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INTERPOLATION BETWEEN L1 AND Lp, 1 < p <∞

SERGEI V. ASTASHKIN AND LECH MALIGRANDA

(Communicated by Jonathan M. Borwein)

Abstract. We show that if X is a rearrangement invariant space on [0, 1]
that is an interpolation space between L1 and L∞ and for which we have
only a one-sided estimate of the Boyd index α(X) > 1/p, 1 < p < ∞, then
X is an interpolation space between L1 and Lp. This gives a positive answer
for a question posed by Semenov. We also present the one-sided interpolation
theorem about operators of strong type (1, 1) and weak type (p, p), 1 < p <∞.

1. Introduction

Let X be a rearrangement invariant (r. i.) function space on I = [0, 1]. If any
linear operator T is bounded in the spaces Lp and Lq (1 ≤ p < q ≤ ∞), and the
space X is such that the Boyd indices satisfy the estimates

1
q
< α(X) ≤ β(X) <

1
p
,

then the operator T is also bounded in X . We can say, for short, that X is
an interpolation space between Lp and Lq. This theorem was proved by Boyd
[B67] in 1967 under the assumption that the space X has the Fatou property
(cf. also Boyd [B69], Bennett-Sharpley [BS], Th. 5.16, and Lindenstrauss-Tzafriri
[LT], Th. 2.b.11) when the space X has either the Fatou property or is separable
(cf. also [JMST], p. 215). For arbitrary r. i. X this can be proved by using
Calderón’s estimate, as in the Boyd proof, and then Semenov’s Lemma 4.7 from
[KPS]. Implicitly this result also follows from Th. 6.12 in [KPS].

In the case when q =∞, i.e., one space is the extreme space L∞, and we have a
one-sided estimate for an r. i. space X ,

β(X) <
1
p
, 1 ≤ p <∞,

we obtain that X is an interpolation space between Lp and L∞ (see [M81], Th. 4.6,
which is proved even for Lipschitz operators).

Received by the editors October 9, 2002.
2000 Mathematics Subject Classification. Primary 46E30, 46B42, 46B70.
Key words and phrases. Lp-spaces, Lorentz spaces, rearrangement invariant spaces, Boyd in-

dices, interpolation of operators, operators of strong type, operators of weak type, K-functional,
Marcinkiewicz spaces.

This research was supported by a grant from the Royal Swedish Academy of Sciences for
cooperation between Sweden and the former Soviet Union (project 35156). The second author
was also supported in part by the Swedish Natural Science Research Council (NFR)-grant M5105-
20005228/2000.

c©2004 American Mathematical Society

2929



2930 SERGEI V. ASTASHKIN AND LECH MALIGRANDA

E. M. Semenov posed the following question about the extreme space L1: Let X
be an r. i. space on [0, 1] with either the Fatou property or absolutely continuous
norm. Is the one-sided estimate on the Boyd index α(X) > 1

p enough for the
interpolation property between L1 and Lp, 1 < p <∞?

We first show, by using duality arguments, that the answer is positive.
After this was answered a more general question appeared. Namely, is it true

that if X is an interpolation space between L1 and L∞ and we have a one-sided
estimate α(X) > 1

p , then X is an interpolation space between L1 and Lp?
The answer to this question is also positive, and the proof is suprisingly not very

complicated.
Finally, we were able to also get the one-sided interpolation theorem for operators

of strong type (1, 1) and weak type (p, p), 1 < p <∞.
The paper is organized as follows. In Section 2 we collect some necessary defini-

tions and notation.
Section 3 contains two proofs of the answer to the Semenov question. The first

proof is obtained via associated duality arguments, and the second one by using
estimates typical in the real interpolation theory.

The main result of the paper is Theorem 2, which shows that a one-sided estimate
α(X) > 1

p on an r. i. space and an interpolation property of X between L1 and
L∞ are enough for the interpolation property of X between L1 and Lp. The second
assumption that X is an interpolation space between L1 and L∞ is necessary (cf.
Example 1).

Section 4 deals with operators of strong type (1, 1) and weak type (p, p), 1 < p <
∞. We are proving a one-sided interpolation theorem for such operators.

2. Definitions and notation

We first recall some basic definitions. If a Banach space X = (X, ‖ · ‖) of all
(classes of) measurable functions x(t) on I = [0, 1] is such that there exists u ∈ X
with u > 0 a.e. on I and ‖x‖ ≤ ‖y‖ whenever |x| ≤ |y|, we say that X is a Banach
function space (on I = [0, 1]). A Banach function space X on I = [0, 1] is said to be
a rearrangement invariant (r. i.) space provided x∗(t) ≤ y∗(t) for every t ∈ [0, 1]
and y ∈ X imply x ∈ X and ‖x‖X ≤ ‖y‖X, where x∗ denotes the decreasing
rearrangement of |x|. We always have the imbeddings L∞[0, 1] ⊂ X ⊂ L1[0, 1]. By
X0 we will denote the closure of L∞[0, 1] in X .

If χA denotes the characteristic function of a measurable set A in I, then clearly
‖χA‖X depends only on m(A). The function ϕX(t) = ‖χA‖X , where m(A) = t, t ∈
I, is called the fundamental function of X .

Given s > 0, the dilation operator σs given by σsx(t) = x(t/s)χI(t/s), t ∈ I is
well defined in every r. i. space X and ‖σs‖X→X ≤ max(1, s). The Boyd indices
of X are defined by (cf. [KPS], [LT], [BS])

α(X) = lim
s→0

ln ‖σs‖X→X
ln s

, β(X) = lim
s→∞

ln ‖σs‖X→X
ln s

.

In general, 0 ≤ α(X) ≤ β(X) ≤ 1. It is easy to see that ϕ̄X(t) ≤ ‖σt‖X→X for any
t > 0, where ϕ̄X(t) = sup0<s<1,0<st<1

ϕX(st)
ϕX(s) . A Banach function space X with a

norm ‖ · ‖X has
(a) the Fatou property if for any increasing positive sequence 0 ≤ xn ↗ x, xn ∈ X

with supn ‖xn‖X <∞ we have that x ∈ X and ‖xn‖X ↗ ‖x‖X ;
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(b) absolutely continuous norm if for any x ∈ X and every sequence xn of mea-
surable functions on I = [0, 1] satisfying |x| ≥ xn ↓ 0 we have ‖xn‖X → 0.

Note that X is separable if and only if the norm of X is an absolutely continuous
norm. From the Calderón-Mitjagin theorem it follows that the r. i. space X with
either the Fatou property or the separable property is an interpolation space with
respect to L1 and L∞, i.e., if a linear operator T is bounded in L1 and L∞, then T
is bounded in X and ‖T ‖X→X ≤ C max(‖T ‖L1→L1 , ‖T ‖L∞→L∞) for some C ≥ 1
([KPS], [BS]).

The associated space X ′ to a Banach function space X is the space of all (classes
of) measurable functions x(t) on I = [0, 1] such that

∫ 1

0 |x(t)y(t)|dt < ∞ for every
y ∈ X endowed with the norm

‖x‖X′ = sup{
∫ 1

0

|x(t)y(t)|dt : ‖y‖X ≤ 1}.

X ′ is a Banach function space. We have the embedding X ⊂ X ′′ with ‖x‖X′′ ≤
‖x‖X for every x ∈ X. Moreover, X = X ′′ with equality of the norms if and only
if X has the Fatou property (cf. [KPS], [LT]). If a Banach function space X is
separable, then the embedding X ⊂ X ′′ is isometric and X ′ = X∗. If X is an r. i.
space, then the associated space X ′ is also a r. i. space.

Among classical r. i. spaces with the Fatou property we mention Lorentz spaces
Lp,q, Lorentz spaces Λϕ and Λp,ϕ, Marcinkiewicz spaces Mϕ and Orlicz spaces LΦ.
Typical separable spaces are M0

ϕ and EΦ, the closures of L∞ in Marcinkiewicz space
Mϕ and Orlicz space LΦ, respectively.

For other general properties of lattices of measurable functions and r. i. spaces,
we refer to the books [LT], [KPS], [BS].

3. Strong interpolation of L1 and Lp, 1 < p <∞
Our first proof will use the notion of the associated operator. This notion was

considered in Banach function spaces with the Fatou property, for example, by
Gribanov [G].

Lemma 1. If X is a separable Banach function space on I = [0, 1] and T : X → X
is a bounded linear operator, then there exists an associated operator T ′ : X ′ → X ′,
which is linear and bounded, given by

(1)
∫ 1

0

x(s)T ′y(s)ds =
∫ 1

0

Tx(s)y(s)ds

for all x ∈ X and y ∈ X ′.

The proof is clear since the dual space X? coincides isometrically with the asso-
ciated space X ′. Note that T ′ is unique and ‖T ′‖X′→X′ = ‖T ‖X→X.

Theorem 1. Let 1 < p <∞. If an r. i. space X has either the Fatou property or
is separable and α(X) > 1

p , then X is an interpolation space between L1 and Lp.

Proof. We will first show that if T : L1 → L1 is a bounded linear operator such
that T = T|Lp : Lp → Lp is bounded, then

(2) T = T|X0 : X0 → X ′′

is also bounded, where X0 means the closure of L∞ in X .
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Let T ′1 be the associated operator to a linear bounded operator T : L1 → L1,
and let T ′2 be the associated operator to T|Lp : Lp → Lp. Then, for all x ∈ Lp and
y ∈ L∞, we have∫ 1

0

Tx(s)y(s)ds =
∫ 1

0

x(s)T ′1y(s)ds =
∫ 1

0

x(s)T ′2y(s)ds.

Hence, T ′2|L∞ = T ′1 and we can consider T ′ = T ′1 = T ′2. Then

(3) T ′ : Lp′ → Lp′ and T ′ : L∞ → L∞ is bounded, where 1/p′ + 1/p = 1.

Since X is isometrically embedded into X ′′, it follows that β(X ′) = 1−α(X) < 1− 1
p

(cf. [KPS], Th. 4.11), and by the Boyd interpolation theorem we have that X ′ is
an interpolation space between Lp′ and L∞. Therefore,

(4) T ′ : X ′ → X ′ is bounded.

In view of (3) and Lemma 1 there exists the second associated operator T ′′ : Lp →
Lp, which is bounded.

We can extend T ′′ to the whole space L1. In fact, if x ∈ L∞ and y ∈ Lp, then
by (3),

‖T ′′y‖1 = sup
‖x‖∞≤1

∫ 1

0

x(s)T ′′y(s)ds

= sup
‖x‖∞≤1

∫ 1

0

T ′x(s)y(s)ds ≤ ‖T ′‖L∞→L∞‖y‖1.

Since Lp is dense in L1, it follows that T ′′ : L1 → L1 is bounded. The uniqueness
shows that T ′′ = T . On the other hand, X ′ ⊂ Lp′ and for all y ∈ X ′ and x ∈ Lp
we have by (4) that

‖Tx‖X′′ = sup
‖y‖X′≤1

∫ 1

0

Tx(s)y(s)ds

= sup
‖y‖X′≤1

∫ 1

0

x(s)T ′y(s)ds ≤ ‖T ′‖X′→X′‖x‖X .

Thus,
‖Tx‖X′′ ≤ ‖T ′‖X′→X′‖x‖X

for all x ∈ Lp ⊂ X , which gives (2).
Now, let X be a separable r. i. space. For every x ∈ X we can find a sequence

{xn} ⊂ Lp such that xn → x in X . From (2) we obtain Txn → Tx in X ′′.
Moreover, {Txn} ⊂ Lp ⊂ X . Since {Txn} is a Cauchy sequence in X ′′ and X is
isometrically embedded in X ′′, it follows that {Txn} is a Cauchy sequence in X
and so Tx ∈ X.

Suppose that the r. i. space X has the Fatou property or, equivalently, X = X ′′.
Let y = Tx, where x ∈ X and T : L1 → L1 is a bounded linear operator such that
T = T|Lp : Lp → Lp is bounded. Then

(5) K(t, y;L1, Lp) ≤ CK(t, x;L1, Lp) ∀ t ∈ (0, 1].

There is a sequence of step-functions {ym} such that ym ↑ |y| a.e. on [0, 1]. We can
take, also, the truncations

xn(s) = min{|x(s)|, n}, n = 1, 2, . . . .
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Since xn ↑ |x| a.e. on [0, 1], it follows that x∗n ↑ x∗ a.e. on [0, 1] (cf. [KPS], p. 67).
By using (5) and the Holmstedt formula (cf. [H], Th. 4.1),

K(t, x;L1, Lp) ≈
∫ tp

′

0

x∗(s)ds+ t

(∫ 1

tp′
x∗(s)pds

)1/p

with x ∈ L1 and 0 < t ≤ 1, we can show that for every m = 1, 2, . . . there exists
nm ∈ N such that

K(t, ym;L1, Lp) ≤ C1K(t, xnm ;L1, Lp) ∀ t ∈ (0, 1]

with a constant C1 > 0 independent of m. Since α(X0) = α(X) > 1
p (cf. [KPS],

p. 143), then, by above, the separable space X0 is an interpolation space for the
couple (L1, Lp). But (L1, Lp) is a K-monotone couple (see [C], Th. 4). Therefore,
from the last inequality we have

‖ym‖X = ‖ym‖X0 ≤ C2‖xnm‖X0 ≤ C2‖x‖X

with some constant C2 > 0. Since X = X ′′, it follows that

‖y‖X ≤ C2‖x‖X ,

and this completes the proof. �

Remark 1. Using results from [Ms], the proof of Theorem 1 can be a little shorter.
Once we have proved that the associated operator T ′ is bounded in the spaces L∞
and Lp′ , and the second associated operator T ′′ exists, then from Theorem 3.5(b)
in [Ms] it follows that T ′′ = T is bounded in X ′′. In this paper we can also find
some sufficient conditions under which from the interpolation property of the space
X between spaces X0, X1 follows the interpolation property of its associated space
X ′ between the associated spaces X ′0, X

′
1.

Theorem 2. Let 1 < p < ∞. If X is an interpolation r. i. space between L1 and
L∞, and α(X) > 1

p , then X is an interpolation space between L1 and Lp.

Proof. If T : L1 → L1 is a bounded linear operator such that T = T|Lp : Lp → Lp
is bounded, then

K(t1−1/p, Tx;L1, Lp) ≤ C3K(t1−1/p, x;L1, Lp) ≤ C3K(t1−1/p, x;L1, Lp,1)

for any x ∈ L1 and all 0 < t ≤ 1, where Lp,1 is the Lorentz space generated by the
norm

‖x‖p,1 =
∫ 1

0

t1/p−1x∗(t)dt.

Using Holmstedt’s formulas (cf. [H], Th. 4.1 and Th. 4.2) we obtain an estimate

(6)
∫ t

0

(Tx)∗(s)ds ≤ C4

(∫ t

0

x∗(s)ds + t1−1/p

∫ 1

t

s1/p−1x∗(s)ds
)

for any x ∈ L1 and all 0 < t ≤ 1. For the linear operator

Mx(t) = t−1/p

∫ 1

t

s1/p−1x(s)ds, 0 < t ≤ 1,
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we obtain, by using the Fubini theorem,∫ t

0

(Mx∗)∗(s)ds =
∫ t

0

s−1/p

(∫ 1

s

u1/p−1x∗(u)du
)
ds

=
∫ t

0

(∫ u

0

s−1/pds

)
u1/p−1x∗(u)du

+
∫ 1

t

(∫ t

0

s−1/pds

)
u1/p−1x∗(u)du

= p′
(∫ t

0

x∗(u)du+ t1−1/p

∫ 1

t

u1/p−1x∗(u)du
)

≈ K(t1−1/p, x;L1, Lp,1).

Therefore, in view of (6),

(7)
∫ t

0

(Tx)∗(s)ds ≤ C4

p′

∫ t

0

(Mx∗)∗(s)ds

for all 0 < t ≤ 1. We show that in any r. i. space X with α(X) > 1/p we have the
estimate

(8) ‖Mx∗‖ ≤ C5‖x‖ for x ∈ X.

Note that Boyd proved (see [B68], Th. 1, [B69], Lemma 2, and [BS], Th. 5.15)
the boundedness of the operator M in r. i. spaces X with the Fatou property. He
showed that the operator M is bounded in X if and only if the lower Boyd index
α(X) > 1/p. In particular, this result gives the estimate (8) but only for r. i.
spaces with the Fatou property.

To show (8) in general we first note that the assumption α(X) > 1/p is equivalent
to the property that there exist ε > 0 and A > 0 such that

(9) ‖σs‖X→X ≤ As1/p+ε for all 0 < s ≤ 1.

For t ∈ (0, 1) we have

Mx∗(t) = t−1/p

∫ 1

t

s1/p−1x∗(s)ds =
∫ 1/t

1

s1/p−1x∗(st)ds

=
∫ ∞

1

s1/p−1x∗(st)χ(1,1/t)(s)ds

≤
∞∑
n=1

∫ 2n

2n−1
s1/p−1x∗(2n−1t)χ(1,1/t)(s)ds

≤
∞∑
n=1

2(n−1)(1/p−1)x∗(2n−1t)
∫ 2n

2n−1
χ(1,1/t)(s)ds

≤
∞∑
n=1

2(n−1)(1/p−1)x∗(2n−1t)2n−1χ(0,1)(2n−1t)

=
∞∑
n=1

2(n−1)/px∗(2n−1t)χ(0,1)(2n−1t).
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The space X is complete. So we can apply the triangle inequality to infinite sums
in X and using (9) we obtain

‖Mx∗‖ ≤ ‖
∞∑
n=1

2(n−1)/px∗(2n−1t)χ(0,1)(2n−1t)‖

≤
∞∑
n=1

2(n−1)/p‖x∗(2n−1t)χ(0,1)(2n−1t)‖

≤
∞∑
n=1

2(n−1)/p‖σ2−n+1‖X→X‖x‖

≤ A

∞∑
n=1

2(n−1)/p2(−n+1)(1/p+ε)‖x‖

= A

∞∑
n=1

2−nε+ε‖x‖ = A
2ε

2ε − 1
‖x‖,

and the proof of the estimate (8) is complete. �

Recall now the Calderón-Mitjagin theorem (see [KPS], Th. 4.3) which says
that an r. i. space X is an interpolation space between L1 and L∞ if and only
if the following condition is satisfied: there exists a constant B > 0 such that if
y ∈ X,x ∈ L1 and

(10)
∫ t

0

x∗(s)ds ≤
∫ t

0

y∗(s)ds for all 0 < t ≤ 1,

then x ∈ X and ‖x‖ ≤ B‖y‖.
Putting together the estimates (7), (8) and the Calderón-Mitjagin theorem we

obtain that if x ∈ X , then Tx ∈ X and ‖Tx‖ ≤ C6‖x‖. Therefore, X is an
interpolation space between L1 and Lp, and the proof of Theorem 2 is complete.

We give a counterexample showing that in Theorem 2 we cannot omit the as-
sumption that the r. i. X is an interpolation space between L1 and L∞.

Example 1. This is the Russu example of the space with a slight modification of
function ψ (see [R], Th. 1, or [KPS], Lemma 5.5). Let ψ be an increasing concave
function on (0, 1] with ψ(0+) = 0, limt→0+

ψ(2t)
ψ(t) = 1 and its upper dilation exponent

δψ = limt→∞
ln ψ̄(t)

ln t = 0. As a concrete ψ we can take, for example, ψ(t) = ln−1 e2

t .
In the Marcinkiewicz space Mψ endowed with the norm

‖x‖Mψ
= sup

0<t≤1

1
ψ(t)

∫ t

0

x∗(s)ds

we consider a linear space

G̃ = {x ∈ L1 : sup
0<t≤1

x∗(t)
ψ′(t)

<∞}

and as the required space G we take the closure of G̃ in Mψ. G is an r. i. space.
Since ‖σt‖G→G = ‖σt‖Mψ→Mψ

= tψ̄(1/t), it follows that α(G) = α(Mψ) = 1−δψ =
1 > 1/p, for any 1 < p <∞. The space G is not an interpolation space between L1

and L∞ (see [R], Th. 2, or [KPS], Lemma 5.5); moreover, G is not an interpolation
space between L1 and Lp.
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Remark 2. We can similarly, as in the proof of Theorem 2, show a more general
result: Let 1 ≤ r < p <∞. If X is an interpolation r. i. space between Lr and L∞,
and α(X) > 1

p , then X is an interpolation space between Lr and Lp. In the proof,
it is enough to see that there exists a constant B > 0 such that∫ t

0

(Tx)∗(s)rds ≤ B
[∫ t

0

x∗(s)rds+ tMx∗(t)r
]
≤ B

∫ t

0

[x∗(s) +Mx∗(s)]r ds

for any x ∈ Lr and for all 0 < t ≤ 1 and to use the fact that the couple (Lr, L∞)
is K-monotone (see [LS], Th. 2).

4. Strong type (1, 1) and weak type (p, p) interpolation

We observed, after the proof of Theorem 2 was completed, that an even more
general result is possible to prove. A linear operator T is said to be of weak type
(p, p), 1 ≤ p < ∞ if T is bounded from Lp,1 into Lp,∞, where the spaces Lp,1 and
Lp,∞ on I = [0, 1] are generated by the functionals

‖x‖p,∞ = sup
t∈I

t1/px∗(t), ‖x‖p,1 =
∫
I

t1/p−1x∗(t)dt.

A bounded linear operator T : Lp → Lp is said to be of strong type (p, p) and, of
course, every operator of strong type (p, p) is also of weak type (p, p) but not vice
versa since Lp,1 ⊂ Lp ⊂ Lp,∞.

Boyd [B69] proved in 1969 that any linear operator T that is of weak types (p, p)
and (q, q), 1 ≤ p < q <∞, is bounded in an r. i. space X if and only if 1

q < α(X) ≤
β(X) < 1

p . His result is proved for r. i. spaces X with the Fatou property (see
also Bennett-Sharpley [BS], Th. 5.16 and Lindenstrauss-Tzafriri [LT], Theorems
2.b.11 and 2.b13). This result however is true for arbitrary r. i. spaces X (cf. our
discussion in the Introduction or Th. 6.12 in [KPS]). In the case when q =∞, i.e.,
for any operator T of weak type (p, p) and strong type (∞,∞), 1 ≤ p < ∞, the
one-sided estimate β(X) < 1

p characterizes the boundedness of T in X (see [M81],
Th. 4.6; cf. also [M85], Remark 5.9(a)).

In the case of another extremal space L1, the one-sided interpolation theorem
about operators in L1 and of weak type (p, p), 1 < p < ∞ needs some extra as-
sumptions.

Theorem 3. Let 1 < p < ∞. Any linear operator T that is of strong type (1, 1)
and weak type (p, p) is bounded in an r. i. space X if and only if α(X) > 1

p and X
is an interpolation space between L1 and L∞.

Proof. The sufficiency follows immediately from the proof of Theorem 2 since the
estimate (6) is still true. We must only show that if α(X) > 1

p , then Lp,∞ ⊂ X. By
Theorem 5.5 in [KPS], it is enough to prove that∫ 1

0

x∗(s)ϕX(s)s−1ds ≤ C7‖x‖p,∞
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for all x ∈ Lp,∞. The assumption α(X) > 1
p gives (9) and since the estimate

‖σs‖ ≥ ϕX(s)/ϕX(1) is clear, we obtain∫ 1

0

x∗(s)ϕX(s)s−1ds ≤ AϕX(1)
∫ 1

0

x∗(s)s1/p+ε−1ds

≤ AϕX(1)‖x‖p,∞
∫ 1

0

sε−1ds =
AϕX(1)

ε
‖x‖p,∞.

Necessity. The operator M is of strong type (1, 1) and of weak type (p, p).
Moreover, ‖Mx‖p,∞ ≤ ‖x‖p,1 for every x ∈ Lp,1 and ‖Mx‖1 ≤ p′‖x‖1 for every
x ∈ L1. Then M is bounded in X by assumption. If 0 < ε < 1/‖M‖X→X, then the
operator (IX − εM)−1 exists and is bounded in X . Moreover,

(IX − εM)−1x(t) =
∞∑
n=0

εnMnx(t),

where the series converges in the operator norm and Mn denotes the nth iteration
of M . We have

Mnx(t) = t−1/p

∫ 1

t

s1/p−1 lnn−1 s
t

(n− 1)!
x(s)ds,

and the operator M̃ given by

M̃x(t) = M(IX − εM)−1x(t) =
∞∑
n=0

εnMn+1x(t)

= t−1/p

∫ 1

t

s1/p−1

( ∞∑
n=0

εn lnn s
t

n!

)
x(s)ds

= t−1/p

∫ 1

t

s1/p−1(
s

t
)εx(s)ds

is bounded in X . Since, for 0 < τ < 1,

M̃x∗(t) ≥ t−1/p

∫ t/τ

t

s1/p−1(
s

t
)εx∗(s)ds χ(0,1)(t/τ)

≥ x∗(t/τ)χ(0,1)(t/τ)t−1/p

∫ t/τ

t

s1/p−1(
s

t
)εds

= στx
∗(t)

p

1 + εp
τ−1/p−ε(1− τ1/p+ε),

it follows that

‖στx‖ = ‖στx∗‖ ≤ (
1
p

+ ε)
τ1/p+ε

1− τ1/p+ε
‖M̃x∗‖

≤ (
1
p

+ ε)
τ1/p+ε

1− τ1/p+ε
‖M̃‖X→X‖x‖,

and so
α(X) ≥ 1/p+ ε > 1/p.

We should also show that the r. i. space X must be an interpolation space
between L1 and L∞. If T : L1 → L1 is bounded and T = T|L∞ : L∞ → L∞ is also
bounded, then by the Riesz-Thorin interpolation theorem T is of strong type (p, p),
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which implies that T is of weak type (p, p). The assumption on X gives that T is
also bounded in X , and the proof is complete. �
Remark 3. Theorem 3 can be generalized (cf. Remark 2): Let 1 ≤ r < p <∞. Any
linear operator T that is of strong type (r, r) and weak type (p, p) is bounded in an
r. i. space X if and only if α(X) > 1

p and X is an interpolation space between Lr
and L∞.

Remark 4. Theorems 2 and 3 can also be proved when the r. i. spaces are on the
interval (0,∞). We then only need to control that α(X) > 1

p implies L1 ∩ Lp,∞ ⊂
X ⊂ L1 +Lp,1, which is in fact true. Note also that Theorems 2 and 3 are valid for
quasilinear operators.
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