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All truth passes through three stages. First, it is ridiculed. Second, it is violently 

opposed. Third, it is accepted as being self-evident. 

Arthur Schopenhauer 
(1788 - 1860) 



Abstract 

In the face of environmental regulations, optimization of industrial processes becomes 
necessary. This doctoral thesis summarizes the results of three application-driven 
projects in automatic control that were aimed at process optimization in the steel 
industry. The objective of the projects was to apply advanced control strategies to two 
important processes in steel making, namely pulverized coal injection (PCI) in blast 
furnaces and LD converters. Firstly, an LQ multivariable controller with gas leakage 
detection system for PCI vessels is designed and analyzed. Secondly, a foam level 
control system for the LD converter process using an audio signal for measurement is 
designed. Thirdly, i t is attempted to create a single line flow control system for PCI 
using a. video camera. In the latter two cases the conservative approach of inferring 
unmeasurable physical quantities from the audio and video sources is used. 

Moreover, all the designs are tested through implementation or experiments at the 
industrial plant. The control and gas leakage detection system ended up as a ful l -
scale industrial implementation, whereas the projects comprising audio and video 
information is still at an experimental stage. 

Work with implementation and experiments pays off in experiences and further in­
sights in the application of control theory, and reveals weaknesses and gaps in the 
existing theory. Thus, application-driven projects lead to practical solutions and at 
the same time pose new theoretical challenges. Consequently, this chain of events 
is favorable to both practitioners and theoreticians, and in turn stimulates the col­
laboration of industry and academia. Unfortunately, in many research projects this 
sequence is reversed which complicates technology transfer into industry. 

As a spin-off effect from the multivariable control project of the PCI process two top­
ics are addressed anew. In the problem of measurement/actuator pairs assignment for 
decentralized control, the geometrical background of Gramian-based interaction mea­
sures is clarified. I t is shown that weighted Gramian-based interaction measures can 
be effectively used for control structure design. In control structure improvement of 
multivariable control systems, it is shown that improvement potentials can be deduced 
from coarse models of the closed-loop system. Finally, in the projects comprising au­
dio and video signals in control applications, i t is concluded that the theory is rather 
undeveloped and that these sources should be treated as a multivariable system. 
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Preface 

In writ ing this thesis, the author's aim has been to summarize research work that has 
been conducted between 1997 and 2002 at the Control Engineering Group at Luleå 
University of Technology in Sweden, under the supervision of Professor Alexander 
Medvedev. 

The presented results are from three application-driven projects that are aimed at 
process optimization in the steel industry. Two processes in steel making are consid­
ered, pulverized coal injection in blast furnaces and L D converters. The application 
of existing control theory gave insights that motivated research in the area of control 
structure design. 
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Introduction 

Energy efficiency is becoming more important in the industry over the coming years 
due to governmental regulations regarding greenhouse gas emissions. In a studyr by 
the European Commission [11] it is indicated that an emissions reduction of 12% for 
the industry sector should be met by the year 2010. 

Consequently, industrial processes need to be optimized for energy efficiency, beside 
the usual objectives, which are quality and cost efficiency. The application of advanced 
control strategies in industry becomes thus more important. In this thesis, the use 
of multivariable control techniques and estimation methods in some processes in the 
steel industry are studied. 

Since multivariable control is a vast area of research, the parts related to this work 
are briefly reviewed. Moreover, it is shown how audio and video information can be 
used in control applications and that these information sources have a multivariable 
character. The connection to the industry applications is then established and the 
beneficial use of multivariable control is pinpointed. 

1 Multivariable control 

The theory of multivariable systems has been studied since the 1960's and is therefore 
well documented in the literature. In [52], [32] and [16] many aspects of analysis and 
synthesis of controllers are highlighted and references to important publications in 
the area are given. 

The following day-life example gives a motivation for the use of multivariable control 
techniques and introduces some properties that have to be dealt wi th in multivariable 
systems, i.e. interaction. 

1.1 Motivational example 

A simple example from road traffic is a crossing of two roads, see Fig. 1. Since there 
are four traffic flows entering and exiting this crossing, the system has multiple inputs 
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Introduction 

and multiple outputs. Hence, such a road crossing is a multivariable system. 

Fig. 1: Road crossing. Entering traffic (solid), Exiting traffic (dashed). 

The functionality of the crossing is usually ensured byr traffic rules, traffic lights or 
traffic signs. One could say, that these constitute a controller. The main tasks for 
this controller are to provide traffic safety and a smooth traffic flow. 

The simplest way to operate a crossing is to introduce a rule for the right of way 
and assign it to each entering traffic flow. Obviously, this is a scalar approach for 
controlling the traffic, as each flow is controlled individually and the other traffic flows 
are handled as disturbances. From personal experience it is known that this works 
well for calm crossings, but leads to traffic congestion for busy crossing or to possible 
accidents if flows meet in the crossing at the same time. And certainly, without 
considerable rationality of the drivers such crossings would not work at all. 

The reason for the performance limitation is interaction, namely the individual control 
loops interact as a certain action of a driver leads to a counteraction by another driver. 
Without a sophisticated controller the performance can not be improved. 

A more advanced scheme to operate a crossing is to put up traffic signs or traffic 
lights. Usually, some traffic flows get higher priorities than other traffic flows. Thus, 
these rules apply to several traffic flows at the same time and are multivariable control 
approaches. Again from personal experience it is known that the traffic usually flows 
more safely and smoother even i f the crossing is busy. Additionally, the performance 
depends less on the rationality of the drivers. Moreover, the obtained improvements 
are not based on constructive changes of the crossing but on changes of the control 
strategy. 

Certainly, there are fundamental limitations for the improvements. These limitations 
then depend on the construction of the crossing and cannot be circumvented by control 
strategies. Thus, it is important to identify fundamental limitations. 

I t can be concluded that multivariable control is favorable and even simple modifica­
tions of the control structure can lead to large performance improvements. There is 
of course a trade-off, improved performance comes with higher costs of design and/or 
operation, i.e. more knowledge is needed to design or maintain the control algorithms. 
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Industry Applications of Multivariable Control 

1.2 Multivariable systems 

In this thesis linear time invariant systems are considered. Some notation is intro­
duced here and the aspects related to the thesis are presented. For more detailed infor­
mation on multivariable systems, the interested reader is referred to [48, 26, 52, 32,16]. 

The output of a linear multivariable system wi th m inputs, p outputs and zero initial 
condition is given as the convolution of an input signal wi th its impulse response 
function matrix ^ 

y ( t ) = I g ( t - T ) u ( T ) d T (1) 

where y(t) G J C ^ I ' ^ ] and u(t) G £ ™ [ t i , £ 2 ] - The impulse response function has to 

be bounded and thus g(t) G C\ m\ti,t^[. The restriction to the time interval [ t i , É 2 ] 
makes i t possible to consider unstable multivariable systems as long as g(t) is bounded 
in the interval. För stable systems the interval can be set to ( — 0 0 , 0 0 ) or [0, 0 0 ) . When 
the latter interval is used, initial conditions can be considered. 

Often in linear systems analysis the impulse response function g(t) is expressed in 
terms of a state space realization, which is a set of linear differential equations 

x{t) = Ax(t) + Bu{t) (2a) 

y(t) = Cx(t)+Du(t) (2b) 

x(0) = 0 (2c) 

where A € R n x " , B G R n x m , C G W x n and D e W x m . 

The frequency domain representation of (1) can be obtained by applying the Laplace 
transform and is given by 

Y(s) = G(s)U(s) (3) 

where s denotes the Laplace variable and Y(s), U(s) denote the Laplace transform of 
y(t) and u(t), respectively. G(s) is referred to as the transfer function matrix, which 
is the Laplace transform of the impulse response function git). 

Of course, there are more representations, e.g. the matrix fraction description, but 
they are not used in the thesis and are thus omitted here. Briefly, the matrix fraction 
description is a factorization of the transfer function matrix (3). More information 
can be found in [16] and [32]. 

The different representations are connected wi th each other. Clearly, the state space 
representation (2) is simply the differential equation which has the impulse response 
matrix (1). The transfer function matrix representation can be derived from (2) by 
applying the Laplace transform and then solving the equation system for Y(s) which 
yields 

G(s) = C(sl - A)~1B + D (4) 

where / denotes the identity matrix of appropriate size. For the sake of simplicity, 
the Laplace operator is dropped in the sequel. 
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di do 

r K> H K 

<x n 

Fig. 2: Multivariable feedback system 

When a controller K{s) is applied to the multivariable system G(s) with negative 
output feedback, then the complementary sensitivity transfer matrix T and the sen­
sitivity transfer matrix S of the closed loop system are defined as 

T = (I + GK)~lGK (5) 

S = I - T = (I + GK)~l (6) 

Both T and S are transfer matrices in the closed loop system depicted in Fig. 2 and 
reflect the relative sensitivity of the closed loop system to changes in G. The following 
relationships can be easily verified 

Y = T R - T N + SGDr + SD0 (7a) 

E = SR — SN — SGDj — SDo (7b) 

U = K SR - KSN - K SG Di - KSD0 (7c) 

where the uppercase notation is used for the Laplace transform of the corresponding 
signals. 

Clearly, important properties of the closed loop system can be derived from the sen­
sitivity function matrices, e.g. stability, performance and robustness. There, the 
analysis of the singular values of the sensitivity functions plays a key role. 

The main differences between scalar and multivariable systems are the presence of 
interaction and directionality in the latter. Moreover, proper scaling of the process 
model is very important, as the application of some analysis tools yield different 
results for different scalings, e.g. see [52]. 

1.2.1 Interaction 

Although the term interaction is frequently used, its meaning is rarely defined, leaving 
the reader to his own personal interpretations. I t is generally known, that the cause 
for interaction in multivariable control systems is the coupling of process variables, 
which is exhibited in non-zero off-diagonal elements in the process transfer function 
matrix G. Still, a more clear definition for interaction is needed. 

Suppose, a process is run in closed-loop and the closed-loop system consists of two 
subsystems A and B, as depicted in Fig. 3. Then two cases have to be considered: 
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(a) 

i 

System A 

k 

4 
: * 
" S T * 
System B 

(b) 

System A 

w 

i 

--' 

System B 

Fig. 3: Effects of interaction in multivariable systems 

1. There is a path from A to B, see Fig. 3a. 
Then A acts as a disturbance on B, but not vice versa. Usually, B can be 
designed so that the effect of A is attenuated, [36]. 

2. There exists a loop from A via B back to A, see Fig. 3b. 
Then the dynamics of A are altered, which can have an effect on the stability 
of the closed loop system. This effect can first be studied after A and B are 
designed, which complicates controller synthesis. 

Therefore, i t is necessary to examine a closed-loop system for paths and loops between 
sub-systems. During controller design process couplings are often neglected in order 
to simplify the design task. These neglected couplings can then be used to determine 
the path and loops in a multivariable control system. Thereby, one achieves a decom­
position of the closed-loop control system. In [60, 61], this type of decomposition is 
discussed for two-by-two systems wi th decentralized control. In this thesis, a general­
ization to arbitrary control structures and system sizes is given. I t can be concluded 
that the controller has to be considered or at least assumptions on the performance of 
the closed-loop system are needed in order to draw correct conclusions on interaction. 

Contrary to the above approach where interaction is quantified from a closed-loop 
perspective, the prediction of interaction from an open-loop perspective has already-
been dealt wi th in [3]. There, the relative gain array (RGA) has been introduced 

RGA(G) = G(0) x G~T(0) (8) 

where x is the Schur or Hadamard product of two matrices and — T denotes the 
matrix inverse transpose. 

The RGA is dimensionless and independent of any scaling of G, namely the multipli­
cation from left, and right by diagonal matrix. Moreover, values close to one indicate 
no interaction and large interaction, otherwise. In order for the RGA to be applicable, 
the performance of the closed-loop system needs to achieve zero steady state control 
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error and each of the p feedback loops has to have a scalar controller, i.e. the control 
structure has to be diagonal. Certainly, this imposes restrictions on the reliability of 
the measure. 

The RGA has been introduced as a static gain measure, but i t has been shown in 
[25], that the RGA can be extended to a frequency dependent tool 

A(G) = G f » x G{JLÜ)-H (9) 

where H denotes the complex conjugate transpose and A(G) = RGA(G) at u> = 0. 

Clearly, both RGA and A can only be derived for square process, namely p = m. 
According to [52], the inverse can be replaced by the pseudo-inverse, see [53], in order 
to overcome this problem 

A(G) = G f » x ( G ( » t ) H (10) 

A similar interaction measure for 2 x 2 systems is the Rijnsdorp Interaction Measure 
which has been suggested in [46] 

K { S ) - Gn(s)G22(s) { U ) 

In [18] it is then shown that the measure is related to the RGA via the non-linear 
map 

RGMG) = ^ (12) 

Recently, i t has been shown that the Rijnsdorp Interaction Measure can be restated 
for arbitrary systems in [61]. There the measure is denoted relative interaction array 
(RIA) and can be defined in terms of the frequency dependent RGA 

ta = i - - 1 ( 1 3) 
Aij 

where A,,- are the elements in A and <fiij are the elements in the RIA. For the RIA 
the same prerequisites as for the RGA are needed. The advantage of the RIA is 
the description of the interaction as a transfer function and that no interaction is 
associated wi th zero. 

The main disadvantage of both the RGA and the RIA is the restriction to one con­
troller structure and the performance requirement. A n elimination of the restrictions 
is yield by the u. interaction measure, [18]. When a diagonal or block-diagonal con­
troller is considered, then the design is based on the associated diagonal or block-
diagonal part of the process transfer function matrix, namely 

K(s) = d i a g ( i f i ( a ) , . . . , f r p ( « ) ) (14) 

G(s) = d i a g ( G „ ( s ) , . . . , G p p ( S ) ) (15) 
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Now, the relative error of the design model transfer function matrix G(s) and the 
process transfer function matrix G(s) can be defined as 

e(s) = (G(s)-G(s))G-1(s) (16) 

Then it is suggested to use u~1(e(s)) as an interaction measure, where u. is the struc­
tured singular value, [10]. I f the design system is stable, then the interaction measure 
also gives an upper bound for the largest singular value with an arbitrary controller 
K{s) as 

a ( G ( 5 ) A - ( S ) ( / + G ( S ) Ä - ( . S ) ) - 1 ) < u-\e(s)) ( 1 7 ) 

Additionally, a stability condition for a chosen control structure can be stated based 
on e. 

I t can be concluded that there are interaction measures that either compute the 
interaction in a closed-loop syrstem or predict the interaction from the process transfer 
function matrix in combination with requirements on the controller. Hence, control 
system designs can be evaluated in terms of their interaction properties. 

1.2.2 Directionality 

Multivariable system can be described by dint of matrices and vectors. Since direc­
tions are important properties in vector and matrix analysis, these are likewise useful 
in the analysis of multivariable systems. I t can be seen from the derivation of the 
gain of the multivariable system, that the gain not only depends on frequency but 
also on the direction of the input signal, e.g. see [52, 32]. 

Consequently, the Bode magnitude of the elements in G is not sufficient to charac­
terize the gain of a multivariable system. Instead, the singular values provide the 
necessary information. The singular values of G can be derived via the singular value 
decomposition (SVD) of the frequency response of G at an arbitrary frequency uja 

G ( j u a ) = UEVH (18) 

where U G 0 > X P V G C m x m and £ G R p X m . £ is a diagonal matrix wi th I = 

min(p, TO) singular values on the diagonal, which are ordered as follows 

cr = ai>a2>--->ci=a>0 

The column vectors of the unitary matrices U and V constitute the output and input 
directions, respectively. Each singular value is associated with one output and input 
direction. Clearly, the singular values and directions are a function over frequency. 
For more information on directions and the analysis of matrices, the interested reader 
is referred to [22]. 

In the analysis of multivariable systems the maximum singular value cr(G) can be 
interpreted similarly to Bode's magnitude of scalar systems. I t has to be noted that, 
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contrary to the magnitude of scalar systems, the singular values are not analytic. In 
addition, the minimum singular value a(G) is important in respect to input saturation 
and its relation to t f ( G ) concerns sensitivity analysis, see e.g. [37, 58 ] . 

When the directionality of a process is analyzed, the condition number can be used 
as quantification. One way to define the condition number is as follows 

A large value of the condition number connotes a large difference between a(G) and 
CT(G), which indicates that directions in signals have large impact on the gain of the 
multivariable system. Process models that have large condition numbers are called 
ill-conditioned, which can indicate that the process is difficult to control. 

Since the condition number depends on the scaling of a multivariable process, i t can 
be suggested that the minimized condition number should be considered if the scaling 
is uncertain 

7 * ( G ) = min 7 ( U 1 G P 2 ) ( 2 0 ) 

where D\ and D2 are diagonal real and positive matrices. 

In [52] and [4] i t is shown that the RGA ( 9 ) and the minimized condition number 
( 2 0 ) can also be used to evaluate the sensitivity of the closed-loop system to model 
uncertainty. Indications for the sensitivity can already be obtained from the analysis 
of the process model. 

1.3 Controller Synthesis 

The synthesis of controllers for multivariable systems has been studied for many years, 
and a wide variety of techniques are available, see e.g. [48] , [26] , [32] , [17], [42] and 
[59] . Usually, the synthesis of a controller for a multivariable process can be divided 
into two phases, the selection of the control structure and the design of the controller. 

1.3.1 Control Structure Design 

The selection of the control structure is a crucial step in the synthesis of multivariable 
controllers. Although no specific assumptions are made on the control law, the struc­
ture of the controller poses restrictions on achievable performance and even stability 
of the closed loop system. 

The aim of control structure design is to determine a control structure wi th minimal 
topological complexity, i.e. minimal number of non-zero elements in controller transfer 
function matrix K, that can fu l f i l l the desired performance specifications. Moreover, 
the decision is solely based on a model of the process in question. First attempts are 
reported in [12] and later an overview of the area is given in [38, 39, 4 0 ] . I t has also 

8 



Industry Applications of Multivariable Control 

been seen that stability, interaction and control structure are closely connected, see 
[44] and [18]. 

Suppose, the multivariable transfer function matrix G is of size p x m, then a fu l l 
multivariable controller K has the size m x p. This is also the control structure of 
maximal topological complexity. Now, the task of control structure design is to find a 
set of sub-systems in K that reduce the topological complexity and potentially- yield 
the desired performance of the closed-loop system. These sub-systems can be either 
scalar or multivariable controllers. 

1.3.2 Decentralized Control 

The control structure of minimal topological complexity- is the decentralized control 
structure, i.e. K is diagonal and all controllers are scalar. I t can only be applied 
to square processes, namely p = m. When this control structure is chosen, then m 
measurement/actuator pairs have to be selected, which is one combination out of m! 
possible combinations. Consequently, criteria are needed to make the selection of the 
pairs. 

The interaction measures RGA and RIA give estimates for the interaction in multivari­
able control systems where decentralized control is applied and have been effectively-
used for the selection of measurement/actuator pairs, e.g. see [43], [61], [49] and [28]. 
The pairs are selected by minimizing the overall distance of the RGA or RIA pairs to 
one or zero, respectively. 

The exclusive usage of the RGA or RIA can sometimes yield unstable selection of 
pairs in some cases. A discussion of this can be found in [52]. As the Niederlinski 
index [44] or the u-interaction measure [18] give a stability condition for decentral­
ized controllers, the above criteria should take these into account. A criterion that 
considers the RIA and u-interaction measure is discussed in [14]. 

Recently, a selection criterion based on the Hankel singular values (HSV) has been 
suggested [6]. There, a participation matrix is computed that consists of the normal­
ized sum of the HSV of each scalar sub-system of G 

_ t r a c e ( r c j r m )  
y ' ~ t r a c e ( r c r o ) 

where Tc and T 0 are the controllability and observability gramian of G, respectively. 
T C j denotes the controllability gramian of G for input j alone and Foi denotes the 
observability- gramian of G for output i alone. The pairs that yield the overall largest 
value are then selected for decentralized control. 

A modification of (21) that only- makes use of the largest HSV, namely the Hankel 
norm is suggested in [57]. The new measure is denoted Hankel interaction index army 
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and is defined as 
IIGtfOOIIfl 

(22) 
£,,rll<V(*)|| if 

where || • | |# denotes the Hankel norm. Again, the pairs that yield the overall largest 
value are selected. Common for both measures is the consideration of both control­
lability and observability of the sub-system in the criteria. Thus, the aim is to use 
pairs that have considerable impact on the behavior of the process. 

Certainly, there are more selection criteria available for decentralized controllers, 
e.g. closed-loop disturbance gains, performance relative gain array and partial rel­
ative gains, but are omitted here. A discussion of those can be found in [52] and 

After a selection of the measurement/actuator pairs is made, then m scalar controllers 
are designed independently. For the controller synthesis, all scalar techniques are 
admissible. 

1.3.3 Centralized Control 

When more complex controller structures are admitted, then the combinatorial com­
plexity of the structure selection problem increases. Instead of selecting pairs, ar­
bitrary blocks can be selected. The choice of blocks becomes necessary, when a 
distinction of pairs is not possible from the above criteria, 

A generalization of the RGA to the use of block diagonal structures is derived in [33]. 
There the concept of block relative gains (BRG) is introduced. The principal idea is 
to select a block diagonal structure and derive a measure in a similar manner as the 
RGA. The BRG for an n x n size block is then given as 

where the index B denotes the block. I f the analyzed block is not a scalar sub-system, 
then the left BRG Al

B and right BRG Aß are not identical. 

The analysis is then conducted by first considering small blocks and then advancing 
to larger blocks. For each selection the BRG is computed and evaluated. There, 
blocks that have left. BRGs with diagonal elements and eigenvalues close to one are 
considered for control. The right BRGs are only secondarily analyzed due to their 
physical insignificance. I t is suggested that the decision process is iterative and that 
control structures are screened out. 

Alternatively, in [31] screening tools for arbitrary control structures based on the 
structured singular value theory are suggested. The approach is based on the analysis 
of achievable robust performance and is complicated in terms of the definition of 

[20]. 

(23a) 

(23b) 
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the robust performance objectives. Additionally, the approach is computationally 
intensive due to the necessary optimizations. 

Compared to that the use of the gramian-based approach [6] is simple. There, the 
computation of the participation matrix can be generalized to the use of multivariable 
sub-systems. Then (21) can be restated so that the controllability- and observability 
gramians of a multivariable sub-system are used instead. The decision for a control 
structure is then made according to the overall largest value. 

Contrary to the RGA, the three tools can evaluate a fully centralized controller. 
Moreover, a fully centralized controller yields the best values for BRG and gramian-
based tool. Consequently, design and implementation effort of the ful ly centralized 
controller has to be considered during the selection. 

When a fully or partially centralized control structure is chosen, then the controller 
can be synthesized in several ways 

• Direct multivariable controller design 

• Decoupling and subsequent scalar controller design 

• Sequential loop closing design 

For the direct multivariable controller design many techniques are available: H2, ri^ 
and u. synthesis, only to mention some. Clearly, the choice of the design technique 
depends on the available models and on the environment in which the controller is 
used. Therefore, i t would be prejudiced to give any technique a competitive edge. A 
further discussion of the design techniques is omitted here and the interested reader 
is referred to the literature, e.g. see [52, 32, 17, 9, 13, 16, 48]. 

Design via decoupling is performed in two steps. First, a dynamic system is designed 
which compensates for couplings between process variables. Second, the process wi th 
the decoupling system behaves as a collection of scalar processes for which scalar 
controllers are designed. Thereby, the multivariable control problem is reduced to 
several scalar control problems. The usage of these decoupling networks is often 
unreliable due to its sensitivity to parameter uncertainties in the process model or 
due to approximations in the decoupling network. Moreover, the implementation of 
inverse-based decoupling networks is often difficult due to non-causal dynamics. A 
more detailed discussion of the subject can be found in [52, 32]. Still, when decoupling 
is possible, then the subsequent controller design is straightforward. 

As well in the case of sequential loop closing a two-step approach is chosen. However, 
the multivariable system needs to be square. In the first step the closing sequence is 
determined and then in the second, one controller is designed at a time considering 
the dynamics of the already closed loops. Moreover, this technique can be used in 
combination with a pairs selection tool. The controllers are then designed with scalar 
techniques. A drawback of this method is its dependency on the loop closing order, 
which has to be maintained in order to guarantee stability, see [32]. 
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2 Audio and video in control applications 

During the last decade the computational power of processors has increased tremen­
dously, enabling the handling of complex tasks in short times. Audio and video 
information is long been considered incongruous with real-time control applications 
due to long processing times. Indeed, audio and video create new application areas 
for closed-loop control, as new physical contiguities become accessible. 

In addition to that, audio and video differ from usual measurement devices as they 
deliver signals that reflect several physical contiguities, e.g. a video signal can reflect 
the position of several objects in space. Moreover, the output signal can be mul­
tidimensional, e.g. a video signal is a matrix of pixels. Thus, the sensor should be 
interpreted as a multivariable system and should be treated accordingly. 

Unfortunately, the direct usage of these types of information sources is rare in control 
engineering and the theory is rather undeveloped. Consequently, in applications where 
audio or video is used as sensors, a secondary scalar measurement is inferred from the 
audio or video information. Usually, the secondary measurement is obtained by means 
of feature extraction, e.g. image analysis. The dynamics of the feature extraction is 
then ignored in the subsequent design and analysis of the closed-loop system. The 
application of audio and video in closed-loop control is now shortly reviewed. 

2.1 Audio 

Audio information from a process can be obtained in two different ways. Firstly, a 
specially designed audio signal is emitted and the resulting echo is then received and 
processed. In that way an active measurement procedure is employed, as the process 
is affected by the signal. This methodology is often used in ultrasonic measuring 
applications. 

Secondly, only the audio emissions of the process are recorded and processed, which 
is a passive measuring technique. Usually a better knowledge of the process is needed 
in order to characterize the audio features that are emitted by the process. Moreover, 
the process is not affected by the sensing method, and thus is non-intrusive. In this 
thesis the latter method is used. 

Some examples for inferential control and monitoring schemes are discussed in [5, 24, 
23, 56]. In all cases physical contiguities are inferred from spectral characteristics of 
the audio signal. Consequently, spectral decomposition of the short time windowed 
signal is used to extract features that are correlated with the contiguities. A similar 
approach is employed in the thesis. 

Applying time/frequency analysis to the audio signal splits the scalar signal into 
a vector signal. Thereby, the measurement device becomes a multivariable system 
wi th a large number of outputs. A model for this system could then be used to 
design efficient measurement devices. Unfortunately, the theory of such multivariable 
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systems is poorly developed, which makes the modelling a complicated task. 

Similar to measurement with audio, active and passive methods utilizing video can 
be designed. Again, only the passive methods are considered here. 

The video signal is a two-dimensional image that consists of a large number of pixels 
and varies over time. Each pixel can be interpreted as a sensor signal, but since the 
observed contiguity might move over the image array, the pixels are not independent 
signals in relation to the contiguity. When a camera records an object, then a 3D 
object is mapped into a 2D image. Thereby, a contiguity can become unobservable, 
which motivates the need for models. Consequently, the design task for an inferential 
measurement device based on video is more complicated than for audio. 

In the area of robotics, video is widely used, e.g. for guidance, object recognition or 
obstacle avoidance. On the contrary, the usage in closed-loop control application is 
rather rare but some examples can be found. In [21] a review of existing measurement 
techniques for particulate processes is given. Most important, there i t is shown that 
the application of video has great potential and can be very beneficial. The use of 
video in control applications is also reported in [27, 19, 45, 47, 30]. 

Additionally, the calibration of video based measurement device is more involved than 
for audio, due to the dependency on the line of sight. Moreover, when a video-based 
system is interpreted as a multivariable system, the number of outputs is increasing 
tremendously, i.e. cameras with more than one million pixels are not costly anymore. 

2.3 Challenges 

When secondary measurements are inferred from audio or video, then non-linear dy­
namics are often introduced into the process, which may lead to unobservability or 
unexpected performance of the closed loop system, see [ 4 1 , 15 ] . Consequently, models 
for measurement devices comprising audio or video are needed. Thereby, the analysis 
and design of closed-loop system is facilitated. But due to the complexity of the mod­
elling task, new tools are needed that simplify the handling of large numbers of inputs 
and outputs. These tools should first select a model structure of minimal topological 
complexity, which can represent the process dynamics significant for closed-loop con­
trol. Clearly, there are similarities to control structure design and i t should therefore 
be investigated how these ideas or tools are applicable. 

The calibration of audio and video is usually complicated due to the dependency on 
the environment, i.e. signal to noise ratio can vary over time. In applications of video 
the recorded image is affected by external light sources and by obstacles in the line 
of sight. In the case of audio, the noise level can vary and additional sound sources 
may appear unintentionally. Such occurrences can be interpreted as disturbances or 

2.2 Video 
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uncertainties. Hence, a control system that uses audio or video has to be insensitive 
to such events. 

Beside the complicating factors and problems that may arise, audio and video have 
several advantages. Firstly, equipment costs can be reduced, when off-the-shelf hard­
ware can be used instead of special measurement equipment. Secondly, maintenance 
and replacement is possible without interruption of plant operation, as the audio 
and video are non-intrusive. Certainly, the control system needs to be able to han­
dle hardware replacement. Thirdly, multiple contiguities can be observed with one 
device. 

3 Industry applications 

The integration of multivariable control with industry applications is necessary in 
order to reduce the gap between theory and practice. Thereby, the industry can 
benefit from advanced control strategies and at the same time the scientific community 
can profit from application experience and newly emerged ideas. In other words, both 
parts can benefit from more interweavement. 

3.1 Performance enhancement and advanced control 

The application of advanced control techniques often leads to new possibilities in 
plant operation. For example, the operation of gas pipelines can be improved by 
means of multivariable control [55, 1], releasing plant operators from tedious set-
point adjustments. Moreover, advanced control creates the possibility to optimize 
plant performance which in turn yields higher profits, [54, 2], 

The popularity of scalar control loops is due to their simplicity in design, tuning 
and maintenance. However, there is no real proof that scalar control loops are more 
robust, though i t seems to be a common assumption. Besides, i t is clear that the 
achievable performance is more limited for single loops than for multivariable control 
structures, [8]. When multivariable control is considered, the topological complexity 
of a controller has to be weighted against the performance improvements. 

Fundamental limitations are inherent in industrial process from construction. I t is 
therefore necessary that these limitations are considered when performance objec­
tives are formulated, [51]. Otherwise, unattainable performance specifications might 
be the result. There, multivariable design techniques are necessary tools for both 
determination of performance specifications and design of an appropriate controller. 

The application of advanced control strategies also reveals other insufficiencies in a 
process as variations of process variables are reduced. In turn, further optimization of 
software and hardware becomes possible. Another advantage is a prolonged life-cycle 
of the plant, since advanced control leads to a better utilization of the plant capacity. 
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Thereby, costly investments in new hardware can be deferred. 

3.2 Necessity of industrial tests 

Many research projects are conducted to be successful in a laboratory setup. For 
research in areas where new manufacturing methods, products or techniques are de­
veloped, this is understandable. But if the goal of a project is to optimize processes, 
improve product quality or reduce costs, the target should be successful industrial 
tests. There are of course several reasons. 

First of all, laboratory setups often comprise simplifications of an industrial process, 
especially non-linearities and couplings to other processes are removed. Additionally-, 
there are less disturbances and noise. Thus, conclusions on performance improvements 
are not reliable until they are validated through tests at the real process. 

Secondly, implementation issues are rarely considered during research, which can 
lead to difficulties when results are transferred to the real process. When advanced 
controllers are tested or permanently installed, the plant control syrstem needs to be 
able to support them. However, frameworks for the implementation of multivariable 
controllers in programmable logic controllers (PLC) are still rare. Thus, the transition 
from laboratory setups to the industry plant becomes a complicated task. 

When industrial tests are performed they have to be endorsed by the organization 
of the industry. I t is necessary to have the support on all parts of the hierarchy, 
i.e. plant operators, maintenance, engineering and management. Otherwise, tests 
rarely succeed if come to pass at all. Thus, even promising results might not be 
considered for industrial implementation. 

Besides, and from personal experience of the author, the design of advanced control 
strategies is the smallest part when a full-scale industrial application is pursued. 
When an advanced controller is considered for permanent installation, then the spent 
efforts for industrial tests pay back in smoother upgrade from present control to the 
new control strategy. 

3.3 Innovation and economical benefits 

Industry management assimilates innovation if the economical benefits of the innova­
tion can be pinpointed. Otherwise, innovations are not immediately accepted. 

Assessing economical benefits is not an easy task. As industrial processes are com­
plex, control performance improvements do not need to be reflected in the resulting 
product. Hence, economical benefits are hard to prove and recently more attention 
has been paid to the economical evaluation of control projects, see e.g. [7, 34, 35, 29]. 
The main idea is to set up a rigid framework which enables the analysis of both per­
formance improvements and economical benefits. I t is argued that a level of statistical 
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significance is required in order to demonstrate an economical profit. 

I t can be concluded that economical benefits due to performance improvements can 
only be ensured after long-term industrial tests. 

4 Concluding remarks 

I t is clear from the presentation that multivariable control strategies have a great 
potential and are needed in the industry. I t has also been pointed out, that there are 
obstacles that still have to be overcome so that multivariable control becomes more 
accessible for engineers. 

In this thesis, the considered industry applications are taken from the steel industry, 
pulverized coal injection in blast furnaces and LD-converters. The latter is only dealt 
wi th as an experimental setup. In the projects, the industry has always been involved, 
which facilitated the transition from design via experiments and tests to permanent 
installation of multivariable controllers. Both sides, industry and university, have 
profited from the close collaboration. 

Additionally, new ideas have emerged during these projects, which partially have not 
yet taken physical form. Clearly, the use of multivariable techniques is developing, 
i. e. interaction analysis in combination with control structure design. Recent publica­
tions [50, 57] show that interaction analysis is an active area of research and that the 
assessment of interaction from process data is an important issue. When interaction 
measures can be estimated from process data, then on-line control structure design 
becomes possible. 

Moreover, control structure design could facilitate the integration of audio and video 
in control applications, since selection of reduced multivariable system structures 
could be based on the evaluation of interaction measures. This is certainly an area of 
interest for future research. 
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During the period from 1997 to 2002, the author has been in involved in several 
research projects conducted at the Control Engineering Group at Luleå University of 
Technology. 

In the following sections the connection between the projects and the included papers 
is clarified. Additionally, the contribution of the author to the research projects is 
shortly summarized. Finally, a list of further publications is given. 

1 Control of pulverized coal injection 

Control of pulverized coal injection was part of the project Reliable Process Control 
which was conducted by the Center for Process and System Automation (ProSA), at 
Luleå University of Technology. The project was financed by grants from Norrbottens 
Research Council. The following included papers reflect the contribution of the author 

Paper 1: Wolfgang Birk and Alexander Medvedev. "Pressure and flow control of a 
pulverized coal injection vessel"'. IEEE Transactions on Control Systems Tech­
nology, 8(6):919-929, November 2000. 

Paper 2: Wolfgang Birk and Alexander Medvedev. "Sensitivity analysis of an LQ 
optimal multivariable controller for a fine coal injection vessel". IEEE Trans­
actions on Industry Applications, 36(3):871-876, May/June 2000. 

Paper 3: Wolfgang Birk, Andreas Johansson, Robert Johansson, and Alexander 
Medvedev. "Implementation and industrial experiences of advanced control 
and monitoring in coal injection". Control Engineering Practice, 8(3):327-335, 
2000. 

The objective of the project was to show that the operation of a pulverized coal 
injection (PCI) plant can be made more reliable and safe by means of advanced 
control in combination with fault detection. 

For this end, a linear quadratic multivariable controller was designed, analyzed and 
implemented. The design and first experiments are described in Paper 1, which 
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was then followed by a sensitivity analysis of the control strategy, see Paper 2. The 
multivariable controller was also compared with a decentralized PI controller. Finally, 
the multivariable controller is implemented in the PLC system of PCI plant together 
with a gas leakage detection system, which is designed by Andreas Johansson. 

The implementation and industrial experiences of the model-based control and gas-
leakage detection system in a coal injection plant are then reported in Paper 3. 

2 Interaction and Control Structures 

During the work wi th the latter project ideas concerning interaction and control 
structures in multivariable control systems emerged. The results are still unpublished 
but account for a large part of the authors contribution and thus, are included. The 
following papers reflect this contribution 

Paper 4: Wolfgang Birk and Alexander Medvedev. "A Note on Gramian-Based 
Interaction Measures". Submitted to European Control Conference ECC2003, 
1-4 September, University of Cambridge, UK, August 2002. 

Paper 5: Wolfgang Birk and Alexander Medvedev. "Improving Control Structures 
in Multivariable Control Systems". Submitted to Journal of Process Control, 
August 2002. 

Interaction in multivariable control system from an open-loop perspective has been 
studied widely for several decades. Still, l ittle attention has been payed to the assess­
ment of interaction in the closed loop system, namely considering the controller. 

In Paper 4, the assignment of measurement/actuator pairs for decentralized control 
using gramian-based interaction measures is discussed. A geometrical interpretation 
of gramian-based measures is given and a generalization to weighted gramians is 
introduced. Clearly, the assignment is done from an open-loop perspective, where the 
controller remains unspecified, and needs a model for the process. Consequently, a 
decentralized controller structure is found and can be applied to the process. 

In Paper 5 it is then suggested that an applied decentralized control structure should 
be evaluated from a closed-loop perspective. First, a dynamic quantification of in­
teraction in a closed loop system is derived and secondly, the structural mismatch 
of a decentralized control scheme is quantified in terms of transfer function matrices. 
An evaluation of these transfer function matrices can be used for control structure 
improvements. 

Hence, the tools described in these papers can be used to design, evaluate and improve 
controllers for multivariable systems. In both papers the coal injection process is 
considered as application example. 
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3 Audio Information in Control 

In cooperation with the Division for Process Metallurgy at the Royal Institute of 
Technology in Stockholm the behavior of dynamic foaming in the LD converter is 
studied. The following included paper reflects the contribution of the author 

Paper 6: Wolfgang Birk, Ioannis Arvanitidis, Pär Jönsson, and Alexander Medvedev. 
"Foam level control in a water model of the LD converter process". Control En­
gineering Practice, in print, 2002. 

The aim of the project was to show that foam level in an LD converter can be 
estimated from audio information and that control of the foam level using the motion 
of the oxygen lance is possible. 

The experimental setup consisting of a water model, that simulates the dynamic 
behavior of foaming in an LD converter, is created. A foam level estimation method­
ology from a microphone signal and its automatic calibration is designed. Based on 
a mathematical model of the dynamic behavior from lance motion to estimated foam 
level, a controller for foam level stabilisation is designed and applied in the water 
model. I t is concluded that the foam level can be controlled using a microphone as 
measurement device and lance motion as actuator. 

4 Video Information in Control 

In cooperation with Embedded Internet System, Laboratory at Luleå University of 
Technology the usage of video information in control is studied and is part of the 
project Visualization of process properties. The project is financed within the frame­
work of the NUTEK Program Complex technical systems. The following paper reflects 
the contribution of the author 

Paper 7: Wolfgang Birk, Olov Marklund, and Alexander Medvedev. "Video moni­
toring of pulverized coal injection in the blast furnace". IEEE Transactions on 
Industrial Applications, 38(2):571-576, 2002. 

In the process industry many contiguities are often immeasurable due to the environ­
ment, i.e. high temperatures, dust, high pressure. Thus, only non-intrusive measure­
ment devices are applicable in these cases. Here, the instantaneous coal flow into a 
blast furnace is not directly measurable. 

Therefore, image analysis of video information is used as a means to estimate the 
instantaneous coal flow. Using the inferred measurement the coal flow should then 
be stabilized. Initial experiments at the blast furnace no 3 of SSAB Tunnplåt A B 
Luleå, Sweden, are performed and first hand results on modelling and control of a 
single injection line are given. 
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Several publications are either too similar, i. e. conference papers that were with hind­
sight accepted for publication in journals, or the contribution of the author to them is 
too sparse to motivate an inclusion in the thesis. For the sake of completeness, these 
publications are listed below 

1. Wolfgang Birk and Alexander Medvedev. "Pressure and flow control of a 
pulverized coal injection vessel". In Proc. of the 1997 IEEE International 
Conference on Control Applications, pages 127-132, 1997. 

2. Andreas Johansson, Wolfgang Birk, and Alexander Medvedev. "Control and 
gas-leakage detection of pulverized coal injection: From design to experiment". 
In Proc. ofReglermöte 1998, Lund, Sweden, 1998, 1998. 

3. Wolfgang Birk, Andreas Johansson, and Alexander Medvedev. "Control and 
gas leakage detection in a fine coal injection plant: Design and experiments". 
In Proc. of 9th IFA C Symposium on Automation in Mining, Mineral and Metal 
Processes, pages 271-276, 1998. 

4. Andreas Johansson, Wolfgang Birk, and Alexander Medvedev. "Model-based 
gas leakage detection and isolation in a pressurized system via Laguerre spec­
t rum analysis". In Proc. of the 1998 IEEE International Conference on Control 
Applications, pages 212-216, 1998. 

5. Wolfgang Birk, Andreas Johansson, and Alexander Medvedev. "Model-based 
control for a fine coal injection plant". IEEE Control Systems Magazine, 
19(l):33-43, February 1999. 

6. Wolfgang Birk and Alexander Medvedev. "Sensitivity analysis of an LQ optimal 
multivariable controller for a fine coal injection vessel. I n Proc. of the IEEE 
Industry Applications Society 34th Annual Meeting, 1999. 

7. Wolfgang Birk and Alexander Medvedev. "Towards dynamic control of foam­
ing" . In Proc. of the 1st Annual Symposium, on Computer Science and Electrical 
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of pulverized coal injection in the blast furnace". In Proc. of Reglermöte 2000, 
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"Physical modelling and control of dynamic foaming in an LD-converter pro­
cess" . In Proc. of the IEEE Industry Applications Society 35th Annual Meeting, 
Sheraton Roma Hotel 8-12 October 2000 Rome Italy, 2000. 
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Abstract 

This paper deals with model-based pressure and flow control of a fine coal injec­
tion vessel for the use of the blast furnace process. A control system should be in 
place to maintain a constant coal mass flow from the injection vessel to the blast 
furnace, since irregularities in the coal mass flow cause significant variations in 
the hot metal quality. 

By means of system modeling, the structure and behavior of the coal injec­
tion vessel are analyzed. I t is shown that by use of a model-based design, the 
control objectives can be reached and the control performance can be signifi­
cantly improved compared to the Pi-controllers. Alternative control strategies 
are discussed and compared with the conventional design. The linear quadratic 
gaussian (LQG) design method is used to design a MIMO controller which is 
validated through experiments on the coal injection plant at SSAB Tunnplåt in 
Luleå, Sweden. 

1 Introduction and Background 

Already in the early middle ages, the Chinese discovered how to reduce iron ore to 
iron. Ever since the process has become more and more sophisticated. Nowadays, 
iron is a mass product, produced in blast furnaces and later refined to steel. In 
order to make the process more efficient and optimized, it has become more usual to 
bring down the cost factors in the iron production by reducing the share of undesired 
by-products or the costs of energy supply. 

Although coke is one of the most expensive energy carriers, i t is common to use it 
in iron production. In Luleå, SSAB Tunnplåt reduces the production costs by partly 
substituting coke and using pulverized coal instead. Pulverized coal is about 40% 
cheaper than coke, which in fact makes it very attractive. 

Since pulverized coal, in its pure form, is highly inflammable even under normal 
conditions, i t is difficult to supply it to the process. Therefore, i t is important to keep 
the pulverized coal isolated from the air, which can be done by using a pneumatic 
conveying device, where the transportation gas is nitrogen or at least has a higher 
rate of nitrogen compared to that of the air. The used coal injection plant is planned, 
designed and constructed by BMH Claudius Peters AG in Buxtehude, Germany. 
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In 1996, a research project has been started in order to make pulverized coal injection 
at SSAB Tunnplå t more secure and reliable. Research in the areas of fault detection, 
identification and control has been carried out (see [6], [9], and [2]). 

Injecting coal powder in the blast furnace at a high rate of about 190kg/thm (ton hot 
metal) makes the blast furnace process very sensitive to coal flow outages, [5]. The 
prime concern in fine coal injection is therefore to maintain a constant coal mass flow 
to the blast furnace. Hence, a controller is needed to stabilize the coal mass flow. 

This paper elaborates on controller design considerations and performance analysis, 
both theoretically and practically. The paper is structured as follows. First, the 
coal injection plant's structure and the injection process are described. Then, the 
currently used control unit is briefly analyzed followed by modelling of the injection 
process. The obtained model is then used for controller design in the section C O N T R O L 

S T R A T E G I E S . There, the designed controller is compared wi th the currently used 
controller. Finally, the obtained controller is validated by means of simulation studies 
and practical tests, in the respective sections. 

2 Coal injection plant 

The coal injection plant is a highly automated plant, where incoming raw coal is 
stored, ground, dried and finally injected into the blast furnace. During operation, 
human interaction is only needed for set point adjustments. 

2.1 Plant structure 

Fig. 1 shows the structure of the plant, where the different sections are marked and 
referred to by the capital letters in the marked area. The sections A, B, C are common 
for the two fine coal silos. Sections D, E belong to Blast Furnace 2 and F, G to 
Blast Furnace 1. This article deals only with the coal injection of Blast Furnace 2. 
Therefore, the emphasize is placed on section E. 

The raw coal handling is done in section A, where the receiving hopper is filled by 
trucks, delivering the raw coal from the stock. A grating on the top of the receiving 
hopper prevents feeding large lumps of material, in a size larger than 150mm. The 
incoming raw coal is then transported by a horizontal and vertical belt conveyor 
system to the top of the raw coal storage bin. This storage bin has a volume of 
250m 3 and works like a buffer silo in order to equalize the raw coal feeding cycles and 
make coal continuously available to the mil l . 

The next section is the grinding plant. The mill performs several operations in one 
unit: grinding, drying and classifying. I t works at a normal temperature between 250 
and 300 °C. The working temperature is reached by blowing hot gas produced by the 
hot gas generator. The original corn size of the raw coal is reduced down to 100/xm, 
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COAL INJECTION PLANT 

Fig. 1: Coal injection plant 

and the humidity of the raw coal, which normally varies around 7%, is reduced to 
about 1%. The grinding capacity of the mill is controlled by the storage level in the 
fine coal silos. 

In section C, the hot gas is blown through the mill in order to transport the classified 
final grinding product to the filter separator, which is placed on the top of the coal 
injection plant. The receiving filter separates the coal dust from the transport gas 
and collects the coal dust in the storage hopper from which it is discharged by a screw 
conveyor and a rotary airlock feeder into the fine coal silos. 

There are two fine coal silos, one for each blast furnace. To each fine coal silo, two 
injection vessels are attached. Each one of them is built in the same way and has the 
same functionality. Thus, only Sections D and E are described below. 

The fine coal silo collects the injectable coal powder and has a capacity of 130m 3. I t 
is operating under inert gas conditions which means that there is a slight overpressure 
of nitrogen in the silo. Since the silo is not pressure tight, a gas flow from the inside to 
the outside occurs, which guarantees that no air enters the fine coal silo. This gas flow 

is about 0 .5^^- . To guarantee the continuous discharge of the coal powder into the 
injection vessels, two outlet cones of the fine coal silo are equipped with fluidization 
nozzles. The two injection vessels feed the coal powder into the injection pipe where 
a coal distributor dispenses the coal/gas flow to 24 tuyeres, injecting the coal into 
the blast furnace. The injection vessels operate alternatively in order to maintain 
continuous injection. 
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Fig. 2: Characteristic curves of vessel pressure and mass (vessel S21 - solid, vessel S22 
- dashed) 

Phase Name Description 

A Charging 
The pressureless vessel is 
filled with coal powder 

B Pressurizing 
The injection vessel is set 
under pressure 

C 
Pressure 
holding 

Standby until the other 
vessel has finished injection 

D Injection 
The coal powder is injected 
into the blast furnace 

E Ventilation 
Depressurizing and 
ventilation of the vessel 

Table 1: Process phases 

2.2 Injection process 

Principally, the injection process can be divided into two separate phases: a high-
pressure and a low-pressure phase, where, as the names already imply, the pressure 
in the injection vessel is high or low, respectively. In Fig. 2, characteristic curves of 
vessel pressure and mass changes during a process working cycle are shown. 

As already mentioned, one vessel is depressurized, charged and pressurized while the 
other vessel is injecting coal powder. To facilitate process identification and control, 
the high pressure and low pressure phases are sub-divided into more specific phases. 

Fig. 3 shows one process cycle of injection vessel S21. A represents the low pressure 
phase and B to E belong to the high pressure phase. In Table 1, the nomenclature 
used in the sequel to refer to process phases is summarized. 
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Fig. 3: Process phases of an injection vessel 

After the injection vessel is filled wi th coal powder, the inlet valve and the ventilation 
valve at the top of the injection vessel are closed. At this time, the vessel has a weight 
of about 5 ton. When the two valves have closed, the injection vessel is pressure tight. 
The pressure control valve and the corresponding shut-off valve, closed during the low 
pressure phase, are now open. The pressure increases until it reaches the set point 
and the valves are shut again. As there exist leakages in the vessel body and the 
valves themselves are not completely tight, the pressure changes notwithstanding all 
valves are closed. Consequently, the pressure controller is activated and maintains the 
pressure around the set point value. When the other vessel has finished the injection, 
the vessel switches from pressure holding to injection. Then, the flow control valve 
opens and injection starts. Meanwhile, the other vessel flow control valve closes. 
During the injection phase both control valves, the pressure and the flow control 
valve are active. The weight of the vessel is ramping down to a minimum value 
while the pressure remains constant. Reaching the minimum weight, the injection 
vessel flow control valve closes. In the meantime, the other vessel has been charged, 
pressurized and stands by. I f the pressure control valve and the flow control valve 
have closed, the ventilation valve opens and depressurizes the injection vessel. Once 
the pressure has dropped down to atmospheric level, the inlet valve opens and coal 
powder is filled in again. 

3 Currently used control unit 

The conventional control unit of the fine coal injection plant consists of two indepen­
dent loops. One loop is for injection vessel pressure stabilization, and the other is 
for controlling the coal mass flow to the blast furnace. The process working cycle 
duration depends on the actual coal mass flow set point. Logically, a higher set point 
shortens the cycle time. The cycle time is normally about 40 minutes, which means 
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that the injection phase takes 20 minutes, approximately. 

The pressure control loop is implemented by means of a PI controller, to achieve a zero 
steady state control error. The controller performance is exhibited in Fig. 4a. The coal 
mass flow controller is also a P I controller. However, since the coal mass flow is not 
directly measured in this particular installation, the coal mass flow is evaluated from 
the vessel's weighing system readings. The computations involve a differentiation, 
which naturally results in amplification of the measurement noise. Thus, low-pass 
filtering is applied and a set point compensation is employed to correct measurement 
errors. Installation of a flow meter would not change the situation since only one 
component of the two-phase flow (gas/solid) is of interest. 

As seen in Fig. 4b, the mass flow controller fails to drive the control error to zero 
during the injection phase. A physical explanation of this fact is that the controlled 
pressure oscillates (see Fig. 4a), and the pressure controller changes the opening of 
the pressure control valve (PCV) rather fast, creating a varying nitrogen flow into 
the injection vessel and therefore varying coal mass discharge rate. Thus, the effected 
mass flow controller changes the opening of the flow control valve (FCV) in order to 
compensate the mass flow variations, which causes pressure variations in the injection 
vessels. The described interaction of the pressure and mass flow loops prevents the 
currently used controller from achieving flow stabilization. The shortcomings of this 
control strategy become even more prominent when the deviation of the mass in the 
injection vessel from the ideal mass trajectory is analyzed (Fig. 4c). The actual value 
of the mass loss can deviate as much as 150kg from the desired value. 

To recapitulate, under the currently used control laws, the pressure p in the injec­
tion vessel is oscillatory and the coal mass flow is not held constant. In the sequel, 
alternative ways of controlling the injection vessels are discussed. 

4 Modeling 

Basically, an injection vessel is a pressurized tank process (Fig. 5). There, the follow­
ing two signals are used as outputs of the model: 

• Pressure p in the vessel 

• Coal mass mc , which is the integral of the coal mass flow to the blast furnace. 
As mentioned above, the coal mass flow cannot be reliably measured. 

Natural input signals, both manipulated ones and measurable disturbances are: 

• Valve opening UN of the pressure control valve (PCV) 

• Valve opening uc of the flow control valve (FCV) 
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Fig. 4: Control Performance of the currently used controller 

Pt 

Fig. 5: Pressurized tank process 
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• Temperature T in the vessel 

• Pressure px in the nitrogen net 

• Pressure pr in the transportation pipe to the blast furnace 

For the sake of model simplification, some assumptions are made: 

1. Variations of the pressure in the nitrogen net are small and p,\ is assumed to 
be constant. 

2. The pressure pr at the injection point in the transportation pipe is constant. 

3. Temperature variations are small. 

4. No nitrogen leakage from the injection vessel during the injection phase. 

5. The coal mass flow due to the weight of the coal is negligible. 

A non-linear behavior of the injection vessel has been observed in [9], and a dynamic 
model based on the physical contiguities has been suggested. Unknown model co­
efficients have been derived via system identification from the measurements logged 
on the injection vessels. To this end, an invertible non-linear transformation on the 
input-output data, [9], has been utilized. 

The non-linear model is used for fault detection purposes while a linear model is more 
suited for control purposes, since the latter only needs to represent the injection phase 
at a certain working point. 

According to the assumptions made, two input signals can be manipulated and two 
output signals measured: 

1. Opening of the PCV UN 

2. Opening of the FCV uø 

3. Pressure p in the injection vessel 

4. Mass rn of the injection vessel 

These signals are used to identify and to control the process. 

The non-linear model provides an approximation of the physical behaviour of the 
process for a wide range of working conditions and can be linearized for a particular 
working point (pressure) and trajectory (mass). The parameters of this linear model 
can as well be acquired using system identification. 
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Since the plant is full-time in operation and cannot be run in open-loop, the needed 
data for system identification has to be obtained in closed-loop. Following [12], i t can 
be shown that the model parameters are identifiable from the closed-loop data. 

Identification and validation data sets are logged on the process with a sampling time 
of Is. The identification method and its application to the coal injection plant are 
discussed in [6], where the subspace identification method nJ^sid is applied to the 
Laguerre spectra of the input/output data. There, it has been shown that n^sid 
performs better in the Laguerre domain compared to the time domain, when it is 
used for identification of the injection vessels. The obtained MIMO model is of order 
two and given by [6]: 

x(k + 1) 

y(k) 

0.99991 0.00003 
0.00011 0.97775 

0.00058 -0.04753 
0.03107 -0.00473 

x(k) + 

x(k) 

-0.00313 -0.03092 
-0.04030 0.02563 

u(k) ( la) 

( lb ) 

c 

Since C is invertible, the similarity transformation x(k) 
which vields 

C x'(k) can be applied 

x'{k + l) = C<$>C-lx'{k) + CTu{k) 

y(k) = hx'{k) 

(2a) 

(2b) 

Hence, the states of the new dynamic syrstem coincide with the outputs. 

5 Control strategies 

As mentioned before, the control objective is to guarantee a constant coal mass flow 
from the injection vessel to the blast furnace. Though, i t is desirable that the pressure 
is maintained constant, as high variations wi l l propagate through the nitrogen net to 
other vessels. This can be achieved by pursuing different strategies. Here are two of 
them: 

1. Two separate control loops for the pressure and the mass. 
One unit controls the vessel pressure and the other controls the coal powder 
mass, where the mass has to follow a pre-defined ramp. The slope of the ramp 
is the coal mass flow set point. For the controllers design, two SISO models for 
the plant have to be used. 
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Fig. 6: Magnitude of the process coupling from the FCV to the pressure 

2. A MIMO design controlling both the pressure and mass. 

Strategy 1 is based on SISO models which makes the controller design and implemen­
tation easy to handle. The main disadvantage is that the couplings in the process 
are not taken in account. Fig. 6 depicts the coupling from the FCV to the pres­
sure output. Obviously, this coupling is significant and cannot be neglected. The 
coupling from the FCV to the pressure has a high magnitude, which means that con­
t ro l valve movements wi l l directly influence the pressure control loop as a rather fast 
time-varying disturbance. Physically, this disturbance is a gas flow from the injection 
vessel to the injection pipe, where the magnitude of the flow is varying in time, due 
to the actuator movements in the mass flow control loop. 

Strategy 2 takes the couplings into consideration. Furthermore, this strategy has one 
more degree of freedom, as the two actuators are used together to achieve one and 
the same control objective. Another advantage is that the controller can eventually 
be tuned so that the two loops work separately. In this case, a controller similar 
to that of Strategy 1 is obtained, and yet the couplings in the plant are accounted 
for through the model. A relative disadvantage is that the design process appears 
to be more complicated. In addition, the MIMO controller has a centralized control 
structure, which can result in difficulties implementing the controller and can make 
the controller more vulnerable for malfunctions. 

The shortcomings of the M I M O design do not wage out the advantages of this design. 
Therefore the SISO design wi l l not be considered in the sequel. For performance 
comparison the currently used control structure, which is a design with two separate 
SISO loops, wi l l be used as a reference. 
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An optimal design method is used to design the controller. The MIMO design is 
based on the so-called linear quadratic gaussian (LQG) theory, as described in [1]. I t 
is also a major and popular design tool for multivariable linear systems (see e.g. [4], 
[10], and [8]). 

5.1 Proportional-integral control law 

Normally, assuming state feedback, a proportional-integral control law is chosen to 
eliminate the steady state error. However, controlling the fine coal mass, one of the 
closed-loop system outputs has to follow a ramp. Then, the use of a single integrator 
leads to a constant steady state response error. Thus, a double integration is used to 
drive the error in reference signal following to zero. Using the final value theorem it 
can be shown that even for the pressure control a double integration is needed to drive 
the tracking error to zero. In order to recast this control law into the framework of 
LQG design, the process model in ( 2 ) has to be augmented with a double integrator 
and can be written as 

" C<Z>C~L 0 0 " CT " 

x'a(k + l) = h h 0 x'a{k) + 0 

0 h h 0 

r a 

Va(k) 
h 
0 
0 

0 

h 
0 

0 
0 
h 

u{k) (3a) 

(3b) 

5.2 Kaiman filter and LQ controller 

Since the system is intended for continuous use, a steady-state Kaiman filter is de­
signed, in order to obtain filtered versions of the measured signals. The steady state 
Kaiman filter seems to be sufficiently fast, as the process itself is very slow. The 
covariances for the Kaiman filter design are adjusted according to measurement data. 

In contrary, the weighting matrices for the LQ controller, that minimizes the loss 
function 

OC 
J = Y J ( x ^ - ) T Q . < ( £ 0 + u(k)TRu(k)) 

k=0 

are designed according to the following guidelines: 
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• Q is chosen diagonal. A l l entries that are related to the pressure, its first and 
second integral are chosen small compared to the values related to the mass. A 
factor of 10 has proven to give good results. The effect is a higher degree of coal 
mass flow stabilization at the expense of more pressure variation. 

• R is chosen diagonal. The entry related to the FCV is chosen big compared 
to the entry related to the PCV, yielding that the PCV is preferably used to 
achieve the control goals. 

• The norm of R is fairly big compared to the norm of Q, what results in a quite 
slow response of the controller. However, this also prevents extensive valve wear, 
since the actuator movements become very smooth. 

Using the sensitivity function, defined as the transfer matrix wi th the reference signals 
as inputs to the control errors as outputs, and the singular values of the closed-loop 
system, the entries in the R matrix can be fine tuned. The sensitivity function and 
the singular values are defined and derived in Section 5.4. An analysis has shown 
that the off-diagonal elements have a high influence on the couplings in the sensitivity 
function. In the present case, the coupling between the FCV and the pressure that has 
a high magnitude can be suppressed in the sensitivity function by choosing negative 
off-diagonal values in R. 

5.3 Feedforward design 

Furthermore, to reduce the controller settling time and retain a smoother set point 
change response, a feedforward signal f rom the desired coal mass flow to the valves is 
introduced. The design approach presented in [13, Chapter 6] is adopted. 

The identified process model can be interpolated to a continuous time state space 
model 

x = Acx + Bcu (4a) 

y = Ccx + Dcu (4b) 

where 
/ Ac Bc \ 1 , / $ I \ 

{ 0 0 ) = T h l { 0 h ) 

and the matrices Cc and Dc are equal to their discrete counterparts. T denotes the 
sampling time. Rewriting (4) gives 

X ' Ac Bc ' X 

. y . Dc u 

G 
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Fig. 7: Block diagram of the MIMO controller with feedforward 

The block matrix G is inverted and then partitioned according to the vectors dimen­
sions of x, u, X, y which results in 

X 

u 

c r 1 

G 

C'1 

XX xy 
1 (-.-1 

ux uy 

X 
(5 ) 

ref 

Obviously the relationship u = Gu^.x from ( 5 ) describes how u influences x. Since in 
steady state 

i = i „ = r ° 

a steady state input signal uss is given by 

The resulting feedforward gain matrix is therefore chosen to be G~l and the feed-
foward path introduced in the closed-loop structure. 

In the next section, the favorable impact of the feedforward signal on the controller 
performance is illustrated by simulation. Fig. 7 depicts the M I M O design with addi­
tional feedforward path. 
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5.4 Comparison wi th the currently used controller 

In order to compare the M I M O controller wi th the currently used controller, the 
M I M O model is used in both cases. Then, the sensitivity functions and the singular-
values are compared. One important result is the comparison of the bandwidth of 
the closed loop system with that of the currently used controller and the MIMO 
controller. 

First, the sensitivity functions are derived. Let the closed-loop system be given by 

xd(k + l) = §dxd{k) +rclr(k) 

y(k) = C d x d ( k ) 

(6a) 

(6b) 

Defining and introducing the error e(k) = r(k) — y(k) in (6) results in the sensitivity 
function 

xd{k + l) = <Z>dxd(k) +Tdr(k) 

e{k) = -Cdxd{k) + I2r(k) 

(7a) 

(7b) 

(7) can also be written as a transfer matrix, which is abbreviated by 

e(k) 
r d ] 

J 2 

r{k) 

S(g) 

By applying the singular value decomposition to S(q) the singular values <Ti(S(q)) of 
the sensitivity function are obtained. 

Fig. 8 contains four subplots describing the dependencies in the closed loop system, 
where the columns are associated with the inputs and the rows with the output 
variable. Comparing the sensitivity function contributions of the LQG design with the 
corresponding entries for the currently used controller shows that the latter is a more 
sensitive design. I t is obvious that the mass flow control loop of the currently used 
controller is highly sensitive to low frequency disturbances (see lower right subplot). 
In case of the currently used controller, the frequencies of the resonance peaks in the 
plots are excited in the experiments on the actual plant (see Fig. 4a). 

Now, the singular values of the above sensitivity functions are compared (see Fig. 9). 
Depending on the input direction, the bandwidth of the currently used controller 
varies much more than the bandwidth of the M I M O LQG design. Obviously the 
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reference input pressure reference input mass 

frequency (rad/s) frequency (rad/s) 

Fig. 8: Magnitudes of the input sensitivity function (currently used controller - solid, 
MIMO LQG - dashed). 

MIMO design yields a. much better and more certain bandwidth than the currently 
used controller does. In addition, the singular values of the sensitivity function at 
low frequencies have much lower magnitude than the currently used controller and 
therefore yields faster tracking. 

A disadvantage of the MIMO LQG design is the rather high peak of the sensitivity 
function, a value of 2.12 can be reached. Since the plant model has two zeros outside 
the unit circle, a peak larger than 1 is unavoidable [11]. However, according to 
measured data, the frequencies around the sensitivity function peaks of the M I M O 
controller are not excited (see Practical Tests). 

6 Simulations 

In this section, the following two cases are compared to each other by means of 
computer simulation: 

1. M I M O controller without feedforward 

2. M I M O controller wi th feedforward 

For the simulations, a rather high but realistic coal mass flow set point is chosen 
(15^), and a step in the pressure reference of about 16kPa. In order to examine the 
controllers ability to work around a different working point, the nominal values of 
the parameters have been changed. In addition, process noise and sensor noise are 
simulated, but are not discussed here. 
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Fig. 9: Magnitudes of the singular values of the input sensitivity function (currently 
used controller - solid, M I M O LQG - dashed, bandwidth border - dashed-dotted) 

Simulating the M I M O controller shows that the steady state error is driven to zero, 
(Fig. 10). Comparing the simulation with feedforward and the one without feedfor­
ward, indicates that the feedforward has a beneficial effect on the performance of the 
M I M O controller. The settling time for the mass control is very small, while the 
settling time for the pressure control is longer. 

A look at the control signals, Fig. 11, shows that the FCV position changes smoothly 
and, logically, the coal mass flow is also expected to change similarly smooth. More­
over, the valve opening signal lies far from the saturation limits. Several simulation 
tests with different parameters suggest that i t takes a pressure reference step of about 
50kPa to drive the PCV into saturation. According to the logged data, such a step 
is unlikely to occur in practice. 

7 Practical tests 

In this section, tests on the actual plant are briefly described. A more detailed descrip­
tion and discussion of implementation issues can be found in [31. For experiments, a 
standard PC with an A/D-card is used. The software RegSim®, [7], is used to per­
form the real-time experiments. Using buffer amplifiers the A/D-card channels are 
connected to the plant. The controller is implemented in a RegSim® program which 
can be run in real-time. By means of software switches in the plants control system, 
the currently used controller is replaced by the MIMO LQG controller. 

Besides that data from control experiments with the M I M O LQG controller are 
logged, data from several injection phases controlled by the currently used controller 
are logged with the same equipment. 
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Fig. 10: Simulation of MIMO controller (without feedforward - dashed, with feedfor­
ward - solid). 

) 100 200 300 400 500 600 
time (s) 

Fig. 11: Simulation of the control signals of the M I M O controller wi th feedforward ( 
FCV - solid, PCV - dashed). 
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time (s) 

Fig. 12: Comparison of mass and pressure (currently used controller dotted, M I M O 
LQG solid) 

Currently used controller M I M O LQG Improvement 
mass [kg] 11.3 1.5 79% 

pressure [kPa] 5.1 1.0 86% 
mass flow £ 1.6 1.0 35% 

Table 2: Standard deviations of process variables and improvements 

Fig. 12 depicts the performance for each controller in terms of mass and pressure de­
viation. As expected, the M I M O LQG controller yields the better result. Examining 
the estimated coal mass flow in Fig. 13 leads, in principal, to the same conclusion. 
Though, the improvement is not that high as in the other two cases, what can be a 
result of the flow estimation algorithm. The coal mass flow is not measurable and has 
to be derived from the mass measurement. 

Table 2 shows the standard deviations achieved by the corresponding controllers. 
Once again, i t can be seen that the MIMO LQG controller produces the better result. 
The resulting performance improvements are displayed in column three of Table 2. 

8 Conclusions 

A multivariable linear quadratic controller design for the coal injection process is 
discussed. The currently used control strategy is compared with the proposed one 
by means of sensitivity analysis. Simulation studies and experiments at the plant are 
performed. I t is shown that by use of the new design, the flow and pressure control 
of the coal injection vessel could be significantly improved. In the proposed control 
system, the coal mass flow can be used as a control parameter for the blast furnace. 
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t ime (s ) t ime(s) 

Fig. 13: Comparison of coal mass flow (MIMO LQG left plot , currently used controller 
right plot) 

High injection rates can be used and more coke substituted. 
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Abstract 

This paper deals with a sensitivity analysis of an LQ optimal multivariable con­
troller for a fine coal injection vessel used in the blast furnace process. The 
multivariable controller from a previous work is briefly presented and the closed 
loop system is studied by means of a sensitivity analysis. Effects of disturbances 
and uncertainty on the closed loop system are studied basing on analysis of the 
singular values of the sensitivity and the complementary sensitivity functions, 
the relative gain array and the minimized condition numbers. Finally, the sen­
sitivity analysis is validated by the use of logged data from test operation at the 
coal injection plant at SSAB Tunnplåt Luleå, Sweden. 

Keywords: Multivariable Control, LQ Control, Sensitivity Analysis, Coal In­
jection 

1 Introduction 

Nowadays, iron producers are reducing production costs by replacing the expensive 
energy carrier coke by other cheaper alternatives. In Luleå, SSAB Tunnplåt AB is 
partly substituting coke by fine coal, which is 40% cheaper, in their iron production. 
The economical benefits of pulverized coal injection (PCI) are discussed in [7]. 

Since fine coal, in its pure form, is highly inflammable even under normal conditions, 
it is difficult to supply it to the process. Therefore, i t is important to keep the fine 
coal isolated from the air, which can be done by using a pneumatic conveying device 
(see [6],[10]), where the transportation gas is nitrogen or at least has a higher rate of 
nitrogen compared to that of the air. The fine coal injection vessel is a part of a coal 
injection plant for a blast furnace, where fine coal is pneumatically conveyed to the 
blast furnace and finally injected at tuyere level. The coal injection plant at SSAB 
Tunnplåt AB in Luleå (Fig. 1), which has been used for the experiments, is described 
in more detail in [2]. 

A drawback of substituting coke byr fine coal is that it can result in blast furnace 
instabilities if coal flow outages appear [3]. Hence, a tight and reliable control of the 
fine coal flow from the injection vessel to the blast furnace becomes necessary. 
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A combined model-based control and leakage detection system for a fine coal injection 
plant has been developed in [1]. The designed controller is a linear quadratic (LQ) 
optimal multivariable controller for the control of the fine coal flow out of the injection 
vessel. Since the controller is exposed to plant dynamics alternations because of 
components wear-out, repair and replacement, as well as noise, i t is necessary to 
analyse the sensitivity towards these effects. Typically, sensitivity analysis is used to 
obtain the necessary information. In [9] some schemes for sensitivity analysis in the 
multivariable case are given and used for the subsequent sensitivity analysis. 

Following up results of experiments and test operation is an essential part of an 
industrial project, since controller performance specifications have to be checked. 
From a theoretical point of view such an analysis helps to improve controller designs 
and pinpoints possible shortcomings in the control strategy. I t can also motivate 
further research in the area. This paper discusses such a follow-up in order to validate 
theoretical results of a sensitivity analysis. 

The paper is organized as follows. In section 2 the controller design is presented. The 
succeeding section 3 discusses the sensitivity analysis and creates a framework for the 
follow-up. Finally, in section 4, the acquired data from the tests is used to validate 
the anteceding analysis. 

2 LQ optimal multivariable controller 

The multivariable controller is a part of the loop structure depicted in Fig. 2 and is 
a result of a previous study, [1]. 

Besides the state vector feedback controller, a Kaiman filter, a feedforward controller 
and an actuator saturation are present in the closed-loop system. Both Kaiman filter 
and multivariable controller design are based on an identified multiple input, multiple 
output (MIMO) model of the process dynamics. 

Fig. 1: Coal injection plant (injection vessels, distributor and blast furnace). 
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Fig. 2: Block diagram of the closed-loop structure 

The structure of an injection vessel can be described by Fig. 3, and is principally a 
pressurized tank process. During the injection of coal the valves uj and uy are closed. 
Consequently, the two actuators and uc can be used to control the discharge of 
the vessel. Measured outputs of the vessel are the net mass m of the vessel. The 
latter is identical to the sum of the nitrogen mass ITIN and the coal mass mp , and the 
pressure p in the vessel. Since the injection vessel is injecting coal at a certain flow 
rate, the net mass of the vessel has to follow a trajectory. Using direct identification, 
a model describing the process dynamics can be obtained. The identification method 
and its application to the coal injection plant are discussed in [4], where the subspace 
identification method nJ^sid is applied to the Laguerre spectra of the input/output 
data. There, i t has been shown that n^sid, performs better in the Laguerre domain 
compared to the time domain, when i t is used for identification of the injection vessels. 
The obtained MIMO model is of order two and given bv 

x(k + l) = <3?x(fc) 

= Cx{k) 
p(k) 
m(k) 

D 

uN{k) 
uc{k) 

ujv(fc) 
uc{k) 

Since C is invertible, the similarity transformation x(k) 
which vields 

( la) 

( l b ) 

C~1x'(k) can be applied 

x'(k + l) 
c ^ l x ' W + c [ U $ ) \ ( 2 a ) 

^+D[ZU] (2b) 

Hence, the states of the transformed dynamic system coincide with the outputs. 

p(k) 
m(k) 
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Pt 

Fig. 3: Simplified injection vessel structure 

As mentioned above, the net mass of the injection vessel has to follow a trajectory, 
which is usually a ramp. For Kaiman hlter and controller design, the identified model 
is augmented with a double-integrator for each of the outputs, in order to drive the 
steady state error to zero. The resulting state space system is given by 

' C&C-1 0 0 " ' cr ' 

x'a(k + l) = h h 0 x'Jk) + 0 
0 h h 0 

uN{k) 
uc{k) 

(3a) 

" h 0 0 ' D ' 
y(k) = 0 h 0 x(k) + 0 

0 0 h 0 

uN(k) 
uc(k) 

(3b) 

Ca 

Using the standard LQ design procedure, a M I M O LQ controller wi th a stationary 
Kaiman filter is obtained (see [2]). The optimal multivariable controller can be written 
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Fig. 4: Closed loop system for sensitivity analysis 

in the form: 

x c(fc + 1) = " J a 0 
7 2 h 

x c(fc) + 
h ' 

0 
e(k) 

e'(fc) = 
0 0 
7 2 0 
0 J 2 

xc(k) + 
" h ' 

0 
0 

e(k) 

-ATr-e'(fc), 

(4a) 

(4b) 

(4c) 

where e(k) = r(k) — y(k) The measurement signal, vector 
Pref(k) -p{k) 

m r e f ( k ) - m{k) 
y{k), contains the pressure p(k) and the net mass m(k), whereas the reference signal 
vector contains the pressure set-point p r e f ( k ) and the net mass trajectory m r e f ( k ) . 

According to the separation principle, the Kaiman filter and LQ controller dynamics 
are not coupled, which allows separate study of their dynamical behaviour. As the 
feedforward controller is designed for steady state and driven byr an external signal 
(coal flow set point, rhref(k)), the influence of this controller on the closed loop 
dynamics can be neglected. Furthermore, i t is assumed that the control signals are 
not saturated. 

The resulting closed-loop structure for the controller and the plant is given in Fig. 4, 
where K(q) denotes the controller in (4), G(q) is the process model in (2) and q is the 
forward-shift operator. Additional to the loop structure in Fig. 2, disturbance and 
noise inputs are considered. 

3 Sensitivity Analysis 

Three sensitivity functions are considered: 

• Complementary sensitivity function T, which is the transfer matrix from refer­
ence input r to the output y. 

• Input sensitivity function Sj describes the transfer matrix from the disturbance 
input dj to the control error e. 
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• Output sensitivity function So is similar to Si but for the disturbance input 

do-

For the sake of simplicity the operator s is dropped. 

Analysing the block structure in Fig. 4 the following sensitivity and complementary 
sensitivity functions are obtained: 

T = GKil + GK)-1 (5) 

5 7 = -G(I + G A ' ) - 1 (6) 

S0 = -(I + GK)-1 (7) 

I t can be mentioned that the sensitivity function for the noise input n to the control 
error e is identical to So, and the sensitivity function from the reference input r to 
the control error is equal to —So- Obviously, an analysis of these two more functions 
would not contribute with more information. 

While the sensitivity and the complementary sensitivity functions are directly anal­
ysed in the scalar case, the quantities of interest in the multivariable case are the 
singular values of these functions. However, the role of the sensitivity and the com­
plementary sensitivity functions in both cases are similar, since their magnitudes are 
usually used to measure stability robustness with respect to modelling uncertainties. 

Of great interest in the sensitivity analysis are the suprema of the singular values of 
the sensitivity functions. High peaks can lead to instability of the closed loop system 
under perturbation and should be avoided. In the controller design, the characteris­
tics of the singular values can be used to achieve a closed-loop system wi th minimized 
peaks in the singular values. Although the magnitudes of the sensitivity and com­
plementary sensitivity functions are not a good measure for the gain of the MIMO 
system, information on the character of the cross-couplings in the M I M O system can 
be obtained and exploited in the design process. 

Finally, the sensitivity of the plant towards element-by-element uncertainty and in­
put uncertainty' is analysed using the relative gain array (RGA) and the minimized 
condition numbers for the plant and controller. 

3.1 Input sensitivity function 

Fig. 5 shows the singular values of the input sensitivity function Si. Obviously, 
the magnitude is very small compared with the other sensitivity or complementary 
sensitivity functions (Fig. 6, Fig. 7 respectively). Since disturbances of magnitude 
larger than one decade are unlikely to occur, the sensitivity to disturbances at the 
plant inputs can be neglected. 
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frequency (rad/sec) 

Fis Singular values of the input sensitivity function Sr. 

3.2 Output sensitivity function 

Information on the bandwidth of the system with respect to output disturbance atten­
uation can be obtained from the singular value plot of the output sensitivity function 
(Fig. 6). Since the bandwidth for a multivariable system depends on the input/output 
directions, the lowest bandwidth value for output disturbance attenuation should be 
chosen. To determine the bandwidth of a system the definition in [5] is used. Accord­
ing to Fig. 6, disturbances up to 0.02 rad/sec can be attenuated. 

Furthermore, the peak value of the sensitivity function (1.35) is a quite small value 
which indicates that output disturbances can lead to a slight overshoot in the transient 
behaviour. 

3.3 Complementary sensitivity function 

Similarly, the bandwidth for the reference tracking is defined, but here the higher 
value is chosen. Another important factor is the roll-off, i.e. a high negative slope 
above the cross-over frequency. 

Fig. 7 shows the singular values for T. The bandwidth for reference tracking is about 
0.095 rad/sec and the closed-loop system has a high negative slope of —2 above the 
cross-over frequency. The peak value of T is also rather small and is 1.85. According 
to [9], recommended peak values are less than two. 
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frequency (rad/sec) 

Fig. 6: Singular values of the output sensitivity function So-

frequency (rad/sec) 

Fig. 7: Singular values of the complementary sensitivity function T. 

62 



Industry Applications of Multivariable Control 

3.4 Sensitivity to uncertainty 

In [9] the RGA and the minimized condition numbers are used to evaluate sensitivity 
to uncertainty. In this case the M I M O model for design is obtained from direct 
identification of the plant dynamics. Because of non-linearities as well as disregarded 
dynamics, the model only approximates the plant behaviour. Hence, uncertainty has 
to be taken into consideration. 

The RGA is given by 

RGA(G) = Gx { G f f , 

where x is the Schur product. The RGA is computed at discrete frequency points. 
Here, the RGA is a symmetric 2 x 2 matrix of the form 

a b 
b a 

Large values in the RGA indicate that G wi l l loose rank i f the element <fø in G is 

multiplied by a factor (1 — j^), where A,?- is the respective entry in the RGA. Thus, 

the RGA should contain small values. 

In Fig. 8 the entries of the RGA are displayed. Because of the above given form of 
the RGA, only two values are plotted. The values are small and therefore the closed 
loop system should not be sensitive to element-by-element changes. An important 
property of the RGA is that sign changes of entries over the frequency axis indicate 
the presence of right half plane (RHP) zeroes in G or at least in one subsystem of G. 
As pointed out in [11] and [8], such non-minimum phase zeroes lead to fundamental 
performance limitations of the closed-loop system. Since one RGA entry is changing 
sign (see Fig. 8) at least one subsystem of G has a RHP zero and thus, performance 
limitations of the closed-loop system exist. 

The minimized condition numbers jj(G) and j0(K) are a measure of robust perfor­
mance to diagonal input uncertainty. According to [9], these condition numbers can 
be derived as follows: 

7 ; ( G ) = m p 7 ( a D / ) 
Dl 

L 0 { K ) = mm~f{D0K), 
Do 

where D\ and Do are scaling matrices. The minimized condition number is the result 
of a minimization of the condition number over all possible scales. 

For the closed-loop system to be insensitive to input uncertainty, the values of 7f (G) 
and 'JQ(K) should be around 2 or smaller in the cross-over region. Both condition 
numbers are depicted in Fig. 9. In the cross-over region (between 0.024 rad/sec and 
0.065 rad/sec), the minimized condition numbers are obviously around 2 (between 
1.94 and 2.76), which yields an relative insensitivity of the closed-loop system to input 
uncertainty. 
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frequency (rad/sec) 

Fig. 8: RGA of G. 

frequency (rad/sec) 

Fig. 9: Minimized condition numbers: 7 j ( G ) solid, -y0{K) dashed. 
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(a) 

frequency (rad/sec) 

Fig. 10: Power spectral density (solid) versus maximum singular value of T (dashed) 
and So (dashed-dotted). (a) power spectral density of the pressure error, (b) power 
spectral density of the mass error. 

4 Follow-up 

The LQ optimal multivariable controller has been tested during a period of two weeks 
at the coal injection plant. During this period data has been logged. Since two 
injection vessels are injecting coal alternatingly, the time for one injection phase is 
limited and depends on the coal flow set-point. Thus, the frequency range is not 
only bounded from above with half the sampling frequency (ir rad/sec) but also from 
below. The minimum recordable frequency is approximately 0.002 rad/sec. 

Several injection series are randomly selected, and the power spectral density is esti­
mated. Then, the expectation value for every frequency point is estimated and plotted 
versus the maximum singular value of the output sensitivity and complementary sen­
sitivity function (Fig. 10). 

Obviously, the peaks in the maximum singular values of So and T are in the same 
frequency range as the ones in the power spectral density of the mass and the pressure 
deviation. Accordingly, the sensitivity analysis for So and T is validated by these 
results. 

Since the input sensitivity function Si contributes only w i th a comparably small 
magnitude, pure data analysis is not sufficient to validate the analysis. Therefore, a 
disturbance at the plant inputs has to be introduced in an experiment. 

65 



Sensitivity Analysis of an LQ Optimal Multivariable Controller for a... 

Fig. 1 1 : Control error in the mass for the malfunctioning position control of the valve 

In practice, disturbances at the plant inputs are introduced by adding an extra signal 
to the input of the actuators, which can be achieved by sending a falsified position 
signal to the valve's position controller. Here, the position sensor signal is simply 
saturated before reaching its usual upper bound. Therefore, the transmitted position 
signal is incorrect i f the valve has opened more than this artificially introduced upper 
bound. As a result the valve's position controller is reacting on a non-existing position 
error and thus, is opening the valve completely as soon as the physical position of the 
valve exceeds the artificial bound. 

Such a situation can occur when the valves position sensor malfunctions or a trans­
mitting buffer amplifier saturates. 

During the experiment, the closed-loop system did not loose its stability, but perfor­
mance losses could be observed (see Fig. 11) . In Fig. 1 2 the position signal from the 
valve and the control signal to the valves position controller are displayed. 

Since these rather extreme input disturbances have not invalidated the analysis of the 
input sensitivity function, i t can be concluded that the analysis is reliable. 

In order to test the closed-loop sensitivity for input uncertainty and element-by-
element changes in practice, the design is based on a model for one injection vessel 
but also run on the second injection vessel, which is equipped wi th a larger sized 
pressure control valve (itjv). During test-operation no performance losses due to this 
fact could be recognized. 
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Fig. 12: Simulated malfunction of the position controller of the UQ valve, (a) position 
signal from the sensor, (b) control signal to the valve 

5 Conclusions 

In this paper an LQ optimal multivariable controller for a fine coal injection vessel 
is analyzed. The indications from the theoretical sensitivity analysis are validated 
through evaluation of data acquired during test operation of the controller at the 
coal injection plant at SSAB Tunnplåt Luleå, Sweden. I t could be shown that the be­
haviour of the closed-loop system during operation is according to the results from the 
sensitivity analysis. Therewith, the controller design is validated and reliable enough 
to be considered for permanent installation. The commercially available control and 
leakage detection system SafePCI is now equipped with the above controller. 
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Abstract 

This paper summarizes the implementation and industrial experiences of a 
model-based control and gas-leakage detection system in a coal injection plant. 
It describes how advanced control and monitoring can be implemented in an 
industrial environment while taking human-machine interface aspects into con­
sideration. The operation of the advanced and the conventional concept are 
compared regarding evaluation data, experiences and observations of operators 
and maintenance personnel. I t is shown that the advanced control and moni­
toring system improves plant performance without disturbing routines in plant 
operation and, moreover, is positively accepted by the plant operators. 

Keywords: Multivariable control; LQG; Fault detection; Fault isolation; Coal 
injection; Experiences. 

1 Introduction 

For a long time controllers were used in industry to automate processes, improve 
product quality and reduce production costs. One of the best known and most used 
controller types is the PID controller. I t is usually employed to control sub-processes 
of industrial processes in so-called single loops, where the individual controller reacts 
to deviations from a given set-point or trajectory with movements of a single actuator. 
This traditional control concept and its possible design approaches are well described 
in the literature (see e.g. [11]; [2] [12]; [8] or [7]), and i t is in every control engineer's 
tool-box. 

Since each control loop only deals with one process variable, such a decentralized 
structure has its pros and cons. One of many advantages of the PID controller is that 
it seems to be easy to maintain. But there is also a major drawback. Control loops 
may disturb each other through process couplings, thus preventing the individual 
loops from achieving their objective. Furthermore, the structure offers only one-
degree-of-freedom, as only one actuator is available. 

An obvious alternative is a more centralized structure with multiple inputs and multi­
ple outputs (MIMO) which can handle several process variables at a time, a so-called 
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multivariable controller. One direct result is the increase in the number of degrees-of-
freedom. The controller can use multiple actuators to achieve one control objective. 
Consequently, the design of multivariable controllers depends even more on the char­
acteristics of the plant than in the scalar case, [17]. Moreover, the design procedure is 
more complex which is reflected in the maintenance of a multivariable control system. 
This is probably why multivariable control concepts are so rare in industry. 

Still, some examples of multivariable control in industry can be found: e.g. in v i ­
bration suppression [6], in the control of plate-like structures [16] and in the control 
of vapour compression [13]. In each of these three examples a multivariable linear 
quadratic gaussian (LQG) controller is used. 

Fault detection and isolation is a potentially powerful tool for achieving security and 
effective maintenance in various types of processes. See [14] for a survey of recent 
simulations and implementations of fault detection systems. 

The basic terminology and techniques for fault detection can be found in the survey 
by [10]. State estimation by observers is often used. A number of different techniques 
exist, for example Unknown Input Observers, Dedicated Observers, Parity Space and 
Kaiman Filter Methods. Fault detection in non-linear systems is for example treated 
in [18] and [19]. 

In this article multivariable control and fault detection are applied to pulverized coal 
injection. Since coal is 40% cheaper than coke, injecting pulverized coal instead of 
using coke is more economical. According to the [1], the market share of pulverized 
coal for fuel is set to rise from 36% to 50% by the year 2015. This, of course, has 
consequences for the blast furnace process. From a metallurgical point of view, high 
coal injection rates lead to sensitivity of the blast furnace process to coal flow vari­
ations and outages. Hence, tight control of the coal flow is necessary. Furthermore, 
gas-leakages can cause unexpected stops in the coal injection, leading to possible in­
stabilities in the blast furnace process. Thus, a gas-leakage detection system should 
be in place to detect small leakages and thereby enable the plant maintenance to 
plan inspection stops. Another advantage of an improved coal mass flow to the blast 
furnace is the increased plant capacity without hardware changes. 

During the course of the project Intelligent alarm management, funded by the Swedish 
National Board for Industrial and Technical Development (NUTEK), a preliminary 
study on the control and detection of gas-leakages of fine coal injection vessels was 
conducted. The results indicated that further research was needed, but should be 
pursued in a different framework. 

Consequently, a pilot project of the Center for Process and System Automation 
(ProSA) at Luleå University of Technology was started, aimed at analysing and re­
designing the control system of the coal injection plant at SSAB Tunnplåt AB in 
Luleå, [3]. In this project, a model-based control and gas-leakage detection system, 
called SafePCI, has been developed, tested and suggested for permanent installation. 
SafePCI consists of a multivariable control concept combined wi th monitoring, su-
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pervision and algorithms for the detection of gas-leakages to and from the injection 
vessels. Accordingly. SafePCI is now permanently installed in SSAB Tunnplåt AB's 
newly purchased coal injection plant. 

When it comes to the implementation of advanced control and monitoring concepts, 
the design of the human-machine interface becomes crucial. Maintenance and oper­
ation of SafePCI should be facilitated by an interface that is designed with respect 
to man-machine aspects. Therefore, i t is important to consider the experience of 
operators and maintenance personnel during the design as well as following up their 
experiences with SafePCI. Moreover, the success of the installation of advanced con­
trol and monitoring concepts greatly depends on positive acceptance by the operators. 
Therefore, thorough testing and caution during start-up is necessary. 

The paper is organized as follows. First, the coal injection process is briefly described 
and a problem definition is given in Section 2. Then, SafePCI is presented in Section 3, 
where the focus is on the design of interfaces and implementation. The design of the 
multivariable controller and the gas-leakage detection system are only briefly described 
but further references for the interested reader are given. The operation of SafePCI is 
evaluated and compared with the conventional control concept in Section 4. Finally, 
the experiences and observations of the operators and maintenance personnel are 
presented in Section 5, followed by a short summary of the results in Section 6. 

2 The process 

A coal injection plant is a highly automated plant, where incoming raw coal is stored, 
ground, dried and finally injected into the blast furnace. During operation, human 
interaction is only needed for set point adjustments. Fig. 1 shows the structure of the 
plant, where only the injection vessels, distributor and the blast furnace are depicted. 
While one vessel is de-pressurized, charged and pressurized the other vessel is injecting 
pulverized coal. Thus a continuous pulverized coal flow is achieved. The control of the 
injection process is complicated due to the two phase nature of the injected flow (gas 
plus particles). In Table 1, the process phases of an injection vessel working cyrcle 
(Fig. 2) are summarized. A more detailed picture of an injection vessel, including 
some of the notations used in the following, is given by Fig. 3. 

Continuous injection of coal powder is crucial for blast furnace operation. A sudden 
loss of coal injection capacity may lead to 'chilled hearth', a condition that can have 
serious consequences for the blast furnace. Leakages in worn-out valves can make it 
impossible to maintain the pressure in the injection vessel. This fact, in addition to 
the cost of lost nitrogen, motivates the development of a fault detection system to 
detect and isolate leakages. In some coal injection plants, where the injection line 
contains air, the risk of air leakages into the highly7 inflammable coal powder is an 
additional reason for performing leakage detection. 

Since coal powder is significantly less expensive than coke, it is desirable to substitute 

73 



Implementation and Industrial Experiences of Advanced Control and Monitor ing in. 

Fig. 1: Coal injection plant (injection vessels, distributor and blast furnace). 

Table 1: Process phases 
Phase Name Description 

A Charging The unpressurised vessel is filled wi th 
coal powder 

B Pressurization The injection vessel is put under pres­
sure 

C Pressure holding Standby until the other vessel has fin­
ished injection 

D Injection The coal powder is injected into the 
blast furnace 

E Ventilation Depressurization and ventilation of the 
vessel 
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time 

Fig. 4: Benefit of improved control. Limiting mass flow (dashed-dotted), coal mass 
flow (dashed), improved coal mass flow (solid), benefit (hatched area). 

as much as possible of the latter for the former. There is, however, a limit to how 
much coal powder can be injected at each time instant. Improved control of the 
injection rate can make it possible to increase the flow closer to this limit and thus 
give economical benefits, see Fig. 4. 

Furthermore, coal powder is used to control the flame temperature in the blast fur­
nace. A certain ratio of coal powder, oxygen enrichment and blast volume is computed 
in order to achieve a constant temperature. Thus, improved control of the injection 
rate facilitates flame temperature control. 

A particular problem when controlling the coal injection plant is the inherent M I M O 
nature of the process. Both the position of the flow control valve and the pressure in 
the vessel affect the flow of coal powder. Furthermore, there exists no measurement 
of the flow itself but instead the mass of the injection vessel has to be used. These 
facts explain why good performance cannot be obtained using traditional SISO PI or 
PID control loops, [5] . 

3 SafePCI 

To minimize coal flow variations, optimize maintenance and reduce unexpected injec­
tion stops, a model-based control and gas-leakage detection system, called SafePCI, 
is suggested. In the first design steps the dynamical behaviour of injection vessels is 
modelled. Two models are developed, a linear model which is obtained from system 
identification and a non-linear model which is based on the laws of physics. The linear 
model is used for the design of the multivariable controller and the non-linear model 
is used for the design of the gas-leakage detection system. 

SafePCI is then implemented in the control system of the coal injection plant in two 
steps which are described in Subsection 3.1. A brief description of the control system 
used is also given there. In the subsequent subsection, the interfaces to the control 
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Fig. 5: Structure of SafePCI as installed in Honeywell-Measurex TotalPlant AlCont 

system and for the plant operators are described. The design of the multivariable 
controller is given in Subsection 3.3. Finally, the design of supervision, monitoring 
and the gas-leakage detection system are recapitulated in Subsections 3.4 and 3.5, 
respectively. 

3.1 Structure 

SSAB Tunnplåt Luleå AB uses the commonly available control system, Honeywell-
Measurex TotalPlant AlCont. I t provides the engineer with a standard function block 
set, from which new blocks with more functionality can be created. Additionally, 
function blocks can be directly generated from Pascal-code with freely definable in­
put/output interface. These so-called Pascal-blocks are treated in the same way as 
the standard function blocks by the PLC. The engineer can simulate and test the 
blocks in an off-line environment and download them to the PLC. Also, signal infor­
mation in all blocks of the application can be monitored on-line from a Windows NT 
environment. 

Since the coal injection plant is in continuous operation, SafePCI is installed as a 
parallel structure to the conventional controllers of the injection vessels. This enables 
the engineers to maintain the conventional controllers and SafePCI during operation 
of the plant. Furthermore, the conventional controllers can be used as a backup. 

For the installation of SafePCI the structure depicted in Fig. 5 is suggested. The 
gray-shaded area represent the implementation of SafePCI with its interfaces to the 
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operators and to the control system. During debugging of the SafePCI implemen­
tation, the coal injection plant is replaced by a plant simulator, which models the 
dynamic, sequential and logical behaviour of the coal injection plant. The structure 
for debugging is shown in Fig. 6. Setting up such a test structure results in a longer 
implementation phase on the one hand but on the other hand reduces debugging and 
the test phase and, most important, system failures during start-up. The simulator 
provides also a tool for training of plant operators in maintaining the control system. 

3.2 Interfaces 

SafePCI has two interfaces. I n the Honeywell-Measurex TotalPlant AlCont system 
the interface to the plant is constructed by creating software links to signals from 
A / D input cards or signals generated in the control system. 

A graphical editor can be used to create the display and controls for the operator 
interface. Software links are introduced to connect the displays and controls with 
signals to and from SafePCI. The control system resolves the software links automat­
ically and provides the necessary data transfers as soon as screens or program blocks 
are uploaded from the IDE to the control system. 

Fig. 7 shows the operator interface. The main switch for SafePCI is placed in the 
upper left corner. Using this switch the operators can choose between the backup 
controllers and SafePCI. The upper left frame contains the controls to adjust con­
trol parameters, and the upper right contains the controls for the leakage detection 
thresholds. Evaluation data is presented to the operator in the lower left frame, where 
standard deviations, residuals from the state estimation and a coal flow estimation 
are given. Finally, the results from the leakage detection are presented in the lower 
right frame. 

78 



Industry Applications of Multivariable Control 

Start/Stop button  

SafePCI status 

Fault detection thresholds 

! / '• 

Input areas 

\Leakage information 

Monitoring information 

lOutput areas  

\ Controller parameters 

Fig. 7: Operator interface 

3.3 The multivariable controller 

The multivariable controller is a part of the loop structure depicted in Fig. 8 and is 
a result of a previous study, [3]. 

Besides the state vector feedback controller, a Kaiman filter, a feedforward controller 
and an actuator saturation are included in the closed-loop system. Both the Kaiman 
filter and multivariable controller design are based on an identified multiple input, 
multiple output (MIMO) model of the process dynamics. 

The structure of an injection vessel can be described byr Fig. 3, and the process is 
principally a pressurized tank process. During the injection of coal the inlet and 
ventilation valves are closed. Consequently, the two actuator signals UN and UQ can 
be used to control the vessel. Measured outputs of the vessel are the pressure p in 
the vessel and the net mass m of the vessel. The latter is identical to the sum of the 
nitrogen mass TJIN and the coal mass rric- Since the injection vessel is injecting coal 
at a certain flow rate, the net mass of the vessel has to follow a trajectory. Using 
direct identification, a model describing the process dynamics can be obtained. The 
identification method and its application to the coal injection plant are discussed 
in [9], where the subspace identification method nJ^sid is applied to the Laguerre 
spectra of the input/output data. There was shown that njsid performs better in the 
Laguerre domain compared to the time domain, when it is used for identification of 
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the injection vessels. The obtained MIMO model is of second order and given by 

x{k + l ) = $x{k) + T 

p(k) 
m(k) 

= Cx(k) + D 

uN(k) 
uc(k) 

uN(k) 
uc(k) 

(la) 

( lb) 

As only the design methodology is outlined here, numerical values are omitted. Since 
C is invertible, the similarity transformation x(k) = C~1x'(k) can be applied, which 
yields 

x'(k + l) 

- p(k) -
m(k) 

C$C-lx'(k) + C 
uN(k) 
uc(k) 

= I2x'(k) + D 
Uc(k) 

(2a) 

(2b) 

Hence, the states of the transformed dynamic system coincide wi th the outputs. 

As mentioned above, the net mass of the injection vessel has to follow a trajectory, 
which is usually a ramp. Hence, the open-loop system (controller and plant) needs 
to include at least two integrators, in order to drive the steady state error to zero. 
For Kaiman filter and controller design, the identified model is augmented wi th a 
double-integrator for each of the outputs. The resulting state space system is given 
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Using the standard LQG design procedure, a M I M O LQG controller with a stationary 
Kaiman filter is obtained (see [4]). The optimal multivariable controller can be writ ten 
in the form: 

xc(k + l) 

UN(k) 
uc(k) 

h o 
xc(k) + 

h ' 
h h _ 

xc(k) + 
0 

0 0 " h ' 
h o xc(k) + 0 
0 I2 

0 

e(k) 

e(k) 

e'(k), 

where e(k) = r(k) — y(k) 

(4a) 

(4b) 

(4c) 

p r e f ( k ) - p ( k ) 
m r e f ( k ) — m(k) 

The measurement signal vector y(k) contains the pressure p(k) and the net mass 
m(k), whereas the reference signal vector contains the pressure set-point p r e f ( k ) and 
the net mass trajectory mrej\k). 

3.4 Monitoring and supervision 

Malfunction of a controller can be caused by hardware failures in the coal injection 
plant or a part wearing out. Therefore, operators have to monitor a number of control 
loops in a plant. Automatic supervision and monitoring supports the operators' work 
and facilitates the detection of malfunctions. 

Hence, SafePCI is equipped with automatic monitoring and supervision. In addition 
to the LQ optimal-multivariable controller, back-up controllers are available. During 
injection, deviations from set-points and residuals are evaluated. Using pre-defined 
thresholds, the supervision function is enabled to take decisions on controller mal­
function. In case of a detected malfunction, a back-up controller is used instead of 
the MIMO-LQG controller. 
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Tö facilitate supervision and trend analysis by the operators, the control performance 
is monitored on-line. Throughout operation of the plant evaluation data is computed 
and presented on the operator screen. The quantities are: 

• Standard deviations in mass and pressure 

• Mean values of mass and pressure residuals 

• Least squares estimate of the coal mass flow 

Since the coal mass flow is not directly measured and only an estimate based on 
differentiation is available, SafePCI provides a least squares estimate of the coal 
mass flow. 

3.5 Leakage detection 

Leakage detection is performed during the ventilation phase. A non-linear model for 
the injection vessel during this phase, based on physical principles is given by 

rhN = AvmN + Bvfsas(p,pA)uv+qL (5) 

rhc — 0 

y = h(m^,mc) 

where Ay and By are constants obtained by identification. The input uy is the 
control signal to the ventilation valve and / g a s is a function describing the flow of a 
gas through a pressure drop. The state variables mc and represent the masses 

of coal and nitrogen in the vessel and the output vector y = [ m p ] is the mass 
and the pressure in the vessel, respectively. The transformation ft(mjv,mc) relating 
the state to the output vector is uniquely invertible [15]. 

Three different types of leakages are considered (Table 2). The set of leakages is 
denoted 

A leakage can be interpreted as the flow through a valve with an unknown control 
signal. The nitrogen leakage flow can thus be represented by 

qe = kefe(-) ieC (6) 

where kt is an unknown time-varying factor and fe(-) is a function of the pressures 
on each side of the leakage. The trivial leakage function for the event of 'No Leakage' 
is /ø = 0. The other leakage functions (fa, fj\f and fx) are developed from the 
non-linear physical model. 

A linear observer for (5) was designed and it was shown that the observer residual is 
an approximation of the leakage flow qi scaled by a constant. 
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Table 2: Leakages 

Leakage 
Possible consequence Notation 

To the atmo­
sphere 

Loss of nitrogen and pressure 
drop in the vessel 

A 

From the ni­
trogen net 

Over-pressurized vessel M 

To/from the 
injection pipe 

Loss of nitrogen and pressure 
drop in the vessel. Fire if the 
injection line contains air 

X 

No Leakage - 0 

The factor kg in (6) is a measure of the size of the hole through which the leakage 
flow takes place. This means that kg varies slowly in time when describing incipient 
leakages. I f kg is assumed to be constant during a reasonably long period of time (for 
example a ventilation phase), i t can be estimated using the Generalized Likelihood 
Ratio. 

Four hypotheses (Hø, HA, Hrf and Hz) are formed in agreement with the leakage 
events. The three leakage hypotheses are tested one by one against H$ using the 
Generalized Likelihood Ratio (GLR). I f H$ is rejected in more than one of these 
tests, the hypothesis with the highest GLR is accepted. The GLR for each leakage 
hypothesis is 

A \ s u Pfa>o MQL) 

where Pg is the likelihood function for hypothesis Hg. The restriction on kg comes 
from the fact that a negative kg would imply a leakage flow from a lower pressure 
to a higher. The leakage type wi th the highest GLR is chosen and the size of this 
leakage is compared to the detection threshold set by the operators. I f the threshold 
is exceeded then the null hypothesis is rejected and a leakage has occurred. 

See also [15] for more details on the leakage detection scheme. 

4 Evaluation 

After the parameters adjustment of SafePCI, evaluation data is logged using SSAB 
Tunnplåt 's measurement database MOSS. Since MOSS stores data over a long time 
period it is possible to obtain data sets afterwards. Therefore, adequate data sets for 
a comparison of the conventional control and SafePCI can be chosen. As mentioned 
above the mass flow is not measured directly. Instead, an estimate based on a numer­
ical differentiation of the mass signal is available in MOSS and wi l l be used for the 
evaluation. 
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Fig. 9: Comparison of the coal mass flow deviation, (a) conventional control, (b) 
SafePCI. 

Since the set point for the coal mass flow varies, specifications for the evaluation data 
have to be set up. First, the mean value of the coal mass flow set point over the 
evaluation period must not deviate more than 1 (t/h). Second, the data set should 
contain high and low injection rates. Furthermore, the data set should be continuous 
and reflect at least 8 hours of operation. 

Fig. 9 shows the absolute deviation of coal mass flow from the set-point for SafePCI 
and the conventional controller. Obviously, the coal mass flow variations are reduced. 
Apart from some peaks, the deviations are less than 1 (t/h). Comparing the relative 
deviations of the coal mass flow from the set-point (see Fig. 10) shows that the relative 
deviations are mostly less than 5%. 

For the quantitative analysis, the standard deviation and the maximum deviation are 
used. These measures are applied to the relative and absolute deviation from the 
flow set point. Table 3 summarizes the results and gives the percentage improvement 
achieved by SafePCI compared to the conventional control. 

During the start-up and the evaluation period SafePCI gave some indications on 
leakages from the nitrogen net. These indications were probably due to temporary 
clogging of the ventilation valve which, to the detection algorithm, wi l l appear as a 
leakage into the vessel. 
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Fig. 10: Comparison of the relative coal mass flow deviation, (a) conventional control, 
(b) SafePCI 

Table 3: Quantitative evaluation 
Conventional 

Control 
SafePCI Improvement (%) 

Standard deviation ( t /h) 0.81 0.40 51.53 
Maximum deviation (t /h) 4.51 2.62 41.95 

Relative standard 
deviation (%) 

3.88 1.73 55.32 

Relative maximum 
deviation (%) 

27.13 11.89 56.19 
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5 Experiences and observations 

To follow-up the installation of SafePCI, the operators and maintenance personnel 
were interviewed about their experiences and observations during the operation of the 
coal injection plant under SafePCI. 

The overall opinion was that a smooth transition from the conventional control system 
to SafePCI had been achieved. During start-up and operation no unexpected stops 
occurred due to a malfunction of SafePCI. 

I t has been observed that vibrations in the injection lines have reduced. According 
to the operators, this is an indication of an evenly divided flow from the distributor. 
Furthermore, the mechanical wear-out in the injection pipes is thus reduced. 

When clogging occurs in one of the injection pipes, the coal flow is distributed to the 
remaining unclogged pipes, resulting in an unbalanced distribution of coal in the blast 
furnace raceway. Consequently, the amount of unburned coal is not evenly distributed 
and can lead to instabilities in the blast furnace process. Usually, the coal injection 
is stopped for a short time and the clogged pipe is purged. I f clogging is detected in 
time, blast furnace operation is not affected. Since SafePCI was put into operation, 
the occurrence rate of clogging has reduced. 

6 Conclusions 

The installation of the model-based control and gas-leakage detection system SafePCI 
in SSAB Tunnplåt 's coal injection plant is described. The system comprises an LQ 
optimal-multivariable controller, wi th a supervision and a gas-leakage detection sys­
tem based on a non-linear model for the injection vessels. 

SafePCI was then compared wi th the conventional control concept using evaluation 
data. The comparison was complemented with an analysis of the operators' experi­
ences and observations during operation of the plant under SafePCI. 

The short term comparison has shown that advanced control and monitoring concepts 
improve plant performance, are positively accepted by plant operators and can be 
installed during normal production in so that plant operation is not disturbed. 
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Abstract 

This note deals with recently developed gramian based interaction measures. 
The measures are used for the choice of measurement/actuator pairs for decen­
tralized control, where the controller remains unspecified. The theoretical back­
ground of these measures is clarified and a geometrical interpretation is given. 
Moreover, a generalization of the Hankel interaction index array to different 
gramian based system norms is proposed and it is shown that the introduction 
of weighted gramians makes the criteria more flexible and superior compared 
to the augmenting with additional filter dynamics. Finally, some examples are 
given to illustrate the usefulness of the generalized measures. 

1 Introduction 

Prediction of interaction present in a control system from an open-loop perspective 
has been dealt with for a long time. Both steady state and dynamic measures for 
interaction have been suggested. 

The first proposed interaction measures were the Rijnsdorp interaction measure [16] 
and the relative gain array (RGA) [3]. These measures are derived from steady-state 
gain information and are related to each other via a non-linear map [8]. Ever since, 
the RGA is widely used in industrial applications and has been extended to a dynamic 
measure [11]. 

Further development of the R,GA became necessaryr due to the introduction of more 
advanced control structures. In order for the RGA to be applicable a decentralized 
controller has to be used and the steady state control error has to be zero. Generally, 
these assumptions are not fulfilled and thus the indications are not reliable. 

This led e.g. to the introduction of the block relative gains (BRG) [14] and partial rel­
ative gains (PRG) [9]. Thereby, it became possible to get indications for interactions 
in multivariable control systems with control structures different from decentralized 
control. 

Newly developed measures are a measure based on Hankel singular values [5] and the 
Hankel interaction index array [20], which makes use of the Hankel norm of the scalar 
sub-systems. Both measures are gramian based and analyze scalar sub-systems of the 
multivariable system in order to get insight into the system structure and thus draw 
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a-priori conclusions on interaction in the closed loop system. The Hankel norm is 
originally used in model reduction [7] and is easily derived from the gramian product. 

Since gramian based measures judge the overall dynamic behavior of a system, in­
dications of these measures are realistic even for transient behavior, where many 
frequencies arise. When these interaction measures are used to make decisions on the 
measurement/actuator pairs for decentralized control, the problem can be divided 
into two classes: controller independent and controller dependent. In the controller 
dependent problem both process model and controller are considered, which is more 
complex than the controller independent problem where the controller remains un­
specified. Here, the controller independent problem is discussed. 

Since existing publications do not clarify the geometrical aspects of the gramian based 
measures, the paper reviews these aspects to get a better understanding of the mea­
sures when used for the controller independent problem. 

The paper is structured as follows. Starting out from a general description of linear 
multivariable systems, the notion of gramians is introduced as a tool for function 
spaces and how it can be applied to linear systems. Moreover, state space realizations 
of linear systems are introduced and gramians are used to derive subspaces of the 
state space. I t is illustrated how intersections in subspaces are related to interaction in 
multivariable systems. Thereafter, the connection between gramians and the Hankel 
operator is discussed and based on the results generalizations of the Hankel interaction 
index array are derived. Then, weighted gramians are introduced into the interaction 
measures and their relation to filtering of process dynamics is analyzed. Finally, some 
examples are given followed by conclusions and outlook. 

2 Preliminaries 

Interaction concerns input/output behavior of multivariable systems, namely the re­
lation between different channels. A channel is defined as the path from an input to 
an output. The output of a linear multivariable system is given as the convolution of 
an input signal with its impulse response function matrix 

y ( t ) = I ' g ( t - T ) u { T ) d T ( l ) 

where y ( t ) £ £ 2 ^ 1 1 * 2 ] and u ( t ) G CV/^iJ-z]- The associated function spaces are 
denoted y and U, respectively. The impulse response function has to be bounded and 
thus g ( t ) € C i X m [ t \ , £ 2 ] - The restriction to the time interval [ £ 1 , 1 2 ] makes it possible 
to consider unstable multivariable systems as long as g(t) is bounded in the interval. 
For stable systems the interval can be set to [ — 0 0 , 0 0 ] . 

The frequency domain representation of (1) can be obtained by applying the Laplace 
transform and is given bv 

Y(s) = G(s)U(s) ( 2 ) 
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where s denotes the differential operator and Y(s), U(s) denote the Laplace transform 
of y(t) and u(t), respectively. G(s) is referred to as the transfer function matrix, which 
is the Laplace transform of the impulse response function g(t). 

Now, the standard inner product of two vectors <p(t) and in the function space 

£ 2 [ i i i £ 2 ] * s defined as 

(4>(t),m)= r <PT(tK(t)dt (3) 

Jtx 

For this inner product a Gram matrix, also referred to as gramian, can be derived 
by computing the inner product of all combinations of the vector elements <pq(t) and 
£ r ( t ) . The elements in the gramian are given by 

[ I V = (øq(t),Ut)) 
tl 

<Pg{t)fr{t)dt 
I 

Consequently, the gramian can be written as 

r = t'' </>{t)f(t)dt (4) 
Jtx 

The gramian is the matrix of the inner product relative to the basis in which the 
vectors <p and £ are expressed, [6] . When the basis is changed using a non-singular 
transformation matrix T, the corresponding vectors <p'(t) and f'(t) in the new basis 
are given as 

6'(t) = Tcp(t), f \ t ) = rat) 

The gramian for the transformed vectors is then found as 

r' = f 1 é'{t)C'T{t)dt 
Jtx 

= j T<j)(t)fTTT(t)dt 
Jtx 

= TTTT (5) 

Thence, the gramian is not invariant to basis changes. Moreover, i t is also known 
that the gramian is symmetric and positive semidefinite. Thus, the eigenvalues of 
the gramian are all real and non-negative. Following [6] , two vectors are linearly 
independent if the gramian is positive definite or, in other words, has only strictly 
positive eigenvalues. Gramians have a close relation to the associated function spaces 
which is stated in the following lemma. 

L e m m a 1. A vector ^(t) lies in the range space 0} the impulse response function g(t) 
if and only if it lies in the range space of 

ft2 

r = / g(t)gT(t)dt 
Jtx 

93 



A Note on Gramian-Based Interaction Measures 

Proof. A proof is given in [4]. • 

Tims, using the eigenvector/eigenvalue decomposition of the gramian an orthonorrnal 
basis for the range of g(t) can be derived, namely the eigenvectors associated with the 
non-zero eigenvalues constitute a basis. An important generalization to the decom­
position of gramians is the operator decomposition, namely the derivation of singular 
values and Schmidt pairs of a compact operator and its adjoint [21]. 

Often in linear systems analysis the impulse response function g(t.) is expressed in 
terms of a state space realization, which is a set of linear differential equations 

±{t) = Ax(t) + Bu(t) (6a) 

y(t) = Cx(t)+Du(t) (6b) 

where A G R n X n , B G R n x m , C £ W x n and D £ R p x m . The state space realization 
consists of two equations, the state and the output equation. I t is well known, that 
a state space realization is not unique and they are connected via the similarity 
transform. 

z(t) = Tx(t) (7a) 

z(t) = TAT~xz(t) + TBu{t) (7b) 

y(t) = C T - h ^ + Duit) (7c) 

Obviously, the state vector can be freely chosen and thereby, the basis for the state 

space X C J C J J ^ I , ^ ] -

The solution of (6) is given by 

y{t) = C e A ( t - u ) x ( t 1 ) + [ CeA{t-T)Bu{T)dT + Du(t) (8) 

where x{t\) is the initial condition. Since interaction concerns the input/output 
relationship, the initial condition x(ti) = 0 can be assumed without loss of generality. 
Then, (8) equals (1) for all impulse response functions wi th g(t) = 0 , t < 0. In the 
frequency domain, G(s) is given by C(sl — A)~1B + D. 

Each of the pm scalar subsystems, which describes the behavior from input j to output 
i, is then defined by either the triple (A,J5. ; ,Cj), Gy(.s) or gij(t). There, Bj is the 
jth column vector in B and Cj is the i t h row vector in C. 

3 Subspaces of X 

Subspaces are a geometrical construct which is used to divide up a vector space ac­
cording to properties of its elements like controllability and observability. Subsystems 
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of a multivariable system are also associated with subspaces and thus, the same frame­
work can be used to analyze the relationship between subsystems in terms of system 
properties. Thence, subspaces can be used in interaction analysis of multivariable 
systems. 

In order to characterize subspaces that are associated with subsystems of (6), the 
indices i and j are used, e.g. X\2 would denote the state space of the scalar subsystem 
from input 2 to output 1. 

3.1 Controllable subspace of X 

The state vector x(i) is governed by the differential equation (6a). Thus the state 
impulse response matrix can be given as 

X(t) = [Xx(t) X2(t) ... Xm(t)} (9) 

where Xj(t) = eAtBj is the response to a Dirac delta impulse in Uj(t) wi th x(t\) = 0. 
Accordingly, the state impulse response matrix in the frequency domain is obtained 
as 

X(s) = (si - A)~lB (10) 

According to [15], the controllable subspace Xc is the subspace of X of least dimension 
containing the range of the state impulse response function X(t). The controllable 
subspace that is associated with input j is denoted XCj. 

Applying the definition of the gramian (4) to X(t) the controllability gramian is 
obtained as 

r c = f 2 eAtBBTeATtdt (11) 
Jti 

In the frequency domain, the controllability gramian can be defined by 

1 fjoc' 

r c = —J (si — A)~1BBT(s~I — AT)~1ds (12) 

where s denotes the complex conjugate. 

För stable systems, the controllability gramians in time domain and frequency domain 
are connected via Parseval's equality and yield the same result. The controllability 
gramians for individual inputs are then given by 

Tcj = f2eAtBjBjeATtdt 
Jti 

= / (si - A)~1BiB((si - AT)~1ds 

95 



A Note on Gramian-Based Interaction Measures 

In case of a stable system it can be shown by partial integration that the gramian 
satisfies 

where [11,12] is set to [0,00]. 

From Lemma 1 follows that a basis for XCj can be found via the eigenvector/eigenvalue 
decomposition of the controllability gramian TCj, where the eigenvectors are denoted 
a.j. Only the eigenvectors associated with the non-zero eigenvalues are considered and 
they are sorted according to the size of the eigenvalues. 

XCj = span {cijr\r — 1 . . . dirn(XCj)} 

According to (5), the controllability gramians of two state space realization are con­
nected via the transform matrix T as 

r ' = 7 T T T 

where T ' • is the controllability gramian of the transformed system. 

3.2 Observable subspace of X 

The characterization of the observable subspace can be done in a similar manner as 
for the controllable subspace. Thus, some steps in the derivation are superficial for 
the presentation. 

When a state vector x(t) is observable, then i t can be reconstructed from the output 
vector y(t), which is governed by both (6b) and (6a). The output impulse response 
matrix to an initial condition Xi(tx) = 1 with u(t) = 0 can be found as 

Y(t) = [Y1(t)Y2(t) . . . Yn(t)] (13) 

where Yi(t) — CieAt. Clearly, the Laplace transform of Y(t) is given by Y(s) = 
C (si - A)™ 1. 

In the case of observability, i t is inquired what state function gives rise to the measured 
output, which is the dual problem to controllability. Therefore, the row space of Y(t) 
or Y(s) has to be analyzed. Again according to [15], the observable subspace X0 is the 
subspace of least dimension containing the row space of the output impulse response 
matrix Y(t). The observable subspace that is associated wi th an individual output is 
denoted X0;. 
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Analogously, the observability gramians are given by 

eAltCTCeAtdt 

i 

2 7 T 7 

rjoo 
/ ( s i - A T y 

J-joo 
-lCTC{sI- A)- •Us 

rt'2 

r - - /„ e A T t C f C i e

A t d t 

i 
/ ( s i - A T y -A)- 'Us 

Applying the eigenvector/eigenvalue decomposition the eigenvectors bi of Foi are 
found and a basis for Xoi is constituted by the bi associated wi th the r non-zero 
eigenvalues. One can write 

X0i = span {b.jr\r = 1 . . . dim(X0i)} 

Again, the observability gramian is changed with the application of the similarity 
transform and T'oi of the transformed system is given as 

r^ = r - r r o i r - 1 

3.3 Controllable and observable subspace Xc0 

The controllable and observable subspace is the intersection of the observable subspace 
and the controllable subspace, namely Xco — Xc D X0. 

As already known from the minimal realization theory [13] the subspace Xco is asso­
ciated wi th a realization of (6) that has the same input-output behavior with least 
order. Using e.g. the Kaiman canonical decomposition [ 2 2 ] a realization with Xco as 
state space can be extracted. 

The subspace XCOij is then related to a minimal realization of the scalar subsystem 
between input j and output i, A characterization of the subspace can be obtained 
from the associated controllable and observable subspaces. 

The subspaces XCj and X0i are spanned by { o j i , . . . , ajq} and {bu,..., & i r } , respec­
tively. Vectors that lie in the intersection of the two vector spaces can be parameter­
ized in both bases simultaneously. 

q r 

x(tp) = 2J a j a X a = djßßß, ti < tp < t% 
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The condition can be rewritten to 

• • • aJQ hi ... bir] 
A 

= 0 (14) 

T 

According to [17], a basis for the intersection can be found by deriving a set of linearly 
independent vectors that lie in the null space of T. Thus, (14) needs to have non-
trivial solutions. 

I f X c m j ^ 0 then the output i is affected by the input j. Furthermore, if there is an 
input r wi th r ^ j for which X c o l r ^ 0, then there are two channels that affect each 
other in the multivariable system and thus, interaction is present. Consequently, the 
intersection of controllable and observable subspaces contain information on interac­
tion. 

4 Gramians and the Hankel operator 

Generally, the input/output behavior of a linear causal system without direct term 
can be described by a Hankel operator. I t is defined by 

Applying the bilateral Laplace transform to (15) a frequency domain representation 
of the Hankel operator can be derived. The Hankel operator then becomes a strictly 
proper transfer function matrix. 

When a general transfer function matrix G is given, the non-causal and direct part 
of the transfer function matrix need to be removed. Introducing the orthogonal 
projection P : £ 2 (—oo, co] i—• £ 2 [ 0 , 0 0 ) and applying it to G the Hankel operator can 
be stated as 

There, the spaces H.^ and H2 are the counterparts of £ 2 ( - o o , 0 ] and £ 2 [ 0 , oc) in the 
frequency domain, respectively. 

Furthermore, the adjoint of the Hankel operator can be defined as 

£ 2 (—oo,0] h - > £ 2 [0 ,oc ) 

f jl^Ce^-^Bu^dr t>0 

X 0 °° t < 0 
(15) 

p{gu), with u e ni 

£ 2 [0 , co ) h ^ £ 2 ( - o c , 0 ] 

(16) 
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Singular values and Schmidt pairs of the Hankel operator can now be derived from 
^ g ^ g - The Schmidt pairs are a generalization of eigenvectors and ^ * g ^ g can be 
interpreted as a generalization of a gramian. Thus, two operators can be defined in 
terms of the Hankel operator and its adjoint 

: £ 2 ( - o o , 0 ] i-> £ 2 ( - o o , 0 ] 

F*u = * * * 3 u (17a) 

: £ 2 [0 , co ) i -> £ 2 [0 ,oo ) 

Y%u = Vg*gu (17b) 

When (17a) or (17b) are applied on a Dirac delta impulse function and the resulting 
functions are evaluated at 0, the following gramians can be obtained. 

f' oo 
T m = / BTeATtCTCeAtBdt 

Jo 

= BTr0B 

r o u t = / CeAtBBTeATtCTdt 
Jo 

= CTCC
T 

These gramians can be used to derive bases for the range or row space of the impulse 
response function g(t). Descriptions for the frequency domain can be obtained as 
well, but are omitted here. 

In contrary to the controllability and observability gramians, T i n and T o u t do not 
depend on the choice of the state vector and are directly related to the ?i 2 -norm via 
the relationship 

| |G(«) | | 2 = \Jtr(BTT0B) = ytr(CTcC
T) 

When scalar subsystem are analyzed, the gramians T'out and r,„ reduce to scalars. 
Naturally, if r o u t j j = CiTCjCf is different from zero, then the output i is affected 
by the input j. Thence, interaction can be expected i f there is at least another input 
r wi th Tout.ir 7̂  0. Similar statements can be given for Fj„. Of course, for the 
subsystems one can derive subspaces of y, but these subspaces are all either one 
dimensional or the null space. Thus, sufficient information is already provided by the 
gramians. 

5 Quantification of interaction 

Clearly, gramians are a useful tool to derive geometrical and quantitative information 
on multivariable system. From gramians subspaces can be parameterized and whilst 
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they are closely connected to system norms. Thus, a quantification should be derived 
from the gramians. 

Interaction measures are usually purpose dependent tools, which makes them hard to 
compare. Measures that are suited for decentralized control structure design, usually 
do not need to be effective tools for partial multivariable control structure design or 
for prediction of interaction in the closed loop. Thus, the quantification discussed 
here, is aimed for decentralized control structure design. 

When a decentralized controller is designed, the choice of the measurement/actuator 
pair is a crucial task. The achievable performance of the closed loop system usually 
depends on this choice. For this end, it is necessary to identify the combinations 
where the actuator has significant impact on the measured output. 

In [20] and [5] the proposed gramian based measures are applied on the scalar subsys­
tems of a multivariable process. Thereby, every measurement/actuator combination 
is tested for its viability to control the measured output. The advantage of gramian 
based measures is their ability to judge the overall dynamics of a combination of 
frequencies and not only in a very narrow frequency band, e.g. at steady state. 

Two well-known system norms that can be directly derived from the gramians are the 
Hankel-norm and the ?i2-norm 

\\G(s)\\H = v W W 

| G ( * ) | | A = Jtr(BTT0B) = Jtr(CTcC
T) 

Although the Hankel norm is derived from the gramian product, which does depend 
on the state vector choice, the eigenvalues of the product do not depend on the chosen 
state space realisation. Moreover, i t relates to the Xco subspaces of the state space, 
and thus is suited as a quantification. 

Using the gramian product the Woo-norm can be bounded according to [22] in the 
form 

\\G{S)\\H < I r ø l U < 2 ^ v / ^ ( r c r 0 ) ^ p ( i l 0 0 

where <7j(r cr o) denotes the eigenvalues of the product. 

In [20] the normalized Hankel Interaction Index Array (HI IA) was suggested to solve 
the measurement/actuator pairing problem for decentralized control 

rv i \\Gjj(s)\\H r i s , 

^ - Eq,\\GQr(s)\\H

 ( 1 8 ) 

Using the above results, the HI IA can be generalized to the use of different gramian 

100 



Industry Applications of Multivariable Control 

based norms, namely 

, y , \\Gjj{a)\\2 f , 
WUi - ^ 1 1 ^ , „ M I . ( 1 9 ) Zq,r\\G qr\ 

[ E j = l | G u ( * ) I L (20) 

E ^ I K V t ø l l « , 

The generalized measures have the same properties as the original H I I A . Still, the 
interaction measures need to be validated, in order to see the effect of different norms 
on the measurement/actuator pairing. 

As the matrix D is not considered in the computation of gramians, any gramian 
based measure has the drawback of ignoring a direct term. In other words, plants 
with G(oo) ^ 0 have an HIIA which does not reflect that part of the dynamics. In 
cases, where the interaction is purely caused by the direct term and not by the causal 
part of the dynamics, the indications derived from the H I I A might be wrong. 

The problem can be solved for the 7i 2-norm based H I I A by considering the direct 
term in the computation of the system norm. The needed modification is rather easy 
implemented in (19) 

l y ] [jgWila + | |G i J (oc ) j | 2 

[ £ r , , l | G r 9 ( s ) | | 2 + | | G r , ( 0 0 ) | | 2

 1 > 

where the norm on the direct term is simply the 2-norm for matrices. 

The new measures can now be used to find appropriate measurement/actuator pairs, 
according to the methodology described in [20]. 

5.1 Weighted gramians and filtering 

Not in all application it is desired to judge the overall dynamics but instead focus on 
certain frequency regions. Especially, if the multivariable system has largely varying 
dynamics for different frequency bands. 

In [19] i t has also been pointed out that interaction measures should considered fre­
quency regions where control is active. Hence, filtering should be applied and there 
are two different kinds of approach. Firstly, the filter dynamics can be augmented 
to the system dynamics, either at the input or the output side of the multivariable 
system. This approach is utilized in [20]. Secondly, a weighting function that corre­
sponds to the filter dynamics can be introduced in the computation of the gramians, 
which is discussed here. 

Assuming a scalar causal filter with the transfer function F(s) is used and a minimal 
realization of the filter is given as 

F ( s ) = C f ( s I - A f ) - i B f + Df 
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The filtered state impulse response function can then be expressed by 

Xf{s) = X{s)F(s) = (si - A)~lB (Cf(sl - A f ) - l B } + Df) 

and the resulting controllability gramian is obtained as 

r ' 
i 

2nj 

1 

X(s)F(s)F(s)XM(s)ds 

J O O 

X(s)XH(s)\F(s)\2ds (22) 

where XH(s) denotes the complex conjugate transpose of X(s). Clearly, the gramian 
of the filtered system can be directly obtained by introducing a weight into the con­
trollability gramian. Thus, the weight provides an extra degree of freedom into the 
criteria. 

The filtered controllability gramian can be evaluated as the upper left submatrix of 
the Lyapunov equation [18] 

' A BCf ' ' H r 1 2 " i " rf r 1 2 " A BCf 
T 

- BDf - - BDf -
_ 0 Af r 2 i r 2 i - T r 2 i r 2 i 0 Af . B f . 

(23) 

Resolving all matrix multiplications, (23) can be rewritten into four dependent matrix 
equations 

- ( B C f T 2 l + T 2 1 ( B C f ) T ) (24a) 

-BCfT22 (24b) 

- T 2 2 ( B C f f (24c) 

(24d) 

AT{ + T {A1 

AYV2 + r 1 2A" 

A/r 2 1 + r 2 1 A
7 

AfT22 + T22Af - B f B j 

As Ti2 = T 2 1 , (24b) and (24c) are equivalent. Consequently, three equations have to 
be solve in order to obtain a solution for F[ via (24). 

Obviously, (24a) and (24d) are Lyapunov equations, while (24b) is a Sylvester equa­
tion. In order that the equations have a unique solution, the matrix Af of the chosen 
weighting function needs to fulf i l l certain requirements. 

First, \i(A) and ßi(Af) denote the eigenvalues of A and A f , respectively. Then 
according to [10], the Lyapunov equations have a unique solution i f and only i f Aj(A) + 
Xj(A) 0 , V i , j and Pi(Af) + ß j ( A f ) ^ 0,Vi, j. A unique solution for the Sylvester 
equation is obtained if and only if \(A) - I - f i j ( A f ) ^ 0, Vi, j . This implies, that for a 
stable multivariable system any stable weighting function yields a unique solution for 
the equations and thus for the gramians. 

Clearly, the size of Tc is maintained for F{ and thus, only the criteria is changed 
and not the multivariable system. For the weighted observability gramian F£ similar 
equations can be stated. 
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In the time domain, filtering wi th F(s) connotes convolution with the impulse re­
sponse function f ( t ) . Since gramians are directly connected with the inner product 
defined in the function space, the introduction of the weight f ( t ) leads to the weighted 
inner product. 

m ) , at))f = f 2 f 2 ! " at - ,M)6{ß)f{v)f{t - vWdvdt (25) 
Jtx Jt! Jti 

where q>(t) and £(t) are vectors in weighted £?> [ t l , t2). I t can be seen that the standard 
scalar product is obtained if the impulse response function of the filter is a Dirac delta 
impulse f ( t ) = 6(t). 

Due to the convergence requirement of the integrals, the weighting function should be 
chosen so that the cascaded system, scalar filter and multivariable system, are strictly 
proper. Thus, the scalar filter can be used to bound the integrals, which enables the 
application of the criteria on multivariable systems that are not strictly proper. 

The use of weighted gramians as underlying structure for gramian based norms leads 
to different results than augmenting the multivariable system with additional filter 
dynamics. Thus a direct comparison of the two concepts is not possible, see Ex­
ample 2. Additionally, through the weighting functions model uncertainties can be 
considered in the interaction measures, see Example 1. A drawback of the weighted 
gramians approach is the restriction to scalar filter functions. 

6 Examples 

The aim of the examples is to illustrate the usage of the gramian-based measures on 
a real-life process and on a discrete time example. The gramian based measures are 
used to find appropriate measurement/actuator pairs for decentralized control. 

First, the linearized physical model of a coal injection vessel, which is an example for 
a continuous time 2 x 2 servo system, is studied. Secondly, the 3 x 3 system from [20] 
is revisited and the generalized versions of the HI IA are applied. 

The examples are examined in the following way. First, the dynamic RGA for the 
process is analyzed and the pairs whose elements have the closest value to 1 are chosen. 
Then, the gramian based measures are computed with no filtering according to (18), 
(20) and (21). Pairs that yield the largest sum are chosen and compared with the 
RGA based choice. Since in both examples filtering is needed, appropriate filters are 
chosen and the gramian based measures are computed via weighted gramians (23). 
Finally, the performance of the measures is evaluated according to the correctness of 
the indications. 

Example 1 (Coal injection vessel). The coal injection vessel is a pressurized 
multivariable tank system which is discussed in [12], [1] and [2]. There, models for the 
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10"6 IO"4 10"2 10"6 10"4 1Cf2 

frequency frad/sec) frequency (rad/sec) 

Fig. 1: Real part of the RGA for the coal injection vessel over frequency. 

process are derived and successfully used for the design and analysis of multivariable 
controllers and a gas-leakage detection system. 

A linear physical model for the coal injection vessel is given by 

x(t) 

Vit) 

1(T 
-0.3234 0.3604 
0.2128 0.2963 

x(t) 
-0.4878 
0.5721 

0.6816 
-0.3043 

-0.8379 
-0.0237 

0.6477 
-0.0198 

x{t) 

u(t) (26a) 

(26b) 

where the input u(t) is the opening of the pressure control and flow control valve in 
respective row. The output y(t) consists of the pressure in the vessel and the net 
weight, again, in respective row. 

Fig. 1 shows a plot for the real parts of the RGA elements over frequency. Clearly, 
the measurement/actuator pairing changes from anti-diagonal to diagonal from low 
to high frequencies. Drawing conclusions on the pairing from the static RGA, the 
anti-diagonal pairing should be favored, which means the pressure is stabilized with 
the flow control valve and the weight is controlled wi th the pressure control valve. 
According to knowledge of the process, this is an unconventional choice. 

Computation of the gramian based interaction measures Ejr , Ea, E ^ yields the 
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following arrays 

E f f 

E 2 

y 

0.3740 0.5297 
0.0500 0.0463 

0.4676 
0.0133 

0.5043 
0.0148 

0.4680 0.4676 
0.0335 0.0309 

First of all, the gramian based measures do not differ much, although different norms 
were used. When a pairing decision should be taken according to E # and E 2 the 
anti-diagonal pairing is favored again, while a distinction based on Eoo cannot be 
made. Thus, more knowledge of the process is needed to make a clear decision. 

Due to the character and operation of the coal injection process and model uncertain­
ties, the linear model is not reflecting the plant dynamics in frequency ranges below 
10™4 rad/sec. Therefore, high pass filtering should be applied. 

In order to avoid non-strictly proper weighting functions, the following band pass 
filter is chosen instead. 

F(s) 
+ 2.02s3 + 1.04s2 + 0.0202s + 0.0001 

The filter has the break frequencies 0.01 rad/sec and 1 rad/sec. Using the filter as 
weight in the gramians, the H I I A are recomputed 

E H 

E 2 

Sno 

0.5001 0.4931 
0.0003 0.0065 

0.5002 
0.0002 

0.5001 
0.0004 

0.4931 
0.0065 

0.4930 
0.0065 

Obviously, the gramian based measures have changed and now Eff w E 2 ss Er». 
In all three cases the diagonal pairing should be chosen for decentralized control. 
According to knowledge on the process the diagonal pairing should be favored and 
has been successfully used for decentralized control of the process. • 

Example 2 (Discrete time 3 x 3 system). The multivariable system is given in 
the transfer matrix representation 

G(z) = 

-0 .79872+0.7673  
2 - l . 5 7 5 2 + 0 . 6 0 6 5 

0.1813  
z-0.8187 
-0.1814 

2-0.7408 

0.04758 
2-0.9048 

1.5172-1.457 
-1 .4892+0 .5488 

0.2592 
2-0.7408 

-0.09516 
2-0.9048 
0.09063 

2-0.8187 
2.1632-2.077  

! - l .4112+0.4966 J 

(27) 
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10"2 10° 10"2 10° 1Cf2 10° 
frequency (rad/sec) frequency (rad/sec) frequency (rad/sec) 

Fig. 2: Real part of the RGA for the 3 x 3 example over frequency. 

From Fig. 2 it is clear that for low frequencies the anti-diagonal pairing should be 
favored, but the diagonal pairing should be chosen for higher frequencies. In [20] it 
is shown that the anti-diagonal pairing decision leads to unstable controllers and has 
to be avoided. 

Again, the gramian based measures can be computed and yield 

0.0295 0.0589 ~ 
0.2437 0.0309 
0.0645 0.3229 

0.0165 0.0329 " 
0.2675 0.0233 
0.0569 0.3678 

0.0214 0.0428 " 
0.2733 0.0224 
0.0469 0.3687 

E f f = 

S 2 = 

0.1428 
0.0617 
0.0451 

0.1488 
0.0465 
0.0398 

0.1468 
0.0449 
0.0328 

I t is rather obvious, that the diagonal pairing yields the highest values and thus, 
is the correct choice. When it is necessary to focus on the low frequency region, 
the low pass filter F(z) = g 9 is applied. Here, the gramian based measures are 
re-computed firstly, with the weighted gramians and secondly, wi th additional filter 
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dynamics augmented to G(z). 

Weighted gramians: 

G[z) augmented wi th 

" 0.1488 0 0654 0 1309 

ZH = 0.0721 0 2182 0 0360 
0.0358 0 0512 0 2416 

" 0.1372 0 0564 0 1128 

E 2 = 0.1155 0 1557 0 0577 
_ 0.0815 0 1164 0 1668 

" 0.1540 0 0640 0 1279 

E q O = 0.0704 0 2206 0 0352 
0.0350 0 0501 0 2428 

filter dynamics: 

" 0.1223 0 0705 0 1409 

E H = 0.1368 0 1170 0 0684 
_ 0.0945 0 1351 0 1146 

r 0.1372 0 0564 0 1128 

£ 2 = 0.1155 0 1557 0 0577 
_ 0.0815 0 1164 0 1668 

" 0.1268 0 0675 0 1351 

£00 = 0.1277 0 1322 0 0638 
0.0873 0 1247 0 1349 

In case of the weighted gramians the diagonal pairs should be chosen, although the 
distinction is not that clear anymore. I t can also be observed, that the HI IA for the 
augmented system differ much and, as already stated in [20], a distinction from E # 
can not be made. Clearly, E q o does not improve the situation. 

In contrary, E 2 still indicates a diagonal pairing. An evaluation of the sum of the 
elements for the different pairings shows, that the diagonal pairing accounts for 0.4597, 
while the anti-diagonal yields a value of 0.3558. • 

From the examples i t can be seen, that the generalized gramian measures can be used 
to improve the decision process for measurement/actuator pairing. Still knowledge of 
the process and model uncertainties is needed to make the correct choice for weighting 
functions. 

7 Conclusions 

The theoretical background for the gramian based interaction measures is discussed. 
It is shown that the gramian based approach to interaction is closely related to inter-
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sections of subspaces of function spaces. The relation between the Hankel operator 
and the gramian based measures is clarified and an extension to the use of different 
norms is given. 

Moreover, i t can be suggested that filtering of model dynamics should be introduced 
in the tool by the use of weighting functions. Thereby, the model dynamics are not 
augmented with additional dynamics and model uncertainty can be considered. 

The measures are then applied to two examples, where the gained improvements via 
the use of different norms is rather small, which stresses the Hankel norm as a good 
choice. Furthermore, the use of the weighted gramians in the underlying computation 
has shown to yield correct results. 

Although the measures give a solution for the pairing problem in decentralized control 
the controller is not yet considered in the measures, which could lead to further 
improvements and understanding of interaction in multivariable systems. I t should 
therefore be investigated how gramians in closed loop system relate to those in the 
open loop case. Then, it should be possible to integrate interaction measures directly 
into the controller design process. 
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Abstract 

This paper deals with interaction in multivariable control systems and the im­
provement of control structures from a closed loop perspective. A dynamic 
quantification of interaction in a closed loop system is derived and validated 
through an example. Then, the structural mismatch of a decentralized control 
scheme is quantified in terms of transfer function matrices. Norms of these ma­
trices are used to derive indications for possible control structure improvements. 
I t shown that indications can be derived from process data, by means of system 
identification. Finally, the method is applied to the control of a coal injection 
vessel, where the interaction measure is used as a validation criterion. 

1 Introduction 

Traditionally, the control structures for large scale industrial plants are dictated by 
the plant vendors. During the life cycle of an industrial plant, physical changes are 
incorporated in order to fu l f i l l new standards and improve plant performance, i.e. 
rectified energy conservation. 

Usually, the control system is left unchanged, even though structural changes in the 
plant might alter dynamic couplings in process variables. Such changes can lead to 
deteriorated plant performance which can not be compensated for by re-tuning of the 
existing control scheme. Only structural changes in the control system can restore 
plant performance or might even improve i t . 

Assessment of interaction present in a control system from an open-loop perspective 
has been dealt wi th for a long time. Both steady state and dynamic measures for 
interaction have been suggested. The first proposed interaction measures were the 
Rijnsdorp interaction measure [22] and the relative gain array (RGA) [4]. These 
measures are derived from steady-state gain information and are related to each other 
via a non-linear map [10]. Ever since, the RGA is widely used in industrial applications 
and has been extended to a dynamic measure [12]. Further development of the RGA 
became necessary due to the introduction of more advanced control structures. This 
led e.g. to the introduction of the block relative gains (BRG) [19] and partial relative 
gains (PRG) [11]. Thereby, it became possible to get indications for interactions 
in multivariable control systems with control structures different from decentralized 
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control. Newly developed measures are a measure based on Hankel singular values 
[6] and the Hankel interaction index array [26], which makes use of the Hankel norm 
of the scalar sub-systems. Both measures analyze sub-systems of the multivariable 
plant in order to get insight into the structure and thus draw a-priori conclusions on 
interaction in the closed loop system. 

A drawback of the above interaction measures is that stability of the closed loop sys­
tem is not guaranteed. On the contrary, the Niederiinski index [21] gives a steady 
state stability condition for decentralized controllers. Later the ^-interaction mea­
sure [10] was introduced as a tool providing information on closed loop stability and 
performance loss due to control structure selection. Another stability condition for 
decentralized controllers that considers RGA and Niederiinski index is discussed in 
[5]. 

A common result is that the control structure selection has a large effect on the 
closed loop behavior of multivariable control system. Thus, suitable tools are needed 
to select the appropriate control structure. Since the decentralized control structure 
is widely spread and often preferred by plant operators due to its simplicity in design 
and maintenance, many tools were created to solve the variable pairing problem. 
Criterions that rely on the RGA and the Niederiinski index are presented in [29, 
23]. A Variable pairing criterion that is based on Rijnsdorps interaction measure is 
discussed in [28]. There, the relative interaction array (RIA) is introduced. In [14] an 
algorithmic implementation of a pairing criterion using RGA and RIA is presented. 
A method that combines the ideas behind the RIA and the ji interaction method 
is derived in [8], where an attempt is made to introduce dynamic interaction and 
controller structure in the / i synthesis framework. And finally, the Hankel interaction 
index array can also be effectively used to solve the pairing problem. 

Apparently, the focus has been on decentralized control structures and only li t t le has 
been suggested for more complex control structures. The fi interaction measure is 
used in [15] to derive methods to screen control structures for multivariable systems. 
There, tools that are dependent as well as independent of the design approach are 
suggested. Another tool that can consider complex control structure makes use of the 
Hankel singular values and derives so-called participation matrices [6]. 

Still, there is a common problem. A dynamic description of interaction that considers 
the controller is only available for a special case, i.e. two inputs and two outputs 
system wi th a decentralized controller [27]. Thus, a generalization to larger systems 
and different control structures is needed. Then, interaction properties of different 
control structures become comparable and can be used as a controller design criterion. 

Moreover, all the given measures and methods rely on either empirical or physical 
dynamic models for the processes at hand. When these models are obtained from 
closed loop process data, theyr are often uncertain and make the above mentioned 
measures unreliable or hard to interpret. Therefore, the closed loop dynamics should 
be evaluated for its interaction properties. Then, controller and process are jointly 
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r • O - ^ — • 
- A 

K 

di 

G 

do 

<X n 

Fis. 1: General multivariable control system 

considered and indications from the interaction properties for controller improvement 
can be derived. 

The paper is arranged as follows. Firstly, some known results are summarized and 
the terminology important for the sequel is introduced in Section 2. Then a dynamic 
description of interaction is derived in Section 3 that quantifies the interaction in 
the closed loop system. The measure is validated through an example and then 
used as a validation criterion for control structure improvements in the case study. 
In Section 4 a method is proposed that evaluates interaction properties in terms of 
complementary sensitivity functions of the control system. The section is followed by 
a case study in Section 5, where the method is applied to a real-life example. Finally, 
some conclusions and an outlook are given. 

2 Preliminaries 

A multivariable control system with process G(s) and controller K(s) is depicted in 
Fig. 1, where G(s) has n actuators and m measurement outputs. In the sequel, if not 
stated otherwise, square systems are considered, namely n = m. 

Thus, G(s) and K(s) can be given in transfer function matrix notation: 

G(s) 

Gn(s) 

Gmi(s) 

Gln(s) 

K(S) = 

Kn(a) Klm(s) 

Knl(s) ••• K„m(s) 

For the sake of simplicity, the Laplace operator s wil l be dropped in the sequel. Fur­
thermore, Gy denotes the transfer function from input Uj to output and similarly, 
Kji denotes the transfer function from control error to the actuator Uj. The index 
j and i refer to the corresponding elements in the vectors u, y and e. 
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Fig. 2: Simplified multivariable control system for a 2 x 2 process under decentralized 
control 

For the closed loop system the complementary sensitivity transfer matrix T and the 
sensitivity transfer matrix S are defined as 

T = (I + GK)~1GK (1) 

S = I - T — (I + GK)~l (2) 

Both T and S are transfer matrices in the closed loop system depicted in Fig. 1 and 
reflect the relative sensitivity of the closed loop system to changes in G. The following 
relationships can be easily verified 

y = Tr-Tn + SGdi+Sdo (3) 

e = Sr - Sn - SGdj - Sd0 (4) 

u = KSr-KSn-KSGdi-KSdo (5) 

When the multivariable system is under decentralized control, i.e. the controller K 
is diagonal and the process G is square, the cause of interaction is the off-diagonal 
elements in the process G. Fig. 2 shows a simplified block diagram for a 2 x 2 process. 
Suppose, the controllers K~n and K22 a r e designed to achieve a certain behavior of y\ 
and 2/21 respectively, and the elements G12 and G2i are neglected during the design. 
Then the channels (e^ t / i ) and (e2,y2) are used to specify the performance of the 
control system and the design yields two sub-systems A and B. 

Depending on the structure of G, the sub-systems are connected wi th each other and 
interaction of the sub-systems occurs. Then, two case have to be considered: 

1. There is a path from A to B, see Fig. 3a. 
Then A acts as a disturbance on B, but not vice versa. Usually, B can be 
designed so that the effect of A is attenuated, see [20]. 
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(a) (b) 

System A 

t 

System B 

System J i 

* 
i 

' <--. ,'*•--' 
System B 

Fis. 3: Effects of interaction in multivariable systems 

D kj 

* 0 >Vj 

Fig. 4: Representation of interaction 

2. There exists a loop from A via B back to A, see Fig. 3b. 
Then the dynamics of A are altered, which can have an effect on the stability 
of the closed loop system. This effect can first be studied after A and B are 
designed, which complicates controller synthesis. 

The effects from paths and loops for the system in Fig. 2 can be described by transfer 
functions. The loop effect for channel ( e i , y i ) is described by the transfer function 
between the points (1,2) and the path effect for channel (e2,'(/2) is described by the 
transfer function between the points (1,3). This decomposition is suggested in [27], 
and yields a decomposed system for the multivariable control system, see Fig. 4. 
There, Ajj and Dkj denote the effects from loops and paths, respectively. 

I t can be verified that the process transfer function matrix has a triangular structure 
if there are no loops. Then the sequential loop closing method [18, 23] yields good 
design results for decentralized controller structures. 
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3 Quantification of interaction 

In [27, 28] a dynamic description of interaction in a 2 x 2 multivariable control syrstem 
is derived for a decentralized control structure. A generalization of this approach to 
arbitrarily sized systems and different control structures yields a design criterion for 
control structures and a quantification of the overall interaction. 

3.1 Interaction transfer function matrix 

Clearly, the transfer functions A, and D. describe the absolute interaction in a mul­
tivariable control system. For a decentralized control system these scalar transfer 
functions can be arranged as the following square transfer function matrix 

Au 

D21 

Du 
A22 

A i l Dn2 

Dm 

D2n 

4 

As A, and D, are functions of G and K, T is also a function of G and K. I t 
is then denoted T(G7K) in the sequel and called the interaction transfer function 
matrix ( ITFM) . Moreover, the I T F M depends on the choice of the channels and fully 
describes the interaction effects in a multivariable control system. 

Using the decomposition in Fig. 4 the output y is given by 

(dmg(Gn.,--.,Gnn) + T(G,K))u (6) 

According to [23], if the multivariable process is not properly scaled the interaction 
terms become hardly comparable wi th each other. Therefore, the relative interac­
tion is derived by weighting the absolute interaction terms wi th the inverse of the 
corresponding process dynamics [28] 

u i ^P- otherwise 

Accordingly, $ is then the relative I T F M . Clearly, T or $ are unique for a pair 
(G,K) and have to be computed anew i f the controller K and/or process model G are 
changed. Subsequently, no conclusions on the I T F M can be drawn from the open-
loop process model without setting requirements on the controller. This suggests an 
iterative procedure, where the I T F M is used as a design criterion. 
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3.2 I T F M for arbitrary system size 

In the 2 x 2 case, the elements of T can be easily obtained using the block diagram 
Fig. 2. Already for a 3 x 3 system, the derivation from a block diagram becomes 
tedious. Thus, a general way of computation based on matrix manipulation is needed. 

Introducing block transfer matrices, the transfer matrices G and K can be partitioned 
as follows 

Gl2 G\n 

G21 G22 G 2 „ 

G„i G n 2 Gnn 

G u G\ 2 

G'21 G'22 

r k u 0 0 

K = 
0 K22 

0 

0 0 

0 
0 K'22 \ 

Thereby, one gets back to a 2 x 2 case, where some elements are transfer function 
matrices. Without loss of generality, the derivation is only pursued for the first column 
and row. The terms A n and £> 2 1 = [D2i • • •Dnl]

T can be derived using the block 
diagram Fig. 2 as 

A n = -G'12K22(I + G'22K'22)
 1G'2i 

D'21 = (^ + G 2 2 A ' 2 2 ) - 1 G 2 1 

According to Fig. 4, the response y on the input «i can be reconstructed from 

G n + Au 

D'n 21 

(J) 

(8) 

(9) 

Thus, the first column of T ( G , Å') is derived. Consequently, n iterations are required 
to completely obtain T (G , K). Instead of computing T columnwise, the rows of 
T(G, K) can be obtained by deriving D'12 = [Di2 ... DXn] as follows 

D'n = (l + G'nK'nr
1G'12 (10) 

Finally, $ can be derived from T according to the definition. 
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Applying a system norm to T or $ a measure for the amount of interaction in the 
multivariable control system determined by G and K is found. Since interaction is 
only of interest in frequency bands where the actuator has significant energy, i.e. sin­
gular values of G and K are larger than 1, the interaction measure should reflect that 
[25, 7]. 

One solution would be to introduce a filtered version of the interaction measures. 
Introducing the scalar bandpass filter F , the filtered I T F M are obtained as 

T = TF (11) 

«I = $ F (12) 

A drawback of this approach is the augmenting of the I T F M with additional filter 
dynamics. 

Another solution is to apply weighted system norms [3]. There weighted gramian 
based norms are suggested to introduce filtering as an additional parameter in the 
computation of system norms. 

3.3 I T F M for multivariable controllers 

Multivariable controllers are usually designed to exploit the multivariable nature of 
the process in order to improve performance of the closed loop system. Since the 
off-diagonal elements in the controller transfer function matrix are non-zero, the con­
troller contributes to interaction in the closed loop system. 

Therefore, in order to achieve a loop decomposition with multivariable controllers the 
loop transfer matrix L = GK is considered instead. Consequently, in (7), (8) and 
(10) the process transfer matrix G is replaced by L and the controller transfer matrix 
is replaced by an identity matrix I , which yields 

Au = -L'l2(I + L'22)-
lL'2l (13) 

D'21 = (I + L ^ ) - 1 ^ (14) 

D[2 = ( l + L n ) ' 1 ^ (15) 

The construction of T and <E> from the A and D terms is not affected by this change, 
and hence the above methodology applies. The absolute or relative I T F M that is de­
rived from process transfer matrix G and multivariable controller K is then a function 
of L and I , namely T(L,I) or Q(L,I), respectively. 

In many cases, the loop transfer matrix of a multivariable control system is square, 
even if the process transfer matrix is non-square. Hence, the I T F M can be derived 
even for non-square multivariable processes, which widens the application area. 

Clearly, decentralized controllers are a special case of a multivariable controller and 
thus, can be evaluated in the same framework. Thereby, it is possible to compare 
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decentralized and multivariable control structures according to interaction properties 
of the closed loop system. 

3.4 Example 

The I T F M is now derived for a multivariable system with different types of con­
trollers and compared with each other. I t is shown that the intuitive expectations are 
confirmed by the analysis of T. 

The example system and controllers are taken from [9]. Consider a two-input, two-
output multivariable system with the transfer function matrix 

G(s) = s2+3s+2 
0.75  

s 2 + 2 s + l s 2 + 5 s + 6 
(16) 

A decentralized controller is designed wi th the input/output pairings: (1,1) and (2, 2). 
The off-diagonal elements in G(s) are ignored during the design and the controllers 
are designed so that the following complementary sensitivity transfer function for the 
pairing selections are achieved 

T11(s) = T22(s) 
s2 + 4s + 9 

(17) 

The controller transfer matrix is then found as 

1 
K(a) = 

s(s + 4) 

4.5(s 2 + 3s + 2) 0 
0 1.5(s2 + 5s + 6) (18) 

If the process is non-interacting, i.e. the off-diagonal elements in G(s) are zero, then 
T becomes a zero matrix, which is due to (7) and (8). Hence, T reflects that the 
multivariable control system is a collection of scalar control systems. 

Now, the step responses of the desired control system and the real control system 
are depicted in Fig. 5. Since the off-diagonal elements are ignored during the design, 
the desired closed loop performance is not met by the control system. Obviously, the 
interaction in the control system has caused performance loss. 

Fig. 6 depicts T(GK, I ) in comparison with the loop transfer matrix GK. In the region 
where control is effective, i.e. the frequency is less than 2 rad/sec, the magnitude 
of T(GK, I ) is large and in some cases larger than the magnitude of loop transfer 
function. An analysis of the decomposed loop transfer functions shows that interaction 
has caused a reduction of the phase margin in each loop, see Fig. 7, and is associated 
with the loop effect. Thus, larger overshoots and more oscillations should be observed, 
which is reflected in Fig. 5. Consequently, a controller re-design is necessary to achieve 
performance improvements of the control system. 
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time (s) 

Fig. 5: Step response of the closed loop system. Reference input (dashed), desired 
output (dashed-dotted), real output of the control system (solid). 

From: e1 From: e2  

50 i , •—• 1 i 1 

10"1 10° 10! 102 Kf 1 10° to1 ^o2 

Frequency (rad/sec) 

Fig. 6: Magnitude of I T F M T ( G i \ , 7) (solid) and of the loop transfer functions 
(dashed) 
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Fig. 7: Bode plot for the decentralized control system. Desired loop transfer functions 
(dashed). Decomposed loop transfer functions (solid) 

Principally, there are two ways to improve the performance of the control system. One, 
the controllers are tuned so that the interaction reduces, which usually only leads to 
minor improvements. Two, a multivariable controller is designed that considers the 
couplings in the process. 

Here, the second approach is chosen to improve the performance of the closed loop 
system. The simplest choice of a multivariable controller is the same decentralized 
controller in combination with a pre-compensating steady-state decoupling network. 
In that case the new controller transfer matrix becomes 

1.8s2 + 5.4s + 3.6 1.2s2 + 6s + 7.2 ] . . 
-1.35s 2 + 4.05s - 2.7 0.6s2 + 3s + 3.6 ( ' 

Kd(s) 
1 

s(s + 4) 

Clearfy, the introduction of the steady-state decoupling network has improved the 
performance of the control system, Fig. 8. 

According to Fig. 9, the magnitude of the elements in T(GKa, I) has reduced com­
pared to the loop transfer functions, which indicates less loop interaction. Further­
more, T(GKd,I) tends to zero for low frequencies, which is an indication for perfect 
decoupling at steady state. Thus, the I T F M reflects what should be expected from 
the design approach. Although perfect decoupling is only achieved at steady state, 
a wider frequency range is positively affected by the introduction of the decoupling 
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Fig. 8: Step response of the closed loop system. Reference input (dashed-dotted), 
output of the steady-state decoupled control system (solid), output of interacting 
control system (dashed). 
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Fig. 10: Bode plot of decomposed loop transfer functions for the decoupled versus 
the decentralized control system. Decentralized control (solid), Decoupling control 
(dashed) 

network. 

A Bode plot of the decomposed loop transfer function is depicted in Fig. 10. Ob­
viously, the phase margin has increased due to the introduction of the decoupling 
network. The increase of the phase margin is also reflected in the simulation of the 
control system. 

Finally, i t can be concluded that the I T F M can be used as a design criterion for mul­
tivariable control systems. I t should also be noted, that multivariable controllers are 
usually not only meant for interaction reduction but also to make use of interaction. 
Thus, the I T F M should be considered where loop interaction should be avoided. 

4 Control structure improvement 

The most widespread control structure is the decentralized controller, due to its sim­
plicity of design, implementation and maintenance. When a decentralized control 
structure is evaluated and a performance assessment is conducted, the adequacy of 
the control structure should be analyzed at the same time. 

The analysis of the control structure should be based on closed loop contiguities and 
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consider the structural mismatch in the controller design. Implications of the analysis 
are either re-design of individual controllers or re-design of the control structure. 
The latter usually yields better results. I t has to be pointed out that the described 
methodology is exclusively aimed at the evaluation of decentralized control structures. 

4.1 Structural mismatch 

When decentralized control, i.e. K is diagonal, is applied to a multivariable process 
G the controller design is based on the model 

G ^ d i a g ( G „ , . . . , G n n ) (20) 

I t implies that the off-diagonal elements of G are small or zero, and thus have little 
effect on the closed loop performance of the control system. The structural mismatch 
between G and G is given by 

G ^ G - G (21) 

The sensitivity function matrices T and S are a function of K and G. Clearly, T and 
S coincide with T and S only if G = 0. Moreover, T and S are usually determined by 
performance specification for the closed loop system and the controller K is designed 
according to them. 

Consequently, the mismatch between f and T is caused by G or by uncertainties that 
perturb G. I f G is perturbed by uncertainties then T is also perturbed. 

Firstly, i t is assumed that there are no uncertainties in G. Then, the sensitivity 
function matrices T and S of the closed loop system can be derived in terms of S, T 
and the mismatch G. 

Proposition 1. The sensitivity function m,atri,x S can be derived in terras of S and 
a multiplicative uncertainty as 

S = {I + A ) - 1
 S 

where A = SGK. 

Proof. 

S = (I + GK)-1 

= {I + GK + GK) 1 

= { (i + GK) (S + SGK + f ) J " ' 

= (i + S G K y ^ 

• 
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Proposition 2. The complementary sensitivity function matrix T can be expressed 
in terms of T using the uncertainty term A = SGK 

T= ( / + A ) - 1 ( A + T ) (22) 

Proof. The proof follows immediately from T = I — S and T = I — S. • 

Clearly, A gives a description for the mismatch between T and T, and is denoted as 
the structural mismatch. Moreover, A has a nice structural property, which is due 
to the special structure of S, G and K. Since both S and K are diagonal transfer 
function matrices and G has zero diagonal elements, i t can be shown that A has the 
same structure as G. The elements of A are given by 

{ S.,.G,,Kj,. otherwise ^ 

Hence, each off-diagonal element in A is a filtered version of the corresponding off-
diagonal element in G 

= ^ T + t ^ T , - t h i ^ (24) 

Thus, A quantifies the effect of off-diagonal elements in a decentralized control system. 
If A is zero, then T coincides wi th T. Otherwise, a minimization of the elements in 
A minimizes the interaction in a closed loop system. 

Furthermore, the relationship (22) can be rewritten to 

AS = f - T (25) 

The output y of the desired closed loop system can be computed from y = Tr. 
Consequently, the output of AS is the residual y = y — y and A represents the 
transfer function matrix from the control error e to the residual y. Thus, A can be 
directfy retrieved from process data by applying system identification algorithms. 

Moreover, if S is close to diagonal, the off-diagonal elements can be ignored and the 
following approximation holds 

Adiag(.S') « T - T (26) 

The transfer function matrix Adiag(.S') has the same properties as A , i.e. all diag­
onal elements are equal to zero. Consequently, if (26) holds, then the residuals y 
contain information on the structural mismatch of control structure and again, the 
approximation of A can be identified from process data. 

Unti l now, uncertainties were not considered. Suppose, T is uncertain due to mod­
elling errors in G, then (25) or (26) cannot be used to describe A . I f an upper bound 
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for the uncertainty in T is given by an additive diagonal uncertainty term AT, then 
(25) can be modified to 

AS = T — T+ A T (27) 

For the approximation this yields 

A diag(S) « f - T + AT (28) 

Thus, the uncertainty term A T is reflected as non-zero diagonal elements in the 
structural mismatch. 

Consequently, the transfer function matrix T = T — T contains information on the 
uncertainty in T in its diagonal elements and on the mismatch between T and T in 
the off-diagonal elements. 

4.2 Evaluation of the mismatch 

The transfer matrix A quantifies the mismatch between T and T and can be approxi­
mation by T. Contrary to A , T additionally contains a description for the uncertainty 
in T. Thus, T should be considered as the first hand choice for the evaluation of the 
mismatch. 

Clearly, the approximation (26) has to be valid. But, if the approximation (26) does 
not hold, then due to (25), the diagonal elements in T relate to a combination of 
elements in G. Thus, the diagonal elements of T are different f rom zero, even i f 
T is certain. Therefore, the magnitude of the diagonal elements can be used as an 
indicator for the validity of the approximation. 

Naturally, the following indicator K can be introduced 

K = max f u (29) 
i N 

where A r denotes a system norm. Thereby, the indicator K considers the overall 
dynamics of the diagonal elements and can be used as a minimal threshold for the 
evaluation of T. 

When the off-diagonal elements of T are evaluated, then the following can be sug­
gested. A structural mismatch appears as a non-zero T as soon as G is non-zero. Due 
to (23), if the element in G j j has significant impact on the output, then the element 

Tij has large magnitude. In terms of system norms this means that i f \\Gij\\N is large 

then ||Ty||jv is large. Thus, the element G^- should be considered in the controller 
design. This motivates the following rule. 

Decision rule. The performance of the closed loop system can be improved by 
considering the dynamics from input j to output i in the controller design, if 

Tij n > T , i f j 
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where N is a system norm and r a threshold. • 

The quantification of the possible performance improvement of the closed-loop system 
in terms of the magnitude of Ty can be used to choose a threshold r . This unsolved 
problem has yet to be addressed. However, a lower bound for T is given by n, as K is 
an upper bound for the uncertainty in T. Thus, r can be chosen so that uncertainties 
and disturbances are not interpreted as a structural mismatch. 

For evaluation purposes the following structure array can be defined. 

Def in i t i on . Let P be an n x m transfer function matrix. The structure array <S/v(P) 
with system norm N is a real n x m matrix, where the elements are defined as 

[<5JV(F)] .̂ = [IPylljy 

• 
Now it can be concluded that from inspection of SN(T), the following conclusions can 
be drawn: 

• I f K is large, then the uncertainties in T have to be reduced by re-designing 
the individual controllers or by modifying the performance specification T. I f a 
reduction is not yield, then A has to be analyzed instead. 

• I f | |Tij | | jv > K then the dynamics of Gy should be modelled and the controller 
for multivariable system has to be designed anew. 

As stated in [25, 7], the effect of interaction on a control loop is largest in the fre­
quency region where control is active, namely in the cross-over region. Therefore, the 
evaluation of A and T should focus on this region. In [3] weighted system norms are 
suggested as a tool where certain frequency regions should be emphasized in the anal­
ysis of system norms. Hence, the structure array is preferably derived with weighted 
system norms. 

It is still an open question which system norm should be preferred in the evaluation 
of A and T. Thence, for the sequel, the W 2 - n o r m is chosen as system norm for the 

structure array. 

4.3 Identification of A and T 

When control structure evaluation is applied on-line, a model of A and T can be 
obtained by applying system identification algorithms to process data. The theory of 
system identification is well-developed and many methods for model estimation are 
available, see e.g. [24] and [16]. Moreover, implementations of these algorithms in 
Matlab are given in [17]. 

For the identification of A , the input signal vector and the output signal vector are 

chosen as control error e and residual y, respectively. Obviously, this is a closed-loop 
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Fig. 11: Schematic drawing of a coal injection vessel 

identification problem. In contrary to the identification of A , the identification data 
sets for f have open-loop character, as the input signal vector becomes r instead of 
e. Both the open and closed-loop identification problem are studied thoroughly and 
algorithms are available. A further discussion is not pursued here. 

5 Case study 

In this case study the control of a coal injection vessel is addressed. First, the coal 
injection process is shortly introduced and decentralized control of the process is pre­
sented. Second, the control structure evaluation methodology is applied to a process 
model and to process data. Finally, the control structure is improved according to 
the indications and the re-designed closed loop system is then analyzed. 

5.1 The process 

The coal injection vessel is a pressurized multivariable tank system which is discussed 
in [13], [1] and [2]. There, models for the process are derived and successfully used 
for the design and analysis of multivariable controllers and a gas-leakage detection 
system. 

In Fig. 11 a schematic drawing of a coal injection vessel is given. The process can 
be described shortly as follows. During the injection phase of the vessel, the pressure 
control valve wjv and the flow control valve uc are used to release a constant coal 
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flow from the vessel. The coal flow cannot be measured directly. The available 
measurements are the net weight nir of the vessel, which is the sum of the nitrogen 
weight TOTV and the fine coal weight mc, and the pressure in the vessel p. A linear 
physical model for the coal injection vessel for the injection phase is given by 

x(t) 

y(t) 

10 - 3 -0.3234 
0.2128 

0.3604 
0.2963 

x(t) 
-0.4878 
0.5721 

0.6816 
-0.3043 

-0.8379 
-0.0237 

0.6477 
-0.0198 

x{t) 

u(t) (30a) 

(30b) 

where u(t) = [ujv(t) ucil)}T and y(t) = \p(t) m j ' ( i ) ] . I t is important to note, that 
the model uncertainty is large for frequencies below 10~ 4 rad/sec. 

5.2 Control structure evaluation 

The conventional way to control the vessel wi th a decentralized controller is to stabilize 
the pressure by means of the pressure control valve and to retain a constant flow using 
the flow control valve. A possible controller can be given in the transfer function 
representation as 

Kis) = \ 

In Fig. 12, a simulation of coal injection vessel wi th the controller K{s) is displayed. 
First, a step in both pressure and mass is applied and later only a step in the mass 
is applied. Clearly, the control syrstem exhibits slight overshoots and retains a zero 
steady state control error. Furthermore, it can be seen that pressure loop is largely 
affected by control action in the mass loop. 

A Bode magnitude plot of A and T is depicted in Fig. 13. Clearly, the diagonal 
elements in A are zero, which is not the case for T. Since T is perfectly known, the 
diagonal elements indicate the validity of the approximation. Moreover, i t can be 
observed, that the off-diagonal elements of T and A coincide for frequencies above 
0.03 rad/sec. Consequently, approximation (26) holds for that region. 

Now the structure arrays for both A and T using the 7f2-norm are derived 

0.0026 8.0261 " 
0.0000 0.0038 

In both cases the off-diagonal element (1,2) is large compared to all the other elements. 
Moreover, the value for K is 0.0038 which is very small. Consequently, the dynamics 
from uc to p should be considered in the controller design. Intuitively, opening the 
flow control valve introduces a gas flow out of the vessel, which discharge the pressure 
control loop should compensate for. 

0.04s + 0.001 
0 

0 
- ( 2 s + 0.05) 

(31) 

5 2 ( A ) 
0.0000 
0.0003 

8.4029 
0.0000 

«52 (T) = 
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Fig. 12: Simulation of step responses of the coal injection vessel with a decentralized 
PI controller. Reference signal (dotted), output of T (dashed), output of T (solid) 
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Fig. 13: Bode magnitude plot of A (dashed) and T (solid). 
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From the analysis of S and T i t can be seen, that the cross-over region of the scalar 
control loops is between 0.01 rad/sec and 0.1 rad/sec. In order to emphasize the 
evaluation on the cross-over region, the following weighting function is chosen 

0.032s2 (s + 0.057) (s 4- 0.017) 

^ ~ (s + 0.195)(s - 0.1) 2(s - 0.01)2(s + 0.005) 

Now the structure arrays can be re-computed wi th the weighted ?i2-norm 

0.0026 9.0882 " 
0.0000 0.0037 

The usage of the weighted syrstem norms yields the same result as above, namely 
the off-diagonal element (1,2) has to be considered. Already from Fig. 13, it can be 
concluded that all elements have nearly the same break frequencies, namely about 
0.03 rad/sec. Thus, the usage of the weighted system norms lead to the same con­
clusions in this case. 

S 2 F ( A ) 
0.0000 10.440 
0.0001 0.0000 

S2F(T) 

5.3 Application to process data 

The control structure evaluation is now applied to process data from a PCI vessel 
at SSAB Tunnplåt AB in Luleå, Sweden. A decentralized PI controller is used to 
control the pressure in the vessel and the coal mass flow out of the vessel. The data 
is collected at a sample rate of 1 Hz from the plant control system. Fig. 14 shows 
measured output versus set point for pressure and coal mass flow. 

For the decentralized control system the desired closed-loop performance is given by 
f 

- _ 0.001941z+ 0.001883 - _ 0.001966z + 0.001934  
11 ~~ z2 - 1.910z+ 0.9139 ' 2 2 ~ z2 - 1.947z+ 0.9512 

Now, a model for T is derived from the process data by means of system identifica­
tion. Since input and output signals are r and j / , respectively", this is an open-loop 
identification problem. After y is computed, a model is estimated with the subspace 
algorithm nAsid. 

Then, the structure matrix of T is obtained as 

S 2 { f ) = 
1.5353 
0.1931 

14.4396 
0.0761 

(33) 

The threshold for the decision rule has to be chosen larger than K = 1.5353. Applying 
the decision rule suggests that the process coupling from uc to p should be considered 
for the control of the process, as the element (1,2) is significantly larger than n. Thus, 
the decision in Section 5.2 is confirmed by the application to process data from the 
plant. 
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Fig. 14: Collected process data during the injection phase of the PCI vessel. Measured 
output (solid), set point (dotted). 

5.4 Improved control structure 

In order to consider the dynamics from the flow control vessel to the pressure, a 
dynamic compensation that considers mass flow controller and process dynamics is 
introduced. Consequently, a triangular controller structure can be chosen as 

M s ) = -
0.04s+ 0.001 

0 
-(1.44s+ 0.036) 
- ( 2 s + 0.05) 

(34) 

A new simulation with the triangular controller (34) is performed and displayed in 
Fig. 15. Obviously, the performance of the mass loop has not changed and the perfor­
mance in the pressure loop is improved. A drawback of the improved control structure 
is a more intensive control action in the pressure control valve. In Fig. 16 it can be 
seen that the interaction in the pressure and the mass loop have reduced slightly. 
Thus, the triangular control structure improves performance and reduces interaction 
in the multivariable control system. 
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Fig. 15: Triangular controller versus decentralized P I controller. Reference signal 
(dotted), triangular controller (dashed-dotted), decentralized controller (solid) 

Fig. 16: I T F M of the triangular controller versus decentralized P I controller. Trian­
gular controller (solid), decentralized controller (dashed) 
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6 Conclusions 

In this paper interaction in multivariable control systems and the evaluation of a 
decentralized control structure from a closed-loop perspective is discussed. 

First a dynamic measure that quantifies interaction in a closed-loop system in terms 
of process model and controller is presented. The measure expresses the amount 
of interaction as the interaction transfer function matrix ( ITFM) , which is a linear 
time invariant system. The I T F M can be used to compare different controllers for 
a multivariable syrstem with respect to the interaction that the closed-loop control 
system exhibits. An example is given that illustrates the capabilities of the I T F M . 
The I T F M is used to display the reduction of interaction due to the control structure 
re-design. 

Then, based on the structural mismatch between desired control loop design and 
achieved control loop design a method for the evaluation of a decentralized control 
structure in multivariable control is derived. I t is shown that the structural mismatch 
can be described as a transfer function matrix that directly relates to the ignored 
off-diagonal elements in the process model. The system norm of the elements in the 
transfer function matrix are arranged in a so-called structure array. An interpretation 
of the structure array is discussed and a decision rule is given. In the case study it 
is shown that the method can be effectively used to improve the control structure of 
multivariable control systems. 

I t has still to be investigated how uncertainties in T, disturbances and non-linearities 
effect the modelling of A and T. Additionally, it has to studied how thresholds for 
the structure evaluation are related to performance improvements and in what way 
the threshold selection can be automated. 
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Abstract 

This paper deals with estimation and control of foam level in dynamic foam­
ing. An improved foam level estimation methodology from a microphone signal 
and its automatic calibration is presented. The dynamical reaction of the foam 
level on air lance movements is modelled using system identification. Based 
on the resulting mathematical model, a controller for foam level stabilisation is 
designed and applied to a water model, representing the LD converter process. 
It is shown that the foam level can be controlled using a microphone as the 
measurement device and air lance movement as the actuator. 

Keywords: Level control, Dynamic foaming, Water model, LD Converter pro­
cess, Soft sensing, Slopping 

1 Introduction 

Steel is widely produced from hot metal and scrap. Hot metal wi th about 4-5% C 
is produced from iron oxide pellets and coke by the blast furnace. After the blast 
furnace, the hot metal is poured into a ladle, sulfur is removed from the hot metal by 
a reaction wi th lime. Thereafter, the hot metal can be converted into steel by a top 
blown basic oxygen furnace (BOF). Oxygen is supplied through a lance from above 
and is jetted onto the metal bath at supersonic speed. Scrap, slag forming agents and 
hot metal are charged to the vessel and, thereafter, the lance is lowered wi th oxygen 
blown through. The oxygen jet forms a cavity at the bath surface where Fe, Si, Mn 
and C are oxidised. Metal droplets are splashed and mixed together wi th the slag. 
Carbon dissolved in the metal phase reacts with FeO to form carbon monoxide. 

This means that a foam containing metal droplets, metal oxides (slag) and CO bubbles 
is formed. The effective surface area of this foam is large and thereby the chemical 
reactions involved in this process are fast. To make this process effective, a large foam 
volume is needed. However, if the foam level is too high, slopping occurs causing 
reduction in metal exchange and environmental pollution. The formation of the foam 
is manually controlled by adjusting the oxygen lance level. The foam level in the vessel 
is nearly impossible to measure, but there has been somewhat successful methods 
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using radio waves and sonic meters. Optical methods based on laser technology have 
been tried wi th bad results because of the strong dust formation during the foaming. 

A very simple and continuous method to estimate foam level is to use a microphone 
and measure the sound intensity at certain frequency bands. As the foam level in­
creases, the sound intensity decreases. Microphones or sonic meters have been widely 
used since 1970 in many steel plants. However, the sound signal generated is seldom 
used in order to automatically control the foam level. Piombino Steel shop, ILVA 
Taranto and British steel are some examples where the sound signal is used as control 
signal [3, 1,2], but not for dynamic control, as continuous lance movements are not 
supported by the actuator and slag properties are often unknown. 

In [9], the sonic meter signal is estimated from off-gas flow rate and CO content in the 
gas. There, the deviation of estimated signal from measured signal is used to detect 
slopping, combining sonic meter and gas-analysis. 

In order to study the process water models are used. The disadvantage with water 
models are that only a few parameters of the real high temperature process can be 
studied. In the case of the study of foam level control in the LD-process it was felt 
to use a water model with large height to diameter ratio. For a detailed descriptions 
of the water model see [4]. Moreover, a brief introduction to foaming and first results 
on foam level estimation are given there. 

The purpose of the present work is to improve the formerly introduced foam level 
estimate algorithm and supply an automatic strategy to calibrate the estimation al­
gorithm. Another goal is to demonstrate the possibility of closed loop control of the 
foam level in the water model using the sound signal as measurement. Foam level 
control in a LD-converter can be used to automatically avoid slopping. 

2 Foam level estimation 

In [4] an estimation algorithm for the foam level based on a microphone signal is 
derived. There, the foam level is computed from the short time sound spectra as 

ßF{w) 

where -Zn(w) is the magnitude of the sound spectra without foam and I(h(t),u) is the 

magnitude of the sound spectra, at different foam levels. Furthermore, PF{U) is the 
attenuation coefficient, which is frequency dependent. 

In the sequel, the following fluids are used in the foaming experiments 

Fluid Viscosity Foam life r Surface tension 
[Cp] [s] [N/m] 

A 3.1 3448 0.27 
B 1.0 189 0.49 
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During the design of the foam level estimation, data from a foaming experiment with 
fluid A are used. Under the experiments the sound signal from the microphone is 
logged and the foam level is manually read off. The data set is used in the subsequent 
three subsections and all plots refer to this data set. 

Foam generated from fluid A has a higher stiffness and better sound damping ca­
pabilities compared to fluid B, as fluid B generates foam faster than fluid A. These 
contradictory characteristics wil l be exploited to validate the estimation algorithm. 

2.1 Improved estimation 

As the sound spectra are estimated from sampled data, the accuracy of the estimate 
directly affects the foam level estimate. According to [8], the confidence interval in dB 
for the sound spectra estimate of M frequency bands from a sequence of N samples 
is given by 

R X K K [ M ~ ° - 8 3 3 j ( 2 ) 

where 

x 80% 90% 96% 98% 
K 11.2 14.1 17.7 20.5 

Hence, frequency resolution has to be traded off against confidence interval for the 
estimate. The formerly presented estimation scheme is continuously calculating an 
estimate every second with a frequency resolution of 1 Hz, which means N is equal 
to M and gives a confidence interval of R,QO% « 34.5 dB. By increasing the frequency 
resolution from 1 Hz to 10 Hz, the confidence interval can be narrowed to i?go% ~ 
3.2 dB. Consequently, the foam level estimate can be improved by reducing the 
frequency resolution. 

Moreover, the power spectral density (PSD) is a better measure than magnitude of the 
Fourier transform as i t is based on the power of the signal, which is always bounded, 
and in contrary to the Fourier transform, does not depend on the stochastic properties 
of the sound signal. 

Consequently, the estimation algorithm has to be reformulated using the PSD. Ex­
periments have shown that the dynamic behaviour of the foam is rather slow and 
the estimation frequency fpsD is set to 1Hz. Between the estimation instances, the 
sound signal is sampled at the much higher frequency' f s , which is chosen according 
to the microphone performance and the sound signal content. Logged sound signals 
from foam experiments are analysed and a sampling frequency fs=8 kHz appeared 
to be sufficient. 

The PSD of the sound source can be computed as the Fourier transform of the auto­
correlation function of the sound sequence between the estimation instances. While 
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N is given by f s / f p s D , the number of frequency bands M has to be chosen. Here, 
M is chosen as N/20 = 400 which corresponds to a frequency resolution of 10 Hz. 
Thus, the confidence interval becomes i?9o% ~ 3.2 dB. 

The sampled autocorrelation function of the sound sequence is given by 

N-m—i 
(f>(t, m) 

1 

N - m 
^ ' SnSn+r. (3) 

m 
n=0 

0 , 1 , . . . , Af 

where Si are the samples and t is the time instance when the PSD is computed. By 
applying the Fourier transform to (3), the PSD is found 

0 ( t , 0) + 2 r n ) X m COS 
1 

7 
1 

2 
fsmr 

M 
0.1,..., M - 1 

M 

m = l 

mnn 

M 
(4) 

m7T" 
1 + c o s "TT 

Af J m 0,1, M 

Here, x m is the Harming window, which is used to smooth the spectra. Fig. 1 shows 
the estimated power spectral density of the design data set. 

Accordingly, (1) can be modified to use the PSD instead of the magnitude of the 
Fourier transform 

2.2 Automatic calibration 

Several parameters have to be calibrated in the estimation algorithm. The parameters 
ßp and $ 0 have to be identified and the frequency bands which fit best should be 
chosen. To facilitate calibration, an automatic calibration scheme has to be available, 
which provides the user with candidate frequencies and a parameter set for each 
frequency. 

Since there is no automatic procedure to measure the foam level, time marked man­
ually observed foam levels have to be used for the calibration. In the water model, 
foam level can be easily read using a ruler, which is attached to the water model, 
Fig. 2. Then, the observed foam level points are interpolated over time using cubic 
splines and sampled at the same frequency as $ is available. 

Assuming that $ and the observed foam level h are available as a time series with p 
points, then for each frequency un fixed, ln(<3>(t,u;n)) can be fitted to h(t) in a least 
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Fig. 1: Power spectral density of the design data set (fluid A ) . 
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squares sense. Rewriting (5) to 

h(t,un) = - ln(*(*, t* , )) 
ln($o(w„)) 

the following regressor can be set up for each ojn 

l n ( $ ( i l 5 w n ) ) 1 

l n ( $ ( i p , w n ) ) 1 

9i 
02 

and the least squares estimate for parameters 9\ and 92 is given by 

1 " 
" l n ( $ ( t 1 ; w n ) ) 1 ' t " h(h) ' 

2 . 
_ ln($(ip,u;„)) 1 _ _ h(tp) _ 

where f denotes the pseudo-inverse. 

Evaluating the standard deviation of the estimation error e, frequencies for foam level 
estimation can be chosen. Since e(u>„) characterizes the sound attenuation behaviour 
of the foam, a finger print of the foam is found, Fig. 3. 

Fig. 4 shows the estimated foam level using the best f i t t ing frequency. There, e is 
17.9 mm and follows rather precisely the confidence interval of the estimate, which 
becomes ±19.5 mm for the used frequency. 

2.3 Optimal weighted estimate 

Since several frequencies can give good fits for the foam level estimation, the weighted 
sum of those frequencies introduces redundancy and robustness against changes of the 
foam characteristics. 

In order to find the optimal weighted estimate, which even includes the optimal 
number of frequencies to use, the set of frequencies is re-ordered according to their 
ability to fit the observed foam level. As ordering measure e(w n) is used. The ordered 
set is denoted J- and !F% denotes the i t h best f i t t ing frequency. 

Using the weighting scheme 

w ( u } n ) = -—77-,—TT 
std(e(w n)) 

the weighted foam level estimate composed of r frequencies is given by 

1 r 

Kit) = = p — J2 w(Fi)ht, ?i) (6) 
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Fig. 3: Plot of e (Finger print of the foam) for fluid A 
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Fig. 4: Foam level estimated (solid) versus observed foam level (dashed) using the 
best fitting frequency band (fluid A) . 
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Fig. 5: Plot of £ (Optimality measure) for fluid A 

Deriving the standard deviation of the estimation error for the weighted estimate as 
above and denoting it £(r), an optimality measure for the weighted estimate is found. 
Hence, searching for mini<j<jv/ £(i) the best choice for r is obtained. 

Consequently, the optimal weighted estimate is given by hr(t) for which £(r) = 
mini<j<jvf Fig. 5 shows a plot for f . Obviously, the optimal number of fre­
quencies to use is 12, which reduces the standard deviation of the estimation error 
from 17.9 m m down to 13.2 mm. The resulting optimal weighted estimate is shown 
in Fig. 6. 

2.4 Validation 

In order to validate the estimation, a different fluid wi th less attenuation capability 
is used (fluid B). Furthermore, the generated foam has a shorter foam life r [4] and 
will break down considerably faster than the foam generated from fluid A. 

Since, the accuracy of the estimation directly depends on the attenuation capability 
of the foam. Hence, reliability of the estimation concept is tested. Fig. 7 shows the 
results from the application of the estimation concept. Obviously, the performance is 
reduced for low and high foam levels. Still, the estimation is reasonably good although 
the prerequisites are worse. 
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Fig. 6: Optimal weighted foam level estimate for fluid A 

3 Foam level control 

According to [4], there are several potential actuators to control the foam level in the 
LD converter. Since the gas-flows to the converter should be constant, their usage as 
actuator would cause major changes in the converter process. 

Hence, the position of the oxygen lance appears to be the natural choice. In manually 
operated foaming experiments in the water model the foam level could be affected by 
lance movements. 

Thus, a series of foaming experiments has been conducted, where the lance position 
is only changed between the experiments. In each experiment the steady state value 
of the foam level is read off. 

Fig. 8 shows the lance position versus the steady state value of the foam level. Ap­
parently, the curve reflects the DC-gain from the lance position to the foam level. 
Important to notice are two areas: below and above 40 mm. At 40 m m a sign change 
of the DC-gain occurs, and thus actuator movement in the two areas result in different 
impact on the foam. Additionally, the area below 40 m m is very narrow, which can 
lead to prevalent saturation. 

150 



Industry Applications of Multivariable Control 

100 200 300 
number of used frequencies in the weighted estimate 

Fig. 7: Estimation wi th fluid B. (a) Estimated foam level (solid) versus observed foam 
level (dashed) using the optimal weighted estimate, (b) Optimality measure £ 

3.1 Identification of the foam dynamics 

From the static foam experiments it can be expected that the foam dynamics can 
be approximated by a linear model for the area above 40 mm. For the use in the 
controller design, a linear mathematical model is identified from input-output data. 
During a foaming experiment, a pseudo random noise sequence is send to the lance 
actuator and the resulting estimated foam level is recorded. 

As the lance movement has velocity saturation and the dynamical behaviour of the 
foam is rather slow, the sampling time is chosen to 2 s. Hand driven foam control 
trials have shown that the sampling time for control purposes can be increased to 
around 6 s. 

Fig. 9 shows input and output signal. There, it can be observed that increasing the 
distance from the fluid surface does reduce the foam level. 

Using the subspace identification algorithm nisid of the syrstem identification toolbox 
[6], a linear state space model of order 4 appeared to perform well on the recorded 
data set. The resulting model wi l l be denoted G(q), where q represents the forward 
shift operator. 
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Fig. 8: Dependency of steady state foam level on the lance nozzle distance from fluid 
surface 
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Fig. 9: Identification data, (a) Pseudo random noise as actuator movement, (b) 
Estimated foam level (solid), filtered version (dashed). 
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3.2 Design and analysis 

In a first attempt to control the foam level, a PI controller in a one degree of freedom 
control configuration is designed. For this end, an iterative design process is used, 
where the closed-loop poles are placed so that the output sensitivity function of the 
closed-loop does not exhibit peaks larger than two. The output sensitivity function, 
which is the transfer function from output disturbance to output signal, is given by 

S{q)=l+G(q)C(qy 

where C(q) denotes the controller. The sensitivity function specification can be writ­
ten as 

Ms= sup | 5 ( e x p ( - j w T s ) ) | < 2 
0<u;<7r /T S 

It can be shown that the relative stability margin Ms yields a gain margin of at least 
2 and a phase margin of more than 30 degrees. Furthermore, plant perturbations of 
less than 0.5 in magnitude wil l not affect closed loop stability. 

Using the linear model G(q) from the identification, the PI controller C(q) is designed 
via the root-locus method. The resulting sensitivity function S(q) exhibits a small 
peak, Fig. 10. Accordingly, the closed loop system is robustly stable for even rather 
large uncertainties, [7]. 

Since the movement of the lance has to be restricted to the area above 40 mm, 
saturation phenomena have to be considered. In order, to prevent integrator wind-up, 
the PI controller has to be implemented wi th an anti-windup scheme. The designed 
closed loop system is depicted in Fig. 11. 

4 Experiments 

Both foam level estimation and controller are implemented on the DSP of the water 
model. The control loop is running at a sampling time of 6 s, while the estimation 
algorithm is run with 2 s. 

The reference value during a control experiment could be changed via the user inter­
face. Hence, arbitrarily chosen fixed reference values could be tested and transient 
behaviour observed. Fig. 12 shows the performance of the closed loop system after 
a reference value change. I t can be seen that the controller is able to drive the con­
trol error to zero. The standard deviation of the control error in the displayed range 
accounts for up to 46 mm. 

During the control experiments spot tests of the foam level are taken. A bias between 
estimated and observed foam height appears, which is a result of the changes in the 
lance position. Naturally, the lance position should affect the foam level estimation, 
as the sound source is moving wi th the position changes of the lance. 
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Fig. 10: Bode plot of the output sensitivity function of the closed loop system. Sample 
time 2 s (solid), sample time 6 s (dashed). 
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Fig. 11: Block diagram of the closed loop system with PI controller and anti-windup. 
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Fig. 12: Performance of the closed loop system with fluid A. Foam level reference value 
(dashed), Filtered foam level estimate (solid). Observed foam level (dashed-dotted). 

5 Comparison between the water model and steel 
converter 

The main process in the L D converter is the decarburization of pig iron whose physics 
and chemistry differs a lot from the water model. There are many chemical reactions 
taking place during decarburization in the LD converter changing both chemical com­
position and temperature of the process. The L D converter is run at temperatures 
above 1500°C and is very difficult to model. The surface tension and the viscosity 
depend on the temperature and chemical composition. This implies that the condi­
tion for foaming changes during the operation during steel making compared to the 
foaming in the water model. 

The foam in the LD converter consists of three phases, namely slag, iron and gas. 
Today, there are no reliable models that can predict the effective viscosity of this 
three-phase foam, which makes it very difficult to model the L D process. I f one wants 
to model the foaming using water model experiments it is also impossible to predict 
the effective viscosity for a three phase-foam. 

In this work i t was thought that the foam level in the water model is one of the 
most important process parameters. The first approach is to study the effect of foam 
level on the attenuation of the sound generated when the nozzle jet interacts wi th the 
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water bath. The principles of how the foam is generated are not studied. Thus, i t is 
not necessary to have access to information on viscosities for the three-phase foam. 
I t is believed, despite the above differences, that the way of automatically control the 
foam level developed from the water model could be used in a LD converter. 

Shifting the control method from water model to LD converter wi l l cause trouble wi th 
dust, sound distortion, heat and a continuously changing foam. Future work wi l l be 
required to address these problems. 

6 Conclusions 

The estimation of foam level in a water model of an LD converter process from 
microphone signals is discussed. I t is shown how the estimation algorithm can be 
automatically calibrated. The estimation concept is applied to foaming experiments 
which are conducted in the water model. Tests with different fluids are performed 
and prove that the estimation scheme can cope with a wide range of fluids. 

Furthermore, the estimated foam level is then used as a measurement signal for closed 
loop control of the foam level using a P I controller. Control experiments are conducted 
in the water model and indicate that foam level control using lance positioning is 
possible. Still , i t has to be analysed how dynamical changes in the lance position 
affect the foam level estimation, since a bias appeared during the control experiments. 

In order to be able to apply closed loop control of the foam level in the LD converter 
the following issues have to be discussed. Firstly, the experiments with the water 
model do not reflect how properties of the chemical reaction or the slag influence 
estimation and control of the foam level. Therefore, a high temperature model of the 
LD-converter should be used to validate both estimation and control. Secondly, most 
converters are not equipped with lance actuators that can provide continuous motion 
of the lance. Thus, the LD-converter lance actuator has to be changed in order to be 
usable for dynamic foam level control. 

Despite these portability issues, dynamic control of the foam level has the potential 
of preventing slopping in the LD-converter process. Finally, if applied in combination 
with carbon content estimation, [5], automatic control of the LD-converter process 
would be possible. 
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Abstract 

A novel approach to monitoring and control of the coal powder injection in a 
blast furnace is presented and discussed. Image analysis of video recordings is 
used as a means to estimate the instantaneous coal flow. Initial experiments 
at the blast furnace no 3 of SSAB Tunnplåt AB Luleå, Sweden, have been 
performed and first hand results on modelling and control of a single injection 
line are given. 

1 Introduction 

In the blast furnace process, coke is usually used as fuel and reduction agent. Since 
coal is 40% cheaper than coke, injecting pulverized coal instead of using coke is eco­
nomically beneficial. According to [2], the share of pulverized coal compared wi th 
coke as fuel wi l l rise f rom 36% to 50% by the year 2015. 

A coal injection plant is a highly automated plant, where incoming raw coal is stored, 
ground, dried and finally injected into the blast furnace. During operation, human 
interaction is only needed for making set-point adjustments. Fig. 1 shows the struc­
ture of the plant, where only the injection vessels, distributor, the blast furnace and 
the monitoring equipment are depicted. The control of the injection process is com­
plicated due to the two phase nature of the injected flow (gas plus particles). Direct 
measurement of the coal mass flow is difficult since a flow meter installed on the injec­
tion pipe only provides a measurement of the cumulative flow of gas and coal powder 
where coal content might vary significantly. 

The total coal flow leaving the injection plant is distributed into several parallel lines. 
In [4] it is shown how the total coal flow can be stabilized. The problem at hand 
is to achieve a desired injection distribution of the flow around the blast furnace. 
Therefore, estimation and control of the coal flow in each line is required. 

The coal mass flow estimation is derived from images of the coal jet entering the 
raceway of the blast furnace. For each injection line, images are acquired in real time 
using a video camera monitoring the scene through a peephole in the tuyere (see 
Fig. 1). W i t h the aid of an image analysis scheme, an estimate of the instantaneous 
coal mass flow is then obtained. 
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Fig. 1; Setup for video monitoring. Parts of the coal injection plant, distributor, blast 
furnace and monitoring equipment. 

As the coal mass flow to the distributor can be assumed to be constant [3], the flow 
has to be distributed according to a desired profile between a number of injection 
lines. Each of these lines is equipped with a flow control valve. Using the estimated 
coal mass flow as the measurement output and the valve as actuator a mathematical 
model of the injection process is identified from process data. The obtained model 
can then be used to design a controller, which stabilizes the coal mass flow in the 
injection line. 

2 Flow estimation 

A representative scene of the coal injection process, as recorded with the video camera, 
is depicted in Fig. 2a. A digitized video frame wil l below be denoted F(i,j, r ) where 

represent the pixel coordinates and r is a discrete time parameter (the shorter 
notation F(T) wi l l henceforth be used). 

Initially a binary mask R, representing the actual region of interest, is produced. 
This is done by forming an image D = \F(T) — F(T — 1) | , r = 2,3,.... i. e. an 
image consisting of accumulated differences (due to motion) between subsequent video 
frames during a sufficiently long period of time (typically a few minutes). 

Since the furnace wall and the tuyere wil l make up a static scene, no differences wil l 
be detected in those regions of the frames. The coal plume as well as the gaseous 
interior of the furnace, on the other hand, wil l display a highly dynamic behavior 
resulting in detectable differences. Masks such as the one depicted in Fig. 3b can thus 
be straightforwardly produced from a final difference image D by simply selecting the 
region consisting of values that are high enough (indicating motion). 

Once a mask R has been created, the region of interest in all subsequent frames F(r) 
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(a) (b) (c) 

Fig. 2: (a) Digital image depicting the coal injection process, (b) The binary mask 
R. (c) The projected plume (segmented from the rest of the image). 

can be conveniently detected and the actual measuring procedure (i.e. detecting and 
analyzing the actual plume inside the region of interest) can be started. 

First a grayscale histogram [5] for the set of pixels RT, the pixels in a frame F(r) that 
are covered by the mask R, is formed and analyzed. The histograms are typically of a 
bimodal nature with the darker pixel values (representing the plume) and the brighter 
pixel values (representing the gaseous background) forming two well separated 'hills'. 
This enables the detection of an optimal threshold value T(T) such that a subset PT, 
representing the coordinates of pixels making up the actual plume, can be determined 
through the decision rule: G PT if € RT and F(i,j, r) < T ( r ) . 

The resulting set PT is then further processed using a chain of binary morphology 
operations [5] in order to produce a simple connected area inside R representing a 
2-D projection of the plume. 

The hnal processed set PT of image coordinates (representing the projected plume) is 
then used to form a relative estimate m ( r ) of the injected coal mass at time T through 
the operation 

where the optimal functional form of / ( • ) is still an open research issue. The most 
straightforward choice is / ( • ) = A. where A is a constant, i.e. a value directly pro­
portional to the total area covered by the pixels in PT is used as relative estimate. 

A more sophisticated choice is 

where Aa,a, and e are constants greater than zero (e is included to prevent division 
by zero). The rationale behind this choice is to give coordinates in PR representing low 
grayscale values a higher weight (due to the exponent —a) based on the assumption 
that they represents regions with higher coal powder density. 

(1) 
( i , j ) € P T 

/„(•) = Aa [R(i,j,T) + e] — a 
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Fig. 3: Elementary volume transform. 

As a first attempt for a 3-D model, a rotational symmetric plume has been assumed. 
The transformation from projected 2-D data to volume data is carried out as follows. 
First the equation for the center axis of the plume (see Fig. 3) is estimated through 
principal axis analysis on PT, and then the weighted functional 

/(•) = 2*r(< , j ) /« (0 . 

where r(i,j) is the orthogonal distance from the center axis to the position (as 
depicted in Fig. 3), is applied in (1). Using the accumulated flow over a time period 
of several minutes the estimate m( r ) can be calibrated (i.e. a suitable value for the 
contant Aa is determined). 

A comparison between one such estimate and a corresponding measurement using 
a Coriolis flow meter (measuring the cumulative gas/coal flow) is shown in Fig. 4. 
Obviously the two measurements exhibit a very similar dynamic behavior. 

The use of more complex 3-D models, determined by matching parameters (extracted 
through image analysis of the video feed) with approximate solutions of the governing 
equations describing two phase flows in systems such as the here discussed, is currently 
under investigation. 

3 Single line flow control 

The two-phase flow that is leaving the coal injection plant is usually conveyed over 
several hundred meters until i t reaches the coal distributor. Even if the coal flow is 
perfectly stabilized directly after the injection plant, fluctuations appear in the flow 
as the coal particles are conveyed in a so-called dense flow [7]. 
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Fig. 4: Comparison of normalised estimated flows, (a) Using an image sequence, (b) 
Using a Coriolis flow meter. 

Distribution of pulverized coal over the blast furnace diameter is provided by the 
fixed construction of the distributor. No actuators are used to modify the achieved 
flow distribution profile. Thus, any fluctuations or other disturbances can not the 
attenuated by this open-loop structure. 

Introducing single line flow control, see Fig. 5, where the measured flow in a single line 
qa is fed back to the actuator ua via a controller, can remove induced fluctuations 
and attenuate disturbances. Moreover, set point tracking can be implemented. 

Furthermore, it enables the plant operators to achieve desired flow profiles around 
the blast furnace diameter. Clearly, the energy supply to the blast furnace can be 
directed to certain regions in the furnace and in turn, temperature control might 
become possible. 

The desired flow distribution profile can be set in two different ways: 

1. The sum of the flows in all tuyeres is set and the flow in each tuyere is a fraction 
of the sum. Consequently, the absolute coal mass flow value in each pipe can 
vary and the coal flow control of the PCI plant is not affected. 

2. The flow in each tuyere is set as an absolute value. Thus, the provided flow from 
the PCI plant has to be adjusted to the sum of the individual flows and the time 
delay between the coal injection vessel and the tuyeres has to be considered. 
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Fig. 5: Physical structure of a single line control setup. 

3.1 Implications 

Beside the potential of single line flow control, the application has implications for 
the operation of PCI plants. Mainly the flow control of the plant has to be tightened 
and the transport delay between the injection vessels and the coal distributor has to 
be considered. 

Variations in the provided coal flow from the PCI plant wi l l directly propagate to 
each single line and cause counteraction by the controllers. As each control loop 
is dynamically coupled via the coal distributor i t has to be investigated how this 
multivariable control problem can be successfully solved. 

3.2 Video feedback control 

There are two ways to measure the coal flow in an injection line, by using a flow meter, 
e.g. a Coriolis flow meter, or by extracting flow information from a video image of 
the coal jet entering the tuyere. 

Considering the uncertainties of the flow measurement and the costs involved wi th 
the purchase of the flow meters, video image analysis is an economically attractive 
alternative. Moreover, the video image is a rich information source, where more than 
only flow information can be found. 
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3in — q.Ni + qc 

qN2 • Qout 

Fig. 6: Schematic drawing of the flow control valve. 

From a maintenance point of view, video observation gives the operators another 
degree of freedom, as maintenance of tuyeres can be based on the evaluation of the 
video image of the tuyeres. 

Here, the flow estimation algorithm is used as a soft-sensor that provides a mea­
surement of qa- I t is important to note, that the soft-sensor has to be calibrated 
properly, as the performance of the closed loop system depends on the quality' of the 
measurement. 

Since the soft-sensor is part of the dynamic model for the single line, changes in 
the zoom or position of the scene in the image frame affect model gains or model 
dynamics. 

3.3 Actuator 

Using the previously described flow estimation algorithm, a flow measurement is ex­
tracted from the video image and fed back. In order to affect the flow in the single 
line the valve in Fig. 6 is used. 

It can be seen that the single line merges wi th a gas pipe, which can introduce a gas 
flow into the single line via a valve. Opening the valve causes a flow qN2 to the merge. 
As the total mass flow out of the actuator can not increase, the in-flow qin has to 
decrease. Thus, the coal flow is reduced. Clearly, the actuator has a negative gain 
and closing the valve increases the coal flow. 

4 Physical model 

A physical model for the dynamical behavior of the coal flow in the injection line from 
the distributor to the observed coal plume in the tuyere consists of three parts. 

1. Dynamics of the actuator. 
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2. Transport delay of from the actuator to the tuyere. 

3. Coal plume dynamics. 

The dynamics of the actuator is based on the simplification that the flow dynamics 
in the pipe can be neglected and that the coal particle flow can be governed by fluid 
flow equations. 

Furthermore, i t is assumed that the mass flow balance at the actuator output is 
constant. I t can be established that three mass flows are entering the merging point 

PD 

= Q M R T D 

PM 

mN2 - QN2 Drp 
tiJ jvf 

mc = qcpc, 

where m . and q, denote mass flow and volume flow, respectively. Assuming, dis­
tributor and merging point are close to each other, the pressure pr> « p^j and the 
temperature Tp « TM-

Thus, the mass balance is obtained 

mout = 

Clearly, an increased flow q^2 yields a reduced flow g^vi + Se­

i n (2) the flow QjV2 is given as a flow through an 'equal percentage' valve [1]. I t is 

given by 

qN2 = kN2fgas(PNiPM)gexp(Urj), 

where kfi2 is a factor that maps the opening characteristics gexp to an area. The 
function f g a s describes the flow through a stricture [6]. 

From the merging point in the actuator to the end of the injection line in the tuyere 
there is a transport delay td- Furthermore, it is assumed that the entering coal flow 
propagates through the pipe unaltered. Hence, the dynamics can be given in the 
Laplace domain as 

Gd(s) = e-^s (3) 

The dynamics of the coal plume are assumed to be fast and reach steady state in­
stantaneously. Moreover, when the two-phase flow enters the tuyere as a jet, the two 
phases are seen separately due to the optical properties of nitrogen. Assuming, that 
the coal particles remain visible, which means unburned, for a constant time, the 

mc + m m + niN2 
PM . PM f r > \ 

QCPC + qNl TjT- + QN2 TTT- I 2 ) 
J-M 1M 

const 
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amount of visible particles characterizes the flow. Therefore, the particle number Nc 
is directly proportional to the coal flow in the injection line 

Nc = kcqc (4) 

Combining (2), (3) and (4) a complete physical model is found. 

5 Model parameters 

Several contiguities in the physical model are unknown and have to be determined 
from experiments at the blast furnace. 

To this end, the actuator has to be affected and the coal flow has to be measured 
simultaneously by the soft sensor. The setup depicted in Fig. 1 is modified so that 
the computer is connected to the actuator via a buffer amplifier. 

The following experiments are performed: 

• Static experiment: 
The valve is opened from closed to ful ly open in a number of equidistant steps. 
Each step is held for around 60 seconds. I t is assumed that steady state is 
reached after 30 seconds. 

• Dynamic experiments: 
A pseudo random noise signal is generated and send to the actuator. Amplitude, 
offset and frequency range are varied. 

Evaluation of the experiments show that the coal plume in the blast furnace is not 
only affected by the flow in the injection pipe but also dynamicalh' affected by the 
blast air flow in the tuyere. During the design of the soft sensor, the effect of this 
transversal flow is assumed static and thus, i t is compensated by a static gain. 

Fig. 7 shows logged data of the input signal to the actuator and the output signals 
from the soft sensor. Correlation analysis shows a weak correlation (less than 20%) 
between the actuator signal and flow measurement, Fig. 8. Consequently, the dynamic 
effects of the blast air flow have to be considered in the flow measurement and the 
soft sensor has to be re-designed. 

I t can be concluded that more experiments have to be performed in order to get a 
better understanding of the behavior of the coal particle jet in the blast air flow. 

6 Conclusions and further work 

A novel method for estimating and controlling the pulverized coal flow in a single 
injection line to the blast furnace has been presented. 

169 



Video Monitoring of Pulverized Coal Injection in the Blast Furnace 

0 100 200 300 400 500 600 
time (s) 

0 100 200 300 400 500 600 
time (s) 

Fig. 7: Process data, (a) Pseudo random noise input signal, (b) Estimated flow from 
video image. 

Fig. 8: Normalized correlation function between actuator input and estimated flow. 
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The design of a soft sensor for coal flow estimation in a blast furnace tuyere is discussed 
and applied to logged data. The results indicate that reliable coal flow estimation 
from video images is viable and can be used as a soft sensor for control purposes. 

Using the soft sensor output, control of the coal flow in a single injection line becomes 
applicable. Implications for plant operation are pointed out. 

A physical model for the dynamical behavior from the actuator to the observed coal 
plume has been derived. Initial experiments have shown that the assumption on the 
blast air flow does not hold. The effect of the blast air on the coal plume dynamics 
has to be studied more thoroughly. 

More experiments have to be performed in order to get a better understanding of the 
model dymamics. Utilizing experimental data, model parameters have to be derived 
and the model validation has to be carried out. Subsequently, a model-based controller 
can be designed for the single line. 
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