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Abstract. There are given necessary and sufficient conditions on a measure du(z) =
w(z)dz under which the key estimates for the distribution and rearrangement of the
maximal function due to Riesz, Wiener, Herz and Stein are valid, As a consequence, we
obtain the equivalence of the Riesz and Wiener inequalities which seems to be new even for
the Lebesgue measure. Qur main tools are estimates of the distribution of the averaging
function f™ and a modified version of the Calderén-Zygmund decomposition. Analogous
methods allow us to obtain K-functional formulas in terms of the maximal function for
couples of weighted Lp-spaces.

0. Introduction. The Hardy-Littlewood maximal function

Mf(z)=sup = | [£(5)|dy
Qs Q) a
plays a very important role in the study of differentiation, singular integrals
and almost everywhere convergence (1),

A great interest in estimates of the rearrangement and distribution of
the maximal function started after the classical paper of Hardy-Littlewood
(1930). They defined the maximal operator (in the one-dimensional case)
and proved boundedness of the maximal operator in Lp(RY) for p > 1.

The first important step in this direction was done by F. Riesz (1932). He
proved first the nice geometrical “sunrise” lemma and used it to show that
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in the one-dimensional case (more precisely he proved it for f defined on
[0,1] C R' and for the one-sided maximal function) we have the inequality

(0.1) (Mf) (8 < Af™ (),
with a constant A > 0 independent of f and ¢t > 0, from which the weak
type estimate follows immediately {cf. also [3]). In the present paper the
inequality (0.1), even in the n-dimensional case, will be referred to as the
Riesz inequality.

It was Wiener (1939) who, using the arguments of the Vitali covering
lemma, proved in R™ the key property of M, namely that it is of weak type
(1,1}, i.e. that

B
{z eR™: Mf(z)> A} < < {1f(2)idz  ¥A>0,
iyl
with a constant B > 0 independent of f and A. He also proved the stronger
inequality
2B
(02) H{zeR™: Mf(z)> A} < 5 {

If(z)ldz VA >0,

{meRm:| f(w)]>2/2}

which we will call the Wiener inequality.

Let us note here that the Wiener inequality is equivalent to the
n-dimensional Riesz inequality. This unexpected equivalence, which we could
not find in the literature, follows from our Theorem 1.

On the other hand, the “reverse” inequalities to (0.1) and (0.2} were
found to be true much later, Namely, in 1969 E. Stein, in connection with the
study of integrability of the maximal function M f (by using the Calderén-
Zygmund decomposition lemma) proved that the reverse inequality to (0.2)
is valid:

(0.3) ; {
{meR™:|f(z)|>A}
with a constant C > 0 independent of f and M.
In 1968 C. Herz, under the influence of the forthcoming paper of Stein,
proved that

(04 ) S DM () ve>o0,

with a constant D > 0 independent of f and ¢ (for another proof see [2] and
[3], Th. 3.8). We will call the inequalities (0.3) and (0.4) the Stein and Herz
inequalities, respectively.

The main purpose of this paper is to find necessary and sufficient condi-
tions on a measure w in R™ such that the inequalities (0.1)—(0.4) are valid for
the weighted maximal operator M., f. We consider the case when the posi-

|f(z)ide < Cl{z e R™ : Mf(z) > A} YA >0,
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tive measure w on R™ is absolutely continuous with respect to the Lebesgue

measure, L.e. w(A) = { , w(z)ds with w € L°S(R"); then the maximal func-
tion is defined by

1
My f(z) = sup ——=\ | F()|w(y) dy,
w 050 w(Q)gJ ( )l (y) Y
where the supremum is taken over all cubes Q C E™ which contain 1 with
sides parallel to the coordinate axes. The above described locally integrable
positive function w will be called a weight. In particular, the results proved
in this paper show that for such a general measure the following holds:

THEOREM A. The Riesz inequality is equivalent to the Wiener meguality

and they are true if and only if the mazimal operator My, is of weak type
(1,1).

THEOREM B. The Stein inequality and the Herz meguolity are valid with-
out any restriction on the measure w.

We note here that the above Theorem B cannot be obtained from the
proofs of Stein, Herz and Bennett-Sharpley since they are using the
Calderén-Zygmund decomposition lemma or the covering lemma with
dyadic cubes. Both of them require the “doubling” property w(2Q) < dw(Q)
of the measure w. In the proof given in this paper we use the Besicovitch
covering lemma and a modified Calderén-Zygmund decomposition lemma.

Theorems A and B show that the equivalence

(0.5) fu (8) m (M, £)3,(2)

holds if and only if the operator M,, is of weak type (1, 1}. However, for
quite many measures w in R™, n > 2, and even for very simple measures
like w(z,y) = e~ (" +4")/2 (¢f. [11]) or w(z, y) = e*T¥ in R? (see Example 3
in Section 2), the maximal operators M,, corresponding to these measures
are NOT of weak type (1,1).

In this connection, there appeared the question to make an “inprove-
ment” of the operator (M., f)}, such that the equivalence (0.5) will still be
frue.

The maximal function M, f is the pointwise supremum of the family of
linear averaging operators Sy taken over all packings 7 = {Qi}]7rJ

i=1:
M f(z) = sup Sx (1)) (),

i.e.

where

Sa(f)e) =3 [5(22_) [ Fauy) dy} xas(2)-
Qs

=1
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In the equivalence (0.5), on the right-hand side we have (M e =
(sup, Sx(1f))5(¢), i.e. first we take the supremum over all 7 and then we
make the rearrangement. A new maximal function car be defined by taking
first the rearrangement of S.(|f|) and then the supremum over all 7. The
importance of this function can be seen in the following statement which
follows from our resulis:

TuporREM C. For every measure w on R™ we have the equivalence
(1) msupl(SH(IfNL()] Y0 <t <w(R").
™

Since the K-functional for the couple {(Li(w),Le) is equal to
K(t, i In(w), Loo) = tfar(t) it is possible, by using the Holmstedt for-
mula (cf. [4]), to obtain a description of the K-functional for the couple
(Lpg(wo), Ly, (w1)}, Po # p1, in terms of the new maximal function defined
above.

Comnventions. Throughout this paper we use the following notions and
notations: All cubes are cubes in R* with sides parallel to the coordinate
axes. A packing ™ = {Qi}lﬂl means a finite collection of non-overlapping
cubes in R™.

For a fixed weight function w and any measurable function f on R™ we
define the distribution function, the rearrangement function, and the average
of the rearrangement function, respectively, as

dy(Ay=w({z eR":|f(z)| > A}), A>0,
fo(ty=inf{A > 0:d¥(N) < t}, t >0,

and
t

D)= el ds, >0
0
If w = 1, i.e. we have the usual Lebesgue measure, we write simply dy(A),
F*(t) and f**(t), respectively.

An equivalence f(t) ~ g(t) means that there are constants C, D > 0 such
that Cf(t) < g(t) < Df(t) for all t > 0; an equivalence f(t) = g(t) V0 <1t
< ¢ means that there are constants G, > 0 such that Cf(t) < g(t) <
DFf(t) for all ¢ € (0, a).

A function on (0,00) is said to be positive or decreasing if it is non-
negative or non-increasing, respectively.

1. Distribution and rearrangement function inequalities. The
concept of rearrangement function was introduced and used by Hardy and
Littlewood [7]. On the other hand, for a long time most authors, such as

icm

Fstirnates of the mazimal function and interpolation 111

Wiener, Stein, Burkholder and others, have preferred to work with distribu-
tion functions in the theory of maximal functions. Indeed, covering lemmas
lead immediately to an estimate for the distribution function of the max-
imal function. We will show that there was no reason for this preference.
The distribution inequalities are equivalent to rearrangement inequalities.
The main tool in our proof is the following lemma on the precise estimates

concerning the distribution of values of an integral and the average of a
decreasing function.

LeMMa 1. Let f be a positive decreasing function on (0,00) and let
0<a<l Then

1 : |
(1.1) 3 | f(t)dtgHt>0:£§f(s)ds>z\}l
{BF(1)>A) '
11
<3 | rwat
{t:f(t)>ar}

for all A > 0. The constants 1 and 1/(1 — o) are the best possible.

Proof. We prove the first inequality of (1.1). Note that SE f(s)dais an
increasing concave function of ¢ > 0. Define

t
tx = tu(A) = sup {t >0 Sf(s) ds > )\t}, sup =0,
0

and
HA) = |{t>0: f(t) > A} =inf{t > 0: f(t) <A},
For fixed A > 0 there are three possibilities for ¢, = t,(A):

inff = oo,

{i) t4 = co. Then Sf) fls)ds > Atforallt > 0,and |[{t > 0: (1/1) S; fls) ds
> A} = oo. Thus we have nothing to prove.

(i) 0 < £, < 0o. Since f is decreasing it follows that f(f.)t. < SZ“ fls)ds
= At,, which gives f(£,) < A Thus ¢(A) £ . and

O e

N L EER O S A RIOF
(6:F(2)>A) a o
l i
=t,=st>0:~\fls)ds> A ‘
{05 oz}

(iif) t« = 0. In this case, SB f(s)da < At for all t > 0. Since f is decreasing
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we obtain ¢f(t) < Sg f(s)ds < M, or f{t) £ Aforall A > 0. This means that

1
% | f{t)dt—:-O:Ht ;Sf(s)ds>)\}‘
{6:5(5)>x}
and the first inequality is proved.
We prove the second inequality of (1.1). For fixed A > 0 and 0 < o <1

we have four cases for £, = t.(A):

(i) . = oc. Then (1/t)§ f(s)ds > X for every £ > 0. If f(t) > aA for all
t > 0, then { (5 ar} flt )dt = o, and we have nothing to prove. Assume

that there is ¢y > 0 such that f(¢g) < aX. Then, for ¢ > to,

- % § f(s)ds+%§f(s)ds

to
0
o

Now let + — oo to obtain A < a)\ which contradicts the assuwmption 0 <
o< 1.

ok | e
o

% Sf(s)ds-l— S(a)\)ds ==

ta

i 7‘“
i
A \ f(s) ds
]
X T\
te  taA) t
Fig. 1

(1) 0 < t,. <t(ad) (Fig. 1). Then

e (A}

Vreyar< = | fe)ae
0

0

S| 22
S| =
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and, thus

o0 1 ; 1 t, 1 t(aX)

;Sf(s) s > AH =3 gf(t)dts T (S) F(t)dt

1
=3 [ Or:
{i:f(t))czA}
__ the same areas
e
oA

Fig. 2

(ili) t(ced) < &4 < oo (Fig. 2). Then S f(s)ds = At, and so

Sf(s)dwk}{:t*: : ff(.s)ds

0

——
o
vV
<o

o+ |

1 1 t‘“
=3 S f(s)ds + 5 S f(s)ds.
0 tlad)
Since f(s) < a for s € [t{ar),t,] it follows that
tu
§ Fls)ds <@t~ t(ad)] =
t{ad)

T (L= @At —t(ad)]

[ X area of the rectangle [t(a)),t.] X [aA, A]

<

% area of one of the shaded regions [see Figure 2]
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£(2) i(A)

o 23
. — L d
= §)[f(s) Nds € —— é F(s) ds
o tlad)
<1 g fls)ds
Therefore
1t(o¢)\) o ()
z ; et d
S ROL s i S I b
t(ah)
1 1
- % | fs)ds= =% HOLE
-« 0 o {t:f(t)>ar}

(iv) t, = 0. Then, as we have seen before, [{t > 0: (1/t) Séf(s) ds > A}
= 0 and the inequality (1.1) is proved.
Tt remains to point out optimal functions showing that the constants 1
and 1/(1 — a) are the best possible. For ¢ > A let
_fe for0<t<1l,
Fit) = 0 fort>1.
Then

t

{t>0: 30> A} = > 0:exoa+ Sxaoa > a

0
1
—14($-1)=5=5 | soe
{7 (5)>A}
which gives equality in the first inequality of (1.1).
On the other hand, if we take ¢ > A and
¢ forQ<t<1],
flt) = {a)\ for t > 1,
then
1} 1
{t>0:?§f(s)ds>)\}}/[-x ‘ f{t)dt]
‘0 [t F () >ar}
1
1 c—ak A ¢ 1
=t*/[}(§}‘3dt] TToar ¢ (i—ae  1-a

as ¢ — 0o, Thus, also the second inequality is sharp and the proof is com-
plete.
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We recall the following properties of the rearrangement function which

will be necessary in our proofs later on. The functions f and £ are equimea-
surable, i.e.,

(1.2) w({z €R™ ([f(z)| > A ={t>0: X)) > A} YA>0,

and

(1.3) | | £ w(z) dz = | frt)de VA > 0.
{eeRn:|f(2)|>A} {#>0:f1 () >A}

Immediately from (1.3) and Lemma 1 applied to the decreasing function
fa{t) we obtain the following sharp estimates:

CoroLLARY 1. Let f be a Lebesgue measurable function on B™ and let
0<a<l. Then

% i Fa)w(z)ds < [{t > 0: £25(2) > A}

{zeRr:[f(z)|> A}

<imar ) @@

% {2l 7 (2) >}
for all A > 0. Both estimates are sharp.

Now we are ready to pregent our main result in this section.
THEOREM 1. Let g be a positive function on (0, 00) such that g(t) = g*(¥).
(a) The inequality

(1.4) ' g(t) S CIax{t)

holds, for a certain C > 0 and all t > 0, if and only if there are constants
Ch, Ca > 0 such that

o .
(15)  He>0:9m >N | F@)lo(e) d
{zeRn:|f{z)|>A/Ca}
for all A > Q.
(b) The inequality
(1.6) w (1) < Cyl(t)

holds, for a certain C > 0 and all t > 0, if and only if there are constants
Cy, C3 > 0 such that

e 5§ @) d <Gl > 0: 6 > MG,

{weln | f(2)|> A}
for all A > 0.
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Proof. (1.4)=(1.5). By using the assumption (1.4), the second inequal-
ity from Lemma 1 for f and o = 1/2, and the equality (1.3) we obtain

[t >0:g(t) > A} < [{t>0: f37 () > A CY

<X S £ () e

{t=0:f5(8)>A/(20)}

_x 5 Fl@)w(z) do

A {meRe:|f (2)[>A/(2C)}

and (1.5) is proved with Gy = Cp = 2C.

(1.5)=(1.4). Using the assumption (1.5), the equality (1.3) and the firgt
inequality from Lemma 1 for f; we find

Q

- | |f () |w{z) dz

{zeR™:|F(a}|>X/Ca}

AL

{4500 fr (1) >N/ Ca}

l‘{* >0 fir(t) > A/ Ca}

[{t>0:g(t) > A}

|74
o ~e >l

[
0

and s0

g(t) = g*(t) < Cafy* (min(1, C2/Ci)t)
< ma.x(C'l, Cg)f:_,* (t)

(1.6)=>(1.7). Similarly, by using the equality (1.3), the first inequality
from Lemma 1 for f* and the assumption (1.6) we get

1 *
> f@ued=5 | find
(=R f(z)[>A} {E>0:72 (1) >A)

<|{t>0: far(t) > A}
< |{t>0:g() > A/CH

and (1.7) holds with Cy = 1, C; = C.

(1.7)=-(1.6). Taking & = 1/(C; + 1) < 1 we have aCy/(1 — a) =
and, thus, by using the second inequality from Lemma 1 for f;; and «
1/(Cy + 1), the equality (1.3) and the assumption (1.7) we obtain

1
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B0 0>y | fbe

{t>0ifr{t)>ar}

~imar ) @
{zeR:| f(z)>ar}
a4

<Oy

T {t > 0: g(t) > ar/Ca}|
=H{t>0:9(t) > ar/Ca}.
This gives

20 = (2970 £ 200 = Lote) = ar(0n+ 1)

and the proof is complete.

COROLLARY 2. Let wi, wy be two weights on R™. The equivalence fux(t)
~ g, (t) holds if and only if there are constants C1, Cy, C3,Cy > 0 such that
C
S @) de < un({z € R g(e)] > A
{weR":{ f(z)|>X2/Ca}
Cs
5y !
{zeRn:|f(x)|>A/Ca}

< |f(x)|we(x) de

for all X > 0.
Proof Apply Theorem 1 with g equal to g, and w = w,.

COROLLARY 3. Let @ be a strictly increasing continuous function on
[0, 00) with an inverse satisfying o~ 1(2t) < Ap~Y¢) for all t > 0. Assume
that f and g are positive decreasing functions on (0,00). Then

%

Jeolr(s)) ds ~ w(o(t)

0
if and only if there are congtants Cp, Cy, C3, Cyq > 0 such that

G s dE< p(N)ift > 0: g(t) > AY
{t:f(t)>A/Ca}

L o

<0y § el
{176)>4/Ca}

Jor all A > 0.

Proof. Let s = ¢(A). Then, according to Corollary 2 applied to f, =
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@(f) and gy, = ©(g), we obtain
{t>0:g()> N} = 1t > 0 o(g(t) > s}
w1 e

{t>0:0(f(2))>8/D}

- S o(f(1)) dt

@ {t>0:F(£) >~ (w(A)/ D)}

1
N —e w(f(¢))dt.
N 4 =f(t)s>)~/0}

‘G

‘\S

COROLLARY 4. Let wy, wy be two weights on B™. If p > 1 and, for some
positive constants Cy and Oy,

C
w({z € R 1 ]g(3)| > M}) € = | |f(@)|lwe(z)de VA >0,
{zeR™:|f(2)|>2/Ca}
then
{ lg(a)[Pun(z) dz < CLOE™' —— p S |f () [Pwe(z) de.
]R‘n
Proof. We have, according to Corollary 2,
| lo(@)Pui(z)de =p | 2 lwi({z € R® : [g(z)} > A}) dA
i 0
< Cyp | 222 i |F(2)lwa(z) dz] A
0 {z€R":|f(x}|>A/Ca}
T f(=)| .
o { (| 20 |f@iwe)ds
Re 0
= Q) CE S | f(z) [Pws(z) dz.

P“lm

2. On the Riesz—Wiener inequality for the maximal function. In
this section we will generalize the Riesz—Wiener inequalities to more general
measures, For f € LYY(R™,wdx) and z € R*, define

Muf(z) = sup s (Q) V17 () w(y) dy,

where the supremum is taken over all cubes @ C R containing z such that
w(Q) > 0.

THEOREM 2. The following statements are equivalent:

icm

Estimates of the magimal function and interpolation 119
(1) M.y is of weak type (1,1), i.e

w({{z € R : Myg(z) > A}) < % Vlg(z)lw(z)de Vg € Ly(w) VA >0,
Rﬂ

(ii) w({z € R™ : My, f(z) > A})
f [ (@)|w(z) de

<
T (1-a)A
{zeR:|f(z)[>ar}
' Vi€ Li(w)+ Lo VA>0, and all0 < e < 1,
(iii) (Muf)e(t) S Dfa*(t)  Yf € Ly(w) + Lo V£ > 0.
Proof (i}=(ii). Put

= Fxqs>an + FXgticary = fo + f1.

Then M, f(x) < My fo(z) + M, f1(=) and so

w({z € R" : My, f(z) > A}) L w({z € R* : My, folz) > (1 — a)A})

+w{{z € R" : My fi(z) > aA}).

Since My, f1(2) < || f1llz.. < @) a.e. it follows that the measure of the second
set is zero and we obtain

w({z € R” : My, f(z) > A}) Sw({z € R* : My folz) > (1 — a)A}),
which by the assumption that M, is of weak type (1,1) can be estimated
by

C C
(’fmﬂﬁ fo@)w@de=r=rs  § |f@)(z)ds

" {z€Rr:|f(z)|>ar}
(ii)=(iii). Applying Theorem 1(a) with g(t) = (Myf)% () to the as-
sumption (ii) we obtain

(M f)5(t) £ max(C/(1 - ), 1/a) f3'(t).

Taking the infimum over all 0 < o < 1 we get (M, £)5(2) < (C + 1) f*(¢).

(iii)=>(i). From the well-known fact
sup Aw({z € R" : h(z) > A}) = sup thi,(t)
A>0 t>0

and the assumption (iii) it follows that, for all A > 0,
£

Mo({z € R" : My (@) > A}) < Dsup | f5(s)ds = D | f2(s)ds
>0 S 0
=D | |f(z)luw(z)dz,
. R
and the proof is finished.
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In connection with Theorem 2 we will now discuss the following impor-
tant problem:

PROBLEM 1. For which w is the maximal operator M, of weak type
(1,1)?

We say that the measure w(A) = { , w(z)dz with w € Le(R™) satisfies
the doubling condition and we write w € D If w(2Q) £ dw(Q) for every
cube (, with a certain constant d > 0 independent of Q.

EXAMPLE 1 (cf. [6, pp. 142-144] or [11]). If either w € D or n = 1 (the
one-dimensional case), then M,, is of weak type (1,1).

EXAMPLE 2 (Sjbgren [11]). The maximal operator My, generated by the
Gaussian measure w(z,y) = e~ (@ +4")/2 in R? is not of weak type (1,1).
Note that w(R?) < co.

ExAMPLE 3. The maximal operator M, generated by the measure
w(z,y) = e=¥ in R? is not of weak type (1,1). Note that w(R?) = oo.
Proof. It is enough to prove that
(2.1)  sup{w({(z,y) e R*: My fz,y)} > 1}):
f € Ly(w) and || f|l ;0w = 1} = 00

Inrorder to prove this we first gbserve that if for ¢« € R we define 5, =
{(z,y) eR? :z < a, y< —a} and H = {(z,y) € R? : 2 +y £ 0}, then

w(S,) = SSe’”+ydmdy = § e’ dz _Sa eYdy=1
Sa —0Q —oo

and
—T

w(H) = “e“"""’ dz dy = S em( S eydy) dz = co.
H -~ 00 —0a
Let (g, %) be an arbitrary point in R? such that zg +yp < 0 and f(z,y) =
eTF0TY §rn o) (2, 4), where 8y oy is the é-function at this point, i.e.

{§ f(z.v)e*¥dady =1 and supp f = (z0,%0).
R?

Then, since any cube @ such that (xg,%0) € Q C H is contained in some
Sa, we have

1
— z+y
w(0) SQSf(:cay)e dz dy > 1.
This means that M, f > 1 on the union of all the above cubes @ containing
(20,y0). The measure of this union tends to the measure of H (which is
equal to 0o} as zg + yp — —oo. Thus (2.1) holds and the proof is complete.
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EXAMPLE 4 (Va:rga,s [14]). There is a non-doubling measure on R? n>1,
such that the maximal operator M,, generated by this measure is of weak
type (1,1). Take, for example, the measure w(z) = (1+ [z[*)~! in B™ with
o> n.

3. On the Stein—Herz inequality for the maximal function. In
order to be able to extend the Stein inequality to the weighted case we need

to modify the Calder6n-Zygmund decomposition lemma using the centered
mazimal function defined by

ME F(z) = sup —

v W(Q(z, 7)) §1r@)lw(y) dy,

Q)

where §(z,7) denotes the cube with center at z and side-length 2r.

LeMMA 2 (Modified Calderén-Zygmund lemma). Let § € Ly(w) + Log
and

(3.1) A>  lim £

t—w(Rn)
Put 2 = {w € R" : ML f(z) > A}. Then

@) I fxeevalize < A
(ii) For every x € 12 there exists a cube Q. with center at = such that

1
A< w00 Qsm |f(i)|w(y)dy < 2

Proof. (i) By using the Lebesgue theorem we obtain
1

2 Gy ) e
= lim —-—wlmmm ___L__
pE T BRI e oL |

|f (@)|w(z)/w(z) =[f(z)| ae.
and so
I Fxre\allie < MG F)xreallze <A
(ii) The assumption (3.1) gives that for some 0 < ¢, < w(R™) we have

ta

17
A> . (S] Fois)ds.



122 1. U. Asekritova et al

Now, if w(Q(xz,7)) > 5, then

1 w(Q(=z,r)) .
'w(Q(a’: ,r)) Q(£ ; f)lw(y)dy < m (S) fr(s)ds
< syds < A

OL‘—ﬁy

‘We note that the function

1
m Q(§:,1~) |f () |w(y) dy

as a function of r > 0 has the following properties:

Pa(r) =

(a) pz(r) < A when r — oo,
(b) 9« (r) is continuous and
(¢) sup,wg Pa(r) > A for each z € (2.

These properties of ¢, give (i) and the proof is complete.
TuEOREM 3. If w(R") =

O L | e

{=eR™:f(2)|>}

oo, then the inequalities

YA >0,

<w({z € R* : M, flz) > A})

and

(i) w (8) < D'(Mu£)5(2)

are valid. The constants C' and IV are only dependent on the dimension n.

Vi > 0,

Proof. First, note that the assumption w(R") = oo implies that if
A < limy gy fik () = lime o0 S (t), then both sides of (i) are infinite.
In fact, if ¢ is sufficiently large and 0 < p £ 1 < oc, then

ff*( )ds % FRCE
<M rwa+r 0w
0

and letting t — oo we get f&(tg) > A. Therefore, |f(z)| > X on a set of
infinite measure and both expressions in (i) are equal to co.

Thus it is enough to consider the case when A > limy o f5*(¢) since the
case when A = lim;. f3*(f) can be obtained by taking limits. Using the
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Lebesgue differentiation theorem we get the following estimate:
1
;)
{zekr:| f{z)[>A}
1
< 3 S (z)|w(z) de = S | f(x)|w(z) de,
{w@R™: M, F{2)>2} 2
where 2 = {z € R" : M2 f(z) > A}.
Below {Q;}zecq is a family of cubes from Lemma 2(ii).
Let @ be an arbitrary cube in R". Then

5 | 1@ ds

folate)

flz)|w(z)dx

2| =

can be estimated by the Besicovitch covering theorem applied to the family
of cubes {Qz}senng. Therefore, there exists a finite number (depending
only on the dimension n) of packings m1,...,7a of cubes wp = {Qu:k}
containing only cubes from the family {Qm}meﬂﬁQ and such that

QDQ C UQmi,k-

i,k

By using Lemma 2 (modified Calderén~Zygmund decomposition) we obtain

5 | @) w<zz( > w(Quck))

ﬂﬁQ k=1 Qg kEms

< 2N max Z W( Qg k)-
For z € | )y, Q= we have

wa(z) =

VIF@)lw(y) dy > X,

w(@Qa) 5,

which gives
Zw(czm, Sw({z € Q: Muf(2) > A})

for 1<k <N and, thus,

-}: S |[f(z)|w(z)do < 2Nw({z € Q: My f(z) > A}).

ang

Since the cube @ was arbitrary we obtain (i).

Now, according to Theorem 1(b) with g(t) =

(M £)5,(8), (1) implies (ii)
and we are done. A
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Finally, we note that if the inequality (ii) holds, then Theorem 1(b) with
g(t) = (M, £)z(t) gives the following inequality:

1
s
{z€R™:|f(z)|>A}

Therefore (i) and (ii) are “almost” equivalent.

|f(@)w(e) dz < w({z € R* : Myf(z) > A/D'})  VA>0.

Remark 1.Ifw(R®) < oo and A < limy_,q(me) for' (), then the inequal-
ity (i) in Theorem 3 is in general not true. For example, if we take f(x) = ¢,
then for A < c the inequality (i} has the form

%:fw(]R”) < w(R")

and this is not true for small values of A > 0.

Remark 2. Ifw(R") < oo and if for ¢ > w(R™) we define (M, f)3,(2) =
Lim oy (ge ) (M )5, (), then we have the following inequality corresponding
to (i) of Theorem 3:

Ol
(32 |

{oe®™:|F(z)|>A}

|f(z)jw(z} dz

S HE>0: (Muf)o(t) > A VA>0.
Indeed, if A > f*(w(R™)), then the proof is the same as that of Theorem 3.
For A < f*(w(R™)) we have
1

Tl_l_}rgo W Q(L) [f () lw(y) dy = f" (w(R™)),

which gives M, f(z) > X for all x € R® and from equimeasurability we
obtain (M, f)%(t) > A for all £ > w(R™). Thus [{t > 0: (Muf)5(#) > A}

= Q.

Next we point out the following consequences of our Theorems 2 and 3
and Example 1:

COROLLARY 5. Let f € Ly(w) + Loo. The equivalence
(Muf)o,(8) ~ f37(8) VO <t<w(RY)
holds if and only if the mazimal operator M,, is of weok type (1,1).

CoRroLLARY 6 (The Riesz—Hers equivalence). Let f € Li(w) 4 Lec- If
w € D, then

(M £ () = F7(2)-
Note here that w € D implies that w({R") = oc.
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4. The K-functional for the couple (L;(w), Ls). First of all, let
us note that calculations of the K-functional for the couple (Lj(w), Lyo)

are only necessary when 0 < ¢t < w(R") = {_. w(z)dz. Indeed, by the
well-known Peetre formula (cf. [4])

t
(41) Kt fiLi(w), Leo) = | fi(s)ds = t52°(8), 0<t< oo,
0

and since f7 (s) = 0 for s > w(R") it follows that for ¢ > w(R") we have
4D KL L) = [l = L Ko, fi3(w), Leo).
From the equality (4.1) and Corollary 6 we see that the equivalence
(4.3) K(t, fi L1(w), Loo) ™ t(My, f)5,(t) V0 <t < w(R™)

is valid if and only if the maximal operator M,, is of weak type (1, 1).

Moreover, we have seen that for quite a few measures w in R (n > 2)
the maximal operator M,, is not of weak type (1,1). Here we will make
an “improvement” of the maximal operator M,, such that we can have an
equivalence of the type (4.3) also in cases when M, is not of weak type
(1,1).

For the formulation of our main result in this section we need some
notions. Let 7 = {Q,-}L’jl be a packing, i.e., a finite collection of non-
overlapping cubes in R™. Consider the linear averaging operator S, trans-
forming every function f € Lyi(w) + Lo into a step function, defined by

d
S = Y. | g § 00800 dv] e (o)

= Lw(@) Q

The maximal function M,, f can be obtained as the pointwise supremum of
the family of the linear averaging operators Sr, M, f(z) = sup, Sx{|f[)(z)
and so

(4.4) (Mu £u () = (sup Sa(11)3 (8).
Now we introduce a modified “maximal function” Fy defined by
(4.5) (Fr ) (t) = supl(Se (L)) ()]

which is different from (4.4) in that the order of taking supremum and
rearrangement is interchanged.
- The importance of this definition can be seen in the following result:

THEOREM 4. If f € Ly(w) + Leo, then

(46)  K(t,fiLa(w), L) M tFR)S(E) VO <t <w(RY),
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Proof Since, for every packing « = {Q,,} -\, the operator S, (|fl} is
sublinear and bounded (with norm 1) in the couple (Ly(w), L) it follows
that

K (t,Sx(1f1); L1{w), L) < K(t, fi In(w), Lo )-
Therefore, by using the equality (4.1}, we obtain
t

K(t, f; Li(w), Loo) 2 K(t, Sx(|F]); Ln(w), Loo) = §(S

0
> 1S {IF)w(®)
for every packing 7 = {Q; }“1 Thus
K(t, f; In{w), Loo) > t(Fy)s,(t)
and we have proved the inequality in one direction.

In order to prove the reverse inequality K(t, f; Ly (w),
we decompose R™ into two subsets

no.g _._....._1_ w Yy
o = {m C R w0 w(Q(z, 7)) Q(L}l (w)fow) dy > (Ff)w(t)}

and 2 = R™ \ {2, and consider the decomposition f = fxp, + fxa - By
using the Lebesgue theorem we find that

. 1
Tl_l,réﬂ w(Q(z, ,,.)) S | (¥)|w(y) dy

w([f)a(s)ds

Loo) < CH(F)y(t)

] 1
) Tl}ngr @—(’L':T)] Q(:Sc,r) ot dy/ [|Q(m,r)[ Q(i,r)w(y) dy]

= |f(@)[w(z)/w(z} =|f(z)] ae.

and, thus,

(4.7) I Fxallz. < (Fr)u(t)
It remains to show that

(4.8) | Fx0 2oy < CHEFF)(E).

To prove (4.8) we shall construct below, for every & € {2, a cube Q, with
center at z such that

(4.9) (Fy)u(t) <

w(i}m) V IF @) lw(y) dy < 2(Fp)5(4).
Q.

If such a family of cubes is constructed the proof of (4.8) is the following.
This family of cubes {Qs}zcn, will have the following property:
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(x) Ifm={Qs} is an arbitrary packing from the family {Qz}een,, then
Y w(Qa) <t
QiE™

Indeed, if 375, cp w(Qx,;) >, then, by using (4.9), we obtain

Se(F)@) = 3 [w—(jﬁ 5 If(y)lw(y)dy]xami(m)
el g

QiEm ;
> Fu®( 3 xau, (@)
Qi€n
Thus, for A < (Fy)5(t),

w(fo € B : 50N >N 2 T2 w(Qa) > ¢,

QiET
which gives (,(1f))(8) > A and 50 (Sa(l))5(t) > (Fp)&(t), bus this
contradicts the definition of (Fy)% (t)

Let now @ be an arbitrary cube in R™. Then the set Q N {2 is bounded
and we can apply the Besicovitch covering theorem to the family of cubes
{Qz}zcona,- Therefore, there exist a finite number of packings my,..., 7,
depending only on the dimension n, containing only cubes from the fam11y
{Qz}zeana, and such that

N
Qncl) U Q-

k=1 Q.Em
Thus, by using (4.9) and property () just proved, we obtain

N
I fx@naollc; ) < Z( > lfxe., ||L1(w))

k=l Qu, €M
203 (2 v@m)

SAFNLE Y t= N(EL (0.

Since the cube @ was arbitrary we obtain

N Fx a0l Lyw) < 2ZNH(Fr) (2).

This gives the required estimate (4.8). _
Now we must only construct a family of cubes {Qz}zen, With centers
at the points « of 2, such that the inequalities (4.9) hald. First, we observe
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that if w(Q) > ¢ (such cubes exist because ¢ < w(R")), then for a packing
« containing only one cube ) we have

(Sa(D)at) = ;)(%5 [ 1)) dy < (FPL0).
Q

Therefore, the function

1
0= = Lo | @)w(y) dy

Q{=,7)

of r is not greater than (Fy)z(t) for sufficiently large r. By using the conti-
nuity of i, (r) in r and the fact that

sup @, (r) > (Fy)y(t)  forz € £
>0

we conclude that for any € > 0 and x € {2y there exists 7 = r-(z) such that

pa(re(z)) C (Fp)L (), (1 +e)(Fr) (),
which implies that it is possible to construct cubes satisfying the inequalities
(4.9).

Remark 3. Since, on the right-hand side of (4.9), instead of the con-
stant 2 we can take any number g > 1 it follows that

t(Fy)a(t) < K(4, fi Li(w), Loo) < (N + 1)¢(Fy ), (1)
where the constant N is the constant from the Besicovitch covering theorem.

We also point out the following consequence of the equality (4.3) and
Theorem 4:

COROLLARY 7. If f € Ly(w) + Lo and w € D, then
(M )5 (t) 2 (Fi)u(2)-

Using the above Theorem 4 we can also write a formula for the
K-functional of the couple {Lg, (wo), Lp, (w1)),0 < po < p1 < 0o. We need
the following definitions: for 0 < p < 0o and a weight function w on R™ the
weighted space Ly(w) is the space generated by the quasi-norm

/
Flesr = ( § F@Pui@)ds)
]Rn
and (Ff)%,(t) = [(Fipp)i (D17,
| THEOREM 5. (a) Let 0 <p < co. If f € Lp(w) + Lo, then
(410) K@, f;Ly(w), Do) = P(FRL(E) Y0 <t <w(R).
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(b) For 0 < py < p1 < oo and two weight functions wy, wy on R we
put
wa = (w1 /wo)V /PP and = (o) i),
If f € LPU (’wg) -+ LPJ. ('wl)a then
(411) K@/ f Do (wg), Ly, (wi))
w(R™)

Ntlfpo—l/m( S (FPo )5 (s)P2 ds)l/pl
i

fuws

+ tl/Pn—l/p,w(Rn )1/p1_1/p0 HfliL

po(wo)-

Proof. {a) We have the equivalence
K (M7, £; Lp(w), Loo) = (K (t, | |7 L1 (w), Loo)) VP,

which was proved, even for more general spaces, in [9] for p > 1 but the same

proof gives the result for every p > 0. Moreover, by using our Theorem 4
we obtain ’

(K (8, fIP; Ly(w), Loo))'/P e [(Fy 1o )3, (8] /2 = £4/P(BE)5, (1),
and the assertion follows.
(b) First, note that
K (t, f; Lpo (wo), Lp, (w1)) = K (2, fwn; Lpo(w)i Ly, (w)).
Then, since (cf. [4], Th. 5.2.1)
(LPO (’UJ), L-OO)91,P1 = Lp1 ('w)a 91 =1 Pﬂ/pl;

itil follows from the Holmstedt reiteration formula (cf. [4], Corollary 3.6.2)
that :

K (u, g5 Lpg (w), Lpy () = K (ty g5 Lo, (w), (Lipy (), Lo )y 1)
~ “( V(570K (s, g; Loy (w), Leo) )P iﬁ)l/m~
ui/61 8
Putting together the formulas above we obtain
K(t/Po=Ve £ 1 (wo), Lo, (w1))
= K (/P71 fun; Loy (w), Ly (w))

o 1/m1
w /oo ([ (K, funi () L) 5 )
§

t1/po

Now, there are three possibilities for w(R™) and ¢:
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(i) wR*) =occand 0 <t < w(R™) = co. Then, using (a), we obtain

o0 d 1/}91
~é py 48
tl/?n—l/Pl( S (s VK (s, fwg; L, (w),Lw)) ; )
t1/ro

T ds1/P

P tllpn—l/m[ S (51—91 (Ffﬂ,g):,(sp“)pl _;_]
t1/P0 '
° 1/p1

w $1/PO=1/P1 [ | (2, )i (s)7 ds} )
%

(i) w(R") < co and ¢ > w(R"). By the Holder inequality we have
1A ) S WRYE TP F oy VF € L (),
i.e., Lpg(wo) + Lp, (w1) = Lpy(wo) and then, for f € Lp,(wo),
K(tl/m_l/ma £ Lpo(w0)s Lpy (w1)) = 1 F 112 w0) for t 2 w(R").
On the other hand,
| Fwaliz,wy < WP funllr,,  Vws € Leo
gives Lpo(w) + Loo = Lpy(w) and so

nyl/
K (5, fwn; Lpo (), Loo) = 1 fwall 2,y ) = Il wey  for s> w(R )P

Thus
/e
e ds
trion (] (R (o, funi L), L) T )
t1/p0

o0 B ds l/Pl
mtl/zan—l/m( S (S 91||f“Lp0(wo))p1‘s“>'

ti/70

= tl/po——l/mt—&/po”fHLPD(wD)/(glpl)
= | fll 2,4, (wo)/ (B21)-

The above calculations show that formula (4.11) is true in this case.
(iil) w(R™) < oo and 0 < t < w(R"). Then the result from (a),

K (s, fwsz; Ly, (w), Leo) & 8(Ffp, )0 {s™) YO <87 < w({R™),
together with the known property of the K-functional
K (s, fwz; Ly (), Loo) & [[fwaliz,, (w) = F1l2,4 (wo)

gives

for s7° > w(R"),
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P, £ T (0] Ty, 0]

1 T 8 ds\ 1/
g gliPO- /Pl( S (s~ 1K(s,fw2;Lpu(w),Lm))p1__)
t1/ro 8
w(R™ )}/ ;
e I I G R C0 Vb
1t/ro
T 1/p
- ds
+ @ 91“f||L,,0(wn))p‘—]
w(Re )2/ Po $
e =b1p1/ 1/
= H/rorive po Yo (o) ds + BT
= §*/P0 1|: § (Ffwz)w(s) 1ds 91191 “.f| Lo ()
w{k™ )

- 1/p1
N $L/po—1/ps [( S (F}J&E)ms)m ds) +W(Rn)llpl_l/m”f”Lm(wo)}-
t

The proof is complete.

Remark 4. The formula (4.11), in the case when w(R™) = o0, has

surprisingly only one term in contrast to the usual Holmstedt two-term
formula (cf. {4], Th. 3.6.1):

o0 1
K(£/p=1rs .1 (), Ly, (w1)) ~ tl/po--l/m( [ (72 )n ()7 ds) e
) _

Remark 5. Using more general formulas of Holmstedt type (see {1]) it
is possible to obtain formulas for the K-functional in terms of the maximal
function for many other spaces, for example for weighted Lorentz spaces.

Addenduwm. During the referecing process of this paper we were kindly
informed on November 11, 1995, by Professor Maria J. Carro, Universitat
de Barcelona, Spain, that she and Professor Javier Soria in the paper The
Hardy-Littlewood maximal function and weighted Lorentz apaces, J. London
Math. Soc. (to appear) have obtained a result similar to our Lemma 1. More
exactly, their Theorem 2.1 is almost the same as our Lemima 1 except that
they have the constant 1/2 instead of our (sharp) constant 1 in the first
inequality of (1.1).
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Convergence of conditional expectations
for unbounded closed convex random sets

by

CHARLES CASTAING (Montpellier), FATIMA EZZAKI (Rabat)
and CHRISTIAN HESS (Paris)

Abstract. We discuss here several types of convergence of conditional expectations
for unbounded closed convex random sets of the form B~ X, where (Bnr) is a decreasing
sequence of sub-o-algebras and (Xy) is a sequence of closed convex random sets in a
separable Banach space.

1. Introduction. The Mosco convergence of sequences of sets or func-
tions is known to be a useful tool in the approximation of optimization
problems and variational inequalities (see e.g. [A, Mo, We]). Often these
problems are considered in the presence of a parameter w whose value de-
pends on the outcome of a random experiment.

The present paper precisely concerns Mosco convergence in such a sto-
chastic context. Indeed, our main contribution consists in the study of almost
sure Mosco convergence for sequences of random sets of the form EB~X,,
where (By,)n>1 is a decreasing sequence of sub-o-algebras and (X,,) a se-
quence of Banach-valued closed convex random sets (recall that a random
set is a random variable whose values are subsets of some given space).

It is worthwhile to observe that, even for real-valued random variables,
results of such kind are not completely standard. That is why we provide
a short and self-contained treatment of the problem in this special case (in
Section 4.A). This is done in the same spirit as in the papers by Szynal and
Zigba [SZ] and by Zigba [Zi].

On the other hand, we stress the fact that the values of the random sets
we deal with are not assumed to be bounded. So, specific results borrowed
from [Hel, 2] are needed; they are recalled in Section: 3 for convenience. Qur
main results and their proofs are presented in Sections 4.B and 4.C.
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