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Abstract

The use of third-order moments in blind linear equalization has been studied with em-
phasis on their performance in on-line methods of low complexity. Blind equalization has
widespread use in areas such as digital communications, acoustics, geophysical explo-
ration, image processing and general measurement problems. The objective is to recover
a desired, unknown source signal from distorted observations using a linear filter. In
contrast to classical methods of deconvolution or trained equalization, no model of the
distorting system or temporal observations of the source are assumed. Instead, knowl-
edge of the higher-order source statistics are exploited to find an appropriate equalizer
setting through some iterative numerical procedure.

The application field and research area have traditionally focused on methods based
on fourth-order statistics. Examples are various kurtosis-maximization approaches and
the widely used constant modulus algorithm (CMA). While qualifying for blind methods,
third-order statistics have attracted less attention, mainly due to the reason that they can
only be used when the source signal is asymmetric, i.e. when the probability density is
skewed. As a consequence of the more restricted usability of third-order methods, mostly
experimental research results can be found, with little explanation for their performance.

This work provides analytic and numerical results motivating why third-order meth-
ods should generally be chosen over their fourth-order counterparts when possible. It
is shown that they possess improved convergence properties and robustness to noise,
and that they lend themselves to efficient implementation on digital real-time hardware.
These combined features make third-order methods an interesting option for on-line blind
equalization.
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Chapter 1

Inverse Systems, Deconvolution

and Equalization

In this chapter, the concept of an inverse system is presented at a medium level of
detail. Examples are given illustrating applications of inverse systems using methods of
deconvolution and equalization.

Source signal

Distorting

system (H)
Observed signal Recovered

source signal

Inverse

system (F )

Unknown/non-observable environment

Figure 1.1: The principle of source signal recovery using an inverse system.

1.1 Recovering an Unknown Signal from Distorted

Measurements

A situation arising in many areas of signal processing is that of measuring or observing
a distorted version of an unknown signal of interest. Fig. 1.1 illustrates this with a
block diagram model. A source signal becomes distorted as it propagates through some
physical system H before being observed at the system’s output. Depending on the
context, the source signal and distorting system are either completely unknown or only
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2 Inverse Systems, Deconvolution and Equalization

partially known/observable. The goal here is to recover the source using an inverse
system F , designed to ‘undo’ the distorting effects of H . Unless stated otherwise, the
system H is assumed to belong to the broad class of linear time-invariant (LTI) systems
[1]. Non-linear systems and their inverses (if they exist) are beyond the scope of this
work.

Ideally, F completely inverts the action due to H so that the source is perfectly
recovered at its output. However, a perfectly inverting system is usually not feasible in
practice, and so only an approximate inversion is pursued. The inverse system may be
in the form of an electric circuit, a digital filter, or a computer process or algorithm.

Example: Loading Coils on Long-Distance Telephone Lines One of the first
uses of inverse systems dates back to the late 19th century and the early days of telephony.
Voice communication over long twisted-pair wires was plagued by distortion which de-
graded the quality of speech, and essentially limited the practical length of a cable to
around 1 200 miles (1 900 km, or the distance between Boston and Chicago) [2]. In
1899, George A. Campbell demonstrated how inductance coils, connected at periodically
spaced intervals along the cable, significantly reduced the distortion, thereby allowing
much longer telephone lines. The design and exact placement of such loading coils was
based on theoretical models of transmission lines. The coils compensated for the capaci-
tance in the long cables, thus acting as simple inverting systems. �

1.2 Deconvolution and Equalization

As in the example above regarding loading coils, constructing the inverse system may be-
come relatively straightforward if an accurate model of the distorting system is available,
i.e. a mathematical or physical relationship between the input and output signal. De-
signing an inverse system using an existing model of the distorting system is commonly
referred to as deconvolution [1]. Unfortunately, many practically encountered systems
are too complex to model analytically, or simply have unknown characteristics.

If the distorting system input is somehow accessible, the characteristics of H may
be figured out by observing the resulting output when a known signal is input to the
system. This process is referred to as system identification [1], and produces a model
of H from which an inverse system can be designed. Alternatively, the injected input
signal is used as a template for the output of a perfect inverse system. F may then be
directly synthesized by making its output resemble this known source signal as closely as
possible. This is the principle behind equalization [3].

Example: Modem Communication Computer communications over switched
telephone networks use modems that translate a stream of bits into an alternating wave-
form suited for transmission over wire lines. However, typical telephone lines were origi-
nally intended for adequate voice communication and not high-speed data transfer. As a
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consequence, transmissions at bit rates above 2 400 bits/second suffer distortion caused
mainly by bandwidth constraints enforced in the network [3]. If not properly compen-
sated for, this distortion introduces severe bit errors in the transmissions.

A key component in modems is therefore an inverse system called an equalizer, in
the form of a digital filter used to undo as much of the telephone channel distortion as
possible. To succeed with this, the equalizer needs to closely emulate the inverse charac-
teristics of the channel, and so an accurate model of it is needed. Matters are complicated
by the fact that connections from one point to another in a switched telephone network
may take different routes each time a call is made. As a consequence, the character of
the distortion may vary greatly between dial-ups, but remains relatively fixed once a
connection is established. Therefore, the equalizer needs to have adjustable parameters
and hence the ability to adapt itself to various channel conditions [4].

Fig. 1.2 illustrates how such an adaptive equalizer is used to combat distortion from
an initially unknown channel. At startup (before regular data transfer begins), the trans-
mitting modem generates and sends a pre-determined training signal which subsequently
arrives distorted at the receiving modem [5]. This distorted reception is first filtered by
the equalizer and then subtracted from a locally generated replica of the training signal
to form an error signal, reflecting the degree of mismatch between the equalizer output
and the training signal. If the equalizer was optimally adjusted to invert the channel, the
transmitted training signal would be perfectly recovered at its output, making the error
signal become zero. In reality, the initial equalizer parameterization will probably be far
from optimal, and the error signal will be nonzero. Through a parameter adjustment
algorithm, the equalizer is iteratively adapted to minimize the power of the error signal
during the course of the training period. After this, the adjustable parameters are frozen,
and regular data transfer may commence with a low probability of bit error. �

+ −

Known
training
signal

Known
training
signal

Unknown
data

Transmitting modem

∑

Distorting
system

Telephone channel
(unknown

environment)

Adaptive
equalizer

Parameter
adjustment
algorithm

Recovered
data

Receiving modem

Error
signal

Training period (at startup)

Regular transmission (after training period)

Figure 1.2: The principle of adaptive equalization in modem communication.
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Example: Mobile Communication A wireless communication channel between
a cell phone and a base station is also impaired with distortion that causes bit errors if
not properly compensated for. However; the distortion on a terrestrial radio channel is
not due to bandwidth limitations, but to a phenomenon known as multipath propagation
[3], illustrated in Fig. 1.3. As the radio signal transmitted from a base-station antenna
propagates through the air, it is reflected off surrounding objects such as mountains and
buildings. It reaches the cell phone (situated in the moving car) as a series of individually
delayed and attenuated replicas.

Figure 1.3: Multipath propagation in mobile communication.

Although of different origin than the distortion on a telephone line, multipath prop-
agation effects can also be combatted with an adaptive equalizer. Unfortunately, as the
mobile unit is moving, the surroundings change, causing the channel characteristics to
become time varying. Hence; a single training period at communication startup (as in
the initialization of a modem equalizer) is not sufficient here as the channel variations
will make a fixed equalizer setting perform poorly after a short while [5].

A possible solution to the time-variation problem is to periodically interrupt data
transfers for re-transmission of the training signal, thus letting the equalizer regularly
re-adapt itself to current channel conditions. However, such repeated training comes at
the cost of a reduced overall data throughput. �

1.3 Blind Deconvolution and Equalization

In cases where the distorting system is unknown and its input is not accessible for system
identification or equalizer training purposes, finding the inverse system becomes signif-
icantly more challenging. Nevertheless, for some classes of systems and source signals,
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the problem can still be solved using techniques for blind deconvolution [6]. The common
approach is to rely on knowledge about some specific, measurable features or character-
istics of the source signal. If these source features are altered by the distorting system
in a way that can be measured, this may serve as guidance as to how the inverse system
parameters should be chosen.

The terms ‘blind deconvolution’ and ‘blind equalization’ are often used interchange-
ably. As is customary, ‘equalization’ is here used in the context of on-line, or real-time
problems, and ‘deconvolution’ will refer to off-line, or post-processing methods [7].

Example: Seismic Reflection Surveying A method used by geophysicists to
model the geology of the earth’s subsurface without excavation is seismic reflection sur-
veying [8], illustrated in Fig. 1.4. The subsurface is modeled as a layered medium, in
which the layers consist of different materials, e.g. soil, water, oil or gas. The goal is to
obtain a rough characterization of the subsurface structure by detecting these layers and
determining their respective depths. A seismic source consisting of a pneumatic hammer,
a hydraulic vibrator or dynamite, produces pulses, or seismic wavelets, that propagate
down into the ground as acoustic waves. At the boundary between two layers, the change
in acoustic impedance causes a reflection of the waveform back to the surface, where a
geophone converts the ground motions into an electrical signal. This seismic trace is
recorded for post-processing on a computer.

Seismic
source

Geophone

Earth’s
surface

Reflecting
layers

Seismic
waves

Figure 1.4: Illustration of seismic reflection surveying.

If the source was able to produce a perfect impulse of infinitely short duration, the
resulting seismic trace would be an ideal ‘signature’ of the subsurface structure, from
which the reflecting layer structure could be identified. However, the seismic wavelet
has an imperfect, unknown shape that distorts, or ‘smears’ the signature, making the
individual reflections difficult to resolve. Blind deconvolution methods may be used in
post-processing to undo most of the dispersive effects of the seismic wavelet, and recover a
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cleaner signature from which the earth layer reflections can be identified. A synthetic ex-
ample is illustrated in Fig. 1.5 with three reflective layers. Research on seismic reflection
surveying has made important contributions to the understanding of blind deconvolution
principles which can be translated and applied to other application areas [9, 10]. �

Figure 1.5: Synthetic example of a seismic trace (top) and deconvolved subsurface reflections
(bottom).

Example: Blind Image Restoration Digital images acquired from devices such
as cameras, telescopes or x-ray machines are sometimes distorted, or blurred, where the
blurring is caused by imperfections in the imaging system or transmission medium. This
fits the model shown in Fig. 1.1 with the source signal representing the original image to
be captured, H the ‘blur’ (i.e. the image distortion) and the observed signal representing
the captured image. The objective of blind image restoration is to recover the original
image through post-processing of the captured image using blind deconvolution methods
[11].

The motivation behind blind image restoration is often that a high-quality image
capture is impossible or not practical. For example; in astronomical imaging, pictures of
objects in space are acquired from a telescope using a very long exposure time, during
which turbulence in the atmosphere unavoidably blurrs the image and calls for blind
restoration. In medical x-ray imaging, sharp pictures require high beam intensity, which
becomes dangerous for the patient. Therefore, improving image quality through post-
processing is preferred for safety reasons [11]. �

Example: Blind Equalization In the mobile communication example, the equal-
izer is initially adapted to an unknown distorting channel and then regularly re-trained
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over time to track the time-varying channel characteristics. In some cases, repeated train-
ing is considered too costly as ordinary data transfer must stall while the training signal
is sent. In other situations, such as in point-to-multipoint communication or broadcast
networks, synchronizing training periods between a transmitter and a receiver is simply
not possible [5].

Blind equalization provides a way to adapt the equalizer to the channel without the
need of training. The concept is shown in Fig. 1.6. In the absence of a training signal,
the equalizer parameter adjustments are based solely on the output signal through an
objective function. This function is chosen to quantify the amount of distortion present
in the equalizer output by measuring how altered some known features or characteristics
of the source signal have become through the transmission and reception process. The
equalizer parameters are tuned according to this function to ultimately minimize the
distortion in the received data, similar to how a photographer adjusts the focus on a
camera. As no training periods are needed, adaptation can be performed continuously,
so that the equalizer may constantly track slow channel variations. �

Unknown
data

Transmitter

Distorting
system

Wireless channel
(unknown, slowly

time-varying
environment)

Adaptive
equalizer

Objective
function

Recovered
data

Receiver

Figure 1.6: The principle of blind equalization.

The research in Part II of this thesis focuses on on-line methods for blind linear
equalization. The fundamentals of linear equalization are given in the next chapter, and
an overview of blind equalization is provided in Chapter 3. The research contributions
of Part II are summarized in Chapter 4.
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Chapter 2

Linear Equalization Fundamentals

Here, the basic concepts of (non-blind) linear equalization are presented, in which access
to the desired equalizer output is assumed. The problem setting is angled towards,
but not necessarily limited to, applications in digital communication. First, zero forcing
(ZF) and minimum mean-squared error (MMSE) equalization are considered without any
practical restrictions imposed on the linear equalizer. Then, a practical MMSE equalizer
of finite impulse response (FIR) type is considered, along with the classical method of
implementing it, the least-mean-square (LMS) algorithm. Finally, adaptive equalization
of a communication channel is addressed. Background knowledge in basic signals and
systems theory [12] and stochastic processes [13] is hereafter assumed.

2.1 The Linear Equalization Model

+
+ ∑

s[n]

u[n]x[n]

y[n]

b[n]

Distorting
system (H)

Equalizer
(F )

Figure 2.1: Model of the linear equalization problem.

A discrete-time model of the linear equalization problem is shown in Fig. 2.1. The
following model assumptions are made throughout this chapter.

• The source signal s[n] is a discrete-time, real, stationary stochastic process with
zero mean and discrete-time power spectrum Ps(Ω).

9



10 Linear Equalization Fundamentals

• The distorting system is linear and time invariant (LTI) with discrete-time transfer
function H(Ω).

• b[n] is noise, statistically independent of s[n], modeled as a discrete-time, real,
stationary stochastic process with zero mean and power spectrum Pb(Ω).

• u[n] = x[n] + b[n] is the observed signal.

• The equalizer is an LTI system with discrete-time transfer function F (Ω).

Before enforcing any practical restrictions on the linear equalizer, ideal expressions for
F (Ω) according to the zero-forcing (ZF) and minimum mean-squared error (MMSE)
criteria are given.

2.2 Ideal ZF Equalizer

The objective of the ZF equalizer is to invert the distorting system while disregarding the
effects of the noise b[n]. Hence, the goal is to recover the source at the equalizer output
and achieve:

y[n] = s[n].

In absence of b[n], this is accomplished by choosing the equalizer transfer function as

FZF(Ω) =
1

H(Ω)
, (2.1)

which is simply the inverse transfer function of the distorting system. Clearly, the ZF
equalizer only exists if H(Ω) has no spectral nulls (i.e. the system function H(z) has no
zeros on the unit circle). The expression (2.1) reveals a fundamental connection between
equalization and system identification. As seen from the reciprocal relationship between
FZF and H , the transfer characteristics of the system are fully incorporated into the ZF
equalizer. Hence, in a theoretical sense, inverting a linear system is essentially the same
problem as identifying it.

2.3 Ideal MMSE Equalizer

While theoretically providing perfect system inversion, the main drawback of the ZF
equalizer is that noise, which is always present in practice, is not taken into account.
In fact, the detrimental effects of the additive noise b[n] are generally enhanced by the
ZF equalizer [3], making it less suitable in some applications. For instance; in digital
communications, the figure of merit of ultimate interest is the bit-error rate, not how
well the equalizer inverts H . With noise present, perfect source recovery becomes im-
possible. Instead, a natural performance measure is obtained by statistically quantifying
the ‘closeness’ between y[n] and s[n] in terms of the mean-squared error

E
{
(s[n] − y[n])2

}
, (2.2)
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where E{·} denotes expectation. Choosing the equalizer transfer function to minimize
(2.2) results in the minimum mean-squared error (MMSE) equalizer

FMMSE(Ω) =
Ps(Ω)H∗(Ω)

Ps(Ω)|H(Ω)|2 + Pb(Ω)
, (2.3)

where ∗ denotes complex conjugation. Unlike the ZF equalizer, the MMSE equalizer
takes the spectral densities of both source signal and noise into account to offer the best
possible trade-off between system inversion and noise suppression. Indeed, if Pb(Ω) is
set to zero in (2.3), FMMSE(Ω) reduces to FZF(Ω). The benefits of the MMSE equalizer
normally makes it the first-hand choice over the ZF equalizer.

2.4 Practical MMSE Equalizer

(2.3) gives the transfer function of the ideal, generally non-causal MMSE equalizer. A
practical linear equalizer, on the other hand, must be stable and causal. It will be
assumed throughout the following that the practical equalizer of interest is of finite im-
pulse response (FIR) type. FIR filters feature guaranteed bounded-input bounded-output
(BIBO) stability, ease of analysis, and simple realization on finite-precision hardware [12].
An N -tap FIR equalizer is represented by its parameter vector

f �
[
f0 f1 · · · fN−1

]T
.

Given an observed sequence of N input samples collected in the equalizer regressor vector

un �
[
u[n] u[n − 1] · · · u[n − N + 1]

]T
,

the output signal from the FIR equalizer becomes y[n] = fTun. The MSE criterion (2.2)
is now impractical since the FIR equalizer is necessarily causal. A delayed version of the
source signal must instead serve as the desired output

d[n] � s[n − Δ],

where Δ is a finite, positive integer. The MSE to be minimized is now defined as

ξ � E
{
e2[n]

}
, (2.4)

where e[n] is the error signal
e[n] � d[n] − y[n].

Hence, ξ reflects the mean power of the error signal. Note that given observations of un

and d[n], (2.4) is a function of the equalizer parameters,

ξ = ξ(f) = E
{
(d[n] − fTun)2

}
.

By further defining the input autocorrelation matrix R and the cross-correlation vector
p as

R � E{unu
T
n}, p � E{d[n]un},
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the unique parameter vector fW minimizing ξ becomes

fW � R−1p, (2.5)

assuming the inverse of R exists. fW is often referred to as the Wiener filter [14].
While providing a closed-form expression for the FIR MMSE equalizer, (2.5) has prac-

tical drawbacks. The invertibility of R cannot always be assumed in practice, for example
if the power spectrum of u[n] has frequency bands with zero power [15]. Furthermore,
even if R is non-singular, the computational resources and numerical precision needed
for the direct matrix inversion may be considered too high. Recursive procedures such
as the recursive least squares (RLS) algorithm [15] or its variants may then be preferred.

If low computational complexity is of greater concern than obtaining the optimum
parameter vector, iterative minimization of (2.4) based on a gradient search method is
a standard approach. The workhorse of iterative MSE minimization is the least-mean-
square, or LMS algorithm [14].

2.5 The LMS Algorithm

Let fn represent an adaptive FIR equalizer at time n,

fn �
[
f

[n]
0 · · · f

[n]
N−1

]T
.

The gradient vector of ξ with respect to fn, representing the direction of most rapid
increase of ξ, is

∇∇∇ξ(fn) �
∂ξ

∂fn
=

⎡⎢⎢⎢⎢⎢⎣
∂ξ

∂f
[n]
0
...

∂ξ

∂f
[n]

N−1

⎤⎥⎥⎥⎥⎥⎦ = −2E {e[n]un} . (2.6)

The MSE can be iteratively minimized by taking small steps in the negative direction of
(2.6),

fn+1 = fn − μ∇∇∇ξ(fn) = fn + 2μE {e[n]un} , (2.7)

where μ is a small, positive stepsize1. In practical implementations, simple gradient
estimates are obtained by dropping the expectation operator in the right-hand side of
(2.7). This results in the LMS algorithm:

fn+1 = fn + 2μe[n]un. (2.8)

The update procedure (2.8) is an example of a stochastic gradient search in which an
instantaneous sample value α[n] is used as an estimate of E{α[n]}, resulting in an algo-
rithm with a very low computational cost. Although such estimates may have relatively
high variance, a small value on the stepsize μ makes the adaptation behave like a low-pass
filter that reduces rapid variations over iterations.

1It is assumed here for simplicity that iterations are performed at the sampling rate, which is not
necessary in practice.
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2.5.1 Benefits and Drawbacks of the LMS Algorithm

Unlike closed-form calculation of the Wiener filter through (2.5), a rank-deficient auto-
correlation matrix R does not cause immediate method breakdown in LMS. MSE is still
minimized under the given conditions although the solution vector is no longer unique,
which can cause unlimited growth of one or several of the parameters in fn. Further-
more, with a fixed stepsize μ, only convergence to a neighborhood in parameter space
around the optimum solution vector is achieved, in which fn ‘rattles around’ during the
final phase of adaptation. While a smaller stepsize makes this misadjustment smaller, it
also reduces the convergence rate. Hence, the size of μ essentially trades off convergence
rate for misadjustment. However, choosing μ too large may cause adaptation to become
unstable.

Several modified versions of the LMS algorithm, such as leaky LMS and normalized
LMS have been developed to address the issues mentioned above. Also, even though
(2.8) is already very easy to implement, there are further simplified variants like sign-
error LMS, sign-data LMS and sign-sign LMS that give up some performance for even
lower computational cost [15].

2.5.2 Graphical Interpretation of Iterative MSE Minimization

A useful abstraction of iterative MSE minimization can be obtained by considering
ξ(f) to be an N -dimensional hypersurface parameterized by the equalizer coefficients
f0, . . . , fN−1. While hard to visualize in higher dimensions, the two-dimensional surface
ξ(f0, f1) can be drawn in a three-axis coordinate system. Assuming R has full rank,
this surface assumes the shape of a (possibly elongated) bowl, as illustrated in Fig. 2.2.
LMS adaptation of a two-tap FIR equalizer corresponds to traversing such a bowl in the
estimated direction of steepest descent. An example of an LMS trajectory starting at the
setting f0 = f1 = −2 is shown in Fig. 2.2 along with its projection onto the parameter
plane. The trajectory heads towards the bottom of the bowl which is aligned at the
Wiener setting, marked by (�).

In higher dimensions, the shape of the MSE surface generalizes to a ‘hyperbowl’ with
its bottom aligned at the corresponding Wiener setting fW. Hence, regardless of where
iterative MSE minimization starts, convergence towards fW is always achieved for a well-
conditioned problem of arbitrary dimension. This useful property is known as global
convergence and is discussed in Chapter 3.

2.6 Adaptive Equalization of a Communication

Channel

Iterative MSE minimization is now put in the context of adaptive equalization of a time-
varying digital communication channel. A discrete-time model of a baseband-equivalent
communication system is shown in Fig. 2.3.
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f0

f1

ξ

Figure 2.2: Example of a two-dimensional MSE surface ξ(f0, f1) with its level curves shown on
the parameter plane. An LMS trajectory starting at the point (−2,−2) is shown along with its
projection onto the plane. The Wiener parameter setting fW = (0.93, 0.67) is marked by (�).

The transmitter sends a stream of independent, identically distributed (i.i.d.) digital
symbols s[n] over a channel modeled as a linear distorting system H with an unknown
and slowly time-varying transfer function, and additive noise b[n]. In the ideal case of H
being a pure delay, transmitted symbols could be estimated one-by-one at the receiver
using a decision device, which produces a stream of symbol estimates ŝ[n] from noisy
observations. In reality, the non-ideal channel transfer function may cause samples in
the received signal to interfere with each other, making symbol-by-symbol detection with
a low bit-error rate impossible in such cases [3]. This harmful intersymbol interference
(ISI) is here combatted using the adaptive equalizer F . The MSE criterion is chosen
as ZF equalization generally amplifies the noise b[n], thereby counteracting the removal
of ISI in terms of reliable symbol estimation. Iterative minimization of MSE using an
adaptive equalizer is normally preferred for the following reasons:

• Iterative, continuous adaptation of the equalizer makes it possible to track slow
variations in the time-varying channel.

• High data transfer rates require fast, numerically stable algorithms with low com-
plexity to meet real-time constraints.

• A battery-powered receiver, such as a cell phone, needs computationally efficient
methods for prolonged operation time.

At communication startup, the LMS algorithm is employed during an initial train-
ing period in which pre-determined data sequences, known to both the transmitter and
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Figure 2.3: Model of adaptive equalization of a communication channel.

receiver, are used to drive equalizer parameters towards an optimum setting, thereby re-
moving as much as feasible of the channel-induced ISI. After a successful training period,
the output samples ŝ[n] from the decision device are hopefully correct with such a high
probability that they may assume the roles of the now absent training signal samples t[n].
Hence, an adequate error signal e[n] can still be formed, and adaptation may proceed
during regular data transmission in decision-directed (DD) mode [16, 14].

If initiated from a sufficiently good equalizer setting, DD adaptation is capable of
tracking slow, moderate variations in the channel transfer function. However; drastic
variations, such as those resulting from a deep fade [3] or a transmission outage, can cause
symbol decisions ŝ[n] to suddenly become too unreliable for successful DD operation.
When this happens, the equalizer parameters must be re-positioned at a good setting
before switching back to DD mode [3, 17]. This is because DD methods do not possess the
important property of global convergence, meaning that an optimum setting is reached
from any initialization. In cases where the receiver cannot rely on repeated training for
this, or even on training altogether, a blind adaptation method is needed.

2.7 Equalization Without a Desired Signal

If a training signal or, more generally, a desired equalizer output is not available to
guide equalizer adaptation, recovery of the source signal becomes more challenging. The
objective of a blind method is to restore some known characteristic or statistical property
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of the source in the equalizer output. For instance; in the digital communication example
in Section 2.6, the transmitted signal is known to be i.i.d. and therefore an uncorrelated,
or white sequence of samples. The channel H , not being a pure delay, imparts correlation
(ISI) into the signal, making it colored (non-white). An appealing strategy might then
be to tune the equalizer parameters to make the output signal as white as possible. The
rationale behind this would be that restoring the known second-order statistics of the
source, namely its autocorrelation, hopefully recovers the transmitted signal.

Unfortunately, a whitening filter is generally insufficient for blind equalization of a
system H as it only equalizes the magnitude response |H(Ω)|, and not the phase response
∠H(Ω) [18]. The reason for this is that the phase response of an LTI system is not
preserved in the output second-order statistics from which ‘whiteness’ is defined. This
can be seen from the expression of the power spectrum Px(Ω) of x[n] (i.e. the Fourier
transform of the autocorrelation) in Fig. 2.1,

Px(Ω) = Ps(Ω)|H(Ω)|2. (2.9)

Substituting H(Ω) in (2.9) for H̃(Ω) � H(Ω)A(Ω), where A(Ω) is an allpass filter with
unit magnitude and arbitrary phase response, leaves Px(Ω) unchanged. Hence, second-

order statistics cannot distinguish between H(Ω) and H̃(Ω), making the whitening filter
non-unique.

The only exceptions to the insufficiency of whitening are when H is known to be either
minimum- or maximum phase, so that a unique relationship exists between |H(Ω)| and
∠H(Ω) [12]. For general mixed-phase systems, blind equalization methods must be based
on statistics of orders higher than two.



Chapter 3

Overview of Blind Equalization

Methods and Strategies

As concluded in Chapter 2, ordinary (non-blind) linear equalization commonly uses the
MSE criterion, which is based on second-order statistics in the form of autocorrelations
and cross-correlations. When the desired equalizer output is not available, second-order
statistics are no longer sufficient. Instead, higher-order statistics need to be employed,
where ‘higher’ means greater than two.

This chapter gives an overview of blind equalization methods and motivates their use
of higher-order statistics. The important concept of global convergence is also discussed.

3.1 Higher-Order Moments

A foundation for many blind equalization methods is higher-order moments. The pth-
order moment Mp of a random variable A is [13]

Mp(A) � E{Ap}. (3.1)

For example, M1(A) = E{A} is the mean, and M2(A)− (M1(A))2 = E{A2} − (E{A})2

the variance of A. A generalization is the pth-order moment function Ra of a real,
stationary process a[n], defined as [18]

Ra[k1, . . . kp−1] � E
{
a[n] a[n + k1] · · · a[n + kp−1]

}
.

3.1.1 Blind System Identification with Higher-Order Moments

As seen earlier, the second-order moment function Ra[k] = E{a[n] a[n + k]} is the au-
tocorrelation of the process from which the power spectrum is obtained by taking the
Fourier transform

Pa(Ω) �

∞∑
k=−∞

Ra[k]e−jΩk.

17
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By extending this for the third-order moment function

Ra[k1, k2] = E{a[n] a[n + k1] a[n + k2]},
in a similar fashion the bispectrum of a[n] is obtained from the two-dimensional Fourier
transform [19]

Ba(Ω1, Ω2) �

∞∑
k1=−∞

∞∑
k2=−∞

Ra[k1, k2]e
−j(Ω1k1+Ω2k2).

Consider again the model in Fig. 2.1. As seen earlier, the power spectrum of the
system output signal x[n] given in (2.9) is strictly real, and so the phase response of H
cannot be identified from Px(Ω). On the other hand, the bispectrum of x[n] is [19]

Bx(Ω1, Ω2) = Bs(Ω1, Ω2)H(Ω1)H(Ω2)H
∗(Ω1 + Ω2),

which is generally a complex function from which both the magnitude and phase of H
can be identified if Bs(Ω1, Ω2) is known. Therefore, third-order statistics provide the
possibility of blind identification of an LTI system from knowledge of the third-order
statistics of the input and observations of the output. Similarly, while the shortcomings
of Px(Ω) carry over to the time domain in Rx[k], the impulse response h[n] of H is
identifiable from the third-order moment function under certain conditions [20]. In fact;
a closed-form expression for the impulse response h[n] of an FIR system in terms of
third-order statistics was given in [21] as

h[n] =
Ry[p, n]

Ry[−p,−p]
, for n = 0, . . . , p, (3.2)

where y[n] is the system output and p the FIR order. Unfortunately, (3.2) turns out
to have limited practical use as the model order p must be known, and estimating the
moments Ry[p, n] comes with large variances, even without noise present [20, 18, 22].
Nevertheless, it demonstrates the usability of third-order statistics for blind system iden-
tification, which can be generalized to higher orders. In [23], it was proven that an LTI
system could be identified up to a scale factor and a delay from any higher-order statistic
under broad conditions. In light of this and the relation between system identification
and equalization mentioned in Section 2.2, it is not surprising that higher-order moments
provide means of solving the blind equalization problem as well.

3.2 The Blind Equalization Model

The blind equalization model is shown in Fig. 3.1. The following assumptions are made:

• The source signal s[n] is a real, zero-mean, stationary i.i.d. process, where each
sample is a realization of a random variable S with known, non-Gaussian probability
density function (pdf) νS.

• H is an LTI system with impulse response h[n].
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• The noise b[n] is real, stationary and independent of s[n].

• u[n] = x[n] + b[n] is the observed signal.

• The linear equalizer F has impulse response f [n].

• The equalizer output samples y[n] are realizations of a random variable Y with pdf
νY .

+
+ ∑

s[n]

u[n]x[n]

y[n]

b[n]

Distorting
system (H)

Adaptive
equalizer (F )

Ψ(·)

Figure 3.1: Model of the blind equalization problem.

In practice, the equalizer is usually adaptive of FIR type with coefficient vector fn.
To guide the adaptation of fn, the objective function Ψ assumes the role of the MSE (2.4)
which can no longer be formed in absence of training or a desired output. Note that for
a given observation of the equalizer input, Ψ is a function of fn. The objective function
is either minimized or maximized (depending on its design) in a gradient search

fn+1 = fn ± μ∇∇∇Ψ(fn), (3.3)

where μ is a small, positive stepsize and

∇∇∇Ψ(fn) �
∂Ψ

∂fn

the gradient of Ψ with respect to fn. Using (3.3) with a positive sign is termed a gradient
ascent, and with a negative sign a gradient descent. The attraction points of Ψ(fn) are
thus the maximum points of Ψ(fn) in ascents, and the minimum points in descents.

Unlike the rather natural choice of the MSE (2.4) for trained equalizers, many different
objective functions have been proposed and analyzed for various blind problems. The
choice of Ψ usually has a significant impact on the performance of the method. The next
section gives an overview of some classical approaches in digital communications.
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3.3 Blind Equalization Methods in Digital

Communications

In the adaptive equalization example in Section 2.6, decision-directed adaptation was
used to track a time-varying channel once a sufficiently good initial setting had been
supplied with the use of a training signal. DD equalization was introduced in 1966
by Lucky [16]. Although it is generally not regarded as a blind method, the objective
function of decision-directed LMS (DD-LMS) is obtained by replacing the desired signal
d[n] = s[n − Δ] in the MSE expression (2.4) with the detected symbols ŝ[n − Δ] from
the decision device,

ΨDD � E
{
(ŝ[n − Δ] − y[n])2

}
. (3.4)

Minimization of ΨDD minimizes average squared deviations of y[n] from the detected
symbols and equals MMSE equalization using (2.4) if all symbol decisions are correct.
In [17], it was proven that optimum convergence of DD-LMS is guaranteed in absence of
noise under open-eye conditions, i.e. if the algorithm is initiated from a state in which
the residual ISI level is low enough to give correct symbol decisions. If initialized in a
closed-eye state, optimum convergence cannot be guaranteed. Therefore, it is reasonable
to request from a blind equalizer the ability to always reach an open-eye state regardless
of initialization, so that a switch to DD mode can safely be made with convergence
towards an MMSE setting to follow under mild channel variations [24].

Addressing the poor performance of (3.4) under closed-eye conditions, a modified
version was proposed by Sato in 1975 [25]. Sato’s method uses the sign of the decision
device outputs, instead of the actual outputs, to guide adaptation. It is therefore more
robust to decision errors and recovers from more adverse initial conditions. On the
other hand, the convergence rate is quite slow [7]. Sato’s algorithm was further analyzed
by Benveniste, Goursat and Ruget [26], who showed that it belonged to a broad class of
objective functions suitable for blind equalization. Benveniste and Goursat later proposed
a method featuring a ‘smooth automatic switching’ from the Sato objective to DD-LMS
mode [27], combining the robustness of the Sato method with the attractive convergence
properties of decision-directed equalizers.

An important contribution was made in 1980 by Godard [28] who was looking for
objective functions that measured ISI on quadrature amplitude modulated (QAM) signals
independent of carrier phase, to achieve equalization independently from carrier phase
recovery. Godard suggested minimization of ‘dispersions of order p’, with the pth-order
dispersion defined as

D(p) � E
{
(|y[n]|p − γp)

2} ,

where γp is a positive constant essentially controlling the equalizer gain. Godard mainly
analyzed the cases p = 1 and p = 2 as higher orders gave poor performance. Expanding
D(2) gives

D(2) = E
{|y[n]|4}− 2γ2E

{|y[n]|2}+ γ2
2 . (3.5)

Note that the first and second terms of (3.5) contain the fourth and second moments re-
spectively of the output signal magnitude. Hence, this rather heuristic objective function
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turns out to be based on higher-order moments.
The same objective was suggested by Treichler and Agee [29] for frequency modulation

(FM) and quadrature phase-shift keying (QPSK). Their motivation to using (3.5) was to
restore the ‘constant modulus’ property of such signals which is altered under ISI.

Minimization of D(2) through a stochastic gradient descent is also known as the con-
stant modulus algorithm (CMA), and is the most widely explored blind method in digital
communications, especially when applied to fractionally spaced (oversampled) equaliza-
tion (FSE) [30]. Despite its name, the use of CMA is not limited to constant modulus
signals, as was indeed demonstrated by Godard in his original proposal [28]. Two ex-
haustive tutorials on CMA with emphasis on FSE are found in [31, 30]. A very attractive
feature, early observed by both Godard [28] and Treichler/Agee [29], is that the resulting
parameter settings at convergence lie close to Wiener settings. In [32, 33], an upper
bound on the MSE of CMA was established, confirming that CMA equalizers do indeed
give good performance in terms of MSE, and therefore in bit-error rate.

Noting that the popular constant modulus objective (3.5) is based on higher-order
moments, their use in blind equalization is now further motivated.

3.4 Matching Probability Densities

Consider the model in Fig. 3.1. Temporarily assume the noise b[n] to be zero and define
the convolution

t[n] � h[n] ∗ f [n] (3.6)

as the global system response, i.e. the combined impulse response of H and F . For a
blind equalizer, perfect equalization in the noiseless case is defined to hold when

y[n] = ±αs[n − Δ], (3.7)

where α is a positive scale factor and Δ an integer delay. The sign, scale and delay
ambiguities are normally inherent in the problem but rarely of any practical concern [7].
In terms of the global response, (3.7) corresponds to

t[n] = ±αδ[n − Δ], (3.8)

where δ[n] is the Kronecker delta function1. The following observation was made by
Benveniste, Goursat and Ruget [26]. Under the assumptions listed in Section 3.2, b[n]
being zero and the source pdf νS being symmetric:

if νY = νS, then t[n] = ±δ[n − Δ]. (3.9)

In other words, if the pdf’s of the source and equalizer output signal are equal, F inverts
H up to a sign and a delay ambiguity.

The implication of (3.9) is that adjusting the equalizer parameters until the output
samples have the same pdf as the source solves the blind equalization problem. The role

1δ[n] = 1 if n = 0, and 0 if n �= 0.
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of the objective function Ψ should therefore be to distinguish the source pdf νS from that
of a filtered version. Under certain conditions, the pdf of a random variable is uniquely
determined by its moments (3.1) of all orders [13]. Hence, higher-order moments make
suitable building blocks for objective functions. Furthermore, (3.9) suggests that only
the marginal distribution of Y is of interest. Therefore, Ψ can be a memoryless function
of y[n] [27].

An important remark is that (3.9) does not hold if the source pdf νS is Gaussian, in
which case νY is also Gaussian for any t[n] [13]. The pdf of a Gaussian random variable
is completely characterized by its first and second moments [13], and so higher-order
moments cannot be used to distinguish between different filtered versions of Gaussian
signals of equal mean and variance. Therefore, the blind equalization problem generally
has no solution when the source is Gaussian.

While not being allowed in the source signal, ‘Gaussianity’ provides another handle
on the blind equalization problem, as discussed next.

3.5 Minimizing Gaussianity

A different approach started with a paper by Wiggins [9], who deconvolved seismic traces
by maximizing an objective function he called the ‘Varimax norm’,

ΨWig �

1

N

N∑
n=1

y[n]4(
1

N

N∑
n=1

y[n]2

)2 , (3.10)

which can be recognized as a sample estimate of the kurtosis K, or normalized fourth
moment2 of Y ,

K(Y ) �
M4(Y )

(M2(Y ))2 .

As illustrated in Fig. 1.5 in Chapter 1, seismic deconvolution seeks to undo time dis-
persion in recorded traces to restore the ‘spiky’ appearance of an underlying reflection
sequence. Wiggins therefore looked for an objective function quantifying the amount of
time dispersion of impulses (‘spikes’) in a trace, and found that (3.10) had this feature.
He termed his heuristic method Minimum Entropy Deconvolution (MED).

In a later contribution, Donoho [10] provided a statistical foundation to MED, ex-
plaining why Wiggins’ method generally was successful. Donoho argued that, by the
central limit theorem [13], a filtered version of a non-Gaussian i.i.d. process appears
‘more Gaussian’ than the source itself. The principle is demonstrated in Fig. 3.2, where
a sequence of independent samples with equally probable values ±1 is filtered through

2Alternative definitions of kurtosis exist, such as M4(Y )− 3(M2(Y ))2 [18] or M4(Y )/(M2(Y ))2 − 3
[34].
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a single-pole filter. Comparing the histograms of input and output signals, a heuristic
increase in Gaussianity is apparent.
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Figure 3.2: Example of the increase in Gaussianity due to filtering. The i.i.d. source signal (a)
with histogram (b) is filtered through a single-pole filter, yielding the output (c) with histogram
(d). A Gaussian pdf curve is superimposed on the output histogram.

Using an objective function to measure the Gaussianity of a random variable, Donoho
suggested adjusting the equalizer parameters to minimize the Gaussianity of the output.
He further showed that Wiggins’ objective (3.10) does indeed qualify for this task, and
hence justified its use in practice. He also concluded that general higher-order statistics
can be used to reflect the amount of Gaussianity of a random variable.

3.6 The Popularity of Fourth-Order Moments

Both strategies of matching probability densities (Section 3.4) and minimizing Gaus-
sianity (Section 3.5) can be adopted with the use of higher-order moments. The first
strategy, making νY = νS, generally involves the use of all moments. On the other hand,
the works of Wiggins and Donoho show that it is actually sufficient to only use the fourth
and second moments. A similar claim was later made by Shalvi and Weinstein [35], who
proposed maximization of the fourth moment under constrained equalizer norm.

While generalizations to other orders are possible [36, 34], fourth-order methods have
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dominated the application field and research area. The main reasons for their popularity
are the following:

• The use of odd-order moments is more restrictive: All odd-order moments
of a symmetric signal, i.e. a signal having a symmetric marginal pdf, are zero [37].
This is illustrated in Fig. 3.3 for third moments and continuous pdf’s. If an i.i.d.
signal is symmetric, then so is any filtered variant of it. Hence, filtering does not
affect the odd moments of a symmetric source, which therefore precludes their use in
this case. On the other hand, as shown in Fig. 3.3, an asymmetric source (having an
asymmetric marginal pdf), have non-zero odd moments which are generally altered
under filtering. Therefore, asymmetric sources allow the use of either odd or even
moments. However, symmetric sources are more common, for example in digital
communication where almost all modulation types result in symmetric densities [3].
One reason for the traditional dominance of fourth-order methods is hence their
versatility [20, 18].

• Orders > 4 provide no added benefits: Moments of orders higher than four do
not give any extra information and are more difficult to estimate accurately from
noisy observations [38, 34].

• The popularity of CMA: Much of the evolution of blind methods has been
driven by a need to improve the bit-rate performance of digital communication
receivers. With CMA being the blind equalization method of choice for modern
QAM systems, the understanding of CMA behavior (and hence of fourth-order
methods) has been, and continues to be of interest [5].

a

νA(a)

b

νB(b)

a3 b3

∫ ∞

−∞
a3νA(a)da = 0

∫ ∞

−∞
b3νB(b)db �= 0

Figure 3.3: Illustration of the third-order moments of a random variable A with symmetric pdf
νA(a), and a random variable B with asymmetric pdf νB(b). By definition, M3(A) = E{A3} =∫∞
−∞ a3νA(a)da.

A consequence of the historical bias towards fourth-order methods is that relatively
little research has investigated the use of third moments. Nevertheless, their selection
over fourth moments turns out to be well justified in the case of an asymmetric source.
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This is the point of interest in this thesis, and the research contributions are summarized
in Chapter 4 and supplied in detail in Part II.

3.7 Global Convergence

A highly desired feature of any objective function is global convergence, which guarantees
that a gradient search converges towards a point of good equalizer performance from any
initialization under ideal conditions. Objectives that do not possess a global convergence
property should either be modified or combined with a suitable initialization strategy to
avoid convergence to poor parameter settings.

Recall the well-behaved MSE surface in Fig. 2.2. The only attraction point is the
single global minimum at the bottom of the bowl, corresponding to the Wiener setting
with optimum MSE performance. As no attraction points of poor performance exist on
this surface, the MSE objective (2.4) is globally convergent. In contrast, general objective
surfaces of blind methods are not bowl-shaped but have several stationary points where
the gradient vector is zero, i.e. maxima, minima and saddle points. Therefore, there
may be several attraction points, and the initialization determines which one is reached
(compare with dropping a marble into an egg box instead of a bowl). Global convergence
requires all attraction points to correspond to settings of satisfactory performance.

The shape of a specific objective surface Ψ(f) depends on the statistics of the source
signal and the distorting system transfer function H(Ω). While the source statistics are
usually assumed to be known, the system is not, and so assessment of ‘good’ and ‘bad’
settings in equalizer parameter space cannot be done without specifying H(Ω). On the
other hand, such points are well defined in terms of the global system response t[n] (3.6).
Recall the condition (3.8) on t[n] for perfect equalization. Assume the global response to
be of finite duration and represented by the N -tap FIR coefficient vector

t �
[
t0 · · · tN−1

]T
.

Formulating the condition (3.8) in terms of t gives the points of perfect equalization in
t-space as all single-element settings

t = ± [ 0 · · · 0 α 0 · · · 0
]T

, (3.11)

where the position of the single nonzero element is determined by the delay Δ. Points in
the form of (3.11) are also referred to as zero forcing (ZF) settings. An objective function
having all its attraction points at ZF settings is hence globally convergent.

In practice, perfect equalization is not always pursued. For example; when an initial-
ization to a decision-directed algorithm is to be supplied by a blind method (see Section
2.6), a small amount of residual distortion is acceptable. This means that attraction
points at settings approximately in the form of (3.11) (e.g. having several small taps
dominated by one large tap), could also be tolerated. On the other hand, attraction
points far from ZF settings (e.g. with all taps equal) correspond to heavy residual dis-
tortion, and are not acceptable unless the probability of convergence to such points can
be proven to be small.
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Fig. 3.4 illustrates the location of some points at different coordinates (t0, t1, t2) in
global three-tap space. ZF settings lie on the coordinate axes, while points far from all
axes correspond to heavy distortion.

t0
t1

t2

(1, 0, 0) (0, 1, 0)

(0, 0,−1)

(.1,−.1, 1)

(1, 1, 1)

Zero distortion

High distortion

Low distortion

Figure 3.4: The location of different settings (t0, t1, t2) in three-tap global parameter space. Two
positive ZF points, (1, 0, 0), (0, 1, 0), and one negative, (0, 0,−1), are marked. The approximate
ZF setting (.1,−.1, 1) might be an acceptable attraction point in many cases, unlike the point
(1, 1, 1) which corresponds to maximum distortion.



Chapter 4

Research Contributions

“Man f̊ar inte vara rädd för lite kalkyler.”

Reinhold Näslund

This chapter summarizes the research contributions of the thesis and discusses their
impact. Detailed results are found in Papers A-E in Part II.

4.1 Focus Area: Third-Order Moments

The use of higher-order moments in blind equalization was introduced in Chapter 3. As
discussed in Section 3.6, the research field has been dominated by investigation of fourth-
order methods. Third-order methods were of early interest for blind system identification,
but have since been somewhat left in the shadow. Out of the relatively few application
examples, some worth mentioning are: [39, 40] (digital communications), [41] (ultrason-
ics), [42] (mechanical signals) and [43] (underwater acoustics). While these contributions
employ third-order methods for different applications, little analytic results are presented
to explain their performance. Derivations of the global convergence of objectives based
on general higher-order moment magnitudes are given in [36]. Still, third-order methods
are not as well understood as fourth-order methods, particularly CMA whose properties
are well documented [31, 30].

The historical lack of attention to third-order methods is probably due to the some-
what restrictive requirement of an asymmetric source pdf, which precludes their use in
most of the the digital communication area, where much of the blind equalization re-
search has been conducted. The authors of [39, 40, 44] suggest using a transformation
to enforce asymmetry into the symbol constellation, so that third-order methods can be
used with symmetrical modulation formats. However, the effect of such a transformation
on the probability of bit error is potentially harmful [40]. Interestingly, a modulation
type being asymmetric by construction, pulse-position modulation (PPM) [45], has re-
cently come into consideration for ultra wideband (UWB) radio [46, 47] where blind linear
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equalization may prove useful to ensure high bit-rate operation [48]. Papers D and E
consider third-moment based blind equalization of PPM signaling, while experimental
results are also found in Papers B and C.

Motivated by a perceived knowledge gap in the understanding of third-moments in
blind equalization, the research herein presents both analytic and numerical results to
partially fill this gap. The methods of interest are on-line algorithms of low computational
cost, e.g. stochastic-gradient searches as used in CMA, maximizing third-order moments
(M3) of the equalizer output. To assess the general behavior of such methods, a char-
acterization of the objective surface topology is valuable, i.e. determining the types and
locations of all stationary points. This helps predict the performance of gradient-search
methods as follows:

• If all attraction points correspond to good settings (e.g. points of perfect equaliza-
tion), the objective function is globally convergent.

• The existence and location of any false optimum, i.e. an attraction point correspond-
ing to a sub-optimum parameter setting, can aid in specifying an objective modi-
fication, an equalizer initialization strategy, or methods to detect ill-convergence.

• A large number of saddle points generally has a negative impact on convergence
speed, as the slope of the objective function approaches zero in their vicinity, caus-
ing gradient searches to ‘stall’. Convergence rate issues with CMA have been related
to saddle points [49, 30].

4.2 Topology of the Third-Moment Surface

The surface topology of third-moment objectives is studied in equalizer parameter space
in Papers A and B, and in global parameter space in Papers D and E. It is interesting
to compare the topology of the third-moment surface with that of CMA, which is based
on fourth moments and for which the performance and surface characteristics are well
known [31, 30]. In [50], the stationary points of CMA are shown to lie on a manifold
topologically equivalent to a sphere. For third-moment maximization, a norm constraint
is enforced on the equalizer parameter vector in practice to avoid numerical instability
(see Section 4.5). This effectively restricts all settings (and hence stationary points) to
have constant norm, and hence reside on the sphere as well.

A visual comparison of the results for CMA from [50] with those for third moments in
Paper E1 is given in Figures 4.1 and 4.2 respectively for three-tap global system parameter
vectors on the two-dimensional S2 sphere. The curved arrows indicate the direction along
the gradient vector field that adaptation trajectories would ideally take. Each stationary
point is marked and labeled according to the number of attractive dimensions in the
vector field as follows [51]:

1The results in Paper E are derived for PPM signaling, but generalize to i.i.d. sources as considered
in [50].
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• Sink, marked by (•). Two attractive, zero repulsive dimensions (attraction point).

• Saddle point, marked by (s). One attractive, one repulsive dimension.

• Source, marked by (◦). Zero attractive, two repulsive dimensions (repulsive point).

The number of sinks, saddles and sources for both objectives are listed in Table 4.1. The
following conclusions can be drawn from the table and a visual comparison of the spheres:

• Compared to the CMA surface, the third-moment surface has a ‘simpler’ structure
with fewer stationary points and, specifically, fewer saddle points. The convergence
rate should therefore generally be in favor of third-order methods.

• The stationary points of CMA are distributed all across the surface. In contrast,
all stationary points on the third-moment sphere are confined to the two octants
enclosed by dashed lines in Fig. 4.1. These distributions of points persist into
higher dimensions. In general, for a length-N global response, the volume ratio of
the two hyperoctants to the total parameter space is 2−N+1. Hence, the simplicity
of the third-moment surface compared to CMA becomes even more accentuated in
practice, and enables faster convergence properties.

• While three of the attraction points lie at perfect equalization (ZF) settings, a single
false optimum exists on the third-order surface (the sink at the back of the sphere
in Fig. 4.1(b)). However, as established in Paper E, this is the only false optimum,
regardless of dimension. Furthermore, the probability of ill-convergence proves to
be very small in practice, as it only occurs if the starting point lies within the
octant containing it. As discussed above, the size of this region practically vanishes
in higher dimensions. Also, Paper E shows that the character of this region makes
it an even more unlikely starting point in reality.

Table 4.1: The number of stationary points on the S2 sphere for the third moment (TM) and
CMA objectives.

Objective Sinks Saddles Sources

TM 4 6 4

CMA 6 12 8

The benefits of a simple objective surface are demonstrated in numerical experiments
in Papers A and B, showing that third-moment based gradient searches converge faster
than corresponding fourth-moment versions.
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Figure 4.1: Vector field and stationary points of the third-moment objective surface on the
sphere in three-tap global parameter space, (•) = sink, (s) = saddle point, (◦) = source.
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Figure 4.2: Vector field and stationary points of the CMA objective surface on the sphere in
three-tap global parameter space, (•) = sink, (s) = saddle point, (◦) = source.
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4.3 Equivalent Polytope

Another interesting abstraction made in [50] is to relate the sphere-topology of CMA to
a polytope by introducing the following associations:

• Sinks ↔ vertices (faces of dimension zero).

• Saddle points ↔ edges (faces of dimension one).

• Sources ↔ faces (faces of dimension two).

The polytope representation is possible since the topology of the objective surface places
constraints on the gradient vector field and, therefore on the relative number of maxima,
minima and saddle points [51]. The equivalent polytope of the three-tap third-moment
surface, with four vertices, six edges and four faces (confirm with Table 4.1 and Fig. 4.1)
is a tetrahedron. In higher dimensions, it generalizes to a hypertetrahedron, or simplex.
The equivalent polytope of a three-tap CMA system, having six vertices, twelve edges
and eight faces (see Table 4.1 and Fig. 4.2), is an octahedron, generalizing to a cross
polytope in higher dimensions. The polytopes of the third moment and CMA objectives,
situated in the same coordinate system as used for the spheres earlier, are shown in Fig.
4.3 and Fig. 4.4 respectively. Note how the sinks from Fig. 4.1 and Fig. 4.2 line up
with the polytope vertices. The relative simplicity of the third-order objective surface
topology is again visually apparent from comparing the tetrahedron to the octahedron.

t0 t1

t2

Figure 4.3: The topologically equivalent polytope (tetrahedron) of the three-tap third-moment
surface.
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t0 t1

t2

Figure 4.4: The topologically equivalent polytope (octahedron) of the three-tap CMA surface.

4.4 Robustness to Gaussian Noise

In Paper B, it is shown that, unlike fourth-moment stationary points, the third-moment
stationary points are not displaced by additive white Gaussian noise. Hence, estimates
of the third-moment gradient are not biased by white Gaussian noise, while the corre-
sponding fourth-moment gradient estimates are. This inherent robustness to noise further
emphasizes the advantages of third-order methods over their fourth-order counterparts,
especially in lower-SNR settings.

4.5 A Low-Cost, Self-Stabilizing Gradient Search

Maximization of a third-moment objective can be done in a stochastic gradient search
with a very low computational cost, comparable to that of an LMS or CMA algorithm.
However, the equalizer parameter vector requires frequent normalization to avoid numer-
ical instability. Such vector normalizations do not affect the equalization performance
but require several additional multiply-adds, as well as divisions and square-root oper-
ations which are costly on a fixed-point architecture such as a digital signal processor
(DSP). A division- and square-root free algorithm is proposed and analyzed in Paper C,
providing third-moment maximization with automatically constrained equalizer norm.
Hence, third-moment maximization lends itself to efficient implementation on real-time
digital hardware.
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4.6 Conclusions

The results outlined here show that third-order methods possess features which make
them an interesting and viable alternative to the traditionally employed fourth-order
methods in applications where the source signal is asymmetric. In fact, the benefits of
faster convergence and better robustness to noise actually suggest that an asymmetric
source should be exploited by choosing third-order methods.
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Summary of Appended Papers

Paper A - Skewness Maximization for Impulsive Sources in Blind

Deconvolution

A comparison between the objective surfaces of kurtosis and skewness (normalized third-
order moment) is done in equalizer parameter space. It is shown that the skewness
surface has fewer stationary points in general and therefore fewer saddle points, which
would on average give faster convergence of gradient searches. A numerical experiment
is supplied where both objectives are used to deconvolve recorded sound from a running
diesel engine, for which the source signal has an asymmetric, impulsive character. The
experiment confirms the faster convergence of the third-order method.

Paper B - Online Adaptive Blind Deconvolution Based on

Third-Order Moments

Two simple objective functions are compared, the third- and fourth-order moments re-
spectively of the equalizer output. The third-order objective is demonstrated to provide
faster convergence on average. It is also shown that estimates of the third-moment gra-
dient are unbiased under white Gaussian noise, while the fourth-order estimates are not.
Equalization of a pulse-position modulated (PPM) signal on a simulated ultra wide-
band (UWB) radio channel is performed, highlighting the faster convergence of the third
moment and demonstrating its use in on-line algorithms.

Paper C - Computationally Efficient Norm-Constrained

Adaptive Blind Deconvolution Using Third-Order Moments

Blind equalization by maximizing third-order moments was demonstrated in Paper B to
be viable method for on-line applications. However, a significant part of the computa-
tional cost in implementations comes from the frequent normalizations of the equalizer
coefficient vector, which are necessary to maintain numerical stability. The extra com-
putational cost of these normalizations may be quite large in practice, requiring division
and square-root operations as well as several extra multiply-adds. In Paper C, a self-
stabilizing algorithm is proposed and analyzed which gives third-moment maximization
under constant filter norm, using only multiplications and additions. The computational
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simplicity makes this algorithm well suited for realization on real-time, fixed-point hard-
ware such as a digital signal processor (DSP). Experimental results are supplied, featuring
blind equalization of a simulated UWB radio channel with PPM signaling.

Paper D - Blind Equalization of PPM Signals Using Third-Order

Moments

PPM has attracted attention as being a suitable signaling format for UWB radio. A
challenge in the deployment of UWB systems is how to ensure reliable high-rate trans-
missions in presence of the rich multipath spread of typical indoor radio channels. Paper
D proposes the use of a blind, linear equalizer to combat the resulting ISI. Being asym-
metric by construction, PPM signals allow the use of third-order moment maximization.
Analysis of the global convergence properties under PPM signaling is supplied for a low-
dimensional example, showing the existence of a false optimum point which signals the
need for further study regarding the probability of ill-convergence and/or an initialization
strategy.

Paper E - Blind Linear Equalization of PPM Signals Using

Third-Order Moments

Third-moment maximization under PPM signaling is further investigated in Paper E.
Global convergence analysis shows that a single false optimum point exists for arbitrary
length of the global system response. However, the probability of ill-convergence is
proven to be vanishingly small in practice, providing confidence in the usability of third-
order methods. It is also demonstrated that maximization of the magnitude of third
moments is a globally convergent method for PPM. A simulation experiment using a
widely accepted UWB channel model demonstrates that third-order methods can be
used to provide an initial setting of sufficiently low residual ISI for safe switch to a
decision-directed algorithm.
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Skewness Maximization for Impulsive Sources in

Blind Deconvolution

Patrik Pääjärvi and James P. LeBlanc

Abstract

In blind deconvolution problems, a deconvolution filter is often determined in an itera-
tive manner, where the filter taps are adjusted to maximize some objective function of
the filter output signal. The kurtosis of the filter output is a popular choice of objective
function. In this paper, we investigate some advantages of using skewness, instead of kur-
tosis, in situations where the source signal is impulsive, i.e. has a sparse and asymmetric
distribution. The comparison is based on the error surface characteristics of skewness
and kurtosis.

1 Introduction and Problem Setting

sn h

un

f vn = ŝn

Figure 1: Block diagram of a deconvolution problem.

Fig. 1 shows a discrete-time deconvolution problem model. A source signal, sn, whose
characteristics are not completely known, is convolved with some unknown transfer func-
tion, h. The output signal, un, is then applied to a deconvolution filter, f , which, ideally,
reconstructs sn as ŝn = vn = un ∗ f .

For geophysical applications in which the source signal has a sparse distribution (i.e.
‘spiky’ appearance), Wiggins [1] proposed a method called minimum entropy deconvolu-
tion (MED). The approach was to use the knowledge that the source signal had a sparse
distribution, and try to find the deconvolution filter whose output distribution was as
sparse as possible. As a measure of sparseness, Wiggins proposed the ‘varimax norm’
(similar to the more commonly known kurtosis) as a measure of the ‘spikiness’ of the
deconvolution filter output. The varimax norm V for a filter output sequence vn of M
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samples is defined as

V =

M−1∑
n=0

v4
n(

M−1∑
n=0

v2
n

)2 . (1)

The MED method consisted of choosing an initial filter vector f and then iteratively
adjust the filter towards maximizing V .

Most deconvolution methods are based on some knowledge about the distribution of
sn. By using some suitable objective function O(vn) of the deconvolution filter output,
the filter can be adapted towards maximizing O(vn).

Donoho [2] generalized the theory behind minimum entropy deconvolution by consid-
ering a family of objective functions of a sequence vn of length M ,

Or
s(vn) =

1
M

M−1∑
n=0

|vn|r(
1
M

M−1∑
n=0

|vn|s
)r/s

, (2)

of which the varimax norm is a scaled version of O4
2(vn).

Donoho noted that, as a consequence of the central limit theorem, linear combinations
of identically distributed random variables become ‘more Gaussian’ than the individual
variables. Therefore, the transfer function output signal un will have a distribution that is
more nearly Gaussian than the distribution of sn. Any objective function should therefore
be used to reduce ‘the Gaussianity’ of the deconvolution filter output.

One suitable measure of Gaussianity for an MED implementation would be the kur-
tosis, Kv, of vn,

Kv = E{v4
n}/(E{v2

n})2, (3)

where E{· } denotes expectation. Wiggins varimax norm is a scaled approximation of
Kv. Thus, its objective would be to find the filter whose output has a kurtosis value far
from a Gaussian signal (the kurtosis value of all Gaussian distributed signals is 3).

However, for impulsive sources, the kurtosis may not perform well [3]. An alternative
choice of objective function might be the skewness, Sv, of vn, defined as

Sv = E{v3
n}/(E{v2

n})3/2. (4)

Note that skewness maximization clearly would not be suitable for deconvolution of
symmetrically distributed source signals, since the skewness of any filtered version of
such a signal is zero.

Next, we compare kurtosis and skewness when used as objective functions for blind
deconvolution of impulsive signals. This comparison considers the error surface topolo-
gies, i.e. Kv and Sv as functions of the filter coefficients. The error surface topology will
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affect the convergence of MED algorithms. In particular, the number of stationary points
(i.e. points where the gradient of the error surface is zero) is an important characteristic,
as an excessive number of saddle points (stationary points having a non-definite Hessian)
‘stall’ gradient-based filter adaptations.

1.1 Notation and Definitions

To enable a comparison between skewness maximization and kurtosis maximization for
blind deconvolution, we introduce notation of such gradient-based methods.

The deconvolution filter f used is assumed to be an FIR filter of order N , represented
by the column vector

f = [f0 f1 · · · fN ]T , (5)

where fm denotes the mth filter coefficient. The filter output at time n is given by the
convolution sum

vn =

N∑
k=0

fkun−k. (6)

A simple strategy for maximizing any objective function, O(vn), is to use a gradient
method wherein the filter coefficients are adapted iteratively towards increasing O(vn),
regarding it ultimately as a function of f , O(f). Denote the filter vector after i iterations
as f (i), the next filter vector will be chosen as

f (i+1) = f (i) + μ∇O(f (i)), (7)

where

∇O(f) =

[
∂O
∂f0

∂O
∂f1

· · · ∂O
∂fN

]T

(8)

is the gradient vector of O(f), and μ is some fixed or variable stepsize.
The convergence of filter adaption algorithms based on gradient ascent, such as (7),

depends mainly on two factors: the choice of stepsize, μ, and the topology of the error
surface O(f).

The stepsize choice is an implementation issue. It must be chosen small enough to
allow convergence to a (possibly local) maximum (the stability issue), while choosing a
too small stepsize incurs excessive iteration steps. The error surface topology, however,
depends on the algebraic structure of the objective function used. The error surfaces of
common blind deconvolution objective functions are well known to be multimodal (i.e.
to have multiple local maxima). The number of stationary points for kurtosis has been
explored [4], [5], but similar results for skewness has not been found.

2 Comparison of Error Surface Topologies

An important characteristic of an error surface O(f) is the number of stationary points,
i.e. the number of points where the gradient, ∇O(f), is zero. More stationary points
generally means slower convergence of the gradient algorithm.
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By writing out (3) as a function of the filter coefficients, we obtain

Kv =

E

⎧⎨⎩
(

N∑
k=0

fkun−k

)4
⎫⎬⎭⎛⎝E

⎧⎨⎩
(

N∑
k=0

fkun−k

)2
⎫⎬⎭
⎞⎠2 . (9)

Taking the gradient of (9) with respect to the mth filter coefficient, fm, and equating to
zero, we obtain the following; for m, i = 0 . . . N ,∑

i

f 3
i R 0

0
m−i

+3
∑
i�=j

f 2
i fjR 0

j−i

m−i

+
∑

i�=j �=k

fifjfkR j−i
k−i

m−i

−σ2
vKv

∑
i

fiR m−i = 0, (10)

where

σ2
v = E{v2

n} = E

⎧⎨⎩
(

N∑
k=0

fkun−k

)2
⎫⎬⎭ , (11)

and the 2nd and 4th moments of un are defined as

R i = E{unun−i} R i
j

k

= E{unun−iun−jun−k}.

The corresponding equation for the skewness is found similarly by writing out (4) as
a function of f , taking the gradient with respect to the mth filter coefficient, fm, and
equating to zero. We obtain the following; for m, i = 0 . . . N ,∑

i

f 2
i R 0

m−i +
∑
i�=j

fifjR j−i
m−i −

√
σ2

v Sv

∑
i

fiR m−i = 0, (12)

where the 3rd moment of un is defined as

R i
j = E{unun−iun−j}.

We note that the kurtosis-based stationary points (10) consist of a system of N + 1
polynomial equations in N + 1 variables (f0, . . . , fN). Each equation in the system has
the same monomial support and a total degree of 5. The Bezout upper bound on the
number of solutions (i.e. stationary points of the error surface) is then 5N+1.

Similarly, the skewness system of equations consist of N + 1 polynomials of total de-
gree 4, yielding a Bezout upper bound on the number of stationary points of 4N+1. Even
for moderate filter lengths (N + 1), the number of possible stationary points is consider-
ably smaller for the skewness error surface. This generally means faster convergence for
gradient algorithms of the form (7).
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Figure 2: Measurement data from a sound recording of a diesel engine.

3 Experimental Results

3.1 MED Algorithm Comparison

To support the view in Section 2, a simulation was done in which two block-mode versions
of the same MED algorithms, one using kurtosis and the other using skewness as the
objective function, were applied to real measurement data.

The data, shown in Fig. 2, consisted of a sound recording of a running diesel engine.
Referring to Fig. 1, the source signal sn is the explosions from the pistons. The transfer
function h is the engine block and housing through which the source signal propagates.
The source signal is thought to be impulsive, i.e. it has a sparse and asymmetric distri-
bution, although the measured signal appears symmetric and Gaussian, as seen in Fig.
2, after passing through the transfer function. The measurement data consists of un plus
added noise. The deconvolution filter length was chosen to be 2000.

The MED algorithm used in the experiment was based on the filter iteration (7).
Although the stepsize, μ, can be varied during iteration in several ways, a fixed stepsize
was used for simplicity. Each algorithm was run 35 times, using different unit-norm
initializations. Each filter was initialized with one large center tap, and the rest of the
taps picked randomly from a normal distribution, with a standard deviation of 2% of the
center tap magnitude. This is a reasonable approximation to the ‘customary center tap
initialization’ of blind deconvolution folklore.

4000 iterations were performed to allow both algorithms to converge. The stepsizes
for the two algorithms cannot be directly compared. In order to make a fair comparison,
the stepsize for skewness was chosen just small enough to keep almost all runs stable,
while the kurtosis stepsize was chosen so that about half of the runs became unstable
going into convergence. In this way, the convergence rate of the kurtosis algorithm was
essentially maximized for fixed stepsize.

As a comparison between the two algorithms, the kurtosis and skewness versus iter-
ation number was recorded for each run and plotted in Fig. 3. In Fig. 4, the averages
of all 35 runs are shown for both kurtosis and skewness. The two plots in Fig. 4 are
normalized to the same final value, since the magnitudes of the two objective functions
cannot be directly compared.
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Figure 3: Kurtosis (top) and skewness (bottom) versus filter iteration.
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Figure 4: Kurtosis (dashed) and skewness (solid) versus filter iteration.

As seen from Fig. 4, the MED algorithm using skewness is initially steeper and reaches
50% of its final value considerably faster than the kurtosis algorithm.

The results shown in Fig. 4 provide support for the results in Section 2, namely that
the error surface of skewness contains fewer stationary points, meaning less ‘flat’ regions
at which the MED algorithm might get stalled. Fig. 5 shows the deconvolution filter
outputs for one run of the kurtosis and skewness MED algorithms. Both algorithms have
deconvolved the source signal and produced a sparsely distributed signal.

3.2 Error Surface Topology Comparison for a 3-Tap Filter

As an illustrative comparison, the error surfaces for skewness and kurtosis for a low-
dimensional (3-tap) filter were compared visually. An impulsive signal was synthesized
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Figure 5: Kurtosis (top) and skewness (bottom) deconvolution filter outputs.

and filtered through a ARMA(1,1) low-pass filter. The error surfaces for skewness and
kurtosis were then plotted over a set of unit-norm, three-tap deconvolution filters (i.e.
the unit sphere). Figures 6 and 7 show contour plots of the error surfaces for kurtosis
and skewness respectively. Small arrows indicate the direction of the gradient, and the
stationary points are marked and classified as minima (×), saddle points (s) or maxima
(•). The figures show that the error surface of kurtosis has more stationary points than
the skewness error surface. As a check, it was verified that the vector fields satisfied the
Euler Characteristic of the sphere [6].

4 Conclusions

The use of skewness instead of kurtosis as the objective function for minimum entropy
deconvolution of impulsive sources has the benefit of an error surface with fewer saddle
points, allowing better convergence behavior for simple, gradient-based methods. This
has been demonstrated using both analytical and experimental results.
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Figure 6: Kurtosis error surface.
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Online Adaptive Blind Deconvolution Based on

Third-Order Moments

Patrik Pääjärvi and James P. LeBlanc

Abstract

Traditional methods for on-line adaptive blind deconvolution using higher-order statis-
tics are often based on even-order moments, due to the fact that the systems considered
commonly feature symmetric source signals (i.e. signals having a symmetric probabil-
ity density function). However, asymmetric source signals facilitate blind deconvolution
based on odd-order moments. In this letter, we show that third-order moments give the
benefits of faster convergence of algorithms and increased robustness to additive Gaussian
noise. The convergence rates for two algorithms based on third- and fourth-order mo-
ments respectively are compared for a simulated Ultra-Wideband (UWB) communication
channel.

1 Introduction

sn

xn

zn

yn

un

c f

Φ(yn)
Unknown environment

Figure 1: The signal model of a general blind deconvolution problem.

Adaptive blind deconvolution is used for equalization or identification of unknown
systems when only the output of the system can be observed. Figure 1 shows a discrete-
time signal model of a general blind deconvolution problem (the subscript n denotes a
time index). The object is to find the deconvolution filter f that approximately inverts
the system c with limited or no knowledge of either c or the source signal sn. The
system output xn plus an additive disturbance zn gives the observed signal un. The un-
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known, possibly time-varying system c may be either linear or non-linear with minimum-,
maximum- or mixed phase.

1.1 Minimum Entropy Deconvolution

In general, due to filtration through c, the probability distribution of the system output
xn will be closer to a Gaussian than that of sn. This is a consequence of the central
limit theorem and allows for deconvolution based on measuring the ’Gaussianity’ of the
deconvolution filter output yn. Minimum Entropy Deconvolution (MED) methods are
based on using a score function Φ(yn) to measure the Gaussianity (or entropy) of yn. The
probability distribution of yn is then driven as far away from a Gaussian distribution as
possible, by adapting the coefficients of f . In general, f is a FIR (finite impulse response)
filter and all signals are assumed to have zero mean.

To measure the Gaussianity of a signal, score functions based on higher-order central
moments are commonly used. Such functions can typically be approximated by simple
polynomial functions of yn, making them specially suitable for on-line (real-time) appli-
cations, where computational efficiency is often of concern. Wiggins [1] proposed the use
of the Kurtosis (normalized fourth-order moment) of yn as a score function for MED.
Donoho [2] generalized the theory behind MED, and considered various types of score
functions, including central moments of order greater than two.

Godard [3] suggested dispersions of yn as score functions for blind equalization of
communication channels. The dispersion of order p ( p integer > 0 ) is based on even-
order moments of yn, and is defined as

D(p) = E
{
(|yn| p − Rp)

2} , (1)

where Rp is a positive constant and E{·} denotes expectation. Choosing p = 2 leads
to the popular Constant Modulus Algorithm (CMA) [4], which is based on fourth-order
moments, similar to Wiggins original idea.

1.2 Symmetric and Asymmetric Source Signals

Traditional uses of blind deconvolution include linear equalization of communication
channels, deconvolution of seismic traces and dereverberation of acoustic signals. Such
applications are often assumed to feature symmetric source signals, i.e. zero-mean signals
with a probability density function (PDF) that is symmetric around zero. Since all odd-
order moments of symmetric signals are zero, most research focus in the field of blind
deconvolution has hence been directed towards even-order moments. Although symmetric
source signals dominate the field of applications for MED, asymmetric source signals, i.e.
zero-mean signals with asymmetric PDF’s (and thus with non-zero third central moment)
occur in a wide range of acoustic, biomedical and mechanical signals (for example, pulse
oximetry signals or hammer impacts). Asymmetry is also a feature of Impulse Radio
signals [5], a proposed signaling format for Ultra-Wideband (UWB) radio [6, 5, 7].
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In previous work [8], we noted that asymmetry in the source signal can be exploited
by using a score function based on third-order moments, instead of the common fourth-
order moments. The benefit of a lower-order moment is mainly a simpler score function
surface (regarding Φ(yn) as a function of the deconvolution filter coefficients). This will,
in general, give faster convergence of common gradient search algorithms.

In the work presented in this paper, we compare two simple on-line score functions
based on third- and fourth-order moments respectively. Since symmetric source signals
have zero odd-order moments, we restrict our focus to asymmetric sources. We demon-
strate that an on-line gradient search algorithm based on third-order moments should
in general benefit from faster convergence and increased robustness to additive Gaussian
noise, compared to algorithms based on fourth-order moments. The experimental results
are obtained from simulations of an indoor Ultra-Wideband channel with Impulse Radio
signaling.

2 Notation and Model Description

Referring to the discrete-time signal model in Figure 1, we define sn and c as the unknown
source signal and unknown channel respectively. The sum of the channel output xn and
the disturbance zn is the observed signal un, which is the input to the deconvolution filter
f . For simplicity, we will from here on refer to Φ(yn) as an objective function of yn, and
the objective of the deconvolution problem is to find the filter f that maximizes Φ(yn).
In typical on-line situations, this is done iteratively through a gradient search algorithm.

The adaptive filter f is assumed to be FIR (finite impulse response) of order N . The
filter after r iterations is represented by the coefficient vector

f (r) =
[
f

(r)
0 f

(r)
1 . . . f

(r)
N

]T
. (2)

Using adaption by gradient ascent, f is recursively updated in the direction of maximizing
the objective function. The filter update rule becomes

f (r+1) = f (r) + μ∇Φ(f (r)), (3)

where μ is a positive stepsize of adaption and ∇Φ(f (r)) is the gradient of Φ with respect

to f (r),

∇Φ(f (r)) =

[
∂ Φ

∂f
(r)

0

∂ Φ

∂f
(r)
1

· · · ∂ Φ

∂f
(r)

N

]T

. (4)

Filter iteration can be performed either on a sample-by-sample basis (general appli-
cations), or on a symbol-by-symbol basis (digital communication applications). If the
stepsize μ in (3) is small, f can be regarded as approximately constant in time, allowing
us to drop the superscript (r). We then define the filter output at sampling instant n as

yn = uT
n f = xT

n f + zT
n f = dn + vn, (5)
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with dn being the ’filtered signal’, vn the ’filtered noise’ and the signal vectors defined as
un = [un un−1 . . . un−N ]T, xn = [xn xn−1 . . . xn−N ]T and zn = [zn zn−1 . . . zn−N ]T.

The two objective functions we will compare are simply the third- and fourth-order
central moments respectively of the filter output yn;

Φ(3)(yn) � E
{
y3

n

}
, (6)

Φ(4)(yn) � E
{
y4

n

}
. (7)

The corresponding gradients with respect to f are

∇Φ(3) ∝ E
{
y2

n un

}
, (8)

∇Φ(4) ∝ E
{
y3

n un

}
. (9)

In on-line applications, where computational power is often limited, it is customary to
use an instantaneous estimate of the gradient in the filter update (3). This can be
obtained from the two objective functions (8) and (9) by simply dropping the expectation
operators.

From here on, we will make the following assumptions:

A1) All signals are real and zero-mean.

A2) sn is a non-Gaussian and asymmetric signal.

A3) The disturbance zn is a zero-mean, i.i.d. Gaussian noise process, independent of xn,
with variance σ2

z .

A4) The stepsize parameter μ in (3) is small, so that the filter vector f (r) can be regarded
as approximately constant in time when compared to the signals, i.e. f (r) = f

A5) f is kept at constant (unit) norm during adaption, i.e. ‖ f ‖2 =
∑

i

f 2
i = 1.

Assumption A4 is customary in adaptive filtering theory and simplifies the averaging
analysis in the next section. Assumption A5 is necessary since increasing the norm of
any filter f increases both objectives (6) and (7), while leaving the Gaussianity of the
filter output constant.

3 Comparative Performance Analysis of 3RD- and

4TH-Order Objective Functions

3.1 Objective Function Surface Topology

If the objective function Φ is regarded as a function of the deconvolution filter coefficients,
adaption according to (3) can be thought of as traversing a multidimensional function
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surface Φ(f) towards any local maximum points (under the constraint of unit filter norm).
The set of maximum points is a subset of the points on the function surface with zero
gradient ∇Φ(f), with the other set members being minimum points or saddle points.
Maximizing Φ(f) is therefore equivalent to finding a subset of solutions to

∇Φ(f) = 0. (10)

For a filter of order N , (10) leads to a system of N +1 non-linear polynomial equations in
the N +1 unknowns {f0, . . . , fN}. The highest degree of the polynomials in the equation
system (10) will set an upper bound on the number of solutions, i.e. the number of
stationary points on the objective surface. A large number of stationary points generally
implies a large number of saddle points, which can ’stall’ filter adaption.

Solving (10) for the third-moment objective function (6) leads to the system of equa-
tions ∑

i

f 2
i R 0

m−i +
∑
i�=j

fifj R j−i
m−i = 0, (11)

for m, i, j = 0 . . .N , with the third moment of un defined as Ri
j = E{unun−iun−j}.

The highest polynomial degree of (11) is 2, which gives a Bezout [9] upper bound on the
number of solutions, i.e. the number of stationary points on the function surface, equal to
2N+1. The corresponding system of equations for the fourth-moment objective function
(7) is ∑

i

f 3
i R 0

0
m−i

+ 3
∑
i�=j

f 2
i fjR 0

j−i

m−i

+
∑

i�=j �=k

fifjfkR j−i
k−i

m−i

= 0, (12)

for m, i, j, k = 0 . . .N , with the fourth moment of un defined as Ri
j

k
= E{unun−iun−jun−k}.

The highest polynomial degree of (12) is 3, giving a Bezout upper bound on the number
of solutions equal to 3N+1. Note that, in general, the moments of un in (11) and (12)
may depend on n (e.g. for a time-varying system c), despite the notation used. This is
not essential here, since a dependence on n only implies that the shape of the function
surface changes over time. The upper bounds on the number of stationary points is still
constant.

Even for moderate filter orders, the maximum number of stationary points on the
third-moment function surface is considerably smaller than on the corresponding fourth-
moment surface. As previously noted for off-line (block-mode) algorithms in [8], lower
polynomial order of score functions gives the benefit of a ’simpler’ objective surface,
which, in general, implies fewer saddle points. Since an excessive number of saddle
points can ’stall’ a gradient search, a simpler objective surface will therefore in general
allow for faster adaption of such algorithms. This is of special importance in applications
where the unknown system c is time-varying, and the deconvolution filter needs to ’track’
changes in the system.
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3.2 Gaussian Noise Effects on the Objective Function Surface

3.2.1 Objective Surface Analysis

In the presence of additive white Gaussian noise, as described in the model in Section
2, and with the filter output decomposed into the sum of dn and vn, as in (5), the
third-moment objective function (6) at time n becomes

Φ(3)(yn) = E
{
d 3

n

}
. (13)

Since all odd moments of the Gaussian disturbance are zero, (13) depends solely on
the filtered signal dn, and not on the disturbance zn. Thus, the function surface of the
third-moment objective function is preserved in the presence of Gaussian noise. The
corresponding expression for the fourth-moment objective function (7) in the presence of
Gaussian noise is

Φ(4)(yn) = E
{
d 4

n

}
+ 3
(
σ2

z

)2 ‖ f ‖4 + 6 σ2
zE
{
d 2

n

} ‖ f ‖2 . (14)

The Gaussian noise introduces two additional terms to the ’signal’ (first) term. Under
Assumption A5, the second term does not depend on f , and will therefore not change the
location of the stationary points. The third term, on the other hand, which depends on
f through dn, will alter the location of the stationary points. Since the local maximum
points have moved under the influence of noise, the ability of the algorithm to invert c

has been reduced.

3.2.2 Gradient Analysis

With the filter output defined as in (5), the gradient of the objective function can be
expressed as

∇Φ = ∇Φ(d) + ∇Φ(d,v). (15)

∇Φ(d) is the ’signal’ component of the gradient due to the filtered source signal dn. ∇Φ(d,v)

is the perturbation of the gradient caused by the Gaussian noise. Taking the gradients
of Φ(3) and Φ(4) with respect to f and separating them according to (15) yields

∇Φ(3) ∝ ∇Φ(3)(d), (16)

∇Φ(4) ∝ ∇Φ(4)(d) + 3
[(

σ2
z

)2 ‖ f ‖2 +σ2
zE
{
d 2

n

}]
f+ 3 σ2

z ‖ f ‖2 E {dnxn} . (17)

At ’true’ local maximum points, the signal gradients ∇Φ(3)(d) and ∇Φ(4)(d) are zero. As

indicated by (13), the function surface of Φ(3) is not affected by noise. Therefore, an
instantaneous estimate of ∇Φ(3) (obtained by dropping the expectation operator in (8))
will be unbiased in the presence of Gaussian noise. For Φ(4), the noise causes a perturba-
tion of the gradient in the direction of E {dnxn}, causing a corresponding instantaneous
estimate of ∇Φ(4) to become biased. This adversely affects the algorithms ability to invert
the unknown system, as indicated by (14). Although the perturbation in the direction of
f does not introduce a bias under unit-norm constraints, a large noise variance may have
a negative effect on the convergence rate of the algorithm on finite-precision machines.
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4 Experimental Results from a Simulated UWB

Radio Channel

Wireless communication over Ultra-Wideband (UWB) radio channels has attracted in-
terest in recent years. One of the proposed signaling formats for UWB communication is
Impulse Radio (IR) [5], which consists of pulse-position modulated pulses of extremely
short duration, typically on the order of a nanosecond, transmitted without the use of
a sinusoidal carrier. The short pulses used give IR signals a bandwidth from near DC
to several gigahertz, giving them good material-penetrating abilities and resolvable mul-
tipath delays down to about 30 cm. To allow for multiple user access, an additional
pseudo-random time-hopping modulation scheme is used. This reduces the risk of catas-
trophic collisions with other IR transmitters, and also avoids interference with coexisting
narrow-band signals by ’spreading’ the spectrum of the signal [5].

Although the large bandwidth of IR signals makes them robust to fading, the large
multipath spread of a typical indoor UWB channel is likely to cause intersymbol inter-
ference (ISI) at higher data rates [7], [10]. The asymmetry of typical IR signal pulses
motivates the use of a blind adaptive linear equalizer based on third-order moment max-
imization to mitigate ISI.

A numerical experiment was conducted in which the two objective functions (6) and
(7) were used to implement two fractionally spaced, adaptive linear equalizers for an UWB
channel. IR signals with independent, identically distributed symbols were simulated
based on the model described in [5], using a pulse shape

ω(t) =
[
1 − 4π(t/τm)2

]
exp
[−2π(t/τm)2

]
, (18)

with τm = 0.2333, giving a pulse duration of about one nanosecond. The pulse shape is
shown in Figure 2. The sampling interval was chosen to give each pulse a support of 15
samples, based on results from [11]. The IR signals used binary orthogonal modulation at
a bit rate of 10 Mbits/second. An UWB channel impulse response with a rich multipath
spread up to approximately 200 nanoseconds was synthesized with the aid of a recipe
from [12]. Although only a single transmitter was simulated, the interference from a
large number of adjacent transmitters can in many situations be modeled as a Gaussian
random process [5].

The receiver structure consisted of a filter matched to (18) followed by the linear
equalizers. The two FIR equalizers of order N = 400 were implemented with adap-
tion using third-order moment and fourth-order moment maximization respectively. The
equalizers were recursively updated at the symbol instants, using instantaneous estimates
of (8) and (9) respectively, starting from the customary ’center-tap’ initialization. The
individual stepsizes of adaption, μ(3) = 9.5 · 10−3 for the third-moment algorithm and
μ(4) = 6 · 10−3 for the fourth-moment algorithm, were chosen so that both algorithms
gave equal bit error rate performance at convergence. Figure 3 shows the bit error rate
versus adaption iteration for the third- and fourth-order moment based objective func-
tions. The curves show the average results from 13 runs for a signal-to-noise ratio per
bit of 11dB.
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1 − 4π(t/τm)2

]
exp
[−2π(t/τm)2

]
, with τm = 0.2333.

0 500 1000 1500 2000 2500 3000

10
−3

10
−2

10
−1

Adaption iteration

B
it

er
ro

r
ra

te

Figure 3: Bit error rate versus adaption iteration for third-moment (◦) and fourth-moment (×)
objective functions, averaged over 13 runs. SNR per bit = 11dB.

As seen in Figure 3, the algorithm that uses the third-order moment objective function
converges approximately twice as fast as the corresponding fourth-order moment version.
This confirms the results in Section 3.1, namely that the lower order polynomial structure
of the third-order moment results in a ’simpler’ function surface. In general, this should
imply faster convergence of filter adaption, which is important for the algorithm’s ability
to track a time-varying channel. Since typical indoor UWB channels are indeed time-
varying, third-order moment based blind deconvolution, with its ability to exploit the
source asymmetry, seems to be a suitable option for UWB channel equalization.

5 Conclusion

We have compared the performance of two objective functions for adaptive blind decon-
volution based on third-order moments and fourth-order moments respectively. Asym-
metric source signals offer opportunities to use objective functions based on third-order
moments, as an alternative to the commonly used fourth-order moments. Both the ana-
lytical and the experimental results indicate that a lower order objective function results
in fewer stationary points on the objective function surface, which in general allows for
faster convergence of on-line blind adaptive algorithms. The analysis of gradient estima-
tion in the presence of Gaussian noise further highlights the advantages of using third-
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order moments. The faster convergence and increased robustness to additive Gaussian
noise makes third-order-moment based methods interesting candidates for blind adaptive
equalization in Ultra-Wideband communication.
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Computationally Efficient Norm-Constrained

Adaptive Blind Deconvolution Using Third-Order

Moments

Patrik Pääjärvi and James P. LeBlanc

Abstract

Third-order central moments have been shown to be well suited as objective functions
for blind deconvolution of impulsive signals. On-line implementations of such algorithms
may suffer from increasing filter norm, forcing adaptation under constrained filter norm.
This paper extends a previously known efficient algorithm with self-stabilizing properties
to the case of using a third-order moment objective function. New results herein use
averaging analysis to determine adaptation stepsize conditions for asymptotic stability
of the filter norm.

1 Introduction

sn yn

un

c f

Error
function

Unknown environment

Figure 1: Model of general adaptive blind deconvolution.

Blind deconvolution is used for identification or equalization of unknown systems in
situations where only the system output can be observed. A general discrete-time model
is shown in Figure 1, where n denotes a time index, sn the unknown source, and c the
unknown system. The object is to find the deconvolution filter f that approximately
inverts the unknown system, so that yn becomes an estimate of sn.

If the deconvolution filter f is iteratively adjusted according to some error function,
we get an adaptive blind deconvolution setting. The error function (corresponding to
the error signal of the standard LMS algorithm) is related to the gradient of an objective

71



72 Paper C

function of the filter output yn. Adaptation of f is aimed at maximizing the objective
function.

Minimum Entropy Deconvolution (MED) methods [1], [2] are based on the idea that;
given an uncorrelated sequence sn, the probability distribution of un is closer to a Gaus-
sian distribution compared to that of sn. This consequence of the central limit theorem
allows for blind deconvolution based on discriminating the distribution of yn from a Gaus-
sian distribution. An objective function for adaptive MED should therefore be a measure
of ‘how Gaussian’ yn is. Higher-order moments (order greater than two) are popular mea-
sures of Gaussianity, especially the kurtosis (normalized fourth-order moment).

Apart from their ability to measure Gaussianity, higher-order moments can also be
used to describe how heavy-tailed the probability density function (PDF) of a signal is.
A signal with a heavy-tailed PDF has a ‘spiky’ appearance. This type of distribution
characterization allows for blind deconvolution without the assumption of the source
signal necessarily being a white sequence.

If sn is known to have a non-zero third-order moment, this asymmetry allows for
exploitation of skewness as an objective function, as an alternative to kurtosis. The
skewness of a stochastic variable x is the normalized third-order moment

S(x) =
E{x3}

(E{x2})3/2
, (1)

where E{·} denotes expectation. Since all odd-order moments of a signal with symmetric
PDF are zero, the use of odd-order moments such as (1) is restricted to asymmetric
signals.

In previous work, skewness has been used for blind deconvolution of impulsive signals
(i.e. asymmetric signals dominated by positive ‘spikes’). When compared to kurtosis,
skewness generally gives faster convergence of algorithms, and is less sensitive to additive
white Gaussian noise [3], [4]. This motivates why exploitation of signal asymmetry using
skewness may be preferable to kurtosis-based methods.

Due to the relative complexity of its gradient equation, (1) may not be suitable as
an objective function for real-time applications requiring minimal computational cost. A
more computationally efficient function is

O(x) =
1

3
E
{
x3
}

, (2)

a scaled version of the third-order moment of the stochastic variable x. While easier
to estimate than skewness, (2) is not scale invariant in x. That is, O(x) �= O(kx) for
k �= 1. As a consequence, standard gradient-ascent algorithms based on (2) give a rapid
increase in filter norm over iterations. In fact, such problems arise for general choices
of objective functions when impulsive signals are deconvolved [5]. Increasing filter norm
causes numerical problems in implementations, especially on fixed-point architectures.
Therefore, a blind deconvolution algorithm maximizing the third-order moment must
work under constrained filter norm.
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An overview of several norm-constrained gradient adaptation algorithms can be found
in [6] and [7], mainly considering objective functions of the form

J = ±1

p
E {|yn|p} ,

where p is a positive integer. Since these functions are sign-invariant in their argument,
they are unable to exploit asymmetry.

In this paper, one of the algorithms from [6] and [7] is studied when (2) is the specific
function to be maximized. The work in [6] and [7] is extended, using averaging analysis,
to determine conditions for asymptotic numerical stability. The computational cost of
this algorithm is compared to other commonly employed methods.

2 Notation

Referring to Figure 1, the deconvolution filter f is an adaptive, real FIR filter of order
N , represented at time n by its coefficient vector fn � [f0n f1n · · · fNn]T. The norm
‖fn‖ of fn is defined as the Euclidean, or �2-norm. Denoting the filter regressor by the
vector of real samples un � [un un−1 · · · un−N ]T, the filter output becomes the vector
inner product yn = f T

n un.
The objective function to be maximized is the third-order moment of the filter output

yn,

O(yn) �
1

3
E
{
y 3

n

}
=

1

3
E
{(

f T
n un

)3}
. (3)

Throughout the remainder of this paper, the operation count associated with imple-
mentations of each of the presented algorithms are taken under the assumption that all
expectations of the form E{xn} are estimated by instantaneous values xn, as is customary
for on-line applications.

3 Adaptation Under Constrained Filter Norm

3.1 Adaptation Using Steepest Ascent

Adaptation by steepest ascent is used to adjust the filter to maximize the objective (3),

fn+1 = fn + μ∇∇∇n, (4)

where μ is a small positive stepsize and ∇∇∇n is the gradient of O with respect to fn,

∇∇∇n �
∂ O
∂ fn

=
∂ O
∂ yn

∂ yn

∂ fn
= E

{
y2

n un

}
. (5)

Using (4), fn is iteratively adjusted until O attains a maximum. Note that for any number
α and any vector f ,

O(αf) = α3O(f).
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Hence, for any filter vector f , we can improve O with the vector αf , α > 1. Therefore
(4) will never converge since ∇∇∇n will never approach zero. Instead, the norm of fn will
rapidly increase over iterations. A simple way to deal with this is to combine (4) with a
frequent normalization procedure,

fn+1 ← fn+1

‖fn+1‖ . (6)

While this would keep ‖fn‖ = 1 over iterations, the computational cost associated with
combining (4) and (6) is relatively large; on the order of 4N operations per iteration for
an N th-order filter. Therefore, alternative ways to do steepest ascent under constrained
filter norm are desired.

3.2 Orthogonal Gradient Decomposition

Recognize that a scaling αfn only results in a scaling αyn of the filter output signal; the
‘quality’ of deconvolution is not affected. A reasonable approach would therefore be to
avoid updating fn in the radial direction.

Consider a decomposition of ∇∇∇n into ∇∇∇n = Rn + Pn, where Rn is the orthogonal
projection of ∇∇∇n onto fn,

Rn �
∇∇∇T

n fn

‖fn‖2
fn. (7)

Then modify the steepest-ascent algorithm to only update fn in non-radial directions,

fn+1 = fn + μPn = fn + μ [∇∇∇n − Rn] . (8)

This algorithm can be viewed as a search for local maximum points of the objective
function in the tangent space of the hypersphere ‖f‖ = ‖fn‖ at f = fn. Unlike the
standard algorithm (4), the modified version is expected to converge to points at which
Pn approaches zero.

Ideally, the search for local maximum points should be restricted to some hypersphere,
‖fn‖ = C, to ensure that the filter norm stays fixed. For (8), it is straightforward to show
that ‖fn+1‖ ≥ ‖fn‖. Hence, although the growth in ‖fn‖ will not be as rapid as for the
standard algorithm, this modified gradient ascent must be combined with an infrequent
normalization of fn. Even without normalization, the operation count per iteration for an
implementation of (8) is on the order of 4N for an N th-order filter. Hence, this algorithm
offers no computational savings.

3.3 Pseudo-Orthogonal Gradient Decomposition

A slight modification of (8) is achieved if the factor 1/‖fn‖2 is neglected in (7). Define

R̃n �
(∇∇∇T

n fn
)
fn and P̃n � ∇∇∇n − R̃n,
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and do the filter adaptation as

fn+1 = fn + μ P̃n =
(
1 − μ∇∇∇T

n fn
)
fn + μ∇∇∇n. (9)

As noted in [6] and [7], if ∇∇∇T
n fn > 0, this algorithm operates in a stable manner, maintain-

ing approximately unit filter norm. Absolute convergence of the algorithm will, however,
ultimately depend on μ. From the definitions of the gradient (5) and the objective
function (3), we find that

∇∇∇T
n fn = E

{
y3

n

}
= 3O(yn), (10)

i.e. the quantity ∇∇∇T
n fn is proportional to the objective function to be maximized by the

algorithm. Although O(yn) > 0 cannot be guaranteed for all n, the algorithm will most
likely tend towards a positive objective over iterations for a well-conditioned problem.

Using (10), (9) can be rewritten as

fn+1 =
(
1 − μ E

{
y3

n

})
fn + μ∇∇∇n, (11)

which exposes the algorithms simplicity. The computational cost of implementing this
algorithm with an N th-order filter is on the order of 3N operations per iteration. Fur-
thermore, (11) contains only multiplications and additions (i.e. no divisions), making
it highly suitable for implementation on fixed-point digital signal processors, which are
specialized at performing such arithmetic operations.

The next section considers the asymptotical behavior of this algorithm and derives a
sufficient condition on μ for numerical stability.

4 Asymptotic Stability of the Pseudo-Orthogonal

Gradient Decomposition Algorithm

To analyze the behavior of ‖fn‖ over iterations in the algorithm (11), define

εn � ‖fn‖2 − 1 (12)

as the deviation of ‖fn‖2 from unity at time n. Multiplying both sides of (11) with their
transposes and subtracting off one, gives after rearranging terms

εn+1 =
(
1 − μ 2E

{
y3

n

})
εn + μ2‖P̃n‖2. (13)

This expression describes how the norm of fn deviates from unity over iterations. The
goal is to derive sufficient conditions on μ such that εn → 0 as n → ∞.

Note that (13) is a difference equation of the form

εn+1 = εn + μ g(n, εn, μ), (14)

where g is a nonlinear, stochastic and time-varying function. Assuming that the stepsize
μ is small, (14) may be approximated by the averaged system

εn+1 = εn + μ gav(εn), (15)



76 Paper C

where
gav(ε) = E {g(n, ε, 0)} | ε = constant . (16)

The necessary conditions for the approximation of (14) with the averaged system (15) to
be valid are essentially that, over a fixed time interval; gav is time invariant, |ε|, |gav| are
bounded, and g and the difference g − gav fulfill global Lipschitz conditions in ε and μ.
Refer to [8, Ch. 9] for details.

Although the expectation in (16) is taken with μ = 0, we choose to regard gav as a
function of both ε and μ to investigate how the stepsize affects the asymptotical behavior
of the algorithm. Comparing (13) with (14) gives

g(n, εn, μ) = −2E
{
y3

n

}
εn + μ ‖P̃n‖2,

and the averaged system from (16) as

gav(ε, μ) = −2 Sy ε + μ P̃ 2,

where

Sy � E
{
y3

n

}
, (17)

P̃ 2 � E
{
‖P̃n‖2

}
(18)

are assumed to be time invariant.
While the assumptions of time-invariance in (17) and (18) are not realistic over a

larger span of iterations (in fact, note that Sy is proportional to the objective function
to be maximized), (17) and (18) are approximately time invariant over limited number
of iterations if μ is small.

For small values of μ, (13) may thus be approximated by

εn+1 = (1 − μ2Sy) εn + μ2P̃ 2. (19)

If 1 − μ2Sy �= 1, (19) can be rewritten as

εn = (1 − μ2Sy)
n ε0 +

μP̃ 2

2Sy
[1 − (1 − μ2Sy)

n] . (20)

Under the condition
|1 − 2μSy| < 1, (21)

the sequence (20) converges, and we get

lim
n→∞

εn =
μP̃ 2

2Sy

. (22)

Thus, the asymptotic deviation of ‖fn‖2 from unity is proportional to the stepsize μ. In
general, μ � 1, and so the algorithm (11), if stable, operates very close to unit filter
norm.
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Although the limit (22) is taken under the approximation of Sy and P̃ 2 being time
invariant, it is suggested that (21) gives a sufficient condition for local convergence of εn

over a limited span of iterations, over which time-invariance assumptions hold.
Condition (21) can be rewritten as

0 < μ Sy < 1. (23)

Since μ is positive by definition, Sy = E {y3
n} is required to be positive, which is expected

at convergence for a well-conditioned problem. Furthermore, Sy is expected to slowly
increase over iterations as the algorithm converges in fn. The quantity μ Sy could therefore
be monitored during adaptation, and the stepsize decreased if necessary, in order to insure
that (23) holds. This guidance on stepsize requires only a simple scalar multiplication
and check.

Note that (23) only concerns stability in ‖fn‖. A stepsize satisfying (23) is not guar-
anteed to give convergence to an fn maximizing the objective.

5 Experimental Results

In a numerical experiment, the algorithm (11) was used to implement an adaptive blind
equalizer for a synthetic indoor Ultra-Wideband (UWB) communication channel with
Impulse Radio signaling [9]. Such signals consist of pulse-position modulated impulses
of extremely short duration, typically on the order of a nanosecond. Because of the large
multipath spread of typical indoor UWB channels, intersymbol interference (ISI) is likely
to occur at high data rates [10], [11]. Due to the impulsive nature of these signals, an
adaptive blind equalizer based on third-order moments might be used to mitigate the
effects of ISI.

The impulse response of an indoor UWB channel with a rich multipath spread of
approximately 200 nanoseconds was synthesized with the aid of a recipe from [12], with
additive white Gaussian noise at a signal-to-noise ratio per bit of 15dB. The Impulse
Radio signals used binary orthogonal modulation at a bit rate of 10 Mbits/second and
a sampling rate of 15 samples per nanosecond. Equalizers of order N = 400 were gen-
erated using (11) for three different stepsizes, each over 1000 adaptation iterations. All
expectation operations in (11) were estimated using instantaneous values. Figures 2 and
3 show, respectively, the resulting absolute deviation of ‖fn‖ from unity and skewness
versus iteration number. The plots show averaged results over 20 independent runs.

As seen in Figure 2, the deviation from unit norm at convergence increases with the
stepsize, confirming the result (22) from Section 4. Figure 3 shows the convergence of the
algorithm in terms of skewness. Note that a larger stepsize leads to faster convergence,
but results in a smaller asymptotic skewness.

Experimental results also indicate that the stability condition (23) indeed can be
monitored to indicate instability in ‖fn‖. However, for stepsizes that give convergence in
fn (as seen in Figure 3), (23) is typically satisfied by a large margin. Thus, for reasonable
choices of μ, the algorithm should be stable in ‖fn‖.
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Figure 2: Absolute deviation of ‖fn‖ from unity versus iteration number.
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Figure 3: Estimated skewness of filter output versus iteration.

6 Conclusion

A computationally efficient algorithm for norm-constrained gradient acsent has been
studied for blind deconvolution of asymmetric source signals using a third-order moment
based objective function. The results indicate that the algorithm maintains approxi-
mately unit filter norm for reasonable choices of adaptation stepsize. The condition on
adaptation stepsize insuring a stable filter norm is trivial to calculate and verify. The
small computational cost, involving only multiplications and additions, makes it well
suited for on-line implementation on fixed-point digital signal processors.
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[3] P. Pääjärvi and J. P. LeBlanc, “Skewness maximization for impulsive sources in
blind deconvolution,” in Proc. IEEE Nordic Signal Proc. Symp., Espoo, Finland,
Jun. 2004, pp. 304–307.
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Blind Equalization of PPM Signals Using

Third-Order Moments

Patrik Pääjärvi and James P. LeBlanc

Abstract

In pulse-position modulation (PPM) signaling, the time location of short-duration pulses
are used to convey information over a communication channel. For successful noncoherent
reception, the channel duration must be short compared to the symbol interval. This
paper analyzes the use of third moments in a blind adaptive equalizer setting to limit the
effective delay spread of the channel. Results detail the global convergence properties
of the proposed method, showing that the parameters approach ISI-free settings under
general conditions.

1 Introduction

sn

xn yn
un

zn

+c fn

Objective
function

Unknown environment

Figure 1: Discrete-time blind adaptive equalization model.

Pulse-position modulation (PPM) signaling is based on transmitting short-duration
pulses of constant magnitude, with the information being conveyed in the time location
of the individual pulses. While historically mainly used in optical communication, the
recent evolution of ultra-wideband (UWB) radio has spawned renewed interest in PPM
as a proposed signal for wideband, carrier-free wireless communication over short range
[1, 2].

Recent work on low-complexity noncoherent receivers for PPM show promising re-
sults in cases where the transfer rate is low compared to the maximum delay spread of
the multipath channel [3]. With increasing demands for higher data rates, it becomes
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necessary to limit the effects of excessive channel length at the receiver. This paper pro-
poses the use of a blind adaptive equalizer to allow noncoherent reception of high-rate
PPM signals without estimating channel coefficients.

Blind adaptive equalization is used to reduce intersymbol interference (ISI) over a
dispersive channel in situations where sending a training sequence is not possible. The
target of adaptation is to remove enough ISI to provide a good initial setting for decision-
directed (DD) equalization. With reliable estimates of the transmitted symbols, DD
equalization can quickly move parameters close to the minimum mean squared error
(MMSE) setting [4].

The principle of blind equalization is shown in Figure 1. The channel c filters the
transmitted source s with added noise z, forming the observed (received) signal u. Ad-
justment of the equalizer fn is governed by an objective function in the form of a non-linear
function of the output y. If the source signal is a sequence of i.i.d. samples, the objective
function may be chosen from several broad classes [5]. Higher-order moments (order > 2)
of y are often used since they are easy to estimate from instantaneous sample values. The
pth moment of a random variable ξ is defined as

Mp(ξ) � E {ξp} .

Fourth moments are a popular choice and form the basis of the widely known constant
modulus algorithm (CMA) [6, 7, 8].

When s is not an i.i.d. sequence, the objective function should reflect some charac-
teristic of s to be emphasized in y. Asymmetric signals, i.e. signals characterized by
positive skewness (normalized third moment), allow the use of third moments in blind
equalization. While having applications in various other fields [9, 10, 11], third moments
are rarely considered in digital communication since almost all modulation types yield
symmetric signals with zero skewness, prohibiting the use of odd moments. PPM signals,
however, are a notable exception, being asymmetric by construction. Previous studies
have demonstrated that exploiting asymmetry by choosing third moments over fourth
moments, when possible, generally leads to faster adaptation and improved robustness
to noise [12].

While fourth-order methods, especially CMA, have been subject of much study in
the past [8], the details of third-order methods have attracted less attention. This pa-
per examines global convergence properties of a third-moment based blind equalization
scheme under PPM signaling. It is shown that the proposed method is insensitive to
white Gaussian noise, and moves the parameters of a sufficiently long equalizer close to
ISI-free settings.

2 Notation and Model Description

2.1 M-PPM Signal

An M-PPM signal ς is made up of consecutive symbol frames of M samples (M ≥ 3). To
each frame, one of M equally probable symbols {ak}k=1...M is mapped by assigning unity
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to the kth sample and zero to the remaining M − 1 samples. An example with M = 4
and the three consecutive symbols a2, a4 and a1 starting at frame N would give

ς = { · · · 0 1 0 0︸ ︷︷ ︸ 0 0 0 1︸ ︷︷ ︸ 1 0 0 0︸ ︷︷ ︸ · · · }.
frame: N N + 1 N + 2

The transmitted sequence s is then formed by subtracting off the mean to achieve a
DC-free signal, s � ς − E{ς} = ς − 1

M
. The autocorrelation of s is

E{snsn+m} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M − 1

M2
, m = 0

|m|
M3

− 1

M2
, |m| = 1 . . .M − 1

0, |m| ≥ M.

From the construction of ς, samples within the same frame are dependent, while samples
from distinct frames are independent. Hence, s is correlated up to lags M − 1. The
skewness of s is E{s3}

(E{s2})3/2
=

M − 2√
M − 1

,

which is non-zero if M ≥ 3, and increases strictly with increasing M. Restricting M to
be greater than or equal to three therefore guarantees s to be an asymmetric signal.

In practice, an enhanced PPM signaling format incorporating pseudo-random time-
hopping would be used in multiple-access systems [1]. The simple form of s will be used in
this paper, since the addition of time-hopping can be approximately modeled by a larger
M. The influence of M on the performance of the proposed blind equalization method is
investigated in Sections 4 and 5.

2.2 Channel and Equalizer

Referring to Figure 1, the adaptive equalizer fn is FIR of length Nf , denoted at time n
by the Nf × 1 column vector fn � [f0n f1n · · · f(Nf−1)n]T. The impulse response of the
channel c is assumed to have the substantial part of its energy concentrated to the Nc

first samples. It is therefore modeled as an FIR system, represented by the Nc ×1 vector
c � [c0 c1 · · · cNc−1]

T, with cj being the jth sample of the impulse response. c represents
the aggregate response of the transmitter’s pulse-shaping filter, the wireless channel and
possible receiver filters. Also, define the Nf × Nt channel convolution matrix

C �

⎡⎢⎣c0 · · · cNc−1

. . .
. . .

c0 · · · cNc−1

⎤⎥⎦
where Nt = Nc + Nf − 1, and the Nt × 1 combined channel-equalizer response vector

tn � CTfn. (1)



86 Paper D

3 Blind Equalization Strategy

Perfect equalization is said to hold if no ISI is present in y after equalization. In practice,
a sufficient requirement is

yn ≈ αsn−δ (2)

for some scale factor α and delay δ. Adaptation may switch to decision-directed mode
once enough ISI has been removed during the initial adaptation. This is the reason why
strict equality is not necessary in (2).

The equalizer under investigation is iteratively adjusted to maximize the third mo-
ment of y through the gradient ascent algorithm

fn+1 = fn + μ∇̂∇∇n, (3a)

fn+1 ← fn+1

‖fn+1‖ (3b)

where μ is a small stepsize, ‖ · ‖ is the Euclidean norm and ∇̂∇∇n is some instantaneous
estimate of the gradient ∇∇∇ of M3 with respect to fn,

∇∇∇ �
∂ M3(y)

∂ fn

The normalization (3b) is necessary to keep the algorithm numerically stable; since in-
creasing the amplitude of y by ‘stretching’ fn increases M3(y) without improving equal-
ization. Without (3b), the norm of fn grows rapidly over iterations.

3.1 Why use M3?

A necessary condition in order for the algorithm (3) to be successful in equalizing channels
with M-PPM signals, is that a high value of the objective M3(y) corresponds to low levels
of ISI in y. While the next section will show that this is indeed the case, some rationales
for using third moments are described.

• With s asymmetric, the channel output x will appear more symmetric if c is non-
trivial, due to 180◦ phase shifts from reflections. Therefore, adapting fn to promote

asymmetry in y should recover s.

• s has an impulsive appearance (i.e. its pdf has a positive heavy tail). Such impul-
siveness is characterized by large positive skewness. The observed signal u generally
appears less impulsive (with small or zero skewness). The objective function should
hence promote impulsiveness in y.

3.2 Topological View of Equalizer Adaptation

Due to the normalization step (3b), we can view the adaptation algorithm (3) as travers-
ing the (Nf − 1)-dimensional unit sphere in search of maximum points, i.e. points where
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∇∇∇ vanishes and the Hessian is negative definite. With M3 being a cubic function of
fn, the objective becomes a multimodal surface on the sphere. Optimization over such
surfaces has been widely explored for CMA (see for example [8] and references therein).
Some general observations are worth mentioning.

• There is usually no single global maximum point, but several local maxima with
equal ISI reduction performance. With μ small, the length and initialization of fn
determines which one is approached.

• ‘False’ or ‘bad’ local maxima may also exist where adaptation can get stuck at high
ISI parameter settings. These may be avoided by choosing a ‘good’ initial setting
of fn.

• Adaptation may get stalled near saddle points (points with zero gradient and in-
definite Hessian) during adaptation.

• Additive noise can perturb the objective surface, moving maxima away from their
noise-free locations.

• Compared to i.i.d. sources, temporal correlation in s may move desired maxima
and even give rise to new, unwanted ones. This effect has previously been observed
for CMA [13].

3.3 Convergence in Combined Channel-Equalizer Space

Blind equalization by maximizing M3(y) will be considered justified if (2) is obtained at
maximum points. However, with the channel being unknown, generally such equalizer
settings can not be formulated. Following the style of [14] and many others, we instead
examine the objective surface in combined channel-equalizer space.

With tn ∈ R
Nt , the points corresponding to zero ISI are

tn = eδ � [0 · · · 0 α 0 · · · 0]T,

with the non-zero α occurring at element δ. This would give yn = αsn−δ. Perfect
equalization is thus achieved if (3) converges to eδ for some 1 ≤ δ ≤ Nt. As stated
earlier, (2) is usually sufficient so that convergence to a neighborhood of eδ will do.

It should be pointed out that; unless fn is infinitely long or fractionally spaced (over-
sampled), not all of tn-space (RNt) can be reached for an arbitrary channel. So it may
not be possible in practice to reach eδ for all values of δ. However, it is commonly argued
that if the equalizer is ‘long enough’, there are at least some eδ to which adaptation may
converge [14].

4 Objective Surface Analysis

In this Section, the global convergence properties of the proposed blind equalization
algorithm are investigated. First, it is shown that the objective function is invariant to
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Figure 2: Combined channel-equalizer model.

white Gaussian noise. Second, equations for the stationary points on the objective surface
are derived for arbitrary lengths of combined channel-equalizer response tn. Finally, the
objective surface is visualized for a three-tap tn-vector to gain some insight into the
behavior of the method.

4.1 Assumptions

The following assumptions are made throughout the remainder.

A1) All sequences and vectors are real.

A2) The channel noise z is zero-mean, white and Gaussian, independent on s.

A3) The adaptation stepsize μ is small, so that fn may be regarded as approximately
constant compared to all signals.

A4) The channel is assumed to be slowly varying compared to the time index n. Thus,
C is also regarded as constant.

A5) fn has infinite length.

Under Assumptions A3 and A4, fn and tn are hereafter regarded as constant vectors,
denoted by f and t respectively. A5 simplifies analysis and is standard in analysis of
blind systems (see for example [14]).

Keeping in mind the practical limitations on f mentioned in Section 3.3, the combined
channel-equalizer model in Figure 2 is introduced for purpose of analysis. The noise d
is z filtered through f . With z white and Gaussian, d will be colored Gaussian noise,
independent on the noise-free channel output v.

4.2 Noise Invariance of M3

First, we demonstrate that the third moment is unaffected by white Gaussian noise.
M3(y) expressed in terms of v and d is

M3(y) = E
{
(v + d)3

}
= E

{
v3 + d3 + 3v2d + 3vd2

}
.
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With v being zero-mean, and with d zero-mean, Gaussian and independent of v, we have

M3(y) = E
{
v3
}

.

The objective surface is not perturbed by z, and therefore white Gaussian noise does not
introduce any bias in gradient estimates used in the adaptation algorithm (3a).

4.3 Stationary Points for General Nt

Equations for the stationary points of the objective surface are now derived for arbitrary
lengths of t. As seen above, the noise d may be disregarded in the following.

With the combined channel-equalizer response t defined in (1), let

sn � [sn sn−1 · · · sn−Nt+1]
T

so that yn = vn = tTsn = fTCsn. Expressing the third moment of yn in terms of sn yields

M3(yn) = E {y3
n} = E

{(
fTCsn

)3}
. The stationary points of the objective surface with

respect to the equalizer parameters are found by solving

∇∇∇ =
∂M3(yn)

∂f
= E

{
y2

nCsn

}
= CE

{(
tTsn

)2
sn

}
= 0 (4)

where Assumption A4 (C constant) has been used1. Invoking Assumption A5 in the case
where the channel has no spectral nulls (i.e. an inverse exists), (4) has only the trivial
solution

E
{(

tTsn

)2
sn

}
= 0. (5)

This implies that there is a one-to-one correspondence between stationary points in f-
space and t-space.

Solving (5) for the stationary points is possible since the statistics of s are known.
However, as pointed out in Section 3, M3(y) only attains maxima if the norm of f is
restricted. Hence, ‖t‖ will be similarly constrained. Such a restriction causes no practical
or theoretical limitations, since if t∗ is a stationary point of M3, then so is kt∗ for any
k ∈ R. We therefore solve (5) for t constrained to the manifold

SNt−1 �
{
t ∈ R

Nt
∣∣ ‖t‖2 = 1

}
,

i.e. the unit sphere in R
Nt . Using the method of Lagrange multipliers, solving (5) under

the constraint t ∈ SNt−1 leads to

E
{(

tTsn

)2
sn

}
+ 2λt = 0, (6)

where λ ∈ R is a constant Lagrange multiplier. Expanding (6), and using the assumption
of t being constant, leads to the following system of Nt non-linear equations in the Nt

1A constant scale factor not affecting the results has been left out for notational simplicity.
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Table 4.1: Stationary points (t0 t1 t2) on S2 for large M.

Class Solution subset Type Legend

C+

1 {(1 0 0) (0 1 0) (0 0 1)} Max ∗
C+

2
1√
2
{(1 1 0) (1 0 1) (0 1 1)} Saddle �

C+

3
1√
3
{(1 1 1)} Min ◦

C−
1 {(−1 0 0) (0 −1 0) (0 0 −1)} Min •

C−
2

1√
2
{(−1 −1 0) (−1 0 −1) (0 −1 −1)} Saddle �

C−
3

1√
3
{(−1 −1 −1)} Max �

parameters {tm}m=0...Nt−1:

Nt−1∑
i=0

R(0, i − m) t2i +

Nt−1∑
i,j=0
(j �=i)

R(i − j, i − m) titj + 2λtm = 0, (7)

where R(p, q) � E {snsn+psn+q} are generalized third moments of s. With s being an
M-PPM signal, these moments are functions of M.

While solving (7) analytically is difficult (even for moderate values of Nt); in the limit
of large M, R(0, 0) becomes the dominating monomial coefficient and (7) approaches

R(0, 0) t2m + 2λtm = 0, (8)

for m = 0 . . . Nt − 1. Since all Nt equations of the system (8) share the same monomial
coefficients, finding all 2Nt+1 − 2 solutions for t ∈ SNt−1 is straightforward. Specifically,
the Nt points eδ of perfect equalization are indeed solutions.

Although no eδ is a solution to the ‘true’ system (7), the approximation for large
M suggests that stationary points exist in neighborhoods of the ISI-free points. This
is confirmed in an experiment in Section 5 along with the following low-dimensional
example.

4.4 Stationary Points for Nt = 3

An improved understanding of the algorithm can be gained by visualizing the objective
surface for Nt = 3 with t on the two-dimensional unit sphere S2. The 24−2 = 14 solutions
to the approximated system (8) are divided into six disjoint classes {C+

N , C−
N}N=1,2,3,

where C+
N (C−

N) is the subset of solutions with N positive (negative) non-zero taps. The
stationary points are listed in Table 4.1 with indicated type (max / min / saddle). Also
in the table is a legend connecting the points to Figure 3, showing a contour plot of the
objective surface on S2 for M=32 along with gradient arrows to illustrate its curvature.
From the contour plot, the following observations are made:

• The approximated (in the limit of large M) stationary points marked in the plot
all lie very close to the true ones.
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Figure 3: Objective surface on S2 for M=32. Stationary points are marked by class membership
according to Table 4.1.

• The points of perfect equalization (∗) are global maxima.

• A single ‘bad’ local maximum point (�) corresponding to severe ISI exists.

This low-dimensional example indicates that equalization of M-PPM signals by maxi-
mizing M3 does indeed lead to ISI reduction. However, the existence of the ‘bad’ local
maxima (�) shows that adaptation could converge to a point of very poor performance,
which places emphasis on initialization of the equalizer or misconvergence detection ca-
pabilities.

5 Numerical Experiment

A numerical experiment was done to support the results from Section 4 suggesting that
local maxima of the proposed method coincide with the points of perfect equalization
t = eδ in the limit of large M.

M-PPM signals for different values of M between 3 and 64 were generated. For each
signal, a gradient ascent over a 100-tap t-vector was performed using a small stepsize
of μ = 5 × 10−4, starting at t = e50. After 106 iterations (enough for all trajectories
to reach convergence), the Euclidean distance from the starting point to the estimated
convergence point (obtained by averaging over the final 104 t-vectors) was calculated.
This provides a measure of how far t = e50 is from the nearest local maxima for different
M.
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Figure 4: Euclidean distance from e50 to nearest local maxima t
∗ versus M.

The result is shown in Figure 4, where the distance from a point of perfect equalization
to the nearest local maxima decreases as M increases.

6 Conclusions

This paper shows the usefulness of third-order moments in blind adaptive equalization
with M-PPM signaling, by demonstrating that attraction points exist close to zero-ISI
settings. The invariance to white Gaussian noise was shown, and the proximity of conver-
gence points to perfect equalization points was demonstrated in a numerical experiment.
The existence of undesired (or ‘false’) local maxima has also been noted, which indicates
a need for an initialization or problem detection strategy.
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Patrik Pääjärvi and James P. LeBlanc

Reformatted version of paper submitted to:

IEEE Transactions on Signal Processing, March 4, 2008.

c© 2008, IEEE. Reprinted with permission.

95



96 Paper E



Blind Linear Equalization of PPM Signals Using

Third-Order Moments

Patrik Pääjärvi and James P. LeBlanc

Abstract

Pulse position modulation (PPM) has evolved from a signaling format mainly used in
optical communications, to becoming a candidate transmission type for indoor wire-
less communication, following the development of ultra-wideband radio. Enhanced with
time-hopping schemes, the robustness of PPM to multipath fading and multiple-access
interference has been noted. One major challenge is how to ensure reliable symbol detec-
tion in presence of the rich multipath propagation that plagues typical indoor channels
and causes intersymbol interference (ISI). In this work, a blind linear equalizer is used to
combat ISI without the need for training data. Exploiting the asymmetry of the PPM sig-
nal, parameter adaptation is based on third-order moment maximization, which provides
improved convergence rate and noise insensitivity compared to traditional fourth-order
methods. It is shown that a stochastic gradient search with low complexity is globally
convergent to zero-ISI settings. Analysis takes into account the practical conditions of
time-hopped PPM and channel noise.

1 Introduction

Pulse position modulation (PPM) is a digital signaling format traditionally used in optical
communication [1], in which information is conveyed in the time position of very narrow
pulses of equal shape and polarity. Following the advent of ultra-wideband (UWB) radio,
PPM has attracted attention as being a candidate format for carrier-free, high-speed
wireless communication over short range. Enhanced with time-hopping (TH) techniques,
PPM signals are robust to both multipath fading and multiuser interference [2, 3, 4].

Assuming that transmitter-receiver synchronization has been achieved, symbol detec-
tion is accomplished by estimating the time-of-arrival of received individual pulses. For
the AWGN channel with insignificant dispersion, the maximum-likelihood (ML) detec-
tor compares the received signal energy in each of the possible time slots constituting a
symbol, and selects the largest [5, 6]. Such non-coherent receivers are attractive consid-
ering their low complexity. Unfortunately, a realistic wireless channel will be far from
dispersion-free, making non-coherent PPM receivers useful only at low bit rates [4, 7, 8, 6].
For example, the multipath spread of a typical UWB indoor channel may range up to
around 200 nanoseconds [7, 8], causing both intrasymbol and intersymbol interference
(whose combined effect is hereafter referred to as ISI) at higher bit rates. While offering
optimum performance in the presence of ISI, the ML sequence detector requires channel
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estimates and generally becomes far too complex, directing focus to suboptimal receivers
[9].

A RAKE receiver could be used to exploit the multipath, regarding it as channel
diversity. However, for a typical channel with rich multipath, a RAKE becomes very
complex since a large number of fingers is potentially needed for sufficient energy capture
[10]. Another option is to use an estimate of the received pulse shape (transmitted
waveform convolved with the channel response) as a template in a correlation receiver.
Estimating the pulse shape can be accomplished using transmit reference (TR) schemes
[11] or training sequences [12], though a time-varying channel with a long multipath
spread makes it difficult to accurately estimate and store such a template. Furthermore,
information throughput is reduced by both TR schemes and training sequences as they
occupy a part of the available transmission time. Adopting the approach of attempting
to reduce ISI to ease symbol detection, decision feedback equalizers (DFEs) have been
proposed, [9, 13], in which the cyclostationary nature of the PPM signal is exploited in
a MIMO structure with blocks of parallel DFEs.

Neglecting cyclostationarity and instead focusing on ease of implementation, this
work considers the use of a single, linear equalizer to combat channel dispersion. In
this context, a blind adaptive equalizer is highly attractive since it does not need a
training sequence for adjusting its parameters, allowing the receiver to track slow channel
variations or recover from abrupt changes without sacrificing information throughput.

The performance, reliability and complexity of a blind equalizer largely depends on
the choice of adaptation method and objective function. A common approach that can
provide low complexity comparable to that of the LMS algorithm[14], is to optimize a
function based on higher-order moments of the equalizer output through a stochastic gra-
dient search. The pth-order moment of a random variable ξ is defined as Mp(ξ) � E {ξp}.
Arbitrary p ≥ 3 may be used as long as the corresponding moment of a transmitted i.i.d.
signal is nonzero and finite [15, 16]. Moments of order greater than four are rarely con-
sidered since they provide no real benefits over the choices p = 3 or p = 4. The popular
Godard, or constant modulus algorithm (CMA) [17, 18] is based on fourth-order mo-
ments, and has been the subject of extensive research in the past (see [19] and references
therein). While a nonzero fourth moment can be assumed; for a stochastic process to
possess a nonzero third moment, the probability density function (pdf) of its samples
must be asymmetric. Since almost every digital modulation format yields a signal with
symmetric pdf, third moments have found little use in blind equalization. A notable
exception is found in [20], in which the transmitted signal is pre-transformed to induce
asymmetry in the pdf, thereby allowing the use of a third-order method. In the context
of digital communication, PPM is a rare example of a modulation type resulting in an
asymmetric pdf.

While asymmetry allows the use of either third or fourth-order methods, earlier work
has demonstrated that choosing p = 3 over p = 4 provides faster convergence of adap-
tation algorithms and better robustness to noise [21]. These advantages motivate that
asymmetry should be exploited using third moments. In the field of blind system identi-
fication, third-order methods have been studied [22, 23, 24, 25] and applied to areas such
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as mechanics[26], ultrasonics [27] and underwater acoustics [28].
In this article, third moments are applied to blind equalization under PPM signaling,

where the standard assumption of an i.i.d. source signal is not valid. Research addressing
non-i.i.d. sources has shown that periodicity, temporal correlation or unequal distribu-
tions over samples may deform the objective surface enough to produce false optima (i.e.
local maxima) with poor ISI reduction for methods that are otherwise globally convergent
with an i.i.d. source, such as CMA [29, 19].

By characterizing the objective surfaces of two proposed functions, it is investigated
whether a stochastic gradient search will risk converging to a ‘false’ optimum point (local
maxima) of poor equalizer performance. Analytic and experimental results are presented,
taking into account practical conditions like time-hopped PPM formats and additive
noise.

The rest of the paper is organized as follows. Section 2 defines the notation and models
used for PPM signals, channel and equalizer. Section 3 discusses the blind equalization
method and defines two objective functions which are analyzed in Section 4. Simulation
results and conclusions are provided in Sections 5 and 6 respectively.

2 Model Description and Notation

s[n]

x[n] y[n]

z[n]

+ âkChannel Equalizer

Objective
function

Decision
device

Figure 1: Discrete-time model of a communication system with blind equalization.

2.1 General Model Description

A discrete-time signal model of a communication system with a blind adaptive equalizer is
shown in Fig. 1, with n denoting the sample index and k the symbol index. The received
signal is the convolution x of the transmitted PPM signal s with the channel plus a
disturbance z. The channel model incorporates the aggregated response of transmitter
filters, the transmission medium, and receiver front-end and noise-whitening filters. The
additive disturbance z is the sum of thermal noise and multiple-access interference which,
assuming a large number of users are active, is approximately Gaussian distributed [3].
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Hence, z is modeled as white Gaussian noise, independent of s. The equalizer output y is
fed to a decision device producing a sequence {âk} of data symbol estimates. All signals
and system responses are assumed to be real valued.

2.2 Channel and Equalizer

The channel is assumed to be a linear system with an impulse response having most of its
energy concentrated to the first Lc samples. It is therefore modeled as FIR, represented
by the Lc × 1 vector c � [c0 c1 · · · cLc−1]

T, with ci being the ith sample of the impulse
response. Although c will be time-varying in practice, the variations are assumed to be
slow compared to the sample index n which is therefore omitted in the notation.

The equalizer is FIR of length Lf , denoted by the Lf ×1 vector f � [f0 f1 · · · fLf−1]
T.

It is adaptive and therefore time-varying, although slowly so that the sample index is
again left out for notational simplicity. From c and f , define the L×1 combined channel-
equalizer response vector,

t = [t0 t1 · · · tL−1]
T � CTf , (1)

where L = Lc + Lf − 1 and C is the Lf × L channel convolution matrix

C �

⎡⎢⎣c0 · · · cLc−1

. . .
. . .

c0 · · · cLc−1

⎤⎥⎦ .

Hence, t represents the aggregated response of channel and equalizer.

2.3 M-PPM Signal

In an ordinary time-continuous M-PPM signal ζ(t), the time axis is divided into con-
secutive frames of length Tf seconds. Each frame is, in turn, divided into M time slots,
or ‘chips’, of equal lengths Tf/M seconds. By transmitting a narrow pulse in one chip
and nothing in the others, each frame conveys one of M possible data symbols. A simple
discrete-time model ζ [n] is obtained by sampling ζ(t) once per chip. Assuming the width
of a pulse does not exceed the chip length, the discrete-time M-PPM signal model is
then

ζ [n] =

∞∑
k=−∞

δ [n − kM − ak] , (2)

where {ak} is the data symbol sequence with ak ∈ {0, 1, . . . , M − 1} representing the
kth transmitted symbol and δ[n] is the Kronecker delta function with value 1 when n = 0
and value 0 when n �= 0. Throughout the following, {ak} is considered to be a sequence
of independent, uniformly distributed symbols.
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2.4 Time-Hopped PPM Signal

The M-PPM signal (2) is not suitable in a wireless multi-user scenario since the proba-
bility of catastrophic collisions is high with many users transmitting at the same time [3].
An enhanced format with time-hopping (TH) uses a longer frame length with much more
than M chips and adds an additional time shift to each transmitted pulse according to
a pseudo-random, user-specific TH pattern.

Assuming a sampling rate of one sample per chip as in (2), a discrete-time TH-PPM
signal can be modeled as [2, 3],

ζTH[n] =

∞∑
k=−∞

δ
[
n − kNf − ck − a�k/Ns�

]
, (3)

where Nf is the frame length in samples, assumed to be much larger than M . {ck} is a
periodic TH sequence of period Np with ck ∈ {0, 1, . . . , Nh − 1}. {ak} is the sequence
of information-bearing time shifts with ak ∈ {0, 1, . . . , M − 1}. �x� denotes the integer
part of x, so that a�k/Ns� means that the same symbol is repeated over Ns frames to
achieve a higher effective SNR under transmission power constraints, at the cost of a
lower symbol rate. To prohibit pulses from ending up in trailing frames after added
time-hops, it is necessary to bound the TH span to Nh ≤ Nf − M + 1.

2.5 Modeling TH-PPM with M-PPM

As TH-PPM is a format that currently attracts attention from researchers and system
designers, it is also the one of interest in this article, despite its relative complexity
compared to M-PPM. While the M-PPM signal (2) is parameterized solely by the symbol
alphabet size M , specifying the TH-PPM signal (3) requires four additional parameter
choices. Fortunately, for purposes of the equalizer convergence analysis in Section 4, TH-
PPM with frame length Nf is modeled well by an M-PPM signal with M = Nf under
the reasonable assumption of a uniformly distributed TH pattern with a large span (Nh

close to Nf −M + 1) and a long period (Np large). With a large Nh, the frame length is
maximally exploited to avoid interuser interference [3]. Combined with a long TH period
Np, the transmitted signal energy is spread evenly over a wide frequency band [30], which
is of importance in UWB radio.

To conclude, M-PPM (2) with M = Nf is hereafter used in the analysis to model a
practical TH-PPM signal with a frame length of Nf samples. A typical value of Nf , and
hence for M in the following, may range from a hundred up to a thousand [3].

2.6 Model and Statistics of the Transmitted Signal

With the PPM signal defined as in (2), the transmitted signal s is formed by subtracting
the mean from ζ to achieve a zero-mean (DC-free) signal,

s[n] � ζ [n] − E{ζ [n]} = ζ [n] − 1

M
.



102 Paper E

The variance of s is σ2
s = (M − 1)/M2. No power normalization factor is incorporated

into the signal model since, although the mean power of s depends on M , this will be
irrelevant for the coming analysis. The normalized third moment, or skewness, of s,
which reflects the asymmetry in the pdf, is

E{s3}
(E{s2})3/2

=
M − 2√
M − 1

,

which is positive and strictly increasing with M for M ≥ 3. Since M is here assumed
to be on the order of a hundred or more, the transmitted signal definitely has positive
skewness, enabling the use of third-order blind methods in the following.

The M-PPM signal (2) is a cyclostationary process. Hence, the autocorrelation
rs(n, m) � E{s[n]s[n + m]} is not independent on n, but periodic with period M so
that rs(n, m) = rs(n + kM, m) for integer k. The cyclostationarity can be exploited
by sub-sampling the received signal into M parallel streams and applying a bank of M
equalizers, as suggested in [9, 13]. In this work however, we target a low-complex solution
and investigate the performance of a single linear equalizer, for which the cyclostation-
arity only complicates the analysis. To eliminate the time dependence in rs, the time
average autocorrelation r̄s can be formed by averaging over a period [31],

r̄s(m) �
1

M

M−1∑
n=0

rs(n, m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M − 1

M2
, m = 0

|m| − M

M3
, |m| = 1, . . . , M − 1

0, |m| ≥ M.

From r̄s it is seen that, in an average sense, the transmitted signal is correlated for lags
|m| < M and therefore not an i.i.d. process.

3 Blind Equalization Strategy and Method

3.1 Zero-Forcing Equalization

The FIR equalizer is working in blind mode (without training data) where zero-forcing
(ZF) equalization is the natural criterion [32, 33]. The ZF objective is to invert the
channel and recover an ISI-free, delayed version of s at the equalizer output. That is, to
obtain y[n] = αs[n−Δ]+p[n], where α and Δ is an arbitrary scale and delay respectively
and p[n] is colored Gaussian noise (z[n] filtered through the equalizer). In practice, it
is sufficient to only approximately invert the channel, allowing some residual ISI to be
present at the equalizer output. The practical equalization goal then becomes

y[n] ≈ αs[n − Δ] + p[n]. (4)

The reason why strict equality in (4) is not pursued is that adaptation may switch to
decision-directed mode (such as DD-LMS [34]) as soon as the equalizer parameters are
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sufficiently close to a ZF setting. DD mode converges faster than blind mode and may
operate under the advantageous minimum mean square error (MMSE) criterion, but is
not suitable during a start-up phase or the recovery from abrupt changes in the channel,
when symbol estimates âk are typically unreliable [34]. Furthermore; as only a fractionally
spaced (oversampled) FIR equalizer can perfectly equalize a channel of finite length [19],
(4) is the reasonable target for baud-spaced1 blind equalization.

3.2 Steepest-Ascent Adaptation

Adaptation of the equalizer is performed by iteratively adjusting the parameter vector f

in the estimated direction of the gradient of a suitable objective function O with respect
to f , i.e. using a steepest-ascent method. With f (i) denoting the equalizer parameters
after i iterations, a steepest-ascent algorithm with parameter vector normalization is

f (i+1) = f (i) + μ∇̂∇∇(f (i)), (5a)

f (i+1) ← f (i+1)

‖f (i+1)‖2

, (5b)

where μ is a small, positive stepsize, ‖ · ‖2 is the Euclidean norm, and ∇̂∇∇(f (i)) is an
estimate of the objective function gradient with respect to f (i),

∇∇∇(f (i)) �
∂ O
∂ f (i)

.

The normalization step (5b) does not affect the equalizer’s performance in terms of ISI
reduction, but prohibits a drift or a rapid increase of its gain. As the division operation in
(5b) can be computationally costly on fixed-point architectures, a division-free algorithm
has been proposed and developed in [35], giving third-moment based steepest ascent
without the need for the extra normalization step.

3.3 Equalization Objective in Combined Channel-Equalizer

Space

Following the customary approach in the study of blind equalizers; convergence analysis
of the proposed method is done in combined channel-equalizer parameter space, rather
than in equalizer parameter space, since it is then possible to judge the ‘goodness’ or
‘badness’ of a certain setting for a general channel. The steepest-ascent algorithm (5) is
then regarded as a search for a maximum point on the objective surface O(t) in t-space.
Note that there is generally no one-to-one correspondence between points in t-space and
f-space if the equalizer has finite length. Nevertheless, for purposes of analysis, we may
regard f as being infinitely long, since in practice the extrema of O(t) and O(f) will
coincide if the actual FIR equalizer is long enough and the channel has no spectral nulls
[33].

1For PPM, ‘baud-spaced’ here refers to a system sampled once per chip.
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The blind equalization target (4) formulated in terms of t becomes

t ≈ eΔ � [0 · · · 0 α 0 · · · 0]T, (6)

where the nonzero element with arbitrary value α occurs at index Δ. The set of vectors

TZF = {eΔ}Δ=0, ..., L−1 (7)

are the global system responses corresponding to zero-forcing settings. A globally con-
vergent method is one for which TZF are global maximum points on the objective surface,
with no global or local maxima elsewhere.

3.4 Objective Function Selection

The objective function of a blind method is generally chosen to reflect some characteristic
in the source signal s that is suppressed by a non-trivial channel, so that O(x) < O(s)
with x being the noise-free part of the received signal as in Fig. 1. If the source is a
non-Gaussian i.i.d. process; the pdf of x will be closer to a Gaussian compared to the pdf
of s, as a result of the central limit theorem since x is a linear combination of samples
from s. Donoho [16] therefore suggested higher-order moments as objective functions,
based on their ability to quantify the level of ‘non-Gaussianity’. Various methods based
on higher-order moments have since been investigated under the assumption of the source
being i.i.d. (see, for example [36, 33] and references therein).

Here, we propose to use an objective function based on third moments, despite the
observation in Section 2.6 that a PPM sequence is not i.i.d. Motivations for this choice
are given below.

• The pdf of the transmitted signal is positively asymmetric (as established in Sec-
tion 2.6), implying that the third moment of s is nonzero and positive. On the
other hand, the pdf of x will appear more symmetric, due to 180◦ phase shifts
from reflections in the channel, causing the third moment of x to be closer to zero.
Fig. 2 shows a typical impulse response of an indoor UWB channel synthesized
using a script provided by the IEEE P802.15.3a working group [37]. As the ran-
domly polarized channel reflections reduce asymmetry, the equalizer should promote
asymmetry and hence maximize the third moment of its output.

• A PPM signal is sparse, i.e. impulsive with a low duty cycle. Sparseness is char-
acterized by large skewness. The dispersion (i.e. ISI) enforced by the channel (see
Fig. 2) reduces sparseness and therefore skewness. Intuitively, the third moment
should therefore be inversely proportional to the amount of ISI in a PPM signal.

• By using third moments instead of fourth moments, the asymmetry in the PPM
signal is exploited to improve equalizer convergence rate. Earlier work has shown
that third-moment based methods provide faster convergence of adaptation com-
pared to fourth-order methods [21] in cases where both types can be employed,
such as PPM signaling.



Paper E 105

• With z being white Gaussian noise independent on s, it is easy to show that
M3(y) = M3(x ∗ f). In words, the third moment of the equalizer output is ‘blind’
to the channel noise and introduces no bias in estimates of the objective function
gradient [21]. This is a feature of odd-order moments only, and not of even-order
moments such as M4 used in CMA.

• Algorithms with low computational costs are possible, since M3(y) is a memoryless
function of y. Its gradient can therefore be estimated from instantaneous sample
values, as done in the LMS and CMA algorithms.
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Figure 2: A synthesized impulse response of an indoor UWB channel.

3.5 The Objective Functions Under Study and a Motivational

Experiment

To introduce and motivate the choices of objective functions, consider the following
experiment with the first function chosen to be the third moment of y,

OTM � E
{
y3
}

.

A source signal was formed from an M-PPM sequence using M = 64, with white
Gaussian noise added at a signal-to-noise ratio of 10 dB. Two stochastic gradient as-
cents in t-parameter space were conducted over a length-three global response t =
[t0 t1 t2]

T, starting from two arbitrarily selected initial settings of opposite signs; ta =
[0.725 0.653 0.218]T and −ta. Iteration was performed at each sampling instant using
a stepsize μ = 0.02 with the gradient estimated from instantaneous sample values. Fig.
3 shows the resulting t settings well into convergence after 50000 iterations. Starting
at ta results in an essentially ISI-free global response, while the search starting at −ta

converges to a maximum-ISI setting!
Noting the ill-convergence of OTM above, the experiment was repeated using an

amended objective function, namely the magnitude of the third moment of y,

OMAG �
∣∣E{y3

}∣∣ .
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(a) End point when starting from ta.
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(b) End point when starting from −ta.

Figure 3: Stochastic gradient ascent end points for OTM.

The resulting t settings corresponding to starting points ta and −ta are shown in Fig. 4.
Here, the gradient searches end near two different ZF points of opposite signs.
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(b) End point when starting from −ta.

Figure 4: Stochastic gradient ascent end points for OMAG.

This simple experiment reveals the possibility of ill-convergence of OTM under PPM
signaling. While no such behavior is observed with the modified objective OMAG, its
blindness to polarity in the equalizer output, and hence in t, is noted. This sign ambiguity
is of no concern however, as information is not conveyed in the amplitude of the PPM
signal.

In the next section, the global convergence properties of OTM and OMAG are examined
for arbitrary lengths of t.

4 Objective Surface Analysis

To analyze the global convergence properties of an objective function, all stationary
points on the objective surface O(t) must be found and classified as maxima, minima
or saddles. For the proposed functions OTM and OMAG, first note their invariance to
additive white Gaussian noise.
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Referring to Fig. 1, let y = v + p, where v is the noise-free channel output x filtered
by the equalizer and p is the correspondingly filtered version of z. As z is zero-mean,
white Gaussian noise, independent on x, it follows that

OTM(y) = E
{
(v + p)3

}
= E

{
v3
}

.

The noise invariance of OMAG follows trivially from its definition. Hence, neither of the
two objective surfaces are perturbed by the noise. Since only the static properties of the
surfaces (i.e. the location of stationary points and curvature) are investigated here, noise
is disregarded throughout the remainder of the analysis.

Secondly, only norm-constrained steepest ascent adaptation is considered, i.e. max-
imizing the objective functions under constant norm of f . Without this restriction, the
third moment given any parameter vector f is improved by simply increasing its norm.
Hence, maximum points only exist on norm-constrained objective surfaces. The nor-
malization step (5b) in the steepest ascent algorithm accomplishes this in practice. As
constraining ‖f‖2 also implies a constraint on ‖t‖2 for a fixed channel; in the following,
all feasible parameter vectors are assumed to lie on the L − 1-dimensional unit sphere

SL−1 �
{
t ∈ R

L
∣∣ ‖t‖2

2 = 1
}

.

There is no loss of generality from this constraint since, if t∗ is a stationary point of OTM

or OMAG on the unit sphere, then k t∗ is a stationary point on the sphere of radius |k|
for any k ∈ R.

4.1 Localization of OTM Stationary Points

Using the method of Lagrange multipliers [38], the stationary points of OTM under unit-
norm t are the stationary points of the Lagrangian function

TM(t, λ) � OTM(t) − λd(t), (8)

where λ ∈ R is a Lagrange multiplier and d(t) is the constraint function

d(t) � ‖t‖2
2 − 1 = tTt − 1. (9)

Solving for the gradient of TM equal to zero leads to the set of equations

∂

∂t
TM(t, λ) =

∂OTM

∂t
− 2λt = 0, (10)

∂

∂λ
TM(t, λ) = −d(t) = 0, (11)

where 0 is the L×1 zero vector. The stationary points of OTM on SL−1 are the solutions to
(10) under the unit-norm constraint (11). With the combined channel-equalizer response
t defined in (1) and disregarding noise, let sn � [ s[n] s[n − 1] · · · s[n − L + 1] ]T so that
y[n] = tTsn. (10) becomes

3E
{(

tTsn

)2
sn

}
− 2λt = 0. (12)
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Expanding (12) yields a system of L equations in the L parameters {tm}m=0, ..., L−1:

3
L−1∑
i=0

L−1∑
j=0

titjR(i − j, i − m) − 2λtm = 0, (13)

for m = 0, . . . , L− 1, where R(p, q) is the time-averaged generalized third moment of s,

R(p, q) �
1

M

M−1∑
n=0

E {s[n]s[n + p]s[n + q]} . (14)

The equation system (13) is non-linear in the parameters and difficult to solve for general
values of L. However, as M is assumed to be large (as discussed in Section 2.5), it is
shown in Appendix A that R(0, 0) becomes the dominating monomial coefficient so that
(13) approaches

3R(0, 0) t2m − 2λtm = 0, (15)

for m = 0, . . . , L − 1 and M large. Under the unit-norm constraint (11), the 2L+1 − 2
solution vectors to (15) are the stationary points of OTM(t) under approximation for
large M . The set of stationary points can be partitioned into disjoint subsets as follows.
Denote by t∗ an arbitrary solution to (15) under (11) and define the subsets

C+
K � {t∗ ∈ SL−1 | t∗has exactly K non-zero,equal positive elements},

C−
K � {t∗ ∈ SL−1 | t∗has exactly K non-zero,equal negative elements},

for K = 1, . . . , L. The non-zero elements of points in C+
K and C−

K has values 1/
√

K and
−1/

√
K respectively. For example, the union C+

1 ∪ C−
1 correspond to the ZF points TZF

defined in (7), while the single points in C+
L and C−

L correspond to maximum ISI.
A more coarse localization of stationary points will prove useful in the following.

Recognize that C+
K ⊂ H+ and C−

K ⊂ H−, where

H+ � {t ∈ SL−1 | ti ≥ 0, ∀i} ,

H− � {t ∈ SL−1 | ti ≤ 0, ∀i} .

H+ and H− are the disjoint subsets of SL−1 containing vectors with all elements non-
negative and non-positive respectively.

4.2 Classification of OTM Stationary Points

Each stationary point can be classified as a maxima, minima or saddle point depending
on the constraint curvature of the Lagrangian at that point. For this, define the Hessian
matrix HTM of the Lagrangian (8) with respect to t as

HTM(t, λ) �
∂2

TM

∂t∂tT
=

⎡⎢⎢⎢⎢⎢⎣
∂2

TM

∂t20
· · · ∂2

TM

∂t0∂tL−1
...

. . .
...

∂2
TM

∂tL−1∂t0
· · · ∂2

TM

∂t2L−1

⎤⎥⎥⎥⎥⎥⎦ .
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Differentiating (12) with respect to t and expanding yields the Hessian as

HTM(t, λ) = 6

⎡⎢⎢⎢⎢⎣
∑

i

tiR(i, i) · · ·
∑

i

tiR(i, i − L + 1)

...
. . .

...∑
i

tiR(i − L + 1, i) · · ·
∑

i

tiR(i − L + 1, i − L + 1)

⎤⎥⎥⎥⎥⎦− 2λIL, (16)

where summations over i are taken from 0 to L− 1 and IL is the L× L identity matrix.
In Appendix B, the Hessian is evaluated under the approximation of large M . The

results are shown in Table 5.1. As seen, the positive ZF solutions in C+
1 are indeed

maxima, while the negative ones in C−
1 are minima. A critical observation to be made

from Table 5.1 is the existence of a single false optimum, the maximum in C−
L . This is the

maximum-ISI point t× � 1√
L

[−1 −1 · · · −1]T, recognized from the example in Section 3.5
for L = 3. Depending on initialization, a steepest ascent on OTM hence either converges
to a ZF point or the maximum-ISI point t×.

Table 5.1: Stationary points of OTM on SL−1 for large M.

Subset # of points Character Type

C+
1 L Zero ISI Maxima

C−
1 L Zero ISI Minima

L−1⋃
i=2

C+
i 2L − L − 2 Low to severe ISI Saddles

L−1⋃
i=2

C−
i 2L − L − 2 Low to severe ISI Saddles

C+
L 1 Max ISI Minimum

C−
L 1 Max ISI Maximum

4.3 Conditions for Ill-Convergence of OTM

Noting the existence of the false optimum t×, finding the conditions under which a
steepest ascent converges to this point becomes of prime interest. Ill-convergence will
occur if the equalizer taps are initialized in such a way that the corresponding global
parameter vector lies within the region of attraction to t×. As the t-vector corresponding
to any given initial choice of f depends on the channel (which is unknown), the probability
of ill-convergence is mainly affected by the size and character of the region of attraction,
both of which will now be derived.

As noted in Section 4.1, t× is interior to the region H−, constituting the subset of
vectors t on SL−1 with all elements non-positive. In Appendix C, it is established that
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H− actually is the region of attraction to t×, making the rest of the unit sphere the
region of attraction to ZF-points. This implies that starting from an equalizer setting
such that at least one tap in the corresponding global response is positive (i.e. starting
outside of H−) is sufficient to ensure convergence to a zero-forcing setting.

For example, in the low-dimensional case L = 3, H− is one octant of S2, or one
8th of the total parameter space. For general L, the volume ratio of the hyperoctant
H− to the total space is 2−L, which is vanishingly small for any practically encountered
global system response length. This, combined with the character of H− (all t-elements
non-positive) makes it a very unlikely starting point. Indeed, since a blind equalizer is
usually initialized with a single non-zero and positive coefficient in f , a starting point in
H− only occurs if all nonzero taps of the channel impulse response are negative, which
can be ruled out in practice.

4.4 Visualization of OTM for L = 3

To get an improved insight into the topology of the third-moment objective surface, Fig.
5 shows the locations of all stationary points on the S2 unit sphere. The regions H+

and H− are the octants enclosed by dashed lines in Fig. 5.5(a) (H+) and 5.5(b) (H−)
respectively. Table 5.2 lists all the stationary points for this example with a plot legend
to the figure. Some gradient field lines are sketched to highlight the curvature on the
sphere. The steepest-ascent trajectories corresponding to the experiments in Section 3.5
are also shown. Note how the trajectory starting at −ta inside of H− converges to the
false optimum t× = 1√

3
[−1 −1 −1]T of Fig. 5.3(b).

Table 5.2: Stationary points [t0 t1 t2] of OTM on S2 for large M .

Subset Subset elements Type Legend

C+
1 {[1 0 0] [0 1 0] [0 0 1]} Maxima •

C+
2

1√
2
{[1 1 0] [1 0 1] [0 1 1]} Saddles �

C+
3

1√
3
{[1 1 1]} Minimum �

C−
1 {[−1 0 0] [0 −1 0] [0 0 −1]} Minima ���

C−
2

1√
2
{[−1 −1 0] [−1 0 −1] [0 −1 −1]} Saddles ���

C−
3

1√
3
{[−1 −1 −1]} Maximum ◦◦◦

4.5 Localization of OMAG Stationary Points

As for OTM, the stationary points of the magnitude-third moment objective function
OMAG on the unit sphere are now found and classified using Lagrange multipliers. The
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Figure 5: Locations of OTM stationary points on the S2 unit sphere. The curved arrows indicate
the direction of the gradient vector field. Steepest-ascent trajectories starting from points ta
(marked by �) and −ta (marked by ♦♦♦) are also shown. For a plot legend, see Table 5.2.

Lagrangian function becomes

MAG(t, λ) � OMAG − λd(t), (17)

where d(t) is the unit-norm constraint function defined in (9). Taking the gradient of

MAG with respect to t, expanding, and equating to zero yields, for m = 0, . . . , L − 1,

3 sgn [OTM(t)]

L−1∑
i=0

L−1∑
j=0

titjR(i − j, i − m) − 2λtm = 0, (18)

where OTM(t) = E
{
(tTsn)3

}
and sgn(x) is the signum function which is 1 if x > 0, −1 if

x < 0 and undefined if x = 0. The stationary points are thus the solution vectors to the
system (18) under the constraint d(t) = 0. As for OTM, an approximation is taken for
large M (all generalized third moments but R(0, 0) are zero), under which (18) tends to

3 sgn

(
L−1∑
i=0

t3i

)
R(0, 0) t2m − 2λtm = 0, (19)

for m = 0, . . . , L − 1, where it was used that for large M ,

OTM(t) ≈ ÕTM(t) � R(0, 0)
L−1∑
i=0

t3i (20)
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and R(0, 0) > 0 (see Appendix A). From (19), the set of stationary points of OMAG can
be found and partitioned into the subsets

Ĉ+
K � {t∗ ∈ SL−1 | t∗has exactly K non-zero,equal positive elements},

Ĉ−
K � {t∗ ∈ SL−1 | t∗has exactly K non-zero,equal negative elements},

for K = 1, . . . , L. As for OTM, note that Ĉ+
K ⊂ H+ and Ĉ−

K ⊂ H−. Furthermore; the

set of vectors Z �
{
t ∈ SL−1

∣∣∣∑L−1
i=0 t3i = 0

}
, the intersection of the sphere with the

surface
∑L−1

i=0 t3i = 0, forms a region on the sphere for which (19) has no solutions since
the signum function is undefined there. However, note that by (20), OTM, and therefore
OMAG, is zero in this region for large M . Since OMAG ≥ 0 for all t, Z is a continuous2

(uncountable) set of global minima.

4.6 Classification of OMAG Stationary Points

The Hessian matrix HMAG of the Lagrangian (8) with respect to t is obtained from (18)
as

HMAG(t, λ) �
∂2

MAG

∂t∂tT
=

6 sgn [OTM(t)]

⎡⎢⎢⎢⎢⎣
∑

i

tiR(i, i) · · ·
∑

i

tiR(i, i − L + 1)

...
. . .

...∑
i

tiR(i − L + 1, i) · · ·
∑

i

tiR(i − L + 1, i − L + 1)

⎤⎥⎥⎥⎥⎦− 2λIL.

In Appendix D, the Hessian is evaluated under approximation of large M . The results are
listed in Table 5.3. The only maxima are the ZF points, as the single point in Ĉ−

L is not
a maximum but a minimum here. This is expected, since OMAG(t ∈ H−) = OMAG(t ∈
H+) = OTM(t ∈ H+). In words, the stationary points of OMAG in H− have the same
locations and characters as those in H+, which in turn are identical to the stationary
points of OTM in H+, where no false optimum exists. Hence, the method is globally
convergent to zero-ISI settings. Note from the example in Section 3.5 how the trajectory
starting in −ta converges to the closest ZF point of negative polarity.

5 Simulation Results

The functionality of both the OTM and the OMAG objective is demonstrated in the follow-
ing numerical experiment. 15 different channel impulse responses were generated from
the specifications of the widely accepted channel model CM3, provided by the IEEE
P802.15.3a working group for wireless personal area networks [37]. CM3 models indoor

2Except in the trivial case L = 2 where Z only contains two discrete points.
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Table 5.3: Stationary points of OMAG on SL−1 for large M.

Subset # of points Character Type

Ĉ+
1 L Zero ISI Maxima

Ĉ−
1 L Zero ISI Maxima

L−1⋃
i=2

Ĉ+
i 2L − L − 2 Low to severe ISI Saddles

L−1⋃
i=2

Ĉ−
i 2L − L − 2 Low to severe ISI Saddles

Ĉ+
L 1 Max ISI Minimum

Ĉ−
L 1 Max ISI Minimum

UWB channels for transmitter-receiver distances of 4-10 meters with obstructed line-of-
sight, featuring significant dispersion. In the script attached to [37], the sampling interval
was chosen to be 1 nanosecond. In each generated channel realization, taps of magnitude
less than 20 dB below the tap of largest magnitude were zeroed. Also, any leading or
trailing sequences of zeros were removed. One of the resulting responses is shown in Fig.
2 in Section 3.

TH-PPM signals were generated with parameters M = 2, Nf = 100, Ns = 10, Nh =
99 and Np = 50. At the selected sampling interval, this corresponds to a transmission
rate of 1 Mbit/s. After convolution with the channel responses, white Gaussian noise was
added with a SNR per bit Eb/N0 = 10 dB. This models a received signal in agreement
with Fig. 1.

The objectives OTM and OMAG were then used to adapt equalizers of length Lf = 100
taps using the steepest-ascent algorithm (5), starting from the customary center-spike
initialization with the tap at index 51 equal to one and all other taps zero. Gradient
estimates were formed as ∇̂∇∇(f (i)) = sgn(yi)y

2
i ui for OMAG and ∇̂∇∇(f (i)) = y2

i ui for OTM,
with yi = f (i)Tui and the Lf×1 regressor vectors ui obtained by averaging over Ns received
frames, thereby exploiting the symbol repetition pattern to improve the SNR during
adaptation. Equal stepsizes μ = 0.001 were used for both objectives, which on average
gave equal ISI reduction performance upon convergence. Assuming perfect transmitter-
receiver synchronization and the TH sequence {ck} known to the receiver, equalizer
updates for each received symbol were performed only at the M chips where a pulse was
possibly transmitted. The experiment was repeated for all 15 channel realizations, and
the average resulting ISI versus iteration number is shown in Fig. 6. ISI is defined from
the combined channel-equalizer response as

ISI(t) �
1

t2lc

(
L−1∑
i=0

t2i − t2lc

)
,

where tlc is the leading cursor, i.e. the tap with largest absolute value. As seen in Fig.
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6, OMAG converges slightly faster than OTM. This is expected since OMAG has more
maxima, resulting in shorter trajectories from starting points to convergence points on
average.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−2

0

2

4

6

8

Iteration number

IS
I

(d
B

)

OTM

OMAG

Figure 6: ISI versus iteration number for OTM and OMAG. Average result from 15 different
channel realizations.

The lengths of the channel responses ranged from 48 to 89 taps, averaging at 72.
Because of the center-spike initialization of the equalizer, Fig. 6 also reveals that the
average channel ISI prior to equalization was roughly 7 dB. As seen, the average ISI of
the equalized systems steadily decreases, converging to around -0.5 dB. To evaluate the
success of a hypothetical switch to a decision-directed algorithm, the symbol error rate
was evaluated for each channel after convergence of the blind methods. Symbol decisions
were made by comparing signal energies over the M pulse-conveying chips (after averaging
over Ns symbol-repeated frames) and selecting the largest. As a rule of thumb, successful
decision-directed convergence requires a decision error rate below 0.1 [39, 17]. This was
achieved for all channels at Eb/N0 = 10 dB, with the worst channel giving a decision
error rate of 0.0043 for both objectives. The conclusion from this simulation is that
both objectives are capable of providing good start-up conditions for decision-directed
methods.

6 Conclusions

The third-order moment has been proven to be a sufficient statistic of a time-hopped PPM
signal for blind channel equalization. An objective function based on the third-moment
magnitude provides a globally convergent blind method of low computational complexity.
The possibility of ill-convergence of the regular (non-magnitude) third moment was also
investigated and deemed highly unlikely in practice, making it a reliable alternative
of even lower complexity. As third-moment based methods feature fast convergence
and good robustness to noise compared to other common blind methods, they are an
interesting choice for applications featuring TH-PPM signals, such as UWB radio. The
functionality of two proposed objectives was demonstrated in a simulation using a widely
accepted UWB channel model and a simple stochastic gradient search.
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A Approximation of Gradient Equations for Large

M

As defined in (14), the time-averaged generalized third moments R(p, q) of a zero-mean
M-PPM signal s are; for |p| < M, |q| < M and |p − q| < M ,

R(p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

M3
(M − 1)(M − 2), p = q = 0,

1

M3

( |p|
M

− 1

)
(M − 2), q = 0 and p �= 0,

2

M3
− 2

M4
max (|p|, |q|) , p �= q �= 0 and sgn(p) = sgn(q),

2

M3
− 2

M4
|p − q|, p �= q �= 0 and sgn(p) �= sgn(q).

For lags |p| ≥ M or |q| ≥ M or |p − q| ≥ M , R(p, q) is zero. Also, R(p, 0) = R(0, p) =
R(p, p). Recall from Section 2.6 that M ≥ 3, which implies that R(0, 0) > 0.

To achieve an approximation of the gradient equations (13) in the limit of large M ;
it is noted that, for non-zero p and q,

lim
M→∞

R(0, 0)

R(p, 0)
= −∞,

lim
M→∞

R(0, 0)

R(p, q)
= ∞.

Specifically; the ratio between the moment of largest magnitude, R(0, 0), and the second
largest, R(1, 0), is |R(0, 0)|/|R(1, 0)| = M . Hence; for large M , the term involving the
center moment R(0, 0) will, for example, dominate all other terms in (13), resulting in
the approximated system (15).

To confirm the proximity of actual (non-approximated) stationary points to approx-
imated points under large M , consider the following numerical experiment where the
distance from a ZF point to the nearest ‘true’ maximum was measured. Ten M-PPM
signals were generated for values of M between 3 and 128. For each signal, an OTM-
based stochastic gradient ascent in t-space with stepsize μ = 0.0005 was conducted for
a 100-tap t-vector, starting at the unit-norm ZF point e50 (as defined by (6) with α = 1
at index 50). After 1.5× 106 iterations, convergence to a small neighborhood around the
nearest maximum point t̃ was reached. This point was then estimated by averaging the
t-vectors from the final 104 iterations, and the Euclidean distance from t̃ to the start-
ing point e50 was calculated. The results are shown in Fig. 7. As expected, the true
maximum approaches the closest ZF point asymptotically as M increases.



116 Paper E

3 17 31 45 59 72 86 100 114 128

0.1

0.2

0.3

0.4

0.5

M

‖e
5
0
−

t̃‖
2

Figure 7: Euclidean distance from e50 to nearest local maxima t̃ versus M .

B Characterization of OTM Stationary Points for

Large M

Here, the Hessian HTM is evaluated under approximation for large M to classify the
stationary points of the third-moment objective OTM on the unit sphere. As shown in
Appendix A, R(0, 0) will dominate all other moments R(p, q) as M → ∞. The Hessian
HTM (16) then approaches the diagonal form

H̃TM(t, λ) = 6R(0, 0) diag{t0, . . . , tL−1} − 2λIL.

Define a to be the gradient of the constraint function (9),

a(t) �
∂d

∂t
= 2t, (B.21)

and let v(t) be a non-zero vector orthogonal to a(t),

v(t)Ta(t) = 0. (B.22)

The set of all non-zero v satisfying (B.22) constitute the feasible directions of optimization
at t [38], i.e. all vectors in the tangent plane of the unit sphere at t. Finally, define the
quadratic form

Q(t, λ) � v(t)TH̃TM(t, λ)v(t). (B.23)

A stationary point t∗ with corresponding Lagrange multiplier λ∗ can now be classified as
a maximum, minimum or saddle point of the constrained objective function by evaluating
Q(t∗, λ∗) for all v satisfying (B.22) according to

Q(t∗, λ∗) < 0 → t∗ maximum

Q(t∗, λ∗) > 0 → t∗ minimum

Q(t∗, λ∗) indefinite → t∗ saddle.
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B.1 Characterization of Points in Subsets C+
K

Let t∗K = [t∗0 t∗1 · · · t∗L−1]
T be any point in one of the subsets C+

K , 1 ≤ K ≤ L. Then, t∗K
has exactly K nonzero, positive elements with equal values 1/

√
K, and corresponding

positive Lagrange multiplier λ∗
K = 3R(0,0)

2
√

K
. Next, define A to be the set of indices corre-

sponding to the nonzero elements in t∗K , so that t∗i has value 1/
√

K if i ∈ A and value 0
if i /∈ A. Any feasible direction v(t∗K) = [v∗

0 v∗
1 · · · v∗

L−1]
T at t = t∗K must then satisfy

v(t∗K)Ta(t∗K) =

L−1∑
i=0

v∗
i t

∗
i =

1√
K

∑
i∈A

v∗
i = 0,

which implies that ∑
i∈A

v∗
i = 0. (B.24)

Evaluating (B.23) now gives

Q(t∗K , λ∗
K) = 3R(0, 0)

(
2

L−1∑
i=0

(v∗
i )

2t∗i −
1√
K

L−1∑
i=0

(v∗
i )

2

)
,

which can be simplified to

Q(t∗K , λ∗
K) =

3R(0, 0)√
K

(∑
i∈A

(v∗
i )

2 −
∑
i/∈A

(v∗
i )

2

)
. (B.25)

1) Points in C+
1 : Any point t∗1 in C+

1 has exactly one nonzero element. Let q be the
index of this element, so that A = q. Evaluating (B.25) gives

Q(t∗1, λ
∗
1) = 3R(0, 0)

(
(v∗

q )
2 −
∑
i�=q

(v∗
i )

2

)
= −3R(0, 0)

∑
i�=q

(v∗
i )

2,

where the last equality follows from v∗
q being zero by (B.24). Since R(0, 0) > 0, the

quadratic form is strictly negative for all non-zero v(t∗1). Hence, all points in C+
1 are

maxima.
2) Points in C+

2 , . . . , C+
L−1: Let t∗K be a stationary point with exactly K non-zero

elements where 2 ≤ K ≤ L − 1. Then A contains at least 2 and at most L − 1 indices.
As a consequence, (B.25) is indefinite for any 2 ≤ K ≤ L− 1, meaning that all points in
the union of subsets

⋃L−1
i=2 C+

i are saddles.
3) Points in C+

L : For the single stationary point t∗L with all elements nonzero, A =
{1, 2, . . . , L}, and (B.25) simplifies to

Q(t∗L, λ∗
L) =

3R(0, 0)√
L

L−1∑
i=0

(v∗
i )

2,

which is strictly positive for all nonzero v(t∗L). The point t∗L is therefore a minimum.
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B.2 Characterization of Points in Subsets C−
K

A stationary point t∗K belonging to any of C−
K , 1 ≤ K ≤ L has exactly K nonzero,

negative elements with equal values −1/
√

K, and negative Lagrange multiplier λ∗
K =

−3R(0,0)

2
√

K
. As above, let A be the set of indices corresponding to the non-zero elements in

t∗K . Feasible directions v(t∗K) must still satisfy (B.24). The quadratic form (B.23) here
becomes

Q(t∗K , λ∗
K) = −3R(0, 0)√

K

(∑
i∈A

(v∗
i )

2 −
∑
i/∈A

(v∗
i )

2

)
,

which is simply the negative of the quadratic form (B.25), causing the characteristics of
points in subsets C−

K to become ‘reversed’ compared to points in C+
K . Hence, points in

C−
1 are minima, points in C−

K , 2 ≤ K ≤ L − 1 are saddles, and the single point in C−
L is

indeed a maximum.

C Region of Attraction to the False Optimum Point

of OTM

The region of attraction to the false optimum point of OTM can be found by considering
the behavior of an ideal, noise-free steepest-ascent algorithm in t-space. Denote by t(i) =
[ t0(i) t1(i) · · · tL−1(i) ]T the combined channel-equalizer response after i iterations.
Let ∇∇∇(t) be the gradient of OTM at t. Under approximation of large M , the gradient
approaches, using (20),

∇̃∇∇(t) = 3R(0, 0) [t20 t21 · · · t2L−1]
T,

and the steepest-ascent algorithm in t-space becomes

t(i+1) = t(i) + μ∇̃∇∇(t(i)), (C.26a)

t(i+1) ← t(i+1)

‖t(i+1)‖2
, (C.26b)

where 0 < μ � 1. The element-wise update of t in (C.26a) is, for element j = 0, . . . , L−
1,

tj(i + 1) = tj(i) + μ t2j(i) = tj(i) [1 + μ tj(i)] . (C.27)

From (C.27), note the following relation between a tap before and after an iteration,

tj(i) > 0 implies tj(i + 1) > tj(i) > 0,

tj(i) < 0 implies 0 > tj(i + 1) > tj(i),

tj(i) = 0 implies tj(i + 1) = 0.
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In words; positive taps remain positive and increase in magnitude, negative taps remain
negative and decrease in magnitude, and zero-valued taps remain zero. In practice, taps
only have value zero momentarily due to additive noise and imperfect gradient estimates.

1) Case: t(i) ∈ H+: Assume t(i) ∈ H+ (all elements non-negative) and let tm(i)
and tr(i) be two arbitrary taps such that tm(i) > tr(i) > 0. Comparing sizes over one
iteration gives

tm(i + 1)

tr(i + 1)
=

tm(i)

tr(i)

1 + μ tm(i)

1 + μ tr(i)
>

tm(i)

tr(i)
.

Hence, larger taps outgrow smaller taps over iterations. With the normalization step
(C.26b), the unique tap of largest magnitude goes to 1 and all the others go to zero as
i → ∞ (confirm with the example in Section 3.5), so that t(i) tends to a ZF point. If
the largest tap is not unique, t(i) tends to a saddle point which is an unstable equilibria
from which it escapes if given a small perturbation.

2) Case: t(i) ∈ H−: Assume t(i) ∈ H− (all elements non-positive) and let tm(i) and
tr(i) be two arbitrary taps with magnitude relation |tm(i)| > |tr(i)| > 0. Then,

|tm(i + 1)|
|tr(i + 1)| =

|tm(i)|
|tr(i)|

|1 + μ tm(i)|
|1 + μ tr(i)| =

|tm(i)|
|tr(i)|

|1 − μ |tm(i)||
|1 − μ |tr(i)|| <

|tm(i)|
|tr(i)| ,

so that tap magnitudes are leveled over iterations. A zero-valued tap is an unstable state,
and with the normalization step (C.26b), all taps tend to equal value −1/

√
L. Therefore,

a steepest ascent starting anywhere in H− converges to the false optimum t×.

3) Case: t(i) ∈ SL−1−{H+
⋃H−}: Assume t(i) is outside both H+ and H−, so that

there is at least one positive and one negative element in t(i). Let tm(i) and tr(i) be any
two elements such that tm(i) > 0, tr(i) �= 0 and tm(i) > tr(i). Then,

|tm(i + 1)|
|tr(i + 1)| =

|tm(i)|
|tr(i)|

|1 + μ tm(i)|
|1 + μ tr(i)| >

|tm(i)|
|tr(i)| .

Hence, larger taps outgrow smaller ones, as in H+. With normalization (C.26b), the
unique tap of largest magnitude goes to 1 and all the others go to zero as i → ∞, and
t(i) tends to a ZF point. A zero-valued tap is an unstable state, and so is the event of
non-unique largest taps.

Concluding, the only region of the sphere from which ill-convergence occurs is H−

which is therefore the region of attraction to t×.

D Characterization of OMAG Stationary Points for

Large M

The derivations that follow can be identified as a special case of those found in [33, App.
A]. They are included for comparison with the results for OTM.
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As for HTM, let M → ∞, under which the Hessian matrix HMAG approaches the
diagonal form

H̃MAG(t, λ) = 6 sgn

(
L−1∑
i=0

t3i

)
R(0, 0) diag{t0, . . . , tL−1} − 2λIL.

With the constraint function gradient a and feasible direction vectors v defined in (B.21)
and (B.22) respectively, define the quadratic form

Q̂(t, λ) � v(t)TH̃MAG(t, λ)v(t), (D.28)

from which the curvature of OMAG on the unit sphere can be determined in the same
manner as in Appendix B.

D.1 Characterization of Points in Subsets Ĉ+
K

Let t∗K = [t∗0 t∗1 · · · t∗L−1]
T be any point belonging to one of the subsets Ĉ+

K , 1 ≤ K ≤
L. Then, t∗K has exactly K non-zero, positive elements with equal values 1/

√
K, and

corresponding positive Lagrange multiplier λ∗
K = 3R(0,0)

2
√

K
. As for OTM, feasible directions

v must still satisfy (B.24) and the quadratic form (D.28) evolves into (B.25). Therefore,

stationary points in subsets Ĉ+
K have corresponding character as those in C+

K for OTM;

points in Ĉ+
1 are maxima, points in Ĉ+

K , 2 ≤ K ≤ L− 1 are saddles, and the single point

in Ĉ+
L is a minimum.

D.2 Characterization of Points in Subsets Ĉ−
K

With t∗K = [t∗0 t∗1 · · · t∗L−1]
T being any point belonging to one of Ĉ−

K , 1 ≤ K ≤ L, t∗K has

exactly K non-zero, negative elements with equal values −1/
√

K and positive Lagrange

multiplier λ∗
K = 3R(0,0)

2
√

K
. (B.24) still applies, and the quadratic form evolves into (B.25).

Hence, points in Ĉ−
1 are maxima, points in Ĉ−

K , 2 ≤ K ≤ L−1 are saddles, and the single

point in Ĉ−
L is a maximum.
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