material symmetry axes, 
calculated from elastic constants 121221 ,,, GEE . The total thickness of the laminate, 

N

k
kth

1
. The crack density in a layer k  is calculated using (1) where the average 

distance between cracks k
avl  is measured transverse to the fiber direction in the k-th 

layer.  Dimensionless crack density kn in the layer is introduced as 

kkkn t .   (4) 

 
Figure 2. RVE of the damaged laminate with intralaminar cracks in layers. 

 
It is assumed that in the damaged state laminate is still symmetric et est. the crack 
density in corresponding symmetrically placed layers is the same.  
The stiffness matrix of the damaged laminate, LAMQ  and the stiffness of the 
undamaged laminate, LAMQ 0  are defined by the stress-strain relationships 
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 The compliance matrix of the undamaged laminate is 
1

00
LAMLAM QS .  

The expressions below for stiffness matrix of the damaged laminate with non-uniform 
crack distribution are derived in Appendix 1 and 2 following the procedure described 
in [3] 
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In (6) and (7) the matrix-function kK  for a layer with index k   is defined as  
 

kKk
T
kkk QTUTQ

E
K

2

1        (8) 

The involved matrices kT and kQ  are defined according to CLT, upper index T 
denotes transposed matrix and bar over  stiffness matrix indicates that it is written in 
global coordinates. The influence of cracks in k-th layer is represented by matrix 
U k .  
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Elements of this matrix anan uu 12 ,   are defined in Appendix 2. They are calculated, see  
(A2.8), using normalized and averaged crack face opening (COD) and sliding 
displacements (CSD) of all cracks as affected by varying spacing between them.  

M

m
mnnm

m
anan llu

M
u

1
111 ,1   

M

m
mnnm

m
anan llu

M
u

1
122 ,1              (10) 

Index for layer k  is omitted in (10). Certainly, since anan uu 12 ,  in k-th layer depend 
also on neighboring layer properties they are different in different layers. The 
approach used in appendices is exactly the same as in [3]. The main difference is in 
Appendix 2 where the two crack faces of any crack may have different displacements 
due to nonuniformity. Appendix 1 which contains the same information as given in 
[3] is included to insure consistency of explanation. 
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2.3 Elastic modulus of balanced laminates with cracks in 90-layer 
 
In case of balanced laminates with damage in 90-layers only, expressions for kK  
and for LAMS have been obtained calculating the matrix products in  (7) and (8) 
analytically. For example, the obtained expression for laminate normalized axial 
modulus is 

cu
h

tE
E

ann
x

x

90
2

90
90

0

21

1   
2

2112

0
12

0
2

1
1 xy

xE
Ec               (11) 

Index 90 is used to indicate 90-layer. The quantities with lower index x,y are laminate 
constants, quantities with additional upper index 0 are undamaged laminate constants 
and (10) has to be used to calculate 90

2anu . In the case of uniform crack distribution all 
COD’s in (10) are equal and (11) is just a different form of (31) in [3] leading to 
numerically identical results. 
In the following parametric analysis we consider COD related properties only and 
validation is based on axial modulus. Therefore damaged laminate shear modulus 
expression which is related to CSD only is not presented here. 
 
3. Results and discussion 
 
3.1 Formulation of calculation examples 
 
The effect of the non-uniform crack distribution on 90

2anu  was analyzed using FEM for 
damaged Sn 890/0  and Sn0/908 laminates (n=1,8) at fixed dimensionless crack 
density n90 , see Fig 3 where the repeating “super-element” with two cracks is 
shown. To cover large variation in elastic constants both CF/EP and GF/EP 
composites with constants given in Table 1 were analyzed. All results will be 
presented in terms of dimensionless crack spacing and crack density. Results depend 
on layer thickness ratio, not on absolute value of ply thickness. 
For laminates with cracks in surface layers staggered crack system where the crack in 
the bottom layer is located in the middle between cracks in the top layer could be 
analysed instead of symmetric damage state shown in Fig.3. This case analyzed in 
[13] by J. Nairn is relevant when the failure analysis is deterministic and the small 
variation in stress state points on the locus of the next failure (always exactly in the 
middle between two existing cracks). However, the strength (or the fracture 
toughness) is not one single value but follows certain statistical distribution. The 
variation of failure properties along the 90-layer transverse direction is often much 
larger than the stress perturbation in the bottom layer of the laminate due to crack in 
the top layer. Therefore the assumption of staggered cracks is as far from reality as 
the assumed symmetry of the damage with respect to the midplane used in this paper. 
Starting with symmetric damage state in the stiffness analysis we are trying to create a 
simple reference case. The interaction effects between systems of cracks in different 
layers have to be analysed separately. Otherwise the number of parameters changing 
is too large to draw conclusions. 
In all FE calculations the commercial code ABAQUS was used. In order to model the 
left half of the ”super-element” (see Fig. 3), a 3-D model was created. In order to 
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mesh volumes, 3D continuum elements (C3D8) 8-node linear brick were used. The 
same fine mesh with total number of elements 86400 was used in each FE model. The 
(x, z) plane consisted of 21600 elements, with refined mesh near the crack surfaces. In 
the ply with cracks the number of elements in the thickness direction was 120. The 
number of elements in y-direction was 4 which as described below is more than 
sufficient for the used edge conditions. The problem was solved by applying to the 
right boundary 0x  of the model a given constant displacement in x-direction 
corresponding to 1% average strain and keeping at the left boundary 0xu .  The top 
surface was free of tractions. On the front edge (y=0) and the edge (y=w) coupling 
conditions were applied for normal displacements ( yu = unknown constant). In this 
way edge effects are avoided and the solution does not depend on y-coordinate. It 
corresponds to solution for an infinite structure in the width direction. Obviously 
these conditions lead to generalized plane strain case and corresponding finite 
elements could be used obtaining the same results. The displacements in direction x 
for the nodes at the crack surface were used to calculate the average value of the crack 
face displacement COD. 

 
Figure 3.  ”super-element” models for COD studies with non-uniformly cracked 90-

layers: a) cracks in inside layer; b) cracks in surface layer 
 
All plies are considered to be orthotropic considering in calculations a particular case 

32 EE , 1312 GG and 1312 . 
 
Table 1. Material properties used in simulations. 

Material E1(GPa) E2(GPa) 12 23 G12 (GPa) G23 (GPa) 

GF/EP 45 15 0.3 0.4 5 6 

CF/EP 150 10 0.3 0.4 5 6 

 
Analyzing the CODs the average crack density was kept constant (two cracks over 
fixed distance 10 llL  with average normalized spacing calculated according to (1) 

nnavn lll 102
1  

In calculations two values of the average normalized spacing were used: a)  10avnl  
corresponding to 1.090n  where the interaction between uniformly spaced cracks 
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would be negligible; b) 2avnl  corresponding to interactive crack region with crack 
density 5.090n . 
Studying the effect of non-uniform distribution the normalized spacing nl0 , see Fig. 3, 
was used as a parameter which was lower or equal to the average spacing. In case a) 

10;5.00nl  and in case b) 2;5.00nl . It is worth to remind here that at very high 
crack density (in the so called crack saturation region) the normalized average spacing 
may be close to 1 (the distance between cracks is equal to the crack size (layer 
thickness)). Straight intralaminar cracks are almost never observed closer to each 
other than half of the cracked layer thickness. To characterize the non-uniformity 
parameter K  is introduced as the ratio  

avl
l

K 0                    (12) 

This parameter has value 1 for uniform crack distribution. 
 
3.2 COD parametric analysis at low crack density 
 
In this section results for average normalized spacing   10avnl  ( 1.090n ) are 
presented. 
3.2.1 Internal cracks  
 
For internal cracks the profiles of normalized crack face displacements ( nn zu2 , 

nn zu2  defined in Appendix 2) along the thickness coordinate 12

90t
zzn  are 

shown in Fig. 4 and Fig. 5. The “+” face of the crack has smaller displacements than 
the “-“ face and the difference is larger when the nl0  is smaller than 1 (the 
neighboring crack to the left is very close). The neighbor to the “-“ face is at larger 
distance than the average spacing and therefore the displacement profile is almost 
unaffected.  For the same geometry the COD’s in CF composites are always 
significantly smaller.  
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Figure 4. COD profiles of cracks in [0/908]s laminate with normalized crack density 

1.090n  
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Figure 5. COD profiles of  cracks in [0/90]s laminate with normalized crack density 

1.090n  
 
The displacements of both crack faces are significantly smaller when the relative 
thickness of the neighboring layer is higher, Fig 5. This effect is more pronounced for 
GF composite where the 0-layer versus 90-layer modulus ratio is not very large.  
Using crack face displacements the average normalized COD’s 90

2anu  are calculated by 
numerical integration using expressions in Appendix 2. The obtained dependence on 
the non-uniformity parameter K  is shown in Fig. 6. The average normalized COD is 
larger if the spacing is uniform. However, the effect is negligible for 2.0K  
( 900 2tl ). 

0,2

0,4

0,6

0,8

1,0

1,2

0,0 0,1 0,2 0,3 0,4 0,5 0,6

U
2

a
n

k

GF/EP 

[0/908]s
[0/90]s

0,2

0,3

0,4

0,5

0,6

0,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6

U
2

a
n

k

CF/EP 

[0/908]s
[0/90]s

 
Figure 6.  Effect of non-uniform spacing on COD of internal cracks in cross-ply 

laminates with crack density 1.090n . 
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3.2.2 Surface cracks 
 
For surface cracks in [908/0]s and [90/0]s  laminates the profiles of normalized crack 

face displacements, nn zu2 , nn zu2  along the thickness coordinate 
90

0 2
t
tz

zn   

( 0t is 0-layer thickness) are shown in Fig. 7 and Fig. 8. The trends are the same as for 
internal cracks but the face displacements are larger and the shape of the profile, 
especially on the non-interactive side, is different not becoming vertical at outer 
surface, 1nz . Since the outer surface is not a symmetry surface this result was 
expected. 
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Figure 7. COD profiles of surface cracks in [908/0]s laminate with normalized crack 

density 1.090n  
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Figure 8. COD profiles of surface cracks in [90/0]s laminate with normalized crack 

density 1.090n  
 
The average normalized COD’s 90

2anu  are calculated as described in Section 3.2.1. The 
obtained dependence on the non-uniformity parameter K  is shown in Fig. 9. The 
average normalized COD is smaller if the spacing is non-uniform. According to (11) 
it will lead to smaller axial modulus reduction. For [908/0]s laminate this effect 
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becomes negligible for 3.0K  ( 900 3tl ) whereas for [90/0]s  laminate the 
transition values are slightly larger ( 5.0K , 900 5tl ). 
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Figure 9. Effect of non-uniform spacing on COD of internal cracks in cross-ply 
laminates with crack density 1.090n . 

 
3.3 Approximate COD determination from periodic solutions 
 
The average normalized COD, anu2  of a crack in a layer with non-uniform crack 
distribution can be found considering separately the average normalized COD of  the 
”-” face of the crack and ”+” of the crack in Fig. 1.  

ananan uuu 222 2
1                    (13) 

In this section the following hypothesis will be validated:  
” The COD of ”-” face depends on the distance to the closest left neighboring crack 
only and can be calculated considering the region between these two cracks as a 
periodic element. The COD of the ”+” face is obtained in a similar manner, 
considering the region on the right as periodic element” 
This “double-periodic” approach with considering two periodic solutions states that 

p
anan uu 22 ,     p

an
p
an

p
an uuu 222 2

1              (14) 

The two values p
anu2  , p

anu2   are solutions of the two periodic models.  
This hypothesis is equivalent to saying that in Fig. 3 symmetry conditions on the 

plane 2
1lx can be applied.  This would mean that even in the deformed state the 

line 2
1lx in the 0-layer remains straight. Unfortunately there is no symmetry in 

Fig. 3 and this line will be deformed. The question is how much this additional 
constraint affects results. Hypothesis that it can be neglected was used by Joffe et al in 
[11] calculating the work to close the crack for fracture mechanics based damage 
growth analysis. 
If the “double-periodic” approach is accurate enough, the anu2  for any crack location 
with respect to other cracks could be calculated from a master curve for uniform crack 
distribution. This curve, which is expression of anu2  as a function of crack spacing in 
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layer with uniformly distributed cracks, would be used twice to read the  p
anu2  , p

anu2   
values of the right and the left face of the crack. 
In order to check the accuracy and validity of the “double-periodic” assumption, the 

anu2   for each value of non-uniformity parameter was calculated in two different 
ways: a) directly applying FEM to the non-uniform geometry; b) applying FEM two 
times and using (14), first, for periodic distribution with spacing as on the left from 
the crack and, second, for periodic distribution with spacing as on the right of the 
crack.  
From Fig. 10 were displacement profiles according to a) and b) are presented we 
conclude that the trends in the double-periodic approach are described correctly but  
the values of face displacements are not accurate. On the left face where the 
interaction is strongest the p

nu2  is too small but on the right face, where the next crack 
is further away, p

nu2  is too large. It seems that this result makes the used hypothesis 
questionable.  
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Figure 10. Calculated COD profiles: a) of internal cracks in [0/90]s laminate b) of 
surface cracks in [90/0]s laminate 

 
However, for stiffness predictions the average of the COD of both faces, p

anu2   given 
by (14) is requested and not value for each face separatelly. The values of anu2  and  
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p
anu2  can be compared using results presented in Table 2-3 for all lay-ups, materials 

and non-uniformity parameter values. Amazingly good agreement between values 
exists for all cases which validates the use of the “double-periodic” hypothesis. 
 
Table 2. Average normalized COD of internal cracks from FEM and from “double-
periodic” approach 

 [0/908]s [0/90]s 
GF/EP CF/EP GF/EP CF/EP 

K anu2  p
anu2  anu2  p

anu2  anu2  p
anu2  anu2  p

anu2  

0.50 1.0762 1.0760 0.6045 0.6045 0.6775 0.6760 0.4940 0.4930 
0.30 1.0762 1.0760 0.6045 0.6045 0.6770 0.6760 0.4945 0.4935 
0.20 1.0784 1.0780 0.6043 0.6090 0.6640 0.6635 0.4925 0.4915 
0.10 1.0343 1.0365 0.5676 0.5710 0.5770 0.5810 0.4400 0.4430 
0.05 0.8447 0.8670 0.4451 0.4630 0.4760 0.4800 0.3565 0.3625 

  
Table 3. Average normalized COD of surface cracks from FEM and from “double-
periodic” approach 

 [908/0]s [90/0]s 
GF/EP CF/EP GF/EP CF/EP 

K anu2  p
anu2  anu2  p

anu2  anu2  p
anu2  anu2  p

anu2  

0.50 1.9575 1.9785 1.2110 1.2180 1.5385 1.5405 1.2160 1.2165 
0.30 1.9500 1.9660 1.1915 1.1955 1.4240 1.4290 1.1390 1.1405 
0.20 1.8665 1.8810 1.1095 1.1140 1.2685 1.2800 1.0155 1.0220 
0.10 1.5920 1.6095 0.9160 0.9220 1.0490 1.0645 0.8335 0.8380 
0.05 1.3410 1.3620 0.7755 0.7830 0.9215 0.9325 0.7265 0.7380 

   
The validity of enforcing symmetry in positions like 2

1lx in Fig.3, is the basic 

assumption in [7].  In our present paper we have shown, see Fig.10 that it can lead to 
noticeable inaccuracy in the average COD which is proportional to the average axial 
stress perturbation between cracks in the cracked layer and is linear with respect to 
the average stress used in [7]. Since using the symmetry the COD is underestimated 
on the side where the neighbouring crack is closer and overestimated on the other 
side, the opposite holds for the average stress: for the given crack it is overestimated 
in the region with smaller spacing and underestimated on the other side. However, 
when using (13), (14) as required in stiffness calculation the errors are cancelled out 
and the sum is very accurate. The high accuracy of the summary effect was found in 
ref [7] as a result of two numerical procedures. 
 
3.4 Elastic modulus prediction and validation with FEM 
 
The effect of the non-uniform crack distribution on axial modulus of cross-ply 
laminates is shown in Fig. 11 for GF/EP laminates and in Fig. 12 for CF/EP 
laminates. All results are for the same normalized crack density 1.090n . The 
normalized axial modulus of the laminate is calculated in three different ways: 

a) Calculating the average applied stress using FEM and using definition of xE ; 
b)  Applying  (11) and using for  90

2anu values of anu2 obtained from FEM and 
presented in Tables 2 and 3;  
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c) Applying (11) and using for  90
2anu values of p

anu2  obtained from “double-
periodic” approach presented in Tables 2 and 3. 

 

 

 
Figure 11. Effect of non-uniform crack distribution on axial modulus of GF/EP cross-

ply laminates with normalized crack density 1.090n  
 
As expected the direct FEM results in Fig.11 coincide with results from (11) using 
FEM based anu2  (equation (11) is exact and its numerical accuracy depends on the 
accuracy of the input anu2 ).  On other side FEM values practically coincide with the 
ones where the “double-periodic” approach is used, proving the accuracy and 
potential of this approach for simulation of systems with multiple non-uniformly 
spaced cracks.  
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Figure 12. Effect of non-uniform crack distribution on axial modulus of  CF/EP 

cross-ply laminates with normalized crack density 1.090n . 
 
For the used crack density and all investigated materials and lay-ups the axial 
modulus reduction is the highest if cracks have uniform distribution. For the reasons 
described in Introduction the experimental crack distribution at this crack density is 
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expected to be rather non-uniform and the axial modulus is higher than predicted by 
models based on periodic crack distribution. The axial modulus value at the highest 
considered non-uniformity ( K =0.05) and at uniform distribution ( K =1) are given in 
Table 4. 
The effect of non-uniformity is smallest for CF/EP composite with thin 90-layer. 
Axial modulus of  laminates with relatively thick damaged layers is more sensitive to 
non-uniform crack distribution: the highest value  is 1.077  for GF/EP composite with 
lay-up [908/0]s. 
The non-uniform distribution of internal cracks does not affect laminate modulus if 
the non-uniformity parameter 2.0K . For laminates with cracks in surface layers the 
corresponding value is between 0.3 and 0.5. Note that K  values given here are the 
same as the values when the non-uniformity stops to affect the average normalized 
COD. 
 
Table 4. Axial modulus of cross ply laminates with non-uniform and uniform ( K =1) 
crack distributions  

  1.090n  5.090n  

Material Lay-up 
K=0.05 

5.00nl  

K=1 

100nl  
Ratio 

K=0.25 

5.00nl  

K=1 

20nl  
Ratio 

GF/EP  [0/908]s 0.8915 0.8657 1.0298 0.6213 0.5617 1.1061 
GF/EP  [908/0]s 0.8380 0.7781 1.0770 0.5068 0.4369 1.1600 
GF/EP   [0/90]s 0.9777 0.9685 1.0095 0.8971 0.8638 1.0386 
GF/EP   [90/0]s 0.9576 0.9302 1.0295 0.8309 0.8052 1.0319 
CF/EP  [0/908]s 0.9701 0.9598 1.0107 0.8665 0.8236 1.0521 
CF/EP  [908/0]s 0.9486 0.9223 1.0285 0.7891 0.7392 1.0675 
CF/EP  [0/90]s 0.9956 0.9939 1.0017 0.9782 0.9695 1.0090 
CF/EP  [90/0]s 0.9911 0.9850 1.0062 0.9587 0.8505 1.1272 
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Figure 13. Effect of non-uniform crack distribution on axial modulus of GF/EP cross-

ply laminates with normalized crack density 5.090n  
 
Similar calculations as described above were performed for higher crack density 

5.090n  Results are presented in Table 4 and in  Fig 13 and Fig 14. Due to 
limitations for minimum possible spacing the range of the considered non-uniformity  
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in calculations is more narrow. Nevertheless the effect of non-uniform distribution is 
even larger than at low crack density. In contrast to low crack density case, there is no 
plateau region in Fig. 13 and 14. The “double-periodic” approach at high crack 
density is still highly accurate for internal cracks. For surface cracks with high non-
uniformity this approach underestimates the modulus reduction. 
As follows from section 2.2 all thermo-elastic constants of the cross-ply laminate 
except the shear modulus can be analysed using the calculated anu2 . As shown in [7], 
the reduction of all properties in damaged laminate is linked and the same accuracy 
and trends as demonstrated for axial modulus apply for other constants. The shear 
modulus in our formulation in Section 2.2 depends on sliding displacements which 
may have to be studied separately. 
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Figure 14. Effect of non-uniform crack distribution on axial modulus of CF/EP cross-

ply laminates with normalized crack density 5.090n  
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4. Conclusions 
 
Earlier developed model for thermo-elastic properties of damaged symmetric 
laminates was generalized for case when the intralaminar crack distribution is non-
uniform and due to interactions each crack may have different opening (COD) and 
sliding (CSD) displacements. These displacements and the number of cracks per unit 
length in the layer are governing the laminate properties reduction. 
This model was used to analyze the sensitivity of the damaged cross-ply laminate 
stiffness with respect to the non-uniformity parameter defined as the ratio of the 
smallest and the average spacing between cracks in a repeating element containing 
two cracks. COD values were calculated using FEM in generalized plane strain 
formulation and stiffness calculations were performed for different GF/EP as well 
CF/EP laminates with low and also with high crack density. 
The trend is the same for all crack densities: if cracks are distributed non-uniformly 
the damaged laminate modulus is higher. The difference can reach 16 %. 
It was shown that in internal layers very accurate COD values for cracks with non-
uniform spacing and elastic modulus values can be obtained using “double-periodic” 
approach stating that the COD is the average of two solutions for periodic systems of 
cracks. For cracks in surface layers this approach is accurate only for low crack 
densities. 
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Appendix 1. Homogenized stiffness of damaged laminate 
 
Using divergence theorem it is easy to show [14] that for stress states that satisfy 
equilibrium equations the average stress applied to external boundary is equal to 
volume averaged stress. This statement is correct under assumption that stresses at 
internal boundaries (cracks) are zero. For laminated composites with applied average 
stress LAM

0  this equality can be written as  

h
tk

N

k

a

k

aLAM

1
0               (A1.1) 

In (A1.1) the volume average is calculated expressing the integral over the laminate 
volume as a sum of volume integrals over N  layers. Upper index a is used to indicate 
volume averages. Using Hook’s law and averaging it over a layer we have for 
averages the same form as for arbitrary point 
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Substituting (A1.2) in (A1.1) and using the relationship between volume averaged 
strain in a layer and the displacements applied to external and internal boundaries [13] 
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we obtain 
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In (A1.4)  is the Vakulenko-Kachanov tensor written [15] in Voigt notation. In 
Cartesian coordinates 
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Integration in (A1.5) involves the total crack surface Sc in the layer, ui are 
displacements of the points on the crack surface, ni is outer normal to the crack 
surface, V is the volume of the layer. Obviously (A1.5) represents the effect on 
stiffness of the crack face displacements (opening and sliding). Since ij  and strain 
are tensors for both of them we have the same transformation expressions between 
local and global coordinates et est. 

k
T
kk T                 (A1.6) 

Expression for  k  in local coordinates is given by (A2.9) in Appendix 2  



55 

The laminate theory stress k0 in the k-th layer in local coordinates can be 
expressed in (A2.9) through the applied laminate stress as follows 
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Substituting (A2.9) with (A1.7) in (A1.6) and further in (A1.4) we obtain after 
arranging the result in form (5)  the form of stiffness matrix of damaged laminated 
given by (6). 
 
Appendix 2. Incorporation of COD and CSD in Valulenko-Kachanov tensor  
 
We consider a representative Volume Element (RVE) of a layer with M cracks. 
Schematic picture of a non-uniform crack distribution with varying spacing between 
cracks, ml2 , m=1,2…M is shown in Fig. 1. Index denoting k-th layer is omitted to 
simplify explanation. The cracked layer is considered in its local coordinates with 
indexes 1, 2 and 3 corresponding to longitudinal, transverse and thickness directions. 
For transverse cracks the coordinates of the normal vector to the two faces of crack 
surface are 

031 nn     12n            (A2.1) 

If the crack density is high the stress perturbation zones of individual cracks overlap 
and the crack face displacements depend on the distance between cracks. Using the 
definition (A1.5) for ij  we see that the matrix contains only two non-zero elements: 
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In (A2.2) t  is the cracked layer thickness, zu m
1  and zu m

2  are sliding and opening 
displacements of the m-th crack, symbol + or – denotes the particular crack face 
according to Fig. 1. 
 As in previous papers for uniform crack distribution [3,12] we introduce also here 
normalized  opening and sliding displacements of crack faces ( 20  and 120  are CLT 
stresses) 
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 Introducing average values of displacements of each crack surface over ply thickness 
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The average value of average displacements on both surfaces is 
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Using (A2.4) and (A2.5) the expressions for 12 and 22  are 
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We indicate here that the displacements will be mostly affected by normalized 
distances to the two closest neighboring cracks. These expressions can be rewritten in 
terms of average crack density and average (over all cracks) displacements 
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Normalization (A2.3) can be applied also to m
au1  and m

au2  in (A2.8) using notation 
m
anu1 , m

anu2 for the result. Expressions for ij  in result of normalization are slightly 
modified. It is easy to check that they can be presented in the following matrix form 
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In (A2.9) n  is normalized crack density in the layer defined by (4). 
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Abstract 
 
Change of thermo-elastic properties of cross-ply and quasi-isotropic laminates with 
intralaminar cracks in layers is analyzed. Predictions are performed using previously 
derived general expressions for stiffness of symmetric damaged laminates as 
dependent on crack density and crack face opening (COD) and sliding (CSD). It is 
shown that the average COD can be linked with the average value of axial stress 
perturbation between two cracks. Using this relationship analytical shear lag and 
Hashin’s models, developed for axial modulus, can be applied for calculating both 
thermal expansion coefficients, in-plane moduli and Poisson’s ratios of damaged 
laminates. The approach is evaluated using FEM and it is shown that the accuracy is 
rather similar as in axial modulus calculation. 
 
Keywords: polymer composites, laminates, damage, intralaminar cracks, thermo-
elastic properties, modeling, crack opening displacement 
 
1. Introduction 
 
Composite laminates under service loading undergo complex combinations of thermal 
and mechanical loading leading to microdamage accumulation in layers. The most 
common damage mode is intralaminar cracking in layers. During service life, the 
number of these cracks, which are transverse to the midplane, increases reducing 
laminate thermo-elastic properties. 
The stiffness degradation of composite laminates due to cracking can be explained in 
terms of opening and sliding of crack surface. The crack face relative displacement 
during loading reduces the average stress in the damaged layer, thus reducing the 
laminate stiffness. 
Numerous analytical models have been developed to study the stiffness degradation 
due to transverse cracks. They are all based on approximate solution for the stress 
state between two cracks (repeating element). Reference is given only to papers with 
direct relevance to the current study [1-16]. 
The simplest type of models leading to linear second order differential equation with 
constant coefficients is called shear lag models [1-4]. General for all shear-lag models 
is that the equilibrium conditions are satisfied in average only and the shear stress free 
condition on crack surfaces is not satisfied. A “shear lag” parameter which is often a 
fitting parameter is needed in these models. The stress distribution and the stiffness 
degradation calculated according to these models in [6,7] are affected by the value of 
this parameter. The most typical modifications and values of the shear lag parameter 
compared in [5,6,7] are: a) assuming a resin rich layer of unknown thickness between 
layers of different orientation where the out-of-plane shear deformation at the crack 
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tip takes place. In this paper we assume that this layer can not be thicker than fibre 
diameter; b) assuming that the shear strain acts in the cracked layer only and it is due 
to linear or  parabolic crack opening displacement dependence on the thickness 
coordinate; c) assuming shear strain also in the constraint layer. The last model was 
refined by Zhang et al in [8] assuming that the intralaminar shear stress in 0-layer is 
present only in a part of the constraint layer. Unfortunately, unless experimental full 
field measurements or FEM are used, the thickness of this zone becomes a fitting 
parameter. 
The first model based on the principle of minimum complementary energy which was 
free of these assumptions was developed by Hashin [9] to investigate the axial 
modulus reduction of cross ply laminate with cracks in inside 90 layers. The 
approximate stress field derived with this approach satisfies all the necessary 
equilibrium as well as the boundary conditions including zero tractions on the crack 
surfaces. Since the approximate nature of the selected stress functions lead to increase 
of the value of the complementary energy, it does not reach the minimum 
corresponding to the exact solution and the displacement continuity is satisfied only 
approximately.  Hashin’s model is relatively simple to use and it renders lower bond 
for the axial modulus of the damaged laminate. Refined variational models based on 
minimum principle of the complementary energy with more accurate predictions of 
axial modulus and Poisson’s ratio were developed in [10,11]. However, higher 
accuracy of analytical solutions is always on the expense of significant increase of 
complexity. For example, use of the model [11] requires rather complex numerical 
minimization routine. Therefore [11] as well as models by McCartney [12] and 
Shoeppner and Pagano [13] could rather be considered as numerical routines.  
Two main problems/limitations related to the use of analytical solutions are: a) 
approximate analytical solutions are available for cross-ply laminates only; b) these 
models are developed to calculate only one or two of the whole set of laminate 
thermo-elastic constants (usually axial or shear modulus of the damaged laminate). 
In practice a cross-ply laminate lay-up is rarely used. This limitation has been handled 
by several authors [14,15,16]. Zhang et al [13] introduced the concept of “an 
equivalent constraint” assuming that the constraint on the damaged layer of the lay-
ups above and below the damaged lamina can be replaced by two sublaminates with 
properties calculated using laminate theory (CLT). Thereby the actual laminate, 
considered in the coordinate system related to the damaged layer symmetry, could be 
replaced by a cross-ply with orthotropic constraint layers. Similar approach was used 
in Lundmark et al [15,16] applying FEM to analyze the effect of surrounding layers. 
They demonstrated that the modulus and the thickness ratio of the closest neighbor to 
the damaged layer are the parameters governing the constraint. 
In [15] a unique relationship between the damaged laminate thermo-elastic properties 
and the microdamage parameters was established (GLOB-LOC approach). Exact 
analytical expressions for thermo-elastic constants of general symmetric laminates 
with cracks in multiple layers were presented. These matrix expressions are given in 
Section 2. It was shown that the local parameters in these expressions are the 
normalized average values of crack opening displacement (COD) and crack sliding 
displacement (CSD). In addition the laminate lay-up, layer properties and density of 
cracks in layers has to be given. In this paper we demonstrate how using this 
framework and the axial stress distributions obtained from shear lag or from Hashin’s 
model one can calculate all thermo-elastic constants of a damaged laminate (except 
shear modulus). The key point in the procedure is that the average COD can be 
related to the average stress in a layer between two cracks (see section 3.2). 
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The accuracy of predictions is evaluated comparing with direct FEM calculations. 

2. Material model of damaged symmetric laminates with intralaminar cracks  

2.1 Model formulation 

The upper part of symmetric N- layer laminate is shown in Fig. 1. The k-th layer of 
the laminate is characterized by thickness kt  , fiber orientation angle  with respect to 
the global x-axis k  and by stiffness matrix in the local axis Q  (defined by thermo-
elastic constants 21121221 ,,,,, GEE ). The total thickness of the laminate, 

N

k
kth

1
. The crack density in a layer is kkk l sin21  where average distance 

between cracks measured on the specimen edge is kl2 . Dimensionless crack density 

kn  is introduced as 

kkkn t   (1) 

It is assumed that the damaged laminate is still symmetric: the crack density in 
corresponding symmetrically placed layers is the same. The stiffness matrix of the 
damaged laminate is LAMQ  and the stiffness of the undamaged laminate is LAMQ 0 .  

The compliance matrix of the undamaged laminate is 
1

00
LAMLAM QS , LAM

0  is 
the thermal expansion coefficient vector. Constants of the undamaged laminate are 
calculated using CLT. 
 

 
Figure 1. RVE of the damaged laminate with intralaminar cracks in layers 

The expressions for compliance matrix and thermal expansion vector of the damaged 
laminate presented below are exact. 
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In (2) and (3) I  is identity matrix. These expressions were derived in [15] 
expressing the integral effect of cracks in terms of crack density and kK , which is a 
known matrix-function dependent on ply properties and normalized and averaged 
crack face opening (COD) and sliding displacements (CSD), anan uu 12 , , which may be 
different in different layers. In (3) k  is the vector of thermal expansion 
coefficients of the k-th layer in global coordinates. The kK  matrix for a ply in a 
laminate is defined as  

kKk
T
kkk QTUTQ

E
K

2

1        (4) 

The involved matrices kT  and Q 
k
 are defined according to CLT, superscript T 

denotes transposed matrix and bar over  stiffness matrix indicates that it is written in 
global coordinates. For a layer with fiber orientation angle k , km cos  and 

kn sin  
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The influence of each crack is represented in (4) by matrix[U]k , which contains the 
normalized average COD and normalized average CSD of the crack surfaces in k-th 
layer 
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 Correlation of anan uu 12 ,  with the stress state between cracks is the key point in this 
paper.  
 
2.2 Thermo-elastic constants of balanced laminates with cracks in 90-layers 
 
For balanced laminates with cracked 90-layer, K k  can be calculated analytically. 
Using the result in (2) and (3) the following expressions for laminate thermo-elastic 
constants were obtained for the case with only one cracked 90-layer (if laminate has 
several cracked 90-layers summation is required in the denominator). 
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Index 90 is used for thickness, crack density and COD in 90-layer. The quantities 
with subscripts x,y and superscript LAM are laminate constants, quantities with 
additional subscript 0 are undamaged laminate constants. It is noteworthy that 
a) If Poisson’s effects are neglected 043 cc . In this approximation LAM

yE  and 
LAM
y  do not change because of damage in 90-ply. 

b) Shear modulus is not related to COD and depends on sliding displacement only. It 
is not analyzed in the present paper. 
The class of laminates covered by these expressions is broader than just cross ply 
laminates or laminates with 90-layers. For example, any quasi-isotropic laminate with 
an arbitrary cracked layer can be rotated to have the damaged layer as a 90-layer. The 
only limitation of (7)-(12) is that the laminate after rotation is balanced with zero 
coupling terms in S 0

LAM . 
Application of (7)-(12) requires values of anan uu 12 , . Three different expressions of  

anu2  are presented in section 3 according to FEM, shear-lag and Hashin’s models. 
 
3. Determination of COD 
 
3.1 Crack face displacements 
 
It is assumed that all cracks in the same layer are equal and equidistant. The average 
CSD and COD are defined as  
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Here iu  is the displacement gap between corresponding points at both crack faces. 
Subscript 1 denotes the displacement in fiber direction (sliding) and subscript 2 in the 
transverse direction (opening). 
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In linear model the average displacements 90
2au  and 90

1au   are linear functions of the 
applied stress and the ply thickness. Therefore, they are normalized with respect to the 
far field (CLT) shear stress 90

0xy  and transverse stress 90
0x in the layer (resulting from 

the macro-load LAM
0  and temperature difference T ) and with respect to the 

thickness of the cracked layer 90t  
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090

1290
1

90
1

xy
aan t

Guu  90
090

290
2

90
2

x
aan t

Euu            (14) 

Elastic constants 2E  and 12G  of the UD composite are introduced in (14) to have 
dimensionless descriptors. The influence of each crack on thermo-elastic laminate 
constants is represented by 90

2au and 90
1au . 

3.2 Average COD relation to stress perturbation 
 
 Part of the deformed laminate with an open crack is shown in Fig.2. Thickness of the 
supporting sublaminate is st  and its effective modulus in the axial direction is s

xE . 
Denoting the displacement of the undamaged sublaminate at 90lx  ( 90l  is the half 
distance between cracks) by 0lus  and the displacement of the crack face by 

),( 090 zlu  we can write that the average COD is 
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Figure 2.  Schematic showing of the deformation of the laminate in the vicinity of 

transverse crack 

The crack opening leads to reduction of axial stress in the 90-layer. The stress 
between two cracks in the 90-layer can be written in the following general form 
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Function f  in (16) represents the stress perturbation and 90
0x  is the axial stress in the 

undamaged 90-layer (CLT). The average value of the stress between two cracks is 
defined as 
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The average stress in the sublaminate can be obtained from force balance 
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In this section we will establish relationship between 90
2au  and af . 
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Substituting (20) and (21) in (15) we obtain 
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Substituting (17), (19) in (22) and using approximate expressions 
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we obtain 
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Using (14) the relationship between normalized average COD and stress perturbation 
af  is written as 
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3.3 Shear-lag model 
 
The stress perturbation function for shear lag models is given in [5]. Using expression 

(40) from [5] in (25) we obtain (note that Rf n
a 2

90  used in [5]) 
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The shear lag parameter  depends on the chosen modification of the shear lag 
model. Assuming existence of a resin rich layer with shear modulus mG  and thickness 

0d  at the 0/90 interface we have the following expression 
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Usually the thickness of the resin layer is taken equal to one fiber diameter. It seems 
physically unrealistic to have it larger than that (if any). In other modifications of the 
shear lag model [3,4] the expressions for the shear lag parameter are different. In one 
of the most common modifications Gm /d0 in (27) is replaced by 2G23 / t90, whereas in 
modification assuming parabolic displacement distribution it is equal to 6G23 / t90 . 
 
3.4 Hashin´s model 
 
Expressions for Hashin’s model for the case when 90-layer is supported by 
orthotropic sublaminate are given in [5]. Expression for stress perturbation function is 
also given there. After substituting these expressions in (25) and using our notation 
we obtain 
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For cross-ply laminates 1EE s
x , 2EEs

z , 12GGs
xz , 12

s
xz  and st is equal to the 

thickness of 0 layer. 
For “non cross-ply laminate”, GF/EP2 [±15/904]s laminate (in section 4.3) and GF/EP 
[0/±45/90]s laminate (in section 4.4) s

xE  is calculated using CLT, st  is the thickness 
of the sublaminate. s

zE , s
xzG  and s

xz  in this case are calculated using FEM. 
 
3.5 Ply discount model  
 
In the ply discount model it is assumed that as soon as damage appears in a layer its 
load bearing capacity reduces to zero. This assumption corresponds to infinite number 
of cracks in the layer. Zero load bearing by the layer can be obtained by changing 
elastic properties of the layer to zero. In the most conservative form of this model all 
elastic constants are assumed zero. More representative for the case of transverse 
cracking is assumption used in this paper stating that the transverse and the shear 
modulus of the damaged layer is close to zero whereas the longitudinal modulus and 
Poisson’s ratio have not changed. The stiffness of the damaged laminate is calculated 
using CLT. 
The transverse elastic modulus 2E  and shear modulus 12G  were reduced to 0.01 of 
their initial values. In section 4.5, where the ply discount model is used for case with 
neglected Poisson’s effects the CLT analysis is reduced to the rule of mixtures. 
 
4. Results and discussion 
 
4.1. Material properties 
 
The elastic properties of the unidirectional composites relevant to this study are given 
in Table 1. Elastic properties of GF/EP and CF/EP used in simulations were arbitrary 
assumed to represent materials like glass fiber/epoxy and carbon fiber/epoxy 
respectively. 
Elastic properties of GF/EP2 were taken from [5] where the properties (except the 
out-of-plane Poisson's ratio 23, which was assumed) were obtained experimentally. 
It has to be noted that the GF/EP and CF/EP in Table 1 do not have isotropy in the 
transverse plane and the out-of-plane shear modulus is slightly different than it would 
be for transverse isotropic material. Reason for the increased anisotropy could be 
through the thickness stitching observable in many composites. However, shear lag 
model does not contain 23G  and Hashin’s model, which has it in 11C  is insensitive to 
it.  
Table 1. Ply properties of the studied materials 

 E1 E2 12 23 G12 G23 1 2 
0t  0d  

Material [GPa] [GPa] [-] [-] [GPa] [GPa] [°C-1] [°C-1] [mm] [mm] 
GF/EP 45 15 0.3 0.4 5 6 1.0e-5 2.0e-5 0.13 0.007 
CF/EP 150 10 0.3 0.4 5 6 4.3e-7 2.6e-5 0.13 0.0035 

GF/EP2 44.73 12.76 0.297 0.42 5.8 4.49 - - 0.144 0.007   
0d  is the thickness of the shear layer ( fdd 5.00 , where fd  is the diameter of one 

fiber) 
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4.2. Parametric analysis on cross-ply laminates 
 
In all figures below the notation "Shear-lag" is used to indicate results calculated 
using COD obtained from shear lag stress analysis (26) in expressions (7)-(12). The 
thickness of the shear layer is given in Table 1 or indicated in figures if selected 
differently. The notation "Hashin" is used for predictions where the stress 
perturbation function from Hashin’s model (generalized for orthotropic support 
layers/sublaminates) (28) is used. The notation used for considered cross-ply lay-ups 
is shown in Table 2. 
 

Table 2. Cross-ply laminate lay-ups and used notation 
Notation Lay-up 

{1} [0/90/0] 
{2} [0/90]s 
{3} [0/902]s   

 
Figure 3. Simulation results showing changes in the axial modulus of the laminate 

Ex
LAM for GF/EP.

 
In Fig. 3 and 4 the axial modulus reduction normalized with respect to its initial value 
is shown for all three lay-ups and for GF/EP and CF/EP composites. Predictions of 
the ply-discount model are shown as horizontal lines. The modulus reduction 
behavior is well known and described in literature: a) more modulus reduction in 
laminates with relatively thick cracked plies; b) much more modulus reduction in 
GF/EP composites because the damaged layer has relatively high modulus as 
compared with the longitudinal modulus; c) more modulus reduction according to 
Hashin’s model which as a consequence of the used minimum principle always gives 
conservative results.  
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Figure 4. Simulation results showing changes in the axial modulus of the laminate 

Ex
LAM  for CF/EP.

The rate of the modulus reduction according to the shear lag model depends on the 
shear lag parameter (related to the thickness of the resin layer 0d ). The values given in 
Table 1 lead to much slower decrease rate than in Hashin’s model. All simulated 
curves approach to the ply discount value. Surprisingly, the asymptotic values of both 
models go slightly below the ply-discount value. Since ply-discount model 
corresponds to an infinite number of cracks this trend needs an explanation which is 
given in section 4.5.  
The normalized transverse modulus LAM

y
LAM
y EE 0/  of the damaged laminate reduction 

is marginal, see Fig 5 and 6, which validates the usual assumption that due to cracks 
in 90-layer it is not changing at all. Also for this elastic property the Hashin’s model 
predicts faster reduction with increasing crack density than the shear lag model. The 
change is very similar for GF/EP and CF/EP and the asymptotic values are very 
insensitive to the damaged ply thickness.  
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Figure 5. Simulation results showing changes in the transverse modulus of the 

laminate Ey
LAM  for GF/EP

 
Figure 6. Simulation results showing changes in the transverse modulus of the 

laminate Ey
LAM  for CF/EP 

 
Similar results for the normalized Poisson’s ratio are given in Fig.7 and 8. For this 
property the asymptotic values does not depend on the used material but the rate of 
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approaching to these values is material dependent, especially according to the shear 
lag model. The asymptotic value for damaged cross-ply laminate depends only on 
ply-thickness ratio.  
 

 
Figure 7. Simulation results showing changes in the major Poisson’s ratio of the 

laminate xy
LAM  for GF/EP 

 

 
Figure 8. Simulation results showing changes in the major Poisson’s ratio of the 

laminate xy
LAM  for CF/EP 
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Change of thermal expansion coefficients, which is seldom discussed in analytical 
models is shown in Fig. 9 and 10 for LAM

x / LAM
x0  and in Fig. 11 and 12 for 

LAM
y / LAM

y0 . The relative change is much larger for CF/EP laminates but the absolute 
values are, certainly, much smaller. The trend is the same: Hashin’s model predicts 
much faster properties reduction. It is noteworthy that for CF/EP laminate the 
transverse thermal expansion coefficient change is more than 20% (for lay-up with 
thickest 90-layer). 
 

 
Figure 9. Simulation results showing changes in the axial coefficient of thermal 

expansion of the laminate x
LAM for GF/EP 
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Figure 10. Simulation results showing changes in the axial coefficient of thermal 

expansion of the laminate x
LAM  for CF/EP  

 
Figure 11. Simulation results showing changes in the transverse coefficient of 

thermal expansion of the laminate y
LAM  for GF/EP  
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Figure 12. Simulation results showing changes in the transverse coefficient of 

thermal expansion of the laminate y
LAM  for CF/EP 

4.3. Comparison between simulations and experimental data. 

The shear lag model and the Hashin’s model predictions are compared with 
experimental data in Fig 13 to 16. It is obvious that for both GF/EP2 laminate lay-ups 
([02/904]s and [±15/904]s) Hashin’s model describes the axial modulus and Poisson’s 
ratio reduction more accurate than the shear lag model. Still, the Hashin’s model gives 
conservative values, especially for the [±15/904]s lay-up. The shear lag model by far 
under-predicts the reduction of these constants. 
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Figure 13. Simulations  and experimental data showing the change in axial modulus 

Ex
LAM  of GF/EP2 [02/904]s laminate 

 

 
Figure14. Simulations  and experimental data showing the change in Poisson’s ratio 

xy
LAM of GF/EP2 [02/904]s laminate. 

The excellent agreement between the test results and the predictions of the Hashin’s 
model, which suppose to give a lower bond to stiffness, requires an explanation.  90-
layer thickness was rather large (1.15mm) and much thicker than the constraint layer. 
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Laminates with such geometry are prone to local delaminations starting from 
transverse crack tip. These local delaminations would increase the crack opening and 
lead to more modulus reduction than in the case without delaminations and improve 
the agreement with Hashin’s model. FEM results for this laminate presented in [5] are 
higher than experimental data indicating that in this case indeed the crack model 
without delaminations may not correspond to reality. 

 
Figure 15. Simulations and experimental data showing the change in axial modulus 

Ex
LAM  of GF/EP2 [±15/904]s laminate 
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Figure16. Simulations and experimental data showing the changes in Poisson’s ratio 

xy
LAM  of GF/EP2 [±15/904]s laminate 

 
 
4.4. Comparison between analytical simulations and FEM data. 
 
To validate the results and trends presented in section 4.2 FEM analysis was 
performed and the thermo-elastic properties of damaged laminates were analyzed 
directly from the FEM model or indirectly (for example, thermal expansion 
coefficients) determining COD with FEM and using (7)-(12). Results are presented in 
Fig. 17 to 24. 
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Figure17. Simulations and FEM data showing the changes in axial modulus Ex

LAM  of 
GF/EP [0/90]s laminate 

 

 
Figure 18. Simulations  and FEM data showing the changes in Poisson’s ratio xy

LAM  
of GF/EP [0/90]s laminate 

 
Comparison for GF/EP [0/90]s laminates can be based on data presented in Fig.17 to 
19. The shear lag model with the selected resin layer thickness of  0.007 mm gives 
excellent accuracy for axial modulus and for thermal expansion coefficient and 
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slightly larger differences for Poisson’s ratio. Noteworthy, the differences have the 
same trends with crack density change for all three properties. Hashin’s model largely 
overestimates changes of all three properties. 

 
Figure 19. Simulations and FEM data showing the changes in axial coefficient of 

thermal expansion x
LAM  of GF/EP [0/90]s laminate 

 
In CF/EP [0/90]s laminate, see Fig 20 to 22,  the situation is different: the shear lag 
model with 0035.00d  mm (half of the carbon fiber diameter) gives very poor 
prediction. Voluntarily taking it two times larger (equal to the value for glass fiber 
radius) improves the agreement but it still underestimates the properties reduction. 
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Figure 20. Simulations and FEM data showing the changes in axial modulus Ex

LAM  of 
CF/EP [0/90]s laminate. “Shear-lag” corresponds to 0035.00d mm, “Shear-lag 2” 

to 007.00d mm  

The lower bond from Hashin’s model is much lower than the FEM data. Fig. 20 to 22 
reveal the features of the shear lag model: using the resin layer thickness as a fitting 
parameter we could find a value which gives a very good fitting for all three 
considered properties. This is useful result suggesting approximate procedure: find 
this fitting parameter from FEM data for axial modulus and use it for all thermo-
elastic properties. 
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Figure 21. Simulations and FEM data showing the changes in Poisson’s ratio xy

LAM  
for CF/EP [0/90]s laminate. “Shear-lag” corresponds to 0035.00d mm, “Shear-lag 

2” to 007.00d mm  

 
Figure 22. Simulations and FEM data showing the changes in longitudinal coefficient 

of thermal expansion x
LAM  of CF/EP [0/90]s laminate. “Shear-lag” corresponds to 
0035.00d mm, “shear-lag 2” to 007.00d mm  
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Unfortunately, the value, which gives the best fit, will be different for different 
materials and lay-ups. In addition, this value of resin layer thickness in our case has 
no physical meaning because it is too large (more than one fiber diameter). 
Application of the suggested calculation approach to quasi-isotropic laminates is 
demonstrated in Fig. 23 and 24. The material is GF/EP and the 90-layer thickness is 
the same as for cross-ply laminates analyzed in Fig. 17 to 19. The agreement of the 
shear lag model with FEM results is as good as in case of cross-ply laminates (using 
the same resin layer thickness). The Hashin’s model even in this case strongly 
overestimates the rate of the reduction. 

 
Figure 23. Simulations and FEM data showing the changes in longitudinal modulus 

Ex
LAM  of GF/EP [0/±45/90]s laminate 
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Figure 24. Simulations and FEM data showing the changes in Poisson’s ratio xy

LAM  of 
GF/EP [0/±45/90]s laminate. 

4.5 Ply-discount model and the asymptotic behavior of stiffness reduction 

In this section we will address the observation from all presented figures that both 
models predict asymptotic values of thermo-elastic properties that are slightly lower 
than the ply-discount value calculated using CLT.  It seems to be theoretically 
impossible. Nevertheless it is possible because in both analytical models the stress 
analysis is 2-dimensional, neglecting Poisson’s interactions in layers and stress 
components in the specimen width direction. The used ply discount model was based 
on use of CLT which accounts for these interactions. In other words the comparison 
of asymptotic values in the way we did is inconsistent. The ply discount model used 
to compare asymptotic values should be based on the same assumptions as the stress 
analysis. In this particular case instead of CLT we should use rule of mixtures 
(ROM), for example, to calculate degraded laminate axial modulus with ply-discount.  
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Figure 25. Simulation results showing changes in the axial modulus of the laminate 

Ex
LAM  for GF/EP 

 

 
Figure 26. Simulation results showing changes in the axial modulus of the laminate 

Ex
LAM  for CF/EP 

 
The results presented in Fig. 25 and 26 show that the asymptotic values coincide with 
the ply-discount values based on rule of mixture analysis (instead of CLT). 
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This result explains the observed discrepancies but it does not mean that the rule of 
mixtures based ply-discount value is more accurate than the CLT based. 
 
5. Conclusions 
 
Methodology has been developed for approximate evaluation of all thermo-elastic 
constants of general symmetric laminates with cracked 90-layers. It is based on use of 
stress solutions from shear lag and Hashin’s models in a general framework where 
laminate macroscopic properties are expressed through average stress perturbation 
between two cracks. This methodology has been validated with FEM and 
experimental data.  
As expected all predicted curves approach to the ply-discount model predictions 
which assume almost zero transverse and shear properties of the damaged layer. 
The predictions of the Hashin’s model are always conservative but may be close to 
experimental data if the layer is relatively thick and local delaminations occur. 
Comparing the shear lag model with FEM the accuracy of axial modulus 
determination is the same as the accuracy of thermal expansion coefficients. The 
shape function of the elastic property reduction from shear lag model can give a good 
agreement to FEM results if the shear lag parameter (thickness of the resin layer in 
our case) is used as a fitting parameter. For given material and lay-up all properties 
can be fitted with the same value of the parameter. It applies even for quasi-isotropic 
laminates if the ply thickness is the same. 
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