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Abstract: We present a new concept of integrating a micropipette within a 
closed microfluidic system equipped with optical tweezers and a UV-Vis 
spectrometer. A single red blood cell (RBC) was optically trapped and 
steered in three dimensions towards a micropipette that was integrated in the 
microfluidic system. Different oxygenation states of the RBC, triggered by 
altering the oxygen content in the microchannels through a pump system, 
were optically monitored by a UV-Vis spectrometer. The built setup is 
aimed to act as a multifunctional system where the biochemical content and 
the electrophysiological reaction of a single cell can be monitored 
simultaneously. The system can be used for other applications like single 
cell sorting, in vitro fertilization or electrophysiological experiments with 
precise environmental control of the gas-, and chemical content. 

©2011 Optical Society of America 

OCIS codes: (350.4855) Optical tweezers or optical manipulation; (170.3880) Medical and 
biological imaging; (300.1030) Absorption; (280.2490) Flow diagnostics; (220.4000) 
Microstructure fabrication; (110.0180) Microscopy. 
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1. Introduction 

The development of new approaches to investigate mechanisms in living cells under in vivo 
like conditions is of highest importance. Desirably, measurements should be carried out under 
well-controlled physiological conditions, i.e. different oxygen levels and addition/removal of 
biochemical substances or nutrients. Many single cell studies are hitherto carried out on 
microscopes where they are studied by optical techniques such as optical spectroscopy, patch-
clamp-, and time resolved techniques. Recently, much attention has been paid to functional 
systems that include optical tweezers [1] and microfluidic system [2]. These systems have 
released innovative approaches for basic and applied research for diverse biological studies of 
single cells [3]. 

Optical tweezers, an increasingly important tool in biophysics and cell biology, utilize 
light to trap and manipulate small particle in three dimensions. In a typical setup of optical 
tweezers, a stable trap is achieved by a strongly focused laser beam through a high-numerical 
aperture (NA) microscope objective. The phenomenon of using the momentum of light to 
manipulate particles was first experimentally demonstrated on atoms [4]. Shortly thereafter 
biological cells were manipulated using infrared lasers [5]. The optical tweezers are widely 
used in many applications like cell transport and separation [6], manipulation of biological 
cells [7], sample cell analysis by mass spectrometry [8], DNA analysis [9] and other 
applications for clinical diagnostics [10]. 

Microfluidic systems typically consist of a structure of channels with diameters ranging 
between 10 and 1000 µm with a µl/s flow of solvents. They can easily be designed 
individually for each experiment and have proven to give unsurpassed control over the flow 
and thus enable fast environmental changes [11,12]. One benefit of the systems is that they 
can be made of transparent materials such as rubber silica, Plexiglas or glass and as a 
consequence they can easily be implemented onto microscopes to be combined with suitable 
read-out techniques. Especially Plexiglas PMMA (Poly-methyl methacrylate) microchips have 
gained popularity in various biological and medical applications [13]. They are less expensive 
than glass microchips [14] and the complex development process of the lithographical 
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microchips can be avoided [15]. The main advantage of using PMMA based microfluidic 
chamber is the impermeability to air, gases and other properties like low toxicity, optical 
transparency, thermal stability and they are easy to manufacture [16]. They have been applied 
to produce micro-mixers [17], polymerase chain reaction microchips (PCR) [18], microfluidic 
reactors [19] and capillary electrophoresis microchips (CE) [20]. 

Recently, many new concepts of nanofluidic delivery platforms, including integrated 
nanofluidic probes, have been developed. For instance, the so called Nanofountain probe 
(NFP) [21] is a new promising technique based on Dip-Pen Nanolithography (DPN). These 
nanofluidic probes consist of nano-channels which are used for direct nanoliter-delivery of 
specific bioactive solutions through a conical tip with a nano-pore attached with sub-cellular 
precision to a single cell while the cellular response can be imaged simultaneously. However, 
the impact of the nano-probes breaking the membrane of the cell, the biocompatibility of the 
nanomaterials, and the impact of bio-electronic integration need further investigations before 
the technique can be applied for electrophysiological studies [22]. Despite of the promising 
prospect of the NFPs, the patch clamp technique combined with microfluidic microchips that 
incorporate microfluidic channels, micro pumps and micro valves are well established 
alternatives that can be employed directly. 

The so called lab-on-a-chips facilitate a variety of biological applications. The significant 
benefits are that minimal amount of reagents and analytes are used and that they can function 
as portable clinical diagnostic devices, i.e. time-consuming laboratory analysis procedures can 
be reduced. The great impact of these systems is shown in studies of manipulated biological 
cells in environment-controlled analytical systems [23,24]. 

Despite of all the progresses that have been achieved by combining optical tweezers with 
microfluidic systems one great challenge has, to our knowledge, not been conquered yet. How 
can a micro-pipette be integrated within a closed movable system? In many applications such 
as cell sorting, in-vitro fertilization or patch-clamp experiments the biological cell has to be 
brought in close contact to a micro-pipette. Usually a precise and electronically steered 3D 
manipulation device is moved towards the cell under an open space on the microscope. Hence 
the possibility of applying closed microfluidic technique is unfeasible. Here we demonstrate a 
new concept. By integrating optical tweezers, the cell can be steered in 3D towards the 
micropipette that is integrated in the microfluidic system. 

The fabrication of the microfluidic chamber presented here bases on PMMA, and is 
performed by a CNC (Computer Numerical Control) Circuit Board milling machine. A patch 
clamp micropipette was included within the gastight microfluidic chamber. To prove the 
principle, a single RBC was optically trapped and manipulated within the microchannels 
towards the integrated micropipette. The UV-Vis absorption spectra in the oxy and deoxy-
state of the RBC were acquired under controlled conditions created by the micro flow. The 
experimental work presents a microfluidic chamber with an integrated micropipette combined 
with optical tweezers and optical spectroscopy that acts as multifunctional system for various 
biomedical and electrophysiological applications with complete environmental control. 

2. Material and Methods 

The main parts of the experimental setup, as seen in Fig. 1, are mounted on an inverted optical 
microscope (IX 71, Olympus, Japan) placed on a vibration-isolated table (Technical 
Manufacturing Corporation, TMC, USA). The techniques used in this work are presented 
below. 

Preparation of RBC and Solutions 

Fresh RBCs were prepared from blood taken from a healthy volunteer. 0.05 ml blood was 
diluted in 2 ml solution of Phosphate-Buffered Saline (PBS), pH 7.4, temperature 23°C. The 
oxygen-free solution was prepared by 20mg Natriumdithionit, Na2O4S2 (Sigma-Aldrich, 
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USA), dissolved in 4ml (PBS) solution. The solutions were prepared in Petri dishes and 
sucked into the gastight syringes of the pump system. 

Optical Trapping of Single RBC 

The optical tweezers build upon an IR-diode laser (IQ1A, Power Technology, USA), 
operating at 808nm with an average power of 200 mW. The wavelength of the laser was 
chosen to minimize heating and photodamage of the sample [25]. The laser beam was first 
expanded by two convex positive lenses of 50 and 250 mm, mounted on two XYZ-translation 
stages (Thorlabs, USA), and steered by mirrors (Thorlabs, USA) into the microscope. The 
laser beam was then guided to the objective throughout a dichroic mirror (750-dcspxr, 
Chroma Technology, USA). The expanded beam overfilled the back focal plane of the oil 
immersion objective (100x, 1.4 NA, Olympus, Japan) to obtain good trap stiffness. The trap 
stiffness was estimated qualitatively. Visual observations showed a strong and stable trap 
while the optically trapped red blood cells were exposed to a high flow rate of fluid (up to 
20µl/s) through the channels and while imposing a force on the trapped cell by moving the 
stage. 

The positioning of the optically trapped red blood cell was enabled by keeping the trapped 
cell still while moving the microfluidic chip including the micropipette mounted on the 
nanometer-precision XYZ translation stage of the microscope. This allowed the microfluidic 
chamber including the micropipette to move in micro-precision in 3 dimensions while the 
position of the optical trap was fixed and always positioned in the center of the field of view. 

 

Fig. 1. Inverted microscope that incorporates the following techniques: Gastight lab-on-a-chip 
with an integrated micropipette coupled to a pump system, optical tweezers for 3D steering of 
the single cells comprising of an IR laser, a beam expander, mirrors and a dichroic mirror and 
an IR blocking filter to block the IR laser. UV-Vis spectrometer with an integrated optical fiber 
to record the oxygenation states of the RBC, CCD camera to monitor the trapping dynamics of 
the cells within the micro-channel system. 
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Optical Spectroscopy 

The oxygenation state of a single optically trapped RBC was monitored by acquiring the 
absorption spectra by an UV-Vis spectrometer (Ocean Optics, HR4000, USA) in the 
following way: The visible light from the halogen lamp of the microscope illuminated the 
sample. The transmitted light that had passed through the sample was collected by the 
microscope objective and guided through the dichroic mirror. Thereafter it was divided by a 
beam-splitter to the CCD (20%) and to the optical fiber (80%) situated outside the right-hand 
side-port of the microscope. The optical fiber was connected to the UV-Vis spectrometer. The 
optical fiber, with a core size of diameter of 50 µm, was mounted on a 3D translation stage 
(Thorlabs USA). It was precisely aligned by moving the translation stage in the XYZ 
directions to guide the transmitted light from the microscope objective to the center of the 
fiber. The optical fiber facilitated the alignment of the optical path considerably and enabled 
the monitoring of the absorption spectrum of a single red blood cell. 

To test the alignment of the spectrometer, a RBC within the microchannel was steered to 
the center of the field of view, Fig. 2(B) position 1, and an absorption spectrum was taken, 
Fig. 2(A). The spectrum shows the typical oxygenated state of the RBC with two maxima at 
542 nm and 578 nm [26]. Thereafter, the center of the field of view of the microscope was 
positioned in a “RBC-free” environment, Fig. 2(B) position 2. A second absorption spectrum 
was taken to prove that no signals from RBCs were present, Fig. 2(C). The absorption spectra 
shown in this paper were binomially fitted by data-analyzing software program (Igor Pro). 

 

Fig. 2. (A) UV-Vis absorption oxygenation spectrum of the single RBC, (B) The center of the 
fiber was moved from position 1 (single RBC) to position 2 (cell-free zone), (C) UV-Vis 
absorption spectrum of the cell-free zone. 

Microfluidic System 

The manufacturing process of the closed microfluidic chamber was performed by a CNC 
Circuit Board milling Machine. The desired T-shaped microchannel were initially designed by 
a software program (QCAD) and transferred onto a slab of PMMA by the CNC machine. The 
channels were then sealed between two cover slips by an UV-curable adhesive material with 
low viscosity and high optical transparency (EPO-TEK OG603, Epoxy Technology, USA). It 
classified to USP Class VI biocompatibility standards that meet the requirements for medical 
application. The microfluidic chamber was equipped with two inlets and one outlet adjacent to 
the microchannels and connected by gas-tight PEEK tubing (ScanTec, Sweden) to the pump 
system (neMESYS, Cetoni, Germany). The pump system was used for the infusion of cells 
and solutions with varying oxygen content. 

The procedure of integrating the patch clamp micropipette started by CNC drilling of a 
hole that extended at 45 degrees from the upper edge of the microfluidic chamber to the 
intersection zone within the T-shape microfluidic channel. The upper edge of the hole was 
threaded to fit a fine hollow screw (JR-5508-5, VICI Jour, Switzerland). The micropipette was 
inserted through the hollow screw and the drilled hole into the microfluidic chamber, while 
the tip of the pipette was monitored visually in the microfluidic channel. To ensure an airtight 
seal around the drilled hole, the diameter of the hole was fitted precisely to the outer diameter 
of the micropipette. Additionally, a gas-tight fitting (PEEK, JR-55003-5, VICI Jour, 
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Switzerland) was used to make an airtight seal between the hollow screw and the hole. The 
hollow screw was used to fine-position the tip of the micropipette to the RBC in the 
microchannel, as seen in Fig. 3(A) and 3(B). 
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Fig. 3. (A) Schematic of the gastight microfluidic chamber including the patch clamp 
micropipette and inlets to be connected to a pump system. (B) The micropipette was fitted 
within the microfluidic chamber in a gastight surrounding. 

3. Experimental Results and Discussions 

The closed microfluidic chamber with the integrated micropipette was placed on the 
microscope stage and connected the pump system for latter insertion of RBCs and for the 
variation of the oxygenation state of the solution. The micropipette was carefully inserted 
through the hollow screw into the microfluidic chamber while the tip of the pipette entering 
the intersection-zone within the T-shape microfluidic channel was monitored visually. The 
cells were inserted to the microfluidic channel by the pump system in a low flow rate of 1 
µl/s. By the optical tweezers, a single RBC within the microchannel was optically trapped and 
steered through the microfluidic channel to the tip of the pipette. Simultaneously the trapping 
dynamics were recorded in real time with the CCD camera, see Fig. 4. The micropipette was 
then precisely adjusted by the hollow screw to attach to the membrane of the trapped cell. 

The absorption spectra of the trapped cell were then acquired and monitored by the UV-
Vis spectrometer under environmental variations by the pump system. Three absorption 
spectra of the trapped RBC in the oxy-, deoxy-, and oxy states were acquired as shown in Fig. 
5. 
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At the beginning of the experiment (t = 0), the absorption spectrum was acquired in the 
oxygenated state, Fig. 5(A). The spectrum showed peaks at 540 nm and 576 nm, which is 
typical for the oxy-spectrum of red blood cells [21]. The trapped RBC was then deoxygenated 
by 1 minute exposure to the oxygen-free solution. After 59s, the absorption spectrum of the 
RBC was gradually transformed to the deoxygenated state, showing the typical peak at 560nm 
[21], see Fig. 5(B). The spectrum was transformed back to the oxygenated state after 
21minutes, Fig. 5(C). 

 

Fig. 4. (A) Single optically trapped RBC, here the micropipette is situated above the RBC, (B) 
RBC in the same optical plane as the micropipette. (B) The RBC in contact with the patch 
clamp micropipette. 

 

Fig. 5. Absorption spectra of the trapped RBC in contact with micropipette in the microfluidic 
system in (A) oxygenated state (B) deoxygenated state and (C) re-oxygenated state. 

The microfluidic chamber was designed to perform electrophysiological investigations of 
single cells with reliable control of the environment. The presented microfluidic chamber can 
be modified for various electrophysiological techniques. Using CNC circuit board machines 
to design and create the microfluidic channel on various materials is beneficial due to the low 
cost and the high efficiency. 

A number of improvements will be carried out on the presented prototype. The 
microfluidic channels will be coated with UV curable epoxy to create an optical transparency 
similar to glass microchips. The fine screw that is used to integrate the micropipette will be 
replaced with a build-in tiny 3D micromanipulator. The process of transporting the cell 
through the pump system to the microfluidic chamber will be replaced by a new design where 
the cell will be prepared directly in the microfluidic chamber. The cells will be transported to 
the microchannel by applying a negative pressure through developed micro valves. This is to 
minimize the stress that the cells experience during transport through long tubing and to 
ensure that the cells will not stick onto the inner wall of the tubing. 

4. Conclusions 

Hereby we have presented a new way of integrating a micro-pipette into a closed microfluidic 
system with an integrated micro-pipette. The closed lab-on-a-chip offers the possibility to 
analyze individual cells under environmental control with a minimum of oxygen-diffusion 
into the microchannels during the measurements. As a proof of principle, the oxygenation 
sequence of a single RBC was studied at the tip of the integrated patch clamp micropipette. 

The microfluidic chamber was designed to act as a multifunctional system for 
simultaneous and high-throughput experiments. The future aim is to perform patch clamp 
experiments for electrophysiological investigations while simultaneously monitoring the 
biochemical composition of the sample by optical spectroscopy. The simplicity and stability 
of the microfluidic system has excellent potential to enable high volume production of 
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scalable microchips for various biomedical applications. The subsequently ambition is to use 
this system as a mini laboratory that has benefits in cell sorting, pharmaceutical, patch clamp, 
and fertilization experiments where the gaseous and the biochemical content is of importance. 
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