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Abstract. There are given necessary and sufficient conditions on a measure dµ(x) =
w(x) dx under which the key estimates for the distribution and rearrangement of the
maximal function due to Riesz, Wiener, Herz and Stein are valid. As a consequence, we
obtain the equivalence of the Riesz and Wiener inequalities which seems to be new even for
the Lebesgue measure. Our main tools are estimates of the distribution of the averaging
function f∗∗ and a modified version of the Calderón–Zygmund decomposition. Analogous
methods allow us to obtain K-functional formulas in terms of the maximal function for
couples of weighted Lp-spaces.

0. Introduction. The Hardy–Littlewood maximal function

Mf(x) = sup
Q3x

1
|Q|

�

Q

|f(y)| dy

plays a very important role in the study of differentiation, singular integrals
and almost everywhere convergence (1).

A great interest in estimates of the rearrangement and distribution of
the maximal function started after the classical paper of Hardy–Littlewood
(1930). They defined the maximal operator (in the one-dimensional case)
and proved boundedness of the maximal operator in Lp(R1) for p > 1.

The first important step in this direction was done by F. Riesz (1932). He
proved first the nice geometrical “sunrise” lemma and used it to show that
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in the one-dimensional case (more precisely he proved it for f defined on
[0, 1] ⊂ R1 and for the one-sided maximal function) we have the inequality

(0.1) (Mf)∗(t) ≤ Af∗∗(t),
with a constant A > 0 independent of f and t > 0, from which the weak
type estimate follows immediately (cf. also [3]). In the present paper the
inequality (0.1), even in the n-dimensional case, will be referred to as the
Riesz inequality .

It was Wiener (1939) who, using the arguments of the Vitali covering
lemma, proved in Rn the key property of M , namely that it is of weak type
(1, 1), i.e. that

|{x ∈ Rn : Mf(x) > λ}| ≤ B

λ

�

Rn
|f(x)| dx ∀λ > 0,

with a constant B > 0 independent of f and λ. He also proved the stronger
inequality

(0.2) |{x ∈ Rn : Mf(x) > λ}| ≤ 2B
λ

�

{x∈Rn:|f(x)|>λ/2}
|f(x)| dx ∀λ > 0,

which we will call the Wiener inequality .
Let us note here that the Wiener inequality is equivalent to the

n-dimensional Riesz inequality. This unexpected equivalence, which we could
not find in the literature, follows from our Theorem 1.

On the other hand, the “reverse” inequalities to (0.1) and (0.2) were
found to be true much later. Namely, in 1969 E. Stein, in connection with the
study of integrability of the maximal function Mf (by using the Calderón–
Zygmund decomposition lemma) proved that the reverse inequality to (0.2)
is valid:

(0.3)
1
λ

�

{x∈Rn:|f(x)|>λ}
|f(x)| dx ≤ C|{x ∈ Rn : Mf(x) > λ}| ∀λ > 0,

with a constant C > 0 independent of f and λ.
In 1968 C. Herz, under the influence of the forthcoming paper of Stein,

proved that

(0.4) f∗∗(t) ≤ D(Mf)∗(t) ∀t > 0,

with a constant D > 0 independent of f and t (for another proof see [2] and
[3], Th. 3.8). We will call the inequalities (0.3) and (0.4) the Stein and Herz
inequalities, respectively.

The main purpose of this paper is to find necessary and sufficient condi-
tions on a measure w in Rn such that the inequalities (0.1)–(0.4) are valid for
the weighted maximal operator Mwf . We consider the case when the posi-
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tive measure w on Rn is absolutely continuous with respect to the Lebesgue
measure, i.e. w(A) = �

A
w(x) dx with w ∈ Lloc

1 (Rn); then the maximal func-
tion is defined by

Mwf(x) = sup
Q3x

1
w(Q)

�

Q

|f(y)|w(y) dy,

where the supremum is taken over all cubes Q ⊂ Rn which contain x with
sides parallel to the coordinate axes. The above described locally integrable
positive function w will be called a weight . In particular, the results proved
in this paper show that for such a general measure the following holds:

Theorem A. The Riesz inequality is equivalent to the Wiener inequality
and they are true if and only if the maximal operator Mw is of weak type
(1, 1).

Theorem B. The Stein inequality and the Herz inequality are valid with-
out any restriction on the measure w.

We note here that the above Theorem B cannot be obtained from the
proofs of Stein, Herz and Bennett–Sharpley since they are using the
Calderón–Zygmund decomposition lemma or the covering lemma with
dyadic cubes. Both of them require the “doubling” property w(2Q) ≤ dw(Q)
of the measure w. In the proof given in this paper we use the Besicovitch
covering lemma and a modified Calderón–Zygmund decomposition lemma.

Theorems A and B show that the equivalence

(0.5) f∗∗w (t) ≈ (Mwf)∗w(t)

holds if and only if the operator Mw is of weak type (1, 1). However, for
quite many measures w in Rn, n ≥ 2, and even for very simple measures
like w(x, y) = e−(x2+y2)/2 (cf. [11]) or w(x, y) = ex+y in R2 (see Example 3
in Section 2), the maximal operators Mw corresponding to these measures
are NOT of weak type (1, 1).

In this connection, there appeared the question to make an “improve-
ment” of the operator (Mwf)∗w such that the equivalence (0.5) will still be
true.

The maximal function Mwf is the pointwise supremum of the family of
linear averaging operators Sπ taken over all packings π = {Qi}|π|i=1, i.e.

Mwf(x) = sup
π
Sπ(|f |)(x),

where

Sπ(f)(x) =
|π|∑

i=1

[
1

w(Qi)

�

Qi

f(y)w(y) dy
]
χQi(x).
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In the equivalence (0.5), on the right-hand side we have (Mwf)∗w(t) =
(supπ Sπ(|f |))∗w(t), i.e. first we take the supremum over all π and then we
make the rearrangement. A new maximal function can be defined by taking
first the rearrangement of Sπ(|f |) and then the supremum over all π. The
importance of this function can be seen in the following statement which
follows from our results:

Theorem C. For every measure w on Rn we have the equivalence

f∗∗w (t) ≈ sup
π

[(Sπ(|f |))∗w(t)] ∀0 < t < w(Rn).

Since the K-functional for the couple (L1(w), L∞) is equal to
K(t, f ;L1(w), L∞) = tf∗∗w (t) it is possible, by using the Holmstedt for-
mula (cf. [4]), to obtain a description of the K-functional for the couple
(Lp0(w0), Lp1(w1)), p0 6= p1, in terms of the new maximal function defined
above.

Conventions. Throughout this paper we use the following notions and
notations: All cubes are cubes in Rn with sides parallel to the coordinate
axes. A packing π = {Qi}|π|i=1 means a finite collection of non-overlapping
cubes in Rn.

For a fixed weight function w and any measurable function f on Rn we
define the distribution function, the rearrangement function, and the average
of the rearrangement function, respectively, as

dwf (λ) = w({x ∈ Rn : |f(x)| > λ}), λ > 0,

f∗w(t) = inf{λ > 0 : dwf (λ) ≤ t}, t > 0,

and

f∗∗w (t) =
1
t

t�

0

f∗w(s) ds, t > 0.

If w = 1, i.e. we have the usual Lebesgue measure, we write simply df (λ),
f∗(t) and f∗∗(t), respectively.

An equivalence f(t) ≈ g(t) means that there are constants C,D > 0 such
that Cf(t) ≤ g(t) ≤ Df(t) for all t > 0; an equivalence f(t) ≈ g(t) ∀0 < t
< a means that there are constants C,D > 0 such that Cf(t) ≤ g(t) ≤
Df(t) for all t ∈ (0, a).

A function on (0,∞) is said to be positive or decreasing if it is non-
negative or non-increasing, respectively.

1. Distribution and rearrangement function inequalities. The
concept of rearrangement function was introduced and used by Hardy and
Littlewood [7]. On the other hand, for a long time most authors, such as
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Wiener, Stein, Burkholder and others, have preferred to work with distribu-
tion functions in the theory of maximal functions. Indeed, covering lemmas
lead immediately to an estimate for the distribution function of the max-
imal function. We will show that there was no reason for this preference.
The distribution inequalities are equivalent to rearrangement inequalities.
The main tool in our proof is the following lemma on the precise estimates
concerning the distribution of values of an integral and the average of a
decreasing function.

Lemma 1. Let f be a positive decreasing function on (0,∞) and let
0 < α < 1. Then

1
λ

�

{t:f(t)>λ}
f(t) dt ≤

∣∣∣∣
{
t > 0 :

1
t

t�

0

f(s) ds > λ

}∣∣∣∣(1.1)

≤ 1
1− α ·

1
λ

�

{t:f(t)>αλ}
f(t) dt

for all λ > 0. The constants 1 and 1/(1− α) are the best possible.

P r o o f. We prove the first inequality of (1.1). Note that � t0 f(s) ds is an
increasing concave function of t > 0. Define

t∗ = t∗(λ) = sup
{
t > 0 :

t�

0

f(s) ds > λt
}
, sup ∅ = 0,

and

t(λ) = |{t > 0 : f(t) > λ}| = inf{t > 0 : f(t) ≤ λ}, inf ∅ =∞.
For fixed λ > 0 there are three possibilities for t∗ = t∗(λ):

(i) t∗ =∞. Then � t0 f(s) ds > λt for all t > 0, and |{t > 0 : (1/t) � t0 f(s) ds
> λ}| =∞. Thus we have nothing to prove.

(ii) 0 < t∗ <∞. Since f is decreasing it follows that f(t∗)t∗ ≤ � t∗0 f(s) ds
= λt∗, which gives f(t∗) ≤ λ. Thus t(λ) ≤ t∗ and

1
λ

�

{t:f(t)>λ}
f(t) dt =

1
λ

t(λ)�

0

f(t) dt ≤ 1
λ

t∗�

0

f(t) dt

= t∗ =
∣∣∣∣
{
t > 0 :

1
t

t�

0

f(s) ds > λ

}∣∣∣∣.

(iii) t∗ = 0. In this case, � t0 f(s) ds ≤ λt for all t > 0. Since f is decreasing
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we obtain tf(t) ≤ � t0 f(s) ds ≤ λt, or f(t) ≤ λ for all λ > 0. This means that

1
λ

�

{t:f(t)>λ}
f(t) dt = 0 =

∣∣∣∣
{
t > 0 :

1
t

t�

0

f(s) ds > λ

}∣∣∣∣,

and the first inequality is proved.
We prove the second inequality of (1.1). For fixed λ > 0 and 0 < α < 1

we have four cases for t∗ = t∗(λ):

(i) t∗ =∞. Then (1/t) � t0 f(s) ds > λ for every t > 0. If f(t) > αλ for all
t > 0, then � {t:f(t)>αλ} f(t) dt =∞, and we have nothing to prove. Assume
that there is t0 > 0 such that f(t0) ≤ αλ. Then, for t > t0,

λ <
1
t

t�

0

f(s) ds =
1
t

t0�

0

f(s) ds+
1
t

t�

t0

f(s) ds

≤ 1
t

t0�

0

f(s) ds+
1
t

t�

t0

(αλ) ds =
1
t

t0�

0

f(s) ds+
t− t0
t

αλ.

Now let t → ∞ to obtain λ ≤ αλ, which contradicts the assumption 0 <
α < 1.

Fig. 1

(ii) 0 < t∗ ≤ t(αλ) (Fig. 1). Then

1
λ

t∗�

0

f(t) dt ≤ 1
λ

t(αλ)�

0

f(t) dt
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and, thus
∣∣∣∣
{
t > 0 :

1
t

t�

0

f(s) ds > λ

}∣∣∣∣ = t∗ =
1
λ

t∗�

0

f(t) dt ≤ 1
λ

t(αλ)�

0

f(t) dt

=
1
λ

�

{t:f(t)>αλ}
f(t) dt.

Fig. 2

(iii) t(αλ) < t∗ <∞ (Fig. 2). Then � t∗0 f(s) ds = λt∗ and so
∣∣∣∣
{
t > 0 :

1
t

t�

0

f(s) ds > λ

}∣∣∣∣ = t∗ =
1
λ

t∗�

0

f(s) ds

=
1
λ

t(αλ)�

0

f(s) ds+
1
λ

t∗�

t(αλ)

f(s) ds.

Since f(s) ≤ αλ for s ∈ [t(αλ), t∗] it follows that

t∗�

t(αλ)

f(s) ds ≤ αλ[t∗ − t(αλ)] =
α

1− α (1− α)λ[t∗ − t(αλ)]

=
α

1− α × area of the rectangle [t(αλ), t∗]× [αλ, λ]

≤ α

1− α × area of one of the shaded regions [see Figure 2]
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=
α

1− α

t(λ)�

0

[f(s)− λ] ds ≤ α

1− α

t(λ)�

0

f(s) ds

≤ α

1− α

t(αλ)�

0

f(s) ds.

Therefore

t∗ ≤
1
λ

t(αλ)�

0

f(s) ds+
α

1− α ·
1
λ

t(αλ)�

0

f(s) ds

=
1

1− α ·
1
λ

t(αλ)�

0

f(s) ds =
1

1− α ·
1
λ

�

{t:f(t)>αλ}
f(t) dt.

(iv) t∗ = 0. Then, as we have seen before, |{t > 0 : (1/t) � t0 f(s) ds > λ}|
= 0 and the inequality (1.1) is proved.

It remains to point out optimal functions showing that the constants 1
and 1/(1− α) are the best possible. For c > λ let

f(t) =
{
c for 0 < t ≤ 1,
0 for t > 1.

Then
∣∣∣∣
{
t > 0 :

1
t

t�

0

f(s) ds > λ

}∣∣∣∣ =
∣∣∣∣
{
t > 0 : cχ(0,1](t) +

c

t
χ(1,∞)(t) > λ

}∣∣∣∣

= 1 +
(
c

λ
− 1
)

=
c

λ
=

1
λ

�

{t:f(t)>λ}
f(t) dt,

which gives equality in the first inequality of (1.1).
On the other hand, if we take c > λ and

f(t) =
{
c for 0 < t ≤ 1,
αλ for t > 1,

then
∣∣∣∣
{
t > 0 :

1
t

t�

0

f(s) ds > λ

}∣∣∣∣
/[

1
λ

�

{t:f(t)>αλ}
f(t) dt

]

= t∗
/[ 1
λ

1�

0

c dt

]
=

c− αλ
(1− α)λ

· λ
c

=
c− αλ

(1− α)c
→ 1

1− α

as c → ∞. Thus, also the second inequality is sharp and the proof is com-
plete.
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We recall the following properties of the rearrangement function which
will be necessary in our proofs later on. The functions f and f ∗w are equimea-
surable, i.e.,

(1.2) w({x ∈ Rn : |f(x)| > λ}) = |{t > 0 : f∗w(t) > λ}| ∀λ > 0,

and

(1.3)
�

{x∈Rn:|f(x)|>λ}
|f(x)|w(x) dx =

�

{t>0:f∗w(t)>λ}
f∗w(t) dt ∀λ > 0.

Immediately from (1.3) and Lemma 1 applied to the decreasing function
f∗w(t) we obtain the following sharp estimates:

Corollary 1. Let f be a Lebesgue measurable function on Rn and let
0 < α < 1. Then

1
λ

�

{x∈Rn:|f(x)|>λ}
|f(x)|w(x) dx ≤ |{t > 0 : f∗∗w (t) > λ}|

≤ 1
(1− α)λ

�

{x∈Rn:|f(x)|>αλ}
|f(x)|w(x) dx

for all λ > 0. Both estimates are sharp.

Now we are ready to present our main result in this section.

Theorem 1. Let g be a positive function on (0,∞) such that g(t) = g∗(t).

(a) The inequality

(1.4) g(t) ≤ Cf∗∗w (t)

holds, for a certain C > 0 and all t > 0, if and only if there are constants
C1, C2 > 0 such that

(1.5) |{t > 0 : g(t) > λ}| ≤ C1

λ

�

{x∈Rn:|f(x)|>λ/C2}
|f(x)|w(x) dx

for all λ > 0.
(b) The inequality

(1.6) f∗∗w (t) ≤ Cg(t)

holds, for a certain C > 0 and all t > 0, if and only if there are constants
C1, C2 > 0 such that

(1.7)
1
λ

�

{x∈Rn:|f(x)|>λ}
|f(x)|w(x) dx ≤ C1|{t > 0 : g(t) > λ/C2}|

for all λ > 0.
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P r o o f. (1.4)⇒(1.5). By using the assumption (1.4), the second inequal-
ity from Lemma 1 for f∗w and α = 1/2, and the equality (1.3) we obtain

|{t > 0 : g(t) > λ}| ≤ |{t > 0 : f∗∗w (t) > λ/C}|

≤ 2C
λ

�

{t>0:f∗w(t)>λ/(2C)}
f∗w(t) dt

=
2C
λ

�

{x∈Rn:|f(x)|>λ/(2C)}
|f(x)|w(x) dx

and (1.5) is proved with C1 = C2 = 2C.

(1.5)⇒(1.4). Using the assumption (1.5), the equality (1.3) and the first
inequality from Lemma 1 for f∗w we find

|{t > 0 : g(t) > λ}| ≤ C1

λ

�

{x∈Rn:|f(x)|>λ/C2}
|f(x)|w(x) dx

=
C1

λ

�

{t>0:f∗w(t)>λ/C2}
f∗w(t) dt

≤ C1

C2
|{t > 0 : f∗∗w (t) > λ/C2}|

and so

g(t) = g∗(t) ≤ C2f
∗∗
w (min(1, C2/C1)t)

≤ max(C1, C2)f∗∗w (t).

(1.6)⇒(1.7). Similarly, by using the equality (1.3), the first inequality
from Lemma 1 for f∗w and the assumption (1.6) we get

1
λ

�

{x∈Rn:|f(x)|>λ}
|f(x)|w(x) dx =

1
λ

�

{t>0:f∗w(t)>λ}
f∗w(t) dt

≤ |{t > 0 : f∗∗w (t) > λ}|
≤ |{t > 0 : g(t) > λ/C}|

and (1.7) holds with C1 = 1, C2 = C.

(1.7)⇒(1.6). Taking α = 1/(C1 + 1) < 1 we have αC1/(1 − α) = 1
and, thus, by using the second inequality from Lemma 1 for f ∗w and α =
1/(C1 + 1), the equality (1.3) and the assumption (1.7) we obtain
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|{t > 0 : f∗∗w (t) > λ}| ≤ 1
(1− α)λ

�

{t>0:f∗w(t)>αλ}
f∗w(t) dt

=
1

(1− α)λ

�

{x∈Rn:|f(x)|>αλ}
|f(x)|w(x) dx

≤ C1
α

1− α |{t > 0 : g(t) > αλ/C2}|

= |{t > 0 : g(t) > αλ/C2}|.
This gives

f∗∗w (t) = (f∗∗w )∗(t) ≤ C2

α
g∗(t) =

C2

α
g(t) = C2(C1 + 1)g(t),

and the proof is complete.

Corollary 2. Let w1, w2 be two weights on Rn. The equivalence f∗∗w2
(t)

≈ g∗w1
(t) holds if and only if there are constants C1, C2, C3, C4 > 0 such that

C1

λ

�

{x∈Rn:|f(x)|>λ/C2}
|f(x)|w2(x) dx ≤ w1({x ∈ Rn : |g(x)| > λ})

≤ C3

λ

�

{x∈Rn:|f(x)|>λ/C4}
|f(x)|w2(x) dx

for all λ > 0.

P r o o f. Apply Theorem 1 with g equal to g∗w1
and w = w2.

Corollary 3. Let ϕ be a strictly increasing continuous function on
[0,∞) with an inverse satisfying ϕ−1(2t) ≤ Aϕ−1(t) for all t > 0. Assume
that f and g are positive decreasing functions on (0,∞). Then

1
t

t�

0

ϕ(f(s)) ds ≈ ϕ(g(t))

if and only if there are constants C1, C2, C3, C4 > 0 such that

C1

�

{t:f(t)>λ/C2}
ϕ(f(t)) dt ≤ ϕ(λ)|{t > 0 : g(t) > λ}|

≤ C3

�

{t:f(t)>λ/C4}
ϕ(f(t)) dt

for all λ > 0.

P r o o f. Let s = ϕ(λ). Then, according to Corollary 2 applied to f ∗w2
=
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ϕ(f) and g∗w1
= ϕ(g), we obtain

|{t > 0 : g(t) > λ}| = |{t > 0 : ϕ(g(t)) > s}|

≈ 1
s

�

{t>0:ϕ(f(t))>s/D}
ϕ(f(t)) dt

=
1

ϕ(λ)

�

{t>0:f(t)>ϕ−1(ϕ(λ)/D)}
ϕ(f(t)) dt

≈ 1
ϕ(λ)

�

{t:f(t)>λ/C}
ϕ(f(t)) dt.

Corollary 4. Let w1, w2 be two weights on Rn. If p > 1 and , for some
positive constants C1 and C2,

w1({x ∈ Rn : |g(x)| > λ}) ≤ C1

λ

�

{x∈Rn:|f(x)|>λ/C2}
|f(x)|w2(x) dx ∀λ > 0,

then �

Rn
|g(x)|pw1(x) dx ≤ C1C

p−1
2

p

p− 1

�

Rn
|f(x)|pw2(x) dx.

P r o o f. We have, according to Corollary 2,
�

Rn
|g(x)|pw1(x) dx = p

∞�

0

λp−1w1({x ∈ Rn : |g(x)| > λ}) dλ

≤ C1p

∞�

0

λp−2
[ �

{x∈Rn:|f(x)|>λ/C2}
|f(x)|w2(x) dx

]
dλ

= C1p
�

Rn

(C2|f(x)|�

0

λp−2 dλ
)
|f(x)|w2(x) dx

= C1C
p−1
2

p

p− 1

�

Rn
|f(x)|pw2(x) dx.

2. On the Riesz–Wiener inequality for the maximal function. In
this section we will generalize the Riesz–Wiener inequalities to more general
measures. For f ∈ Lloc

1 (Rn, w dx) and x ∈ Rn, define

Mwf(x) = sup
Q3x

1
w(Q)

�

Q

|f(y)|w(y) dy,

where the supremum is taken over all cubes Q ⊂ Rn containing x such that
w(Q) > 0.

Theorem 2. The following statements are equivalent :
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(i) Mw is of weak type (1, 1), i.e.

w({x ∈ Rn : Mwg(x) > λ}) ≤ C

λ

�

Rn
|g(x)|w(x) dx ∀g ∈ L1(w) ∀λ > 0,

(ii) w({x ∈ Rn : Mwf(x) > λ})
≤ C

(1− α)λ

�

{x∈Rn:|f(x)|>αλ}
|f(x)|w(x) dx

∀f ∈ L1(w) + L∞ ∀λ > 0, and all 0 < α < 1,
(iii) (Mwf)∗w(t) ≤ Df∗∗w (t) ∀f ∈ L1(w) + L∞ ∀t > 0.

P r o o f. (i)⇒(ii). Put

f = fχ{|f |>αλ} + fχ{|f |≤αλ} = f0 + f1.

Then Mwf(x) ≤Mwf0(x) +Mwf1(x) and so

w({x ∈ Rn : Mwf(x) > λ}) ≤ w({x ∈ Rn : Mwf0(x) > (1− α)λ})
+ w({x ∈ Rn : Mwf1(x) > αλ}).

Since Mwf1(x) ≤ ‖f1‖L∞ ≤ αλ a.e. it follows that the measure of the second
set is zero and we obtain

w({x ∈ Rn : Mwf(x) > λ}) ≤ w({x ∈ Rn : Mwf0(x) > (1− α)λ}),
which by the assumption that Mw is of weak type (1, 1) can be estimated
by

C

(1− α)λ

�

Rn
|f0(x)|w(x) dx =

C

(1− α)λ

�

{x∈Rn:|f(x)|>αλ}
|f(x)|w(x) dx.

(ii)⇒(iii). Applying Theorem 1(a) with g(t) = (Mwf)∗w(t) to the as-
sumption (ii) we obtain

(Mwf)∗w(t) ≤ max(C/(1− α), 1/a)f∗∗w (t).

Taking the infimum over all 0 < α < 1 we get (Mwf)∗w(t) ≤ (C + 1)f∗∗w (t).
(iii)⇒(i). From the well-known fact

sup
λ>0

λw({x ∈ Rn : h(x) > λ}) = sup
t>0

th∗w(t)

and the assumption (iii) it follows that, for all λ > 0,

λw({x ∈ Rn : Mwf(x) > λ}) ≤ D sup
t>0

t�

0

f∗w(s) ds = D

∞�

0

f∗w(s) ds

= D
�

Rn
|f(x)|w(x) dx,

and the proof is finished.
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In connection with Theorem 2 we will now discuss the following impor-
tant problem:

Problem 1. For which w is the maximal operator Mw of weak type
(1, 1)?

We say that the measure w(A) = �
A
w(x) dx with w ∈ Lloc

1 (Rn) satisfies
the doubling condition and we write w ∈ D if w(2Q) ≤ dw(Q) for every
cube Q, with a certain constant d > 0 independent of Q.

Example 1 (cf. [6, pp. 142–144] or [11]). If either w ∈ D or n = 1 (the
one-dimensional case), then Mw is of weak type (1, 1).

Example 2 (Sjögren [11]). The maximal operator Mw generated by the
Gaussian measure w(x, y) = e−(x2+y2)/2 in R2 is not of weak type (1, 1).
Note that w(R2) <∞.

Example 3. The maximal operator Mw generated by the measure
w(x, y) = ex+y in R2 is not of weak type (1, 1). Note that w(R2) =∞.

P r o o f. It is enough to prove that

(2.1) sup{w({(x, y) ∈ R2 : Mwf(x, y) > 1}) :

f ∈ L1(w) and ‖f‖L1(w) = 1} =∞.
In order to prove this we first observe that if for a ∈ R we define Sa =
{(x, y) ∈ R2 : x ≤ a, y ≤ −a} and H = {(x, y) ∈ R2 : x+ y ≤ 0}, then

w(Sa) =
� �

Sa

ex+y dx dy =
a�

−∞
ex dx

−a�

−∞
ey dy = 1

and

w(H) =
� �

H

ex+y dx dy =
∞�

−∞
ex
( −x�

−∞
ey dy

)
dx =∞.

Let (x0, y0) be an arbitrary point in R2 such that x0 + y0 < 0 and f(x, y) =
e−x0−y0 δ(x0,y0)(x, y), where δ(x0,y0) is the δ-function at this point, i.e.

� �

R2

f(x, y)ex+y dx dy = 1 and supp f = (x0, y0).

Then, since any cube Q such that (x0, y0) ∈ Q ⊂ H is contained in some
Sa, we have

1
w(Q)

� �

Q

f(x, y)ex+y dx dy > 1.

This means that Mwf > 1 on the union of all the above cubes Q containing
(x0, y0). The measure of this union tends to the measure of H (which is
equal to ∞) as x0 + y0 → −∞. Thus (2.1) holds and the proof is complete.
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Example 4 (Vargas [14]). There is a non-doubling measure on Rn, n > 1,
such that the maximal operator Mw generated by this measure is of weak
type (1, 1). Take, for example, the measure w(x) = (1 + |x|α)−1 in Rn with
α ≥ n.

3. On the Stein–Herz inequality for the maximal function. In
order to be able to extend the Stein inequality to the weighted case we need
to modify the Calderón–Zygmund decomposition lemma using the centered
maximal function defined by

M c
wf(x) = sup

r>0

1
w(Q(x, r))

�

Q(x,r)

|f(y)|w(y) dy,

where Q(x, r) denotes the cube with center at x and side-length 2r.

Lemma 2 (Modified Calderón–Zygmund lemma). Let f ∈ L1(w) + L∞
and

(3.1) λ > lim
t→w(Rn)

f∗∗w (t).

Put Ω = {x ∈ Rn : M c
wf(x) > λ}. Then

(i) ‖fχRn\Ω‖L∞ ≤ λ.
(ii) For every x ∈ Ω there exists a cube Qx with center at x such that

λ <
1

w(Qx)

�

Qx

|f(y)|w(y) dy ≤ 2λ.

P r o o f. (i) By using the Lebesgue theorem we obtain

lim
r→0+

1
w(Q(x, r))

�

Q(x,r)

|f(y)|w(y) dy

= lim
r→0+

1
|Q(x, r)|

�

Q(x,r)

|f(y)|w(y) dy
/[ 1
|Q(x, r)|

�

Q(x,r)

w(y) dy
]

= |f(x)|w(x)/w(x) = |f(x)| a.e.

and so

‖fχRn\Ω‖L∞ ≤ ‖(M c
wf)χRn\Ω‖L∞ ≤ λ.

(ii) The assumption (3.1) gives that for some 0 < tλ < w(Rn) we have

λ >
1
tλ

tλ�

0

f∗w(s) ds.
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Now, if w(Q(x, r)) ≥ tλ, then

1
w(Q(x, r))

�

Q(x,r)

|f(y)|w(y) dy ≤ 1
w(Q(x, r))

w(Q(x,r))�

0

f∗w(s) ds

≤ 1
tλ

tλ�

0

f∗w(s) ds < λ.

We note that the function

ϕx(r) =
1

w(Q(x, r))

�

Q(x,r)

|f(y)|w(y) dy

as a function of r > 0 has the following properties:

(a) ϕx(r) < λ when r →∞,
(b) ϕx(r) is continuous and
(c) supr>0 ϕx(r) > λ for each x ∈ Ω.

These properties of ϕx give (ii) and the proof is complete.

Theorem 3. If w(Rn) =∞, then the inequalities

(i)
C ′

λ

�

{x∈Rn:|f(x)|>λ}
|f(x)|w(x) dx

≤ w({x ∈ Rn : Mwf(x) > λ}) ∀λ > 0,

and

(ii) f∗∗w (t) ≤ D′(Mwf)∗w(t) ∀t > 0,

are valid. The constants C ′ and D′ are only dependent on the dimension n.

P r o o f. First, note that the assumption w(Rn) = ∞ implies that if
λ < limt→w(Rn) f

∗∗
w (t) = limt→∞ f∗∗w (t), then both sides of (i) are infinite.

In fact, if t is sufficiently large and 0 < t0 ≤ t <∞, then

λ <
1
t

t0�

0

f∗w(s) ds+
1
t

t�

t0

f∗w(s) ds

≤ 1
t

t0�

0

f∗w(s) ds+
t− t0
t

f∗w(t0)

and letting t → ∞ we get f∗w(t0) > λ. Therefore, |f(x)| > λ on a set of
infinite measure and both expressions in (i) are equal to ∞.

Thus it is enough to consider the case when λ > limt→∞ f∗∗w (t) since the
case when λ = limt→∞ f∗∗w (t) can be obtained by taking limits. Using the
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Lebesgue differentiation theorem we get the following estimate:

1
λ

�

{x∈Rn:|f(x)|>λ}
|f(x)|w(x) dx

≤ 1
λ

�

{x∈Rn:Mc
wf(x)>λ}

|f(x)|w(x) dx =
1
λ

�

Ω

|f(x)|w(x) dx,

where Ω = {x ∈ Rn : M c
wf(x) > λ}.

Below {Qx}x∈Ω is a family of cubes from Lemma 2(ii).
Let Q be an arbitrary cube in Rn. Then

1
λ

�

Ω∩Q
|f(x)|w(x) dx

can be estimated by the Besicovitch covering theorem applied to the family
of cubes {Qx}x∈Ω∩Q. Therefore, there exists a finite number (depending
only on the dimension n) of packings π1, . . . , πN of cubes πk = {Qxi,k}
containing only cubes from the family {Qx}x∈Ω∩Q and such that

Ω ∩Q ⊂
⋃

i,k

Qxi,k.

By using Lemma 2 (modified Calderón–Zygmund decomposition) we obtain

1
λ

�

Ω∩Q
|f(x)|w(x) dx ≤ 2

N∑

k=1

( ∑

Qxi,k∈πk
w(Qxi,k)

)

≤ 2N max
1≤k≤N

∑

i

w(Qxi,k).

For z ∈ ⋃x∈Ω Qx we have

Mwf(z) ≥ 1
w(Qx)

�

Qx

|f(y)|w(y) dy > λ,

which gives ∑

i

w(Qxi,k) ≤ w({z ∈ Q : Mwf(z) > λ})

for 1 ≤ k ≤ N and, thus,

1
λ

�

Ω∩Q
|f(x)|w(x) dx ≤ 2Nw({z ∈ Q : Mwf(z) > λ}).

Since the cube Q was arbitrary we obtain (i).
Now, according to Theorem 1(b) with g(t) = (Mwf)∗w(t), (i) implies (ii)

and we are done.
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Finally, we note that if the inequality (ii) holds, then Theorem 1(b) with
g(t) = (Mwf)∗w(t) gives the following inequality:

1
λ

�

{x∈Rn:|f(x)|>λ}
|f(x)|w(x) dx ≤ w({x ∈ Rn : Mwf(x) > λ/D′}) ∀λ > 0.

Therefore (i) and (ii) are “almost” equivalent.

R e m a r k 1. If w(Rn) <∞ and λ < limt→w(Rn) f
∗∗
w (t), then the inequal-

ity (i) in Theorem 3 is in general not true. For example, if we take f(x) = c,
then for λ < c the inequality (i) has the form

C ′c
λ
w(Rn) ≤ w(Rn)

and this is not true for small values of λ > 0.

R e m a r k 2. If w(Rn) <∞ and if for t ≥ w(Rn) we define (Mwf)∗w(t) =
lims→w(Rn)(Mwf)∗w(s), then we have the following inequality corresponding
to (i) of Theorem 3:

(3.2)
C ′

λ

�

{x∈Rn:|f(x)|>λ}
|f(x)|w(x) dx

≤ |{t > 0 : (Mwf)∗w(t) > λ}| ∀λ > 0.

Indeed, if λ ≥ f∗∗w (w(Rn)), then the proof is the same as that of Theorem 3.
For λ < f∗∗w (w(Rn)) we have

lim
r→∞

1
w(Q(x, r))

�

Q(x,r)

|f(y)|w(y) dy = f∗∗w (w(Rn)),

which gives Mwf(x) > λ for all x ∈ Rn and from equimeasurability we
obtain (Mwf)∗w(t) > λ for all t ≥ w(Rn). Thus |{t > 0 : (Mwf)∗w(t) > λ}|
=∞.

Next we point out the following consequences of our Theorems 2 and 3
and Example 1:

Corollary 5. Let f ∈ L1(w) + L∞. The equivalence

(Mwf)∗w(t) ≈ f∗∗w (t) ∀0 < t < w(Rn)

holds if and only if the maximal operator Mw is of weak type (1, 1).

Corollary 6 (The Riesz–Herz equivalence). Let f ∈ L1(w) + L∞. If
w ∈ D, then

(Mwf)∗w(t) ≈ f∗∗w (t).

Note here that w ∈ D implies that w(Rn) =∞.
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4. The K-functional for the couple (L1(w), L∞). First of all, let
us note that calculations of the K-functional for the couple (L1(w), L∞)
are only necessary when 0 < t < w(Rn) = � Rn w(x) dx. Indeed, by the
well-known Peetre formula (cf. [4])

(4.1) K(t, f ;L1(w), L∞) =
t�

0

f∗w(s) ds = tf∗∗w (t), 0 < t <∞,

and since f∗w(s) = 0 for s ≥ w(Rn) it follows that for t ≥ w(Rn) we have

(4.2) K(t, f ;L1(w), L∞) = ‖f‖L1(w) = lim
s→w(Rn)

K(s, f ;L1(w), L∞).

From the equality (4.1) and Corollary 6 we see that the equivalence

(4.3) K(t, f ;L1(w), L∞) ≈ t(Mwf)∗w(t) ∀0 < t < w(Rn)

is valid if and only if the maximal operator Mw is of weak type (1, 1).
Moreover, we have seen that for quite a few measures w in Rn (n ≥ 2)

the maximal operator Mw is not of weak type (1, 1). Here we will make
an “improvement” of the maximal operator Mw such that we can have an
equivalence of the type (4.3) also in cases when Mw is not of weak type
(1, 1).

For the formulation of our main result in this section we need some
notions. Let π = {Qi}|π|i=1 be a packing, i.e., a finite collection of non-
overlapping cubes in Rn. Consider the linear averaging operator Sπ trans-
forming every function f ∈ L1(w) + L∞ into a step function, defined by

Sπ(f)(x) =
|π|∑

i=1

[
1

w(Qi)

�

Qi

f(y)w(y) dy
]
χQi(x).

The maximal function Mwf can be obtained as the pointwise supremum of
the family of the linear averaging operators Sπ, Mwf(x) = supπ Sπ(|f |)(x)
and so

(4.4) (Mwf)∗w(t) = (sup
π
Sπ(|f |))∗w(t).

Now we introduce a modified “maximal function” Ff defined by

(4.5) (Ff )∗w(t) = sup
π

[(Sπ(|f |))∗w(t)],

which is different from (4.4) in that the order of taking supremum and
rearrangement is interchanged.

The importance of this definition can be seen in the following result:

Theorem 4. If f ∈ L1(w) + L∞, then

(4.6) K(t, f ;L1(w), L∞) ≈ t(Ff )∗w(t) ∀0 < t < w(Rn).
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P r o o f. Since, for every packing π = {Qi}|π|i=1, the operator Sπ(|f |) is
sublinear and bounded (with norm 1) in the couple (L1(w), L∞) it follows
that

K(t, Sπ(|f |);L1(w), L∞) ≤ K(t, f ;L1(w), L∞).

Therefore, by using the equality (4.1), we obtain

K(t, f ;L1(w), L∞) ≥ K(t, Sπ(|f |);L1(w), L∞) =
t�

0

(Sπ(|f |))∗w(s) ds

≥ t(Sπ(|f |))∗w(t)

for every packing π = {Qi}|π|i=1. Thus

K(t, f ;L1(w), L∞) ≥ t(Ff )∗w(t)

and we have proved the inequality in one direction.
In order to prove the reverse inequality K(t, f ;L1(w), L∞) ≤ Ct(Ff )∗w(t)

we decompose Rn into two subsets

Ω0 =
{
x ∈ Rn : sup

r>0

1
w(Q(x, r))

�

Q(x,r)

|f(y)|w(y) dy > (Ff )∗w(t)
}

and Ω1 = Rn \ Ω0, and consider the decomposition f = fχΩ0 + fχΩ1 . By
using the Lebesgue theorem we find that

lim
r→0+

1
w(Q(x, r))

�

Q(x,r)

|f(y)|w(y) dy

= lim
r→0+

1
|Q(x, r)|

�

Q(x,r)

|f(y)|w(y) dy
/[ 1
|Q(x, r)|

�

Q(x,r)

w(y) dy
]

= |f(x)|w(x)/w(x) = |f(x)| a.e.

and, thus,

(4.7) ‖fχΩ1‖L∞ ≤ (Ff )∗w(t).

It remains to show that

(4.8) ‖fχΩ0‖L1(w) ≤ Ct(Ff )∗w(t).

To prove (4.8) we shall construct below, for every x ∈ Ω0, a cube Qx with
center at x such that

(4.9) (Ff )∗w(t) <
1

w(Qx)

�

Qx

|f(y)|w(y) dy ≤ 2(Ff )∗w(t).

If such a family of cubes is constructed the proof of (4.8) is the following.
This family of cubes {Qx}x∈Ω0 will have the following property:
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(∗) If π = {Qxi} is an arbitrary packing from the family {Qx}x∈Ω0 , then
∑

Qi∈π
w(Qxi) ≤ t.

Indeed, if
∑
Qi∈π w(Qxi) > t, then, by using (4.9), we obtain

Sπ(|f |)(x) =
∑

Qi∈π

[
1

w(Qxi)

�

Qxi

|f(y)|w(y) dy
]
χQxi (x)

> (Ff )∗w(t)
( ∑

Qi∈π
χQxi (x)

)
.

Thus, for λ ≤ (Ff )∗w(t),

w({x ∈ Rn : Sπ(|f |)(x) > λ}) ≥
∑

Qi∈π
w(Qxi) > t,

which gives (Sπ(|f |))∗w(t) > λ and so (Sπ(|f |))∗w(t) > (Ff )∗w(t), but this
contradicts the definition of (Ff )∗w(t).

Let now Q be an arbitrary cube in Rn. Then the set Q∩Ω0 is bounded
and we can apply the Besicovitch covering theorem to the family of cubes
{Qx}x∈Q∩Ω0 . Therefore, there exist a finite number of packings π1, . . . , πN ,
depending only on the dimension n, containing only cubes from the family
{Qx}x∈Q∩Ω0 and such that

Q ∩Ω0 ⊂
N⋃

k=1

⋃

Qx∈πk
Qx.

Thus, by using (4.9) and property (∗) just proved, we obtain

‖fχQ∩Ω0‖L1(w) ≤
N∑

k=1

( ∑

Qxi∈πk
‖fχQxi‖L1(w)

)

≤ 2(Ff )∗w(t)
N∑

k=1

( ∑

Qxi∈πk
w(Qxi)

)

≤ 2(Ff )∗w(t)
N∑

k=1

t = 2N(Ff )∗w(t)t.

Since the cube Q was arbitrary we obtain

‖fχΩ0‖L1(w) ≤ 2Nt(Ff )∗w(t).

This gives the required estimate (4.8).
Now we must only construct a family of cubes {Qx}x∈Ω0 with centers

at the points x of Ω0 such that the inequalities (4.9) hold. First, we observe
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that if w(Q) > t (such cubes exist because t < w(Rn)), then for a packing
π containing only one cube Q we have

(SQ(|f |))∗w(t) =
1

w(Q)

�

Q

|f(y)|w(y) dy ≤ (Ff )∗w(t).

Therefore, the function

ϕx(r) =
1

w(Q(x, r))

�

Q(x,r)

|f(y)|w(y) dy

of r is not greater than (Ff )∗w(t) for sufficiently large r. By using the conti-
nuity of ϕx(r) in r and the fact that

sup
r>0

ϕx(r) > (Ff )∗w(t) for x ∈ Ω0

we conclude that for any ε > 0 and x ∈ Ω0 there exists r = rε(x) such that

ϕx(rε(x)) ⊂ ((Ff )∗w(t), (1 + ε)(Ff )∗w(t)),

which implies that it is possible to construct cubes satisfying the inequalities
(4.9).

R e m a r k 3. Since, on the right-hand side of (4.9), instead of the con-
stant 2 we can take any number q > 1 it follows that

t(Ff )∗w(t) ≤ K(t, f ;L1(w), L∞) ≤ (N + 1)t(Ff )∗w(t)

where the constant N is the constant from the Besicovitch covering theorem.

We also point out the following consequence of the equality (4.3) and
Theorem 4:

Corollary 7. If f ∈ L1(w) + L∞ and w ∈ D, then

(Mwf)∗w(t) ≈ (Ff )∗w(t).

Using the above Theorem 4 we can also write a formula for the
K-functional of the couple (Lp0(w0), Lp1(w1)), 0 < p0 < p1 ≤ ∞. We need
the following definitions: for 0 < p <∞ and a weight function w on Rn the
weighted space Lp(w) is the space generated by the quasi-norm

‖f‖Lp(w) =
( �

Rn
|f(x)|pw(x) dx

)1/p
,

and (F pf )∗w(t) = [(F|f |p)∗w(t)]1/p.

Theorem 5. (a) Let 0 < p <∞. If f ∈ Lp(w) + L∞, then

(4.10) K(t1/p, f ;Lp(w), L∞) ≈ t1/p(F pf )∗w(t) ∀0 < t < w(Rn).
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(b) For 0 < p0 < p1 < ∞ and two weight functions w0, w1 on Rn we
put

w2 = (w1/w0)1/(p1−p0) and w = (wp1
0 w−p0

1 )1/(p1−p0).

If f ∈ Lp0(w0) + Lp1(w1), then

(4.11) K(t1/p0−1/p1 , f ;Lp0(w0), Lp1(w1))

≈ t1/p0−1/p1

(w(Rn)�

t

(F p0
fw2

)∗w(s)p1 ds
)1/p1

+ t1/p0−1/pw(Rn)1/p1−1/p0‖f‖Lp0 (w0).

P r o o f. (a) We have the equivalence

K(t1/p, f ;Lp(w), L∞) ≈ (K(t, |f |p;L1(w), L∞))1/p,

which was proved, even for more general spaces, in [9] for p ≥ 1 but the same
proof gives the result for every p > 0. Moreover, by using our Theorem 4,
we obtain

(K(t, |f |p;L1(w), L∞))1/p ≈ [t(F|f |p)∗w(t)]1/p = t1/p(F pf )∗w(t),

and the assertion follows.
(b) First, note that

K(t, f ;Lp0(w0), Lp1(w1)) = K(t, fw2;Lp0(w), Lp1(w)).

Then, since (cf. [4], Th. 5.2.1)

(Lp0(w), L∞)θ1,p1 = Lp1(w), θ1 = 1− p0/p1,

it follows from the Holmstedt reiteration formula (cf. [4], Corollary 3.6.2)
that

K(u, g;Lp0(w), Lp1(w)) = K(u, g;Lp0(w), (Lp0(w), L∞)θ1,p1)

≈ u
( ∞�

u1/θ1

(s−θ1K(s, g;Lp0(w), L∞))p1
ds

s

)1/p1

.

Putting together the formulas above we obtain

K(t1/p0−1/p1 , f ;Lp0(w0), Lp1(w1))

= K(t1/p0−1/p1 , fw2;Lp0(w), Lp1(w))

≈ t1/p0−1/p1

( ∞�

t1/p0

(s−θ1K(s, fw2;Lp0(w), L∞))p1
ds

s

)1/p1

.

Now, there are three possibilities for w(Rn) and t:
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(i) w(Rn) =∞ and 0 < t < w(Rn) =∞. Then, using (a), we obtain

t1/p0−1/p1

( ∞�

t1/p0

(s−θ1K(s, fw2;Lp0(w), L∞))p1
ds

s

)1/p1

≈ t1/p0−1/p1

[ ∞�

t1/p0

(s1−θ1(F p0
fw2

)∗w(sp0)p1
ds

s

]1/p1

≈ t1/p0−1/p1

[∞�

t

(F p0
fw2

)∗w(s)p1 ds
]1/p1

.

(ii) w(Rn) <∞ and t ≥ w(Rn). By the Hölder inequality we have

‖f‖Lp0 (w0) ≤ w(Rn)1/p0−1/p1‖f‖Lp1 (w1) ∀f ∈ Lp1(w1),

i.e., Lp0(w0) + Lp1(w1) = Lp0(w0) and then, for f ∈ Lp0(w0),

K(t1/p0−1/p1 , f ;Lp0(w0), Lp1(w1)) ≈ ‖f‖Lp0 (w0) for t ≥ w(Rn).

On the other hand,

‖fw2‖Lp0 (w) ≤ w(Rn)1/p0‖fw2‖L∞ ∀fw2 ∈ L∞
gives Lp0(w) + L∞ = Lp0(w) and so

K(s, fw2;Lp0(w), L∞) ≈ ‖fw2‖Lp0 (w) = ‖f‖Lp0 (w0) for s > w(Rn)1/p0 .

Thus

t1/p0−1/p1

( ∞�

t1/p0

(s−θ1K(s, fw2;Lp0(w), L∞))p1
ds

s

)1/p1

≈ t1/p0−1/p1

( ∞�

t1/p0

(s−θ1‖f‖Lp0 (w0))
p1
ds

s

)1/p1

= t1/p0−1/p1t−θ1/p0‖f‖Lp0 (w0)/(θ1p1)

= ‖f‖Lp0 (w0)/(θ1p1).

The above calculations show that formula (4.11) is true in this case.
(iii) w(Rn) <∞ and 0 < t < w(Rn). Then the result from (a),

K(s, fw2;Lp0(w), L∞) ≈ s(F p0
fw2

)∗w(sp0) ∀0 < sp0 ≤ w(Rn),

together with the known property of the K-functional

K(s, fw2;Lp0(w), L∞) ≈ ‖fw2‖Lp0 (w) = ‖f‖Lp0 (w0) for sp0 > w(Rn),

gives
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K(t1/p0−1/p1 , f ;Lp0(w0), Lp1(w1))

≈ t1/p0−1/p1

( ∞�

t1/p0

(s−θ1K(s, fw2;Lp0(w), L∞))p1
ds

s

)1/p1

≈ t1/p0−1/p1

[w(Rn)1/p0�

t1/p0

(s1−θ1(F p0
fw2

)∗w(sp0))p1
ds

s

+
∞�

w(Rn)1/p0

(s1−θ1‖f‖Lp0 (w0))
p1
ds

s

]1/p1

= t1/p0−1/p1

[w(Rn)�

t

(F p0
fw2

)∗w(s)p1 ds+
w(Rn)−θ1p1/p0

θ1p1
‖f‖p1

Lp0 (w0)

]1/p1

≈ t1/p0−1/p1

[(w(Rn)�

t

(F p0
fw2

)∗w(s)p1 ds
)1/p1

+ w(Rn)1/p1−1/p0‖f‖Lp0 (w0)

]
.

The proof is complete.

R e m a r k 4. The formula (4.11), in the case when w(Rn) = ∞, has
surprisingly only one term in contrast to the usual Holmstedt two-term
formula (cf. [4], Th. 3.6.1):

K(t1/p0−1/p1 , f ;Lp0(w0), Lp1(w1)) ≈ t1/p0−1/p1

(∞�

t

(F p0
fw2

)∗w(s)p1 ds
)1/p1

.

R e m a r k 5. Using more general formulas of Holmstedt type (see [1]) it
is possible to obtain formulas for the K-functional in terms of the maximal
function for many other spaces, for example for weighted Lorentz spaces.

Addendum. During the refereeing process of this paper we were kindly
informed on November 11, 1995, by Professor Maŕıa J. Carro, Universitat
de Barcelona, Spain, that she and Professor Javier Soria in the paper The
Hardy–Littlewood maximal function and weighted Lorentz spaces, J. London
Math. Soc. (to appear) have obtained a result similar to our Lemma 1. More
exactly, their Theorem 2.1 is almost the same as our Lemma 1 except that
they have the constant 1/2 instead of our (sharp) constant 1 in the first
inequality of (1.1).
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