CESÀRO FUNCTION SPACES FAIL THE FIXED POINT PROPERTY

SERGEI V. ASTASHKIN AND LECH MALIGRANDA

(Communicated by N. Tomczak-Jaegermann)

Abstract

The Cesàro sequence spaces $\operatorname{ces}_{p}, 1<p<\infty$, are reflexive but they have the fixed point property. In this paper we prove that in contrast to these sequence spaces the corresponding Cesàro function spaces $C e s_{p}$ on both $[0,1]$ and $[0, \infty)$ for $1<p<\infty$ are not reflexive and they fail to have the fixed point property.

1. Introduction

Let $1 \leq p \leq \infty$. The Cesàro sequence space cesp is defined as the set of all real sequences $x=\left\{x_{k}\right\}$ such that

$$
\|x\|_{c(p)}=\left(\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|\right)^{p}\right)^{1 / p}<\infty \text { when } 1 \leq p<\infty
$$

and

$$
\|x\|_{c(\infty)}=\sup _{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|<\infty \text { when } p=\infty .
$$

The Cesàro function spaces $C e s_{p}=\operatorname{Ces}_{p}(I)$ are the classes of Lebesgue measurable real functions f on $I=[0,1]$ or $I=[0, \infty)$ such that the corresponding norms are finite, where

$$
\|f\|_{C(p)}=\left(\int_{I}\left(\frac{1}{x} \int_{0}^{x}|f(t)| d t\right)^{p} d x\right)^{1 / p} \text { for } 1 \leq p<\infty
$$

and

$$
\|f\|_{C(\infty)}=\sup _{x \in I, x>0} \frac{1}{x} \int_{0}^{x}|f(t)| d t<\infty \text { for } p=\infty
$$

The Cesàro sequence spaces ces $_{p}$ were investigated in the seventies by Shiue, Leibowitz and Jagers. In particular, they proved that ces $_{1}=\{0\}$, ces ${ }_{p}$ are separable reflexive Banach spaces for $1<p<\infty$ and the l^{p} spaces are continuously embedded

[^0]into cesp $_{p}$ for $1<p \leq \infty$ with strict embeddings. Also if $1<p<q \leq \infty$, then $c e s_{p} \subset \operatorname{ces}_{q}$ with continuous strict embeddings. Bennett 3] proved that cesp for $1<p<\infty$ are not isomorphic to any l^{q} space with $1 \leq q \leq \infty$ (see also [15] for another proof). Moreover, Maligranda-Petrot-Suantai [15] proved recently that Cesàro sequence spaces ces $_{p}$ for $1<p<\infty$ are not uniformly nonsquare; that is, there are sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ on the unit sphere such that $\lim _{n \rightarrow \infty} \min \left(\| x_{n}+\right.$ $\left.y_{n}\left\|_{c(p)},\right\| x_{n}-y_{n} \|_{c(p)}\right)=2$. They even proved that these spaces are not B-convex. We refer here to [3, 15 and the references given there.

Several geometric properties of the Cesàro sequence spaces ces $_{p}$ were studied in recent years by many mathematicians, and in 1999-2000 it was also proved by CuiHudzik [5], Cui-Hudzik-Li [6] and Cui-Meng-Płuciennik [7] that Cesàro sequence spaces ces $_{p}$ for $1<p<\infty$ have the fixed point property (cf. also [4, Part 9]).

Cesàro function spaces $\operatorname{Ces}_{p}[0, \infty)$ for $1 \leq p \leq \infty$ were considered by Shiue [16], Hassard-Hussein [12] and Sy-Zhang-Lee [17]. They proved that $C e s_{1}[0, \infty)=\{0\}$ and $C e s_{p}[0, \infty)$ for $1<p<\infty$ are separable Banach spaces and that $C e s_{\infty}[0, \infty)$ is a nonseparable Banach space. The space $\operatorname{Ces}_{\infty}[0,1]$ is known as the Korenblyum-Krein-Levin space already introduced in 1948.

By the Hardy inequality the $L^{p}(I)$ spaces are continuously embedded into $C e s_{p}(I)$ for $1<p \leq \infty$ with strict embedding, where $I=[0,1]$ or $I=[0, \infty)$ (cf. [11, Theorem 327] and [13, Theorem 2]). Also if $1<p<q \leq \infty$, then $C e s_{q}[0,1] \subset C e s_{p}[0,1]$ with continuous strict embedding. Moreover, $C e s_{1}[0,1]$ is a weighted $L_{w}^{1}[0,1]$ space with the weight $w(t)=\ln \frac{1}{t}$ for $0<t \leq 1$. In fact,

$$
\begin{equation*}
\int_{0}^{1}\left(\frac{1}{x} \int_{0}^{x}|f(t)| d t\right) d x=\int_{0}^{1}\left(\int_{t}^{1} \frac{1}{x} d x\right)|f(t)| d t=\int_{0}^{1}|f(t)| \ln \frac{1}{t} d t \tag{1}
\end{equation*}
$$

We will show that, in contrast to Cesàro sequence spaces, the Cesàro function spaces $\operatorname{Ces}_{p}(I)$ on both $I=[0,1]$ and $I=[0, \infty)$ for $1<p<\infty$ are not reflexive and that they do not have the fixed point property.

A Banach space X has the fixed point property (FPP) [resp. weak fixed point property (WFPP)] if every nonexpansive mapping of every closed bounded convex [resp. nonempty weakly compact convex] subset K of X into itself has a fixed point. Recall that T is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in K$.

The spaces c_{0} and l^{1} both fail to have the FPP with their classical norms, but they have the WFPP. The space $L^{1}[0,1]$ does not have the WFPP, as was proved by Alspach 1 .

Our proof that the Cesàro function spaces $\operatorname{Ces}_{p}(I)$ on $I=[0,1]$ with $1 \leq p \leq \infty$ and on $I=[0, \infty)$ with $1<p \leq \infty$ fail to have the fixed point property will be carried out by showing that these spaces contain an asymptotically isometric copy of l^{1}.

A Banach space X contains an asymptotically isometric copy of l^{1} if there exists a null sequence $\left(\varepsilon_{n}\right)$ in $(0,1)$ and a sequence $\left(x_{n}\right)$ in X such that

$$
\sum_{n=1}^{\infty}\left(1-\varepsilon_{n}\right)\left|\alpha_{n}\right| \leq\left\|\sum_{n=1}^{\infty} \alpha_{n} x_{n}\right\|_{X} \leq \sum_{n=1}^{\infty}\left|\alpha_{n}\right|
$$

for all $\left(\alpha_{n}\right) \in l^{1}$ of scalars. This notion was introduced by Dowling and Lennard in [9], where they proved that such spaces fail to have the FPP.

2. Main Results

Cesàro sequence spaces ces $_{p}, 1<p<\infty$, are reflexive but not B-convex and they have the fixed point property. In contrast to these sequence spaces the corresponding Cesàro function spaces $\operatorname{Ces}_{p}(I)$ on both $I=[0,1]$ and $I=[0, \infty)$ for $1<p<\infty$ are not reflexive and they do not have the fixed point property. Our main result reads:

Theorem 1. Let $1 \leq p \leq \infty$. The Cesàro function space Cesp $[0,1]$ contains an asymptotically isometric copy of l^{1}; that is, there exist a sequence $\left\{\varepsilon_{n}\right\} \subset$ $(0,1), \varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ and a sequence of functions $\left\{f_{n}\right\} \subset C e s_{p}[0,1]$ such that for arbitrary $\left\{\alpha_{n}\right\} \in l^{1}$ we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(1-\varepsilon_{n}\right)\left|\alpha_{n}\right| \leq\left\|\sum_{n=1}^{\infty} \alpha_{n} f_{n}\right\|_{C(p)} \leq \sum_{n=1}^{\infty}\left|\alpha_{n}\right| \tag{2}
\end{equation*}
$$

Before the proof of this theorem we prove the following auxiliary result.
Lemma 1. Let $0<a<b<1, f \in C e s_{p}[0,1]$ and $\operatorname{supp} f:=\{t \in[0,1]: f(t) \neq$ $0\} \subset[a, b]$. Then

$$
\begin{equation*}
\left(b^{1-p}-1\right)^{1 / p}\|f\|_{1} \leq(p-1)^{1 / p}\|f\|_{C(p)} \leq\left(a^{1-p}-1\right)^{1 / p}\|f\|_{1} \tag{3}
\end{equation*}
$$

for $1<p<\infty$ and

$$
\begin{equation*}
\ln \frac{1}{b}\|f\|_{1} \leq\|f\|_{C(1)} \leq \ln \frac{1}{a}\|f\|_{1}, \frac{1}{b}\|f\|_{1} \leq\|f\|_{C(\infty)} \leq \frac{1}{a}\|f\|_{1} \tag{4}
\end{equation*}
$$

where $\|f\|_{1}=\int_{0}^{1}|f(t)| d t$.
Proof. It is obvious that for any $0<x \leq 1$ we have

$$
\frac{1}{x}\|f\|_{1} \chi_{[b, 1]}(x) \leq F_{f}(x):=\frac{1}{x} \int_{0}^{x}|f(t)| d t \leq \frac{1}{x}\|f\|_{1} \chi_{[a, 1]}(x)
$$

Since, for every $c \in(0,1), \int_{c}^{1} t^{-p} d t=\frac{c^{1-p}-1}{p-1}$ and $\int_{c}^{1} t^{-1} d t=\ln \frac{1}{c}$ we obtain (3) and (4) for $p=1$. In the case of $p=\infty$ we see that

$$
\frac{1}{b}\|f\|_{1} \leq\left\|F_{f}\right\|_{L^{\infty}[0,1]} \leq \frac{1}{a}\|f\|_{1}
$$

and the lemma is proved.
Proof of Theorem 1. For $1<p<\infty$ we set

$$
g_{n}=\chi_{\left[a_{n}, a_{n+1}\right)}, \text { with } a_{n}=2^{1 /(1-p)}\left(1-\frac{1}{2^{n}}\right), n=1,2, \ldots
$$

Since $\left\|g_{n}\right\|_{1}=a_{n+1}-a_{n}=2^{1 /(1-p)} \cdot 2^{-n-1}$ and $a_{n}^{1-p}-1=\frac{2}{\left(1-2^{-n}\right)^{p-1}}-1$, then, by Lemma 1 (see the second estimate in (3)), this yields that

$$
2^{-1 /(1-p)} 2^{n+1}(p-1)^{1 / p}\left\|g_{n}\right\|_{C(p)} \leq\left(\frac{2}{\left(1-2^{-n}\right)^{p-1}}-1\right)^{1 / p}
$$

Let $f_{n}=g_{n} /\left\|g_{n}\right\|_{C(p)}$ and $\alpha_{n} \in \mathbb{R}$ for $n=1,2, \ldots$. Since $\operatorname{supp} g_{n} \subset\left[2^{1(1-p)-1}\right.$, $\left.2^{1 /(1-p)}\right)$ for every $n \in \mathbb{N}$ it follows from Lemma 1 (see the first estimate in (31))
that

$$
\begin{aligned}
\left\|\sum_{n=1}^{\infty} \alpha_{n} f_{n}\right\|_{C(p)} & \geq \frac{\left\|\sum_{n=1}^{\infty} \alpha_{n} f_{n}\right\|_{1}}{(p-1)^{1 / p}} \\
& =\sum_{n=1}^{\infty} \frac{\left|\alpha_{n}\right| 2^{1 /(1-p)}}{2^{n+1}(p-1)^{1 / p}\left\|g_{n}\right\|_{C(p)}} \\
& \geq \sum_{n=1}^{\infty}\left(\frac{2}{\left(1-2^{-n}\right)^{p-1}}-1\right)^{-1 / p}\left|\alpha_{n}\right| .
\end{aligned}
$$

Denote

$$
\varepsilon_{n}=1-\left(\frac{2}{\left(1-2^{-n}\right)^{p-1}}-1\right)^{-1 / p}
$$

Then $\left\{\varepsilon_{n}\right\} \subset(0,1)$ and $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. This means that the left-hand side of (2) is proved. The right-hand side of (2) is obvious since $\left\|f_{n}\right\|_{C(p)}=1$.

In the case $p=\infty$ we take $f_{n}=g_{n} /\left\|g_{n}\right\|_{C(\infty)}$, where $g_{n}=\chi_{\left[a_{n}, a_{n+1}\right)}$ with $a_{n}=1-2^{-n}, n=1,2, \ldots$. Then $\left\|g_{n}\right\|_{1}=2^{-n-1}$ and, by Lemma 1 (see the second estimate in (44)) $\left\|g_{n}\right\|_{C(\infty)} \leq \frac{1}{1-2^{-n}} 2^{-n-1}$ or $2^{n+1}\left\|g_{n}\right\|_{C(\infty)} \leq \frac{1}{1-2^{-n}}$. Since $\operatorname{supp} g_{n} \subset[1 / 2,1)$, for every $n \in \mathbb{N}$, it follows from Lemma 1 (see the first estimate in (4)) that:

$$
\begin{aligned}
\left\|\sum_{n=1}^{\infty} \alpha_{n} f_{n}\right\|_{C(\infty)} & \geq\left\|\sum_{n=1}^{\infty} \alpha_{n} f_{n}\right\|_{1} \\
& =\sum_{n=1}^{\infty} \frac{\left|\alpha_{n}\right|}{2^{n+1}\left\|g_{n}\right\|_{C(\infty)}} \geq \sum_{n=1}^{\infty}\left(1-2^{-n}\right)\left|\alpha_{n}\right|
\end{aligned}
$$

and $\varepsilon_{n}=2^{-n}$ is a required sequence.
In the case $p=1$ we take $g_{n}=\chi_{\left[a_{n}, a_{n+1}\right)}$, where $a_{n}=\frac{1}{e}\left(1-2^{-n}\right), n=1,2, \ldots$ and argue in a similar way. The proof is complete.

The analogous result holds for Cesàro function spaces on $[0, \infty)$.
Theorem 2. Let $1<p \leq \infty$. The Cesàro function space Ces $_{p}[0, \infty)$ contains an asymptotically isometric copy of l^{1}.

Proof. We consider only the case $1<p<\infty$ (the case $p=\infty$ can be proved similarly as in Theorem 1). We take $g_{n}=\chi_{\left[a_{n}, a_{n+1}\right)}$ with $a_{n}=1-2^{-n}, n=1,2, \ldots$ and continue the proof as in Theorem 1, observing that the estimate corresponding to (3) for $\operatorname{Ces}_{p}[0, \infty)$ will be (for $0<a<b<\infty$)

$$
b^{1 / p-1}\|f\|_{1} \leq(p-1)^{1 / p}\|f\|_{C(p)} \leq a^{1 / p-1}\|f\|_{1}, \text { with }\|f\|_{1}=\int_{0}^{\infty}|f(t)| d t
$$

and then for $f_{n}=g_{n} /\left\|g_{n}\right\|_{C(p)}$ we have that

$$
\begin{aligned}
\left\|\sum_{n=1}^{\infty} \alpha_{n} f_{n}\right\|_{C(p)} & \geq \frac{\left\|\sum_{n=1}^{\infty} \alpha_{n} f_{n}\right\|_{1}}{(p-1)^{1 / p}} \\
& =\sum_{n=1}^{\infty} \frac{\left|\alpha_{n}\right|}{2^{n+1}(p-1)^{1 / p}\left\|g_{n}\right\|_{C(p)}} \geq \sum_{n=1}^{\infty} a_{n}^{1-1 / p}\left|\alpha_{n}\right| \\
& =\sum_{n=1}^{\infty}\left(1-2^{-n}\right)^{1-1 / p}\left|\alpha_{n}\right|=\sum_{n=1}^{\infty}\left(1-\varepsilon_{n}\right)\left|\alpha_{n}\right|,
\end{aligned}
$$

and $\varepsilon_{n}=1-\left(1-2^{-n}\right)^{1-1 / p}$ is a required sequence. The proof is complete.

Remark 1. It is obvious from Theorem 1 and Theorem 2 that the Cesàro function spaces $\operatorname{Ces}_{p}(I)$ for $1<p \leq \infty$ are not reflexive.

Dowling-Lennard [9] proved that if a Banach space X contains an asymptotically isometric copy of l^{1}, then there exists a nonexpansive mapping defined on a closed bounded convex subset of X without a fixed point, i.e., that X fails to have the fixed point property (see also [10, Theorem 2.3 and Corollary 2.11]). By the Dilworth-Girardi-Hagler result [8, Theorem 2] the dual space X^{*} does not have the fixed point property since they proved there that X contains an asymptotically isometric copy of l^{1} if and only if the dual space X^{*} contains an isometric copy of $L^{1}[0,1]$. Combining these results with our Theorem 1 and Theorem 2 we obtain immediately our main result on the fixed point property of Cesàro function spaces and their dual spaces.

Theorem 3. If either $1 \leq p \leq \infty$ and $I=[0,1]$ or $1<p \leq \infty$ and $I=[0, \infty)$, then the Cesàro function spaces $\operatorname{Ces}_{p}(I)$ and their dual spaces $\operatorname{Ces}_{p}(I)^{*}$ fail to have the fixed point property.

Theorem 3 gives information about the fixed point property, and therefore it is natural to ask what one can say about the weak fixed point property.

Note that the space $C e s_{1}[0,1]$ is isometric to $L^{1}[0,1]$ by the equality (11), and by the Alspach result [1] $L^{1}[0,1]$ fails to have WFPP; therefore $C e s_{1}[0,1]$ also fails to have WFPP.

By combining Theorem 1, Theorem 2 and the Dilworth-Girardi-Hagler result [8, Corollary 13] we have the following result:

Proposition 1. The dual spaces to the Cesàro function spaces $\operatorname{Ces}_{p}(I)^{*}$ do not have the weak fixed point property.

Proposition 2. The Cesàro function spaces $\operatorname{Ces}_{p}(I)$ for $1<p<\infty$ are not isomorphic to any $L^{q}(I)$ space for $1 \leq q \leq \infty$. In particular, they are not isomorphic to $L^{1}(I)$.

Of course, $\operatorname{Ces}_{p}(I)$ for $1<p<\infty$, as nonreflexive and separable spaces, cannot be isomorphic to any $L^{q}(I)$ with $1<q<\infty$ or $q=\infty$. The statement for $q=1$ will be proved in the forthcoming paper [2].

References

[1] D. E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82(1981), 423424. MR612733 (82j:47070)
[2] S. V. Astashkin and L. Maligranda, Geometry of Cesàro function spaces, in preparation.
[3] G. Bennett, Factorizing the Classical Inequalities, Mem. Amer. Math. Soc. 120, Providence, 1996. MR1317938 (96h:26020)
[4] S. Chen, Y. Cui, H. Hudzik and B. Sims, Geometric properties related to fixed point theory in some Banach function lattices, in: Handbook on Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001, 339-389. MR1904283(2003f:46031)
[5] Y. Cui and H. Hudzik, Some geometric properties related to fixed point theory in Cesàro sequence spaces, Collect. Math. 50(1999), 277-288. MR 1744077 (2001f:46033)
[6] Y. Cui, H. Hudzik and Y. Li, On the García-Falset coefficient in some Banach sequence spaces, in: Function Spaces, Proc. of the 5th International Conf. in Poznan (Aug. 28-Sept. 3, 1998), Marcel Dekker, New York, 2000, 141-148. MR1772119 (2001h:46009)
[7] Y. Cui, C. Meng and R. Płuciennik, Banach-Saks property and property (β) in Cesàro sequence spaces, Southeast Asian Bull. Math. 24(2000), 201-210. MR1810056 (2001m:46031)
[8] S. Dilworth, M. Girardi and J. Hagler, Dual Banach spaces which contain an isometric copy of L_{1}, Bull. Polish Acad. Sci. Math. 48(2000), no. 1, 1-12. MR1751149 (2001e:46016)
[9] P. N. Dowling and C. J. Lennard, Every nonreflexive subspace of $L_{1}[0,1]$ fails the fixed point property, Proc. Amer. Math. Soc. 125(1997), no. 2, 443-446. MR1350940 (97d:46034)
[10] P. N. Dowling, C. J. Lennard and B. Turett, Renormings of l^{1} and c_{0} and fixed point properties, In: Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001, 269-297. MR1904280 (2004f:46021)
[11] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, 1952. MR0046395 (13:727e)
[12] B. D. Hassard and D. A. Hussein, On Cesàro function spaces, Tamkang J. Math. 4(1973), 19-25. MR 0333700 (48:12025)
[13] A. Kufner, L. Maligranda and L.-E. Persson, The Hardy Inequality. About Its History and Some Related Results, Vydavatelski Servis Publishing House, Pilzen, 2007. MR 2351524
[14] Y. Q. Liu, B. E. Wu and P. Y. Lee, Method of Sequence Spaces, Guangdong of Science and Technology Press, 1996 (in Chinese).
[15] L. Maligranda, N. Petrot and S. Suantai, On the James constant and B-convexity of Cesàro and Cesàro-Orlicz sequence spaces, J. Math. Anal. Appl. 326(2007), no. 1, 312-331. MR2277785 (2007m:46023)
[16] J. S. Shiue, A note on Cesàro function space, Tamkang J. Math. 1(1970), 91-95. MR 0276751 (43:2491)
[17] P. W. Sy, W. Y. Zhang and P. Y. Lee, The dual of Cesàro function spaces, Glas. Mat. Ser. III 22 (1987), no. 1, 103-112. MR940098 ($89 \mathrm{~g}: 46059$)

Department of Mathematics and Mechanics, Samara State University, Acad. Pavlov 1, 443011 Samara, Russia

E-mail address: astashkn@ssu.samara.ru
Department of Mathematics, LuleÅ University of Technology, SE-971 87 LuleÅ, SWEDEN

E-mail address: lech@sm.luth.se

[^0]: Received by the editors October 18, 2007.
 2000 Mathematics Subject Classification. Primary 46E30, 46B20, 46B42.
 Key words and phrases. Cesàro sequence spaces, Cesàro function spaces, fixed point property, asymptotically isometric copy of l^{1}, B-convex spaces.

 This research was supported by a grant from the Royal Swedish Academy of Sciences for cooperation between Sweden and the former Soviet Union (project 35440). The results were presented by the second author at The 8th International Conference on Fixed Point Theory and Its Applications, 16-22 July 2007, Chiang Mai, Thailand.

