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Online Adaptive Blind Deconvolution
Based on Third-Order Moments

Patrik Pääjärvi, Student Member, IEEE, and James P. LeBlanc, Senior Member, IEEE

Abstract—Traditional methods for online adaptive blind decon-
volution using higher order statistics are often based on even-order
moments, due to the fact that the systems considered commonly
feature symmetric source signals (i.e., signals having a symmetric
probability density function). However, asymmetric source signals
facilitate blind deconvolution based on odd-order moments. In this
letter, we show that third-order moments give the benefits of faster
convergence of algorithms and increased robustness to additive
Gaussian noise. The convergence rates for two algorithms based
on third- and fourth-order moments, respectively, are compared
for a simulated ultra-wideband communication channel.

Index Terms—Adaptive filtering, blind equalization, third-order
moments.

I. INTRODUCTION

ADAPTIVE blind deconvolution is used for equalization or
identification of unknown systems when only the output of

the system can be observed. Fig. 1 shows a discrete-time signal
model of a general blind deconvolution problem (the subscript

denotes a time index). The object is to find the deconvolution
filter that approximately inverts the system with limited or
no knowledge of either or the source signal . The system
output plus an additive disturbance gives the observed
signal . The unknown, possibly time-varying system may
be either linear or nonlinear with minimum, maximum, or mixed
phase.

A. Minimum Entropy Deconvolution

In general, due to filtration through , the probability distri-
bution of the system output will be closer to a Gaussian than
that of . This is a consequence of the central limit theorem
and allows for deconvolution based on measuring the “Gaus-
sianity” of the deconvolution filter output . Minimum entropy
deconvolution (MED) methods are based on using a score func-
tion to measure the Gaussianity (or entropy) of . The
probability distribution of is then driven as far away from a
Gaussian distribution as possible, by adapting the coefficients
of . In general, is a finite impulse response (FIR) filter, and
all signals are assumed to have zero mean.

To measure the Gaussianity of a signal, score functions based
on higher order central moments are commonly used. Such
functions can typically be approximated by simple polynomial
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Fig. 1. Signal model of a general blind deconvolution problem.

functions of , making them specially suitable for online
(real-time) applications, where computational efficiency is
often of concern. Wiggins [1] proposed the use of the Kurtosis
(normalized fourth-order moment) of as a score function
for MED. Donoho [2] generalized the theory behind MED and
considered various types of score functions, including central
moments of order greater than two.

Godard [3] suggested dispersions of as score functions for
blind equalization of communication channels. The dispersion
of order ( integer ) is based on even-order moments of
and is defined as

(1)

where is a positive constant, and denotes expectation.
Choosing leads to the popular constant modulus algo-
rithm (CMA) [4], which is based on fourth-order moments, sim-
ilar to Wiggins’ original idea.

B. Symmetric and Asymmetric Source Signals

Traditional uses of blind deconvolution include linear equal-
ization of communication channels, deconvolution of seismic
traces, and dereverberation of acoustic signals. Such applica-
tions are often assumed to feature symmetric source signals, i.e.,
zero-mean signals with a probability density function (PDF) that
is symmetric around zero. Since all odd-order moments of sym-
metric signals are zero, most research focus in the field of blind
deconvolution has hence been directed toward even-order mo-
ments. Although symmetric source signals dominate the field
of applications for MED, asymmetric source signals, i.e., zero-
mean signals with asymmetric PDFs (and thus with nonzero
third central moment) occur in a wide range of acoustic, biomed-
ical, and mechanical signals (for example, pulse oximetry sig-
nals or hammer impacts). Asymmetry is also a feature of im-
pulse radio (IR) signals [5], a proposed signaling format for
ultra-wideband (UWB) radio [5]–[7].
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In previous work [8], we noted that asymmetry in the source
signal can be exploited by using a score function based on third-
order moments, instead of the common fourth-order moments.
The benefit of a lower order moment is mainly a simpler score
function surface (regarding as a function of the deconvo-
lution filter coefficients). This will, in general, give faster con-
vergence of common gradient search algorithms.

In the work presented in this letter, we compare two simple
online score functions based on third- and fourth-order mo-
ments, respectively. Since symmetric source signals have
zero odd-order moments, we restrict our focus to asymmetric
sources. We demonstrate that an online gradient search algo-
rithm based on third-order moments should, in general, benefit
from faster convergence and increased robustness to additive
Gaussian noise, compared to algorithms based on fourth-order
moments. The experimental results are obtained from simula-
tions of an indoor UWB channel with IR signaling.

II. NOTATION AND MODEL DESCRIPTION

Referring to the discrete-time signal model in Fig. 1, we
define and as the unknown source signal and unknown
channel, respectively. The sum of the channel output and
the disturbance is the observed signal , which is the
input to the deconvolution filter . For simplicity, we will from
here on refer to as an objective function of , and the
objective of the deconvolution problem is to find the filter
that maximizes . In typical online situations, this is done
iteratively through a gradient search algorithm.

The adaptive filter is assumed to be FIR of order . The
filter after iterations is represented by the coefficient vector

(2)

Using adaption by gradient ascent, is recursively updated in
the direction of maximizing the objective function. The filter
update rule becomes

(3)

where is a positive step size of adaption, and is the
gradient of with respect to

(4)

Filter iteration can be performed either on a sample-by-sample
basis (general applications) or on a symbol-by-symbol basis
(digital communication applications). If the step size in (3)
is small, can be regarded as approximately constant in time,
allowing us to drop the superscript . We then define the filter
output at sampling instant as

(5)

with being the “filtered signal,” the “fil-
tered noise,” and the signal vectors defined as

,

and . The two objective functions
we will compare are simply the third- and fourth-order central
moments, respectively, of the filter output

(6)

(7)

The corresponding gradients with respect to are

(8)

(9)

In online applications, where computational power is often lim-
ited, it is customary to use an instantaneous estimate of the gra-
dient in the filter update (3). This can be obtained from the two
objective functions (8) and (9) by simply dropping the expecta-
tion operators.

From here on, we will make the following assumptions.

A1) All signals are real and zero mean.
A2) is a non-Gaussian and asymmetric signal.
A3) The disturbance is a zero-mean, independent, iden-

tically distributed (i.i.d.) Gaussian noise process, inde-
pendent of , with variance .

A4) The step-size parameter in (3) is small, so that the
filter vector can be regarded as approximately con-
stant in time when compared to the signals, i.e.,
.

A5) is kept at constant (unit) norm during adaption, i.e.,
.

Assumption A4) is customary in adaptive filtering theory and
simplifies the averaging analysis in the next section. Assump-
tion A5) is necessary since increasing the norm of any filter
increases both objectives (6) and (7) while leaving the Gaus-
sianity of the filter output unchanged.

III. COMPARATIVE PERFORMANCE ANALYSIS OF THIRD- AND

FOURTH-ORDER OBJECTIVE FUNCTIONS

A. Objective Function Surface Topology

If the objective function is regarded as a function of the
deconvolution filter coefficients, adaption according to (3) can
be thought of as traversing a multidimensional function surface

toward any local maximum points (under the constraint of
unit filter norm). The set of maximum points is a subset of the
points on the function surface with zero gradient , with
the other set members being minimum points or saddle points.
Maximizing is therefore equivalent to finding a subset of
solutions to

(10)

For a filter of order , (10) leads to a system of nonlinear
polynomial equations in the unknowns .
The highest degree of the polynomials in the equation system
(10) will set an upper bound on the number of solutions, i.e.,
the number of stationary points on the objective surface. A large
number of stationary points generally implies a large number of
saddle points, which can “stall” filter adaption.
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Solving (10) for the third-moment objective function (6) leads
to the system of equations

(11)

for , with the third moment of defined
as . The highest polynomial degree of
(11) is 2, which gives a Bezout [9] upper bound on the number
of solutions, i.e., the number of stationary points on the function
surface, equal to . The corresponding system of equations
for the fourth-moment objective function (7) is

(12)

for , with the fourth moment of defined
as . The highest polynomial de-
gree of (12) is 3, giving a Bezout upper bound on the number of
solutions equal to . Note that, in general, the moments of

in (11) and (12) may depend on (e.g., for a time-varying
system ), despite the notation used. This is not essential here,
since a dependence on only implies that the shape of the func-
tion surface changes over time. The upper bounds on the number
of stationary points are still constant.

Even for moderate filter orders, the maximum number of sta-
tionary points on the third-moment function surface is consider-
ably smaller than on the corresponding fourth-moment surface.
As previously noted for offline (block-mode) algorithms in [8],
lower polynomial order of score functions gives the benefit of
a “simpler” objective surface, which, in general, implies fewer
saddle points. Since an excessive number of saddle points can
“stall” a gradient search, a simpler objective surface will there-
fore, in general, allow for faster adaption of such algorithms.
This is of special importance in applications where the unknown
system is time varying, and the deconvolution filter needs to
“track” changes in the system.

B. Gaussian Noise Effects on the Objective Function Surface

1) Objective Surface Analysis: In the presence of additive
white Gaussian noise, as described in the model in Section II,
and with the filter output decomposed into the sum of and

, as in (5), the third-moment objective function (6) at time
becomes

(13)

Since all odd moments of the Gaussian disturbance are zero,
(13) depends solely on the filtered signal and not on the dis-
turbance . Thus, the function surface of the third-moment ob-
jective function is preserved in the presence of Gaussian noise.
The corresponding expression for the fourth-moment objective
function (7) in the presence of Gaussian noise is

(14)

The Gaussian noise introduces two additional terms to the
“signal” (first) term. Under Assumption A5), the second term
does not depend on and will therefore not change the location
of the stationary points. The third term, on the other hand,
which depends on through , will alter the location of the
stationary points. Since the local maximum points have moved
under the influence of noise, the ability of the algorithm to
invert has been reduced.

2) Gradient Analysis: With the filter output defined as in (5),
the gradient of the objective function can be expressed as

(15)

is the “signal” component of the gradient due to the fil-
tered source signal . is the perturbation of the gra-
dient caused by the Gaussian noise. Taking the gradients of
and with respect to and separating them according to (15)
yields

(16)

(17)

At “true” local maximum points, the signal gradients
and are zero. As indicated by (13), the function surface
of is not affected by noise. Therefore, an instantaneous esti-
mate of [obtained by dropping the expectation operator in
(8)] will be unbiased in the presence of Gaussian noise. For ,
the noise causes a perturbation of the gradient in the direction
of , causing a corresponding instantaneous estimate of

to become biased. This adversely affects the algorithms
ability to invert the unknown system, as indicated by (14). Al-
though the perturbation in the direction of does not introduce
a bias under unit-norm constraints, a large noise variance may
have a negative effect on the convergence rate of the algorithm
on finite-precision machines.

IV. EXPERIMENTAL RESULTS FROM A SIMULATED

UWB RADIO CHANNEL

Wireless communication over UWB radio channels has at-
tracted interest in recent years. One of the proposed signaling
formats for UWB communication is IR [5], which consists of
pulse-position modulated pulses of extremely short duration,
typically on the order of a nanosecond, transmitted without the
use of a sinusoidal carrier. The short pulses used give IR sig-
nals a bandwidth from near dc to several gigahertz, giving them
good material-penetrating abilities and resolvable multipath de-
lays down to about 30 cm. To allow for multiple user access,
an additional pseudo-random time-hopping modulation scheme
is used. This reduces the risk of catastrophic collisions with
other IR transmitters and also avoids interference with coex-
isting narrow-band signals by “spreading” the spectrum of the
signal [5].

Although the large bandwidth of IR signals makes them ro-
bust to fading, the large multipath spread of a typical indoor
UWB channel is likely to cause intersymbol interference (ISI)
at higher data rates [7], [10]. The asymmetry of typical IR signal
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Fig. 2. Signal pulse shape !(t) used in the experiment. !(t) =
[1� 4�(t=� ) ] exp[�2�(t=� ) ], with � = 0:2333.

pulses motivates the use of a blind adaptive linear equalizer
based on third-order moment maximization to mitigate ISI.

A numerical experiment was conducted in which the two ob-
jective functions (6) and (7) were used to implement two frac-
tionally spaced, adaptive linear equalizers for a UWB channel.
IR signals with i.i.d. symbols were simulated based on the model
described in [5], using a pulse shape

(18)

with , giving a pulse duration of about 1 ns. The
pulse shape is shown in Fig. 2. The sampling interval was chosen
to give each pulse a support of 15 samples, based on results from
[11]. The IR signals used binary orthogonal modulation at a bit
rate of 10 Mb/s. A UWB channel impulse response with a rich
multipath spread up to approximately 200 ns was synthesized
with the aid of a recipe from [12]. Although only a single trans-
mitter was simulated, the interference from a large number of
adjacent transmitters can in many situations be modeled as a
Gaussian random process [5].

The receiver structure consisted of a filter matched to (18)
followed by the linear equalizers. The two FIR equalizers of
order were implemented with adaption using third-
order moment and fourth-order moment maximization, respec-
tively. The equalizers were recursively updated at the symbol in-
stants, using instantaneous estimates of (8) and (9), respectively,
starting from the customary “center-tap” initialization. The indi-
vidual step sizes of adaption, for the third-mo-
ment algorithm and for the fourth-moment algo-
rithm, were chosen so that both algorithms gave equal bit-error
rate performance at convergence. Fig. 3 shows the bit-error rate
versus adaption iteration for the third- and fourth-order-mo-
ment-based objective functions. The curves show the average
results from 13 runs for a signal-to-noise ratio per bit of 11 dB.

As seen in Fig. 3, the algorithm that uses the third-order
moment objective function converges approximately twice
as fast as the corresponding fourth-order moment version.
This confirms the results in Section III-A, namely, that the
lower order polynomial structure of the third-order moment
results in a “simpler” function surface. In general, this should
imply faster convergence of filter adaption, which is important
for the algorithm’s ability to track a time-varying channel.
Since typical indoor UWB channels are indeed time-varying,
third-order-moment-based blind deconvolution, with its ability
to exploit the source asymmetry, seems to be a suitable option
for UWB channel equalization.

Fig. 3. Bit-error rate versus adaption iteration for third-moment ( � )
and fourth-moment (� ) objective functions, averaged over 13 runs.
SNR per bit = 11 dB.

V. CONCLUSION

We have compared the performance of two objective func-
tions for adaptive blind deconvolution based on third-order
moments and fourth-order moments, respectively. Asymmetric
source signals offer opportunities to use objective functions
based on third-order moments, as an alternative to the com-
monly used fourth-order moments. Both the analytical and
the experimental results indicate that a lower order objective
function results in fewer stationary points on the objective func-
tion surface, which, in general, allows for faster convergence
of online blind adaptive algorithms. The analysis of gradient
estimation in the presence of Gaussian noise further highlights
the advantages of using third-order moments. The faster con-
vergence and increased robustness to additive Gaussian noise
makes third-order-moment-based methods interesting candi-
dates for blind adaptive equalization in UWB communication.
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