Orlicz spaces which are AM-spaces

By

C. E. FINOL, H. HUDZIK*) and L. MALIGRANDA**)

Abstract. The Orlicz function and sequence spaces which are AM-spaces are characterized for both the Luxemburg-Nakano and the Amemiya (Orlicz) norm.

1. Preliminaries. Let (Ω, Σ, μ) be a positive complete σ -finite measure space and $L^0 = L^0(\mu)$ the space of all (equivalence classes of) Σ -measurable real functions on Ω .

Consider an Orlicz function $\varphi:[0,\infty)\to[0,\infty]$, i.e., a convex nondecreasing function vanishing at zero (not identically 0 or ∞ on $(0,\infty)$) and define the functional $I_{\varphi}:L^0(\mu)\to[0,\infty]$ by the formula

$$I_{\varphi}(x) = \int_{\Omega} \varphi(|x(t)|) d\mu.$$

The *Orlicz space* $L_{\varphi}(\mu)$ is defined by $L_{\varphi}(\mu) = \{x \in L^{0}(\mu) : I_{\varphi}(x/\lambda) < \infty \text{ for some } \lambda > 0\}$. This space is a Banach space with the following three norms: the *Luxemburg-Nakano norm*

$$||x||_{\omega} = \inf \{\lambda > 0 : I_{\omega}(x/\lambda) \leq 1\},$$

the Amemiya norm

$$||x||_{\varphi}^{A} = \inf_{k>0} \frac{1}{k} (1 + I_{\varphi}(kx))$$

and the Orlicz norm

$$||x||_{\varphi}^{0} = \sup\{|\int\limits_{O} x(t)y(t)d\mu| : y \in L_{\varphi^{*}}, I_{\varphi^{*}}(y) \leq 1\},$$

where the function $\varphi^*:[0,\infty)\to[0,\infty]$ is defined by the formula

$$\varphi^*(u) = \sup \left\{ uv - \varphi(v) : v \geqq 0 \right\}$$

and called *complementary* to φ in the sense of Young (see [5], [8], [9], [10]). For the counting measure μ on N we obtain the *Orlicz sequence space* $l_{\varphi} = \{x = (x_n) : I_{\varphi}(x/\lambda) = \sum_{n=1}^{\infty} \varphi(|x_n|/\lambda) < \infty \text{ for some } \lambda > 0\}$. It is well known that $||x||_{\varphi} \le ||x||_{\varphi}^0 \le 2||x||_{\varphi}$

Mathematics Subject Classification (1991): 46E30.

^{*)} Supported by KBN Grant 2 P03A 031 10.

^{**)} Supported in part by The Royal Swedish Academy of Sciences grant 9265 (1996).

and $||x||_{\varphi} \le 1$ if and only if $I_{\varphi}(x) \le 1$ (cf. [5], [8], [9] and [10]). It is also known that $||x||_{\varphi}^{0} = ||x||_{\varphi}^{A}$ for any $x \in L_{\varphi}$ (cf. [4]).

Baron and Hudzik [1] have proved that the only Orlicz spaces L_{φ} that are abstract L_p spaces $(1 , i.e. <math>\|x + y\|_{\varphi}^p = \|x\|_{\varphi}^p + \|y\|_{\varphi}^p$ for $x, y \in L_{\varphi}, x \perp y$, are the Lebesgue spaces L_p .

In this paper we will consider the limit case, namely we will solve the problem which Orlicz function spaces L_{φ} or Orlicz sequence spaces l_{φ} are AM-spaces. We will solve this problem for both the Luxemburg-Nakano and the Amemiya (Orlicz) norm. As we will see, Orlicz spaces L_{φ} and l_{φ} can be AM-spaces iff they are isometric to L_{∞} or l_{∞} under the isometry λ Id for some $\lambda > 0$.

Recall that a subspace $(X, \|\cdot\|)$ of $L^0(\mu)$ is said to be a *Banach function space* if it is a Banach space satisfying the following condition: if $x \in L^0, y \in X$ and $|x(t)| \le |y(t)| \mu$ -a.e., then $x \in X$ and $||x|| \le ||y||$.

A Banach function space $X = (X, \|\cdot\|)$ is an *AM-space* if

(1)
$$\|\max(x,y)\| = \max(\|x\|,\|y\|)$$
 for all $0 \le x, y \in X$.

An equivalent and very useful condition on AM-space says that a Banach function space is an AM-space if and only if

(2)
$$||x + y|| = \max(||x||, ||y||)$$
 for all $x, y \in X$ with $x \perp y$,

where $x \perp y$ means that μ (supp $x \cap$ supp y) = 0 and the support supp x of a function $x \in X$ is defined (up to a set of measure zero) by the formula supp $x = \{t \in \Omega : x(t) \neq 0\}$.

A Banach function space X has the *Fatou property* if $0 \le x_n \uparrow x$ with $x_n \in X, x \in L^0$ and $\sup_n \|x_n\| < \infty$ imply $x \in X$ and $\|x\| = \lim_{n \to \infty} \|x_n\|$ (see [7] and [8]).

The Orlicz space $L_{\varphi}(\mu)$ with both the Luxemburg-Nakano and the Amemiya norm is a Banach function space with the Fatou property.

2. Orlicz spaces over a nonatomic measure space which are AM-spaces. First of all we will prove that if an Orlicz function is finite-valued then the Orlicz function space cannot be an AM-space. We need to define for an Orlicz function φ the following two parameters:

(3)
$$u_0(\varphi) = \sup \{ u \ge 0 : \varphi(u) = 0 \} \text{ and } u_\infty(\varphi) = \sup \{ u > 0 : \varphi(u) < \infty \}.$$

From the definition of Orlicz function we have $u_0(\varphi) \le u_{\infty}(\varphi), u_0(\varphi) < \infty$ and $u_{\infty}(\varphi) > 0$.

Theorem 1. (i) If the Orlicz space $L_{\varphi}(\mu)$ with either the Luxemburg-Nakano or the Amemiya norm on a nonatomic measure space (Ω, Σ, μ) is an AM-space, then $u_{\infty}(\varphi) < \infty$.

$$\text{(ii) If } u_{\infty}(\varphi) < \infty \text{, then } L_{\varphi}(\mu) \subset L_{\infty}(\mu) \text{ and } \left\|x\right\|_{\infty} \leqq u_{\infty}(\varphi) \|x\|_{\varphi}.$$

Proof. Let $u_{\infty}(\varphi)=\infty$, i.e., let φ be a finite-valued function. Take disjoint $A,B\in \Sigma$ and a number $c>u_0(\varphi)$ such that $\varphi(c)\mu(A)=1$ and $\varphi(c)\mu(B)=1$. Define

$$x = c\chi_A, \quad y = c\chi_B.$$

Then $I_{\varphi}(x) = \int\limits_{A} \varphi(c) d\mu = \varphi(c) \mu(A) = 1$ and so $\|x\|_{\varphi} = 1$. Similarly, $\|y\|_{\varphi} = 1$ but $I_{\varphi}(x+y) = \int\limits_{A} \varphi(c) d\mu + \int\limits_{R} \varphi(c) d\mu = \varphi(c) \mu(A) + \varphi(c) \mu(B) = 2$

gives that $\|x+y\|_{\varphi} > 1$, and the Orlicz space $L_{\varphi}(\mu)$ with the Luxemburg-Nakano norm $\|\cdot\|_{\varphi}$ does not satisfy (2) which means that it is not an AM-space.

Consider now the Orlicz space with the Amemiya norm and assume that $u_{\infty}(\varphi) = \infty$. For any $c > u_0(\varphi)$ there exists $\varepsilon > 0$ such that $(1 + \varepsilon)(u_0(\varphi) + \varepsilon) < c$. Choose $A \in \Sigma$ such that $0 < \mu(A) < \infty$ and $I_{\varphi}(c\chi_A) = \varphi(c)\mu(A) \le \varepsilon$. This is possible since our measure is nonatomic. Then

$$\begin{split} \|\chi_A\|_{\varphi}^A &= \inf_{k>0} \frac{1}{k} (1 + I_{\varphi}(k\chi_A)) \le \frac{1}{c} (1 + I_{\varphi}(c\chi_A)) \\ &= \frac{1}{c} (1 + \varphi(c)\mu(A)) \le (1 + \varepsilon)/c < 1/(u_0(\varphi) + \varepsilon). \end{split}$$

Consider now two cases.

I. There is $k_0 > 0$ such that $\|\chi_A\|_{\varphi}^A = \frac{1}{k_0} (1 + I_{\varphi}(k_0 \chi_A))$.

We will show that $I\varphi(k_0\chi_A)>0$. If $u_0(\varphi)=0$, then this is obviously true. Let $u_0(\varphi)>0$ and assume for the contrary that $I_\varphi(k_0\chi_A)=0$. Then it must be $k_0\leq u_0(\varphi)$, and so $\|\chi_A\|_\varphi^A=1/k_0\geq 1/u_0(\varphi)$, a contradiction. Therefore we have indeed $I_\varphi(k_0\chi_A)>0$. This implies that $0<\varphi(k_0)<\infty$. Let $B\subset A, B\in \Sigma$, be such that $\mu(B)=\mu(A\backslash B)=\mu(A)/2$. Then

$$\begin{aligned} \|\chi_A\|_{\varphi}^A &= [1 + I_{\varphi}(k_0 \chi_A)]/k_0 > [1 + I_{\varphi}(k_0 \chi_B)]/k_0 \ge \\ & \ge \inf_{k > 0} \frac{1}{k} [1 + I_{\varphi}(k \chi_B)] = \|\chi_B\|_{\varphi}^A. \end{aligned}$$

We can prove in the same way that

$$\|\chi_A\|_{\varphi}^A > \|\chi_{A\setminus B}\|_{\varphi}^A,$$

and consequently that

$$\left\|\chi_{B} + \chi_{A \setminus B}\right\|_{\varphi}^{A} = \left\|\chi_{A}\right\|_{\varphi}^{A} > \max\left\{\left\|\chi_{B}\right\|_{\varphi}^{A}, \left\|\chi_{A \setminus B}\right\|_{\varphi}^{A}\right\}.$$

This yields that equality (2) does not hold, which gives that $(L_{\varphi}(\mu), \|\cdot\|_{\varphi}^{A})$ is not an AM-space.

II. Assume that $\|\chi_A\|_{\omega}^A < [1 + I_{\omega}(k\chi_A)]/k$ for any k > 0. Then

$$\|\chi_A\|_{\varphi}^A = \lim_{k \to \infty} \frac{1}{k} I_{\varphi}(k\chi_A) = \mu(A) \lim_{k \to \infty} (\varphi(k)/k).$$

Of course case II is possible only when $\lim_{u\to\infty} \varphi(u)/u)<\infty$. Then for $B\subset A, B\in \Sigma$ with $\mu(B)=\mu(A\setminus B)=\mu(A)/2$, we have

$$\begin{split} \|\chi_A\|_\varphi^A &= \mu(A) \lim_{k \to \infty} (\varphi(k)/k) = 2\mu(B) \lim_{k \to \infty} (\varphi(k)/k) \\ & \geq 2 \inf_{k > 0} \frac{1}{k} [1 + I_\varphi(k\chi_B)] > \inf_{k > 0} \frac{1}{k} [1 + I_\varphi(k\chi_B)] = \|\chi_B\|_\varphi^A. \end{split}$$

In the analogous way we can prove that $\|\chi_A\|_{\alpha}^A > \|\chi_{A \setminus B}\|_{\alpha}^A$. Therefore

$$\|\chi_B + \chi_{A \setminus B}\|_{\varphi}^A = \|\chi_A\|_{\varphi}^A > \max\{\|\chi_B\|_{\varphi}^A, \|\chi_{A \setminus B}\|_{\varphi}^A\}.$$

This means that $(L_{\varphi}(\mu), \|\cdot\|_{\varphi}^{A})$ is not an AM-space, and the proof is complete.

(ii) (cf. [2]). For $0 \neq x \in L_{\varphi}(\mu)$ let $A = \{t \in \Omega : |x(t)| > u_{\infty}(\varphi) ||x||_{\varphi}\}$. Since $\varphi(x\chi_A/||x||_{\varphi}) = \infty$ it follows that $\infty \cdot \mu(A) = I_{\varphi}(x\chi_A/||x||_{\varphi}) \le I_{\varphi}(x/||x||_{\varphi}) \le 1$. This gives that $\mu(A) = 0$, i.e.,

$$|x(t)| \le u_{\infty}(\varphi)||x||_{\varphi}$$
 μ -a.e. on Ω ,

and (ii) follows.

Theorem 2. Let (Ω, Σ, μ) be a nonatomic measure space. The following assertions are equivalent:

- (i) An Orlicz space $L_{\varphi}(\mu)$ with the Luxemburg-Nakano norm is an AM-space.
- $\text{(ii)} \ \ u_{\infty}(\varphi) < \infty \ \ \text{and} \ \ \varphi(u_{\infty}(\varphi)) = 0 \ \text{if} \ \mu(\Omega) = \infty \ \ \text{or} \ \ \varphi(u_{\infty}(\varphi))\mu(\Omega) \leqq 1 \ \text{if} \ \mu(\Omega) < \infty.$
- (iii) $L_{\varphi}(\mu) = L_{\infty}(\mu)$ and there is a constant k > 0 such that $||x||_{\varphi} = k|||x||_{\infty}$ for every $x \in L_{\varphi}(\mu)$.

Proof. (i) \Rightarrow (ii). The fact that $u_{\infty}(\varphi) < \infty$ follows from Theorem 1. Assume then that $\varphi(u_{\infty}(\varphi))\mu(\Omega) > 1$, where $0 \cdot \infty = 0$ by definition. Then $\varphi(u_{\infty}(\varphi)) > 0$ must hold. Take $A, B \subset \Omega$, $A, B \in \Sigma$ such that $A \cap B = \emptyset$, $\varphi(u_{\infty}(\varphi))\mu(A) = 1$ and $0 < \varphi(u_{\infty}(\varphi))\mu(B) \leq 1$. Define

$$x = u_{\infty}(\varphi)\chi_A, \quad y = u_{\infty}(\varphi)\chi_B.$$

Since $I_{\varphi}(x) = 1$, we get directly $||x||_{\varphi} = 1$. The conditions $I_{\varphi}(y) \le 1$ and $I_{\varphi}(y/\lambda) = \infty$ for any $\lambda \in (0,1)$ imply that $||y||_{\varphi} = 1$. However, $I_{\varphi}(x+y) > 1$, whence it follows that $||x+y||_{\varphi} > 1$, i.e.

$$||x + y||_{\varphi} > \max\{||x||_{\varphi}, ||y||_{\varphi}\}$$

and (i) does not hold. This finishes the proof of the implication.

(ii) \Rightarrow (iii). We will prove first that (ii) implies that $L_{\varphi}(\mu) = L_{\infty}(\mu)$. Assume that $x \in L_{\infty}(\mu)$. Then, by (ii),

$$I_{\varphi}(u_{\infty}(\varphi)x/\|x\|_{\infty}) \leq 1$$
, i.e. $x \in L_{\varphi}(\mu)$

and

$$||x||_{\varphi} \le u_{\infty}(\varphi)^{-1}||x||_{\infty}.$$

Assume now that $x \in L_{\varphi}(\mu)$, i.e., there is $\lambda > 0$ such that $d = I_{\varphi}(\lambda x) < \infty$. Then by the convexity of I_{φ} , we obtain

$$I_{\varphi}(\lambda x/\max\{1,d\}) \le I_{\varphi}(\lambda x)/\max\{1,d\} \le 1.$$

This means that

$$\lambda |x(t)|/\max\{1,d\} \le u_{\infty}(\varphi)$$
 μ -a.e. in Ω ,

i.e. $x \in L_{\infty}(\mu)$. Since

$$I_{\varphi}(u_{\infty}(\varphi)x/(\lambda||x||_{\infty})) = \infty \quad \forall \lambda \in (0,1),$$

we get

$$||x||_{\varphi} \ge u_{\infty}(\varphi)^{-1}||x||_{\infty}.$$

Since the opposite inequality was also proved we obtain the equality

$$||x||_{\varphi} = u_{\infty}(\varphi)^{-1}||x||_{\infty} \quad \forall x \in L_{\varphi}(\mu).$$

The implication (iii) \Rightarrow (i) follows immediately from the fact that $L_{\infty}(\mu)$ is an AM-space. This finishes the proof of the theorem.

The next result concerns Orlicz spaces with the Amemiya norm.

Theorem 3. Let (Ω, Σ, μ) be a nonatomic measure space. Then an Orlicz space $L_{\varphi}(\mu)$ with the Amemiya norm is an AM-space if and only if

(4)
$$u_0(\varphi) > 0, u_\infty(\varphi) < \infty \quad and \quad u_0(\varphi) = u_\infty(\varphi).$$

Proof. Sufficiency. Assume that φ satisfies condition (4), i.e.,

$$\varphi(u) = \begin{cases} 0 & \text{for } 0 \le u \le u_0, \\ \infty & \text{for } u > u_0, \end{cases}$$

for some $u_0>0$. Then $L_{\varphi}(\mu)=L_{\infty}(\mu),\|x\|_{\varphi}=u_0^{-1}\|x\|_{\infty}$ for every $x\in L_{\varphi}(\mu)$ and

$$||x||_{\varphi}^{A} = \inf_{k>0, I_{\varphi}(kx)<\infty} \frac{1}{k} (1 + I_{\varphi}(kx)) = \inf \{1/k : k > 0 \text{ and } I_{\varphi}(kx) < \infty \}$$

$$= \inf \{1/k : k > 0 \text{ and } k|x(t)| \le u_{0} \mu\text{-a.e. in } \Omega \} = u_{0}^{-1} ||x||_{\infty}.$$

It is obvious that the last equality implies that $(L_{\varphi}(\mu), \|\cdot\|_{\varphi}^{A})$ is an AM-space.

Necessity. From Theorem 1 we have that $u_{\infty}(\varphi) < \infty$. If $u_0(\varphi) = 0$, then the Amemiya norm $\|\cdot\|_{\varphi}^A$ is strictly monotone, i.e., $0 \le x \le y, x \ne y$ μ -a.e. imply $\|x\|_{\varphi}^A < \|y\|_{\varphi}^A$ (see [3]), so $\|\cdot\|_{\varphi}^A$ does not satisfy condition (2). For the sake of completeness, we will repeat here the proof of strict monotonicity of $\|\cdot\|_{\varphi}^A$ from [3]. The assumption $\lim_{u \to \infty} \varphi(u)/u = \infty$, which follows by $u_{\infty}(\varphi) < \infty$, gives that $\|y\|_{\varphi}^A = [1 + I_{\varphi}(k_0 y)]/k_0$ for some positive k_0 (cf. [10]). Then, since the convex function φ is superadditive (cf. [5], 1.19),

$$I_{\varphi}(k_0 y) = I_{\varphi}(k_0 (y - x) + k_0 x) \ge I_{\varphi}(k_0 (y - x)) + I_{\varphi}(k_0 x)$$

and so

$$\begin{split} \|y\|_{\varphi}^{A} &= [1 + I_{\varphi}(k_{0}y)]/k_{0} \geqq [1 + I_{\varphi}(k_{0}(y - x)) + I_{\varphi}(k_{0}x)]/k_{0} \\ &= [1 + I_{\varphi}(k_{0}x)]/k_{0} + I_{\varphi}(k_{0}(y - x))/k_{0} \\ &\geqq \|x\|_{\varphi}^{A} + I_{\varphi}(k_{0}(y - x))/k_{0} > \|x\|_{\varphi}^{A}. \end{split}$$

The last strict inequality follows from the facts that $u_0(\varphi) = 0$ (or equivalently $\varphi(u) > 0$ for u > 0) and $x \neq y$.

Assume now that $u_0(\varphi)>0$ and $u_0(\varphi)< u_\infty(\varphi)$. Take $\varepsilon>0$ such that $(1+\varepsilon)u_0(\varphi)< u_\infty(\varphi)-\varepsilon$ and choose $A\in \Sigma$ with $0<\mu(A)<\infty$ and such that

$$I_{\varphi}((u_{\infty}(\varphi)-\varepsilon)\chi_{A})=\varphi(u_{\infty}(\Phi)-\varepsilon)\mu(A)\leq \varepsilon.$$

Then

$$\begin{split} \|\chi_A\|_\varphi^A &= \inf_{k>0} \frac{1}{k} (1 + I_\varphi(k\chi_A)) \\ & \leq [1 + I_\varphi((u_\infty(\varphi) - \varepsilon)\chi_A)]/(u_\infty(\varphi) - \varepsilon) \\ &= [1 + \varphi(u_\infty(\varphi) - \varepsilon)\mu(A)]/(u_\infty(\varphi) - \varepsilon) \leq (1 + \varepsilon)/(u_\infty(\varphi) - \varepsilon) \\ &< 1/u_0(\varphi), \end{split}$$

and, similarly as in the proof of Theorem 1,

$$\|\chi_B + \chi_{A \setminus B}\|_{\varphi}^A = \|\chi_A\|_{\varphi}^A > \max\{\|\chi_B\|_{\varphi}^A, \|\chi_{A \setminus B}\|_{\varphi}^A\},$$

where $B \subset A, B \in \Sigma$ is such that $\mu(B) = \mu(B \setminus A) = \mu(A)/2$.

This yields that equality (2) does not hold, and the proof is finished.

Remark 1. If $\mu(\Omega)=\infty$, then conditions $u_\infty(\varphi)<\infty$ and $\varphi(u_\infty(\varphi))=0$ from Theorem 2 and $u_0(\varphi)>0$, $u_\infty(\varphi)<\infty$ and $u_0(\varphi)=u_\infty(\varphi)$ from Theorem 3 are equivalent. This means that in the case of nonatomic infinite measure space the Orlicz space with the Luxemburg-Nakano norm is an AM-space if and only if the Orlicz space with the Amemiya norm is also an AM-space, and this is equivalent to the fact that $\varphi(u)=0$ for $0\le u\le u_0$ and $\varphi(u)=\infty$ for $u>u_0$ for some $u_0>0$. The difference can appear only in the case when $\mu(\Omega)<\infty$.

Example 1. For a fixed c > 0 and $p \ge 1$ let

$$\varphi(u) = \left\{ \begin{array}{ll} u^p & \text{for} & 0 \leq u \leq c, \\ \infty & \text{for} & u > c. \end{array} \right.$$

Then
$$u_0(\varphi) = 0, u_{\infty}(\varphi) = c$$
 and $L_{\varphi}([a,b]) = L_p([a,b]) \cap L_{\infty}([a,b]) = L_{\infty}([a,b])$ with $\|x\|_{\varphi} = \max\{\|x\|_p, c^{-1}\|x\|_{\infty}\}$ and $\|x\|_{\varphi}^A = \|x\|_p + c^{-1}\|x\|_{\infty}$.

Note that if $(b-a)c^p \le 1$, then $||x||_{\omega} = c^{-1}||x||_{\infty}$.

3. Orlicz sequence spaces which are AM-spaces. In Orlicz sequence spaces the case of Luxemburg-Nakano norm is easy again.

Theorem 4. An Orlicz sequence space l_{φ} with the Luxemburg-Nakano norm is an AM-space if and only if

(4)
$$u_0(\varphi) > 0, u_\infty(\varphi) < \infty \quad and \quad u_0(\varphi) = u_\infty(\varphi).$$

Proof. Assume that (4) does not hold, i.e., either $u_0(\varphi) = 0$ or $u_0(\varphi) + u_\infty(\varphi)$. If $u_0(\varphi) = 0$, then l_φ is strictly monotone (see [6]), so it cannot be an AM-space. If $u_0(\varphi) + u_\infty(\varphi)$, then there exists u > 0 such that $0 < \varphi(u) < \infty$. Then we can find $v \in [0, u]$ and a natural number n such that $n\varphi(v) = 1$. Define

$$x = (v, \dots, v, 0, 0, \dots), y = (0, \dots, 0, v, \dots, v, 0, 0, \dots).$$

We have $I_{\varphi}(x)=I_{\varphi}(y)=n\varphi(v)=1$ and so $\|x\|_{\varphi}=\|y\|_{\varphi}=1$. Moreover, $I_{\varphi}(x+y)=2n\varphi(v)=2$. Thus $\|x+y\|_{\varphi}>1=\max{(\|x\|_{\varphi},\|y\|_{\varphi})}$, which means that l_{φ} with the Luxemburg-Nakano norm is not an AM-space.

The case of Orlicz sequence space with the Orlicz norm contains more possibilities. Denote by φ'_{+} the right derivative of φ .

Theorem 5. The following are equivalent:

- (i) An Orlicz sequence space l_{φ} with the Orlicz norm is an AM-space.
- (ii) $l_{\varphi} = l_{\infty}$ and there is a constant c > 0 such that $||x||_{\varphi}^{0} = c||x||_{\infty}$ for any $x \in l_{\varphi}$.

- (iii) $u_0(\varphi)\varphi'_+(u_0(\varphi)) \ge 1$.
- (iv) φ^* is linear on the interval $[0, u_1]$, where $\varphi^*(u_1) = 1$.
- (v) $l_{\varphi^*} = l_1$ and there is a constant k > 0 such that $||x||_{\varphi^*} = k||x||_1$ for any $x \in l_{\varphi^*}$.

Proof. (i) \Rightarrow (ii). Note that (i) implies that $u_0(\varphi)>0$, because conversely l_φ is strictly monotone (see [3]), so it cannot be an AM-space. This also follows by the fact that if l_φ is an AM-space, then by virtue of the Fatou property of l_φ , we have $\chi_N\in l_\varphi$, i.e., $l_\infty\subset l_\varphi$ but this yields that $u_0(\varphi)>0$. Indeed, if $(l_\varphi,\|\cdot\|_\varphi^0)$ is an AM-space, then for any $k,n\in N,n>k$, we have

$$\left\| \sum_{i=k}^{n} e_{i} \right\|_{\varphi}^{0} = \left\| \max \left(e_{k}, e_{k+1}, \dots, e_{n} \right) \right\|_{\varphi}^{0}$$
$$= \max \left(\left\| e_{k} \right\|_{\varphi}^{0}, \left\| e_{k+1} \right\|_{\varphi}^{0}, \dots, \left\| e_{n} \right\|_{\varphi}^{0} \right) = c.$$

Therefore by the Fatou property of $\|\cdot\|_{\varphi}^0$, we get that $\sum_{i=k}^{\infty} e_i \in l_{\varphi}$ and $\left\|\sum_{i=k}^{\infty} e_i\right\|_{\varphi}^0 = c$ for any $k \in \mathbb{N}$. Hence we can easily get that

$$\|\chi_A\|_{\varphi}^0 = \left\|\sum_{i\in A} e_i\right\|_{\varphi}^0 = c ext{ for any } A\subset N, A\neq \emptyset.$$

Now, we will show that $l_{\varphi} \subset l_{\infty}$. Let $x \in l_{\varphi}$. If $x \notin l_{\infty}$, then for any $k \in N$ there exist $n_k \in N$ such that $|x_{n_k}| > k$. Therefore, for each $k \in N$,

$$||x||_{\varphi}^{0} \ge |||x_{n_{k}}|e_{n_{k}}||_{\varphi}^{0} > k||e_{n_{k}}||_{\varphi}^{0} = kc.$$

By the arbitrariness of $k \in N$ we get $\|x\|_{\varphi}^{0} = \infty$, a contradiction. Thus $l_{\varphi} \subset l_{\infty}$. We even will show that $l_{\varphi} = l_{\infty}$ and $\|x\|_{\varphi}^{0} = c\|x\|_{\infty}$. For any $x \in l_{\varphi}, x \neq 0$, we have $\|x/\|x\|_{\infty}\|_{\varphi}^{0} \leq \|\chi_{\text{supp}}x\|_{\varphi}^{0} = c$, i.e. $\|x\|_{\varphi}^{0} \leq c\|x\|_{\infty}$.

On the other hand, take any $\lambda \in (0,1)$ and any $x \in l_{\varphi}, x \neq 0$. There exists $n \in N$ such that $|x_n| > \lambda ||x||_{\infty}$, whence

$$||x/||x||_{\infty}||_{\varphi}^{0} \ge ||\lambda e_{n}||_{\varphi}^{0} = \lambda ||e_{n}||_{\varphi}^{0} = \lambda c,$$

and by arbitrariness of $\lambda \in (0,1), \|x\|_{\varphi}^{0} \ge c\|x\|_{\infty}$. Thus $\|x\|_{\varphi}^{0} = c\|x\|_{\infty}$.

- (ii) \Rightarrow (i). This implication is obvious.
- (ii) \Leftrightarrow (v). Since l_{∞} , l_1 and $(l_{\varphi}, \|\cdot\|_{\varphi}^0)$, $(l_{\varphi^*}, \|\cdot\|_{\varphi^*})$ are two couples of mutually dual spaces in the sense of Köthe (for the Köthe duality see e.g. [7]), we deduce that (ii) is equivalent to (v).
 - (iii) \Rightarrow (iv). Let q denote the generalized inverse function of φ'_{+} , i.e.,

$$q(t) = \sup \{s > 0 : \varphi'_+(s) < t\}$$
 with $\sup \emptyset = 0$.

Then we have in our case $q(t) = u_0(\varphi)$ for $t \in [0, \varphi'_+(u_0(\varphi))]$. Therefore $\varphi^*(u) = \int_0^u q(t)dt$ is linear on the interval $[0, \varphi'_+, (u_0(\varphi))]$ and

$$\varphi^*(\varphi'_+(u_0(\varphi))) = u_0(\varphi)\varphi'_+(u_0(\varphi)) \ge 1.$$

Thus (iv) holds with $u_1 \leq \varphi'_+(u_0(\varphi))$.

The implication (iv) \Rightarrow (iii) can be proved analogously.

(iv) \Rightarrow (v). Assumption (iv) gives that $\varphi^*(u) = u/u_1$ for $u \in [0, u_1]$. We will show that if $x \in l_{\varphi^*}, x \neq 0$, then $\|x\|_{\varphi^*} = u_1^{-1} \|x\|_1$.

We have $I_{\varphi^*}(x/\|x\|_{\varphi^*}) \le 1$. This implies $\varphi^*(|x_n|/\|x\|_{\varphi^*}) \le 1$ for all $n \in N$, and so $|x_n|/\|x\|_{\varphi^*} \le u_1$, which gives $\varphi^*(|x_n|/\|x\|_{\varphi^*}) = |x_n|/(\|x\|_{\varphi^*}u_1)$. By summation we obtain

$$1 \ge I_{\varphi^*}(x/\|x\|_{\varphi^*}) = \sum_{n=1}^{\infty} \varphi^*(|x_n|/\|x\|_{\varphi^*})$$
$$= \sum_{n=1}^{\infty} |x_n|/(\|x\|_{\varphi^*}u_1) = \|x\|_1/(\|x\|_{\varphi^*}u_1),$$

i.e. $||x||_{\varphi^*} \ge ||x||_1/u_1$.

On the other hand,

$$I_{\varphi^*}(xu_1/\|x\|_1) = \sum_{n=1}^{\infty} \varphi^*(|x_n|u_1/\|x\|_1) = \sum_{n=1}^{\infty} |x_n|/\|x\|_1 = 1,$$

and so $||xu_1/||x||_1||_{\varphi^*} \le 1$, which gives $||x||_{\varphi^*} \le ||x||_1/u_1$. Therefore,

$$||x||_{\varphi^*} = ||x||_1/u_1.$$

(v) \Rightarrow (iv). Note first that condition (v) implies that there is $u_1 > 0$ such that $\varphi^*(u_1) = 1$. Denote $\Psi = \varphi^*$ and assume for the contrary that $\Psi(u_\infty(\Psi)) < 1$.

Defining $x=(u_\infty(\Psi),0,0,\ldots)$, we get $I_\Psi(x)=\Psi(u_\infty(\Psi))<1$ and for any $\lambda\in(0,1)$, we have $I_\Psi(x/\lambda)=\Psi(u_\infty(\Psi)/\lambda)=\infty$, whence $\|x\|_\Psi=1$. Let b>0 be such that $\Psi(u_\infty(\Psi))+\Psi(b)\leqq 1$ and define $y=(u_\infty(\Psi)),b,0,0,\ldots)$. Then $\|y\|_\Psi=1$ and $\|x\|_1=u_\infty(\Psi),\|y\|_1=u_\infty(\Psi)+b>u_\infty(\Psi)$, and so l_Ψ and l_1 cannot be isometric under the isometry λ Id for some $\lambda>0$. So, we have proved that condition (v) implies that $\Psi(u_\infty(\Psi))\geqq 1$. Assume without loss of generality that $\Psi(1)=1$ (since we can take a new function $\phi(u)=\Psi(uu_1)$ for which $\phi(1)=1$ and $\|\cdot\|_\phi=u_1\|\cdot\|_\Psi$). Then we need to prove that Ψ is linear on the interval [0,1]. Assume for the contrary that Ψ is not linear on the interval [0,1]. Then $\Psi(1/2)<\Psi(1)/2=1/2$. Therefore, defining $x=(1/2,1/2,0,0,\ldots)$, we get $\|x\|_1=1$ but $I_\Psi(x)=2\Psi(1/2)<1$, whence it follows that $\|x\|_\Psi<1$. This shows that l_Ψ is not then isometric to l_1 under the identity mapping. It is obvious that if $\Psi(1)=1$ and Ψ is linear on [0,1], then $\|x\|_\Psi=\|x\|_1$ for any $x\in l_\Psi$. We can prove in the same way that $\|x\|_\Psi=k\|x\|_1$ for any $x\in l_\Psi$ if and only if $\Psi(1/k)=1$ and Ψ is linear on the interval [0,1/k].

Example 2. For a fixed c>1 let $\varphi(u)=0$ for $0\leq u\leq 1/c$, $\varphi(u)=cu-1$ for $1/c\leq u\leq 1$ and $\varphi(u)=\infty$ for u>1. Then $l_{\varphi}=l_{\infty}$ with $\|x\|_{\varphi}^{A}=c\|x\|_{\infty}$. On the other hand, for any nonempty finite subset A of N we have $\|\chi_A\|_{\varphi}=\max\{1,c|A|/(1+|A|)\}$, which shows that l_{φ} with the Luxemburg-Nakano norm is not an AM-space.

Remark 2. Let us define for any Orlicz function φ , the subspace E_{φ} of L_{φ} as the closure of the set of simple functions in the space L_{φ} . In the sequence case let us define h_{φ} to be the closure in l_{φ} of the space of all sequences with finite number of coordinates different from zero. Consider the spaces E_{φ} and h_{φ} with the Luxemburg-Nakano and the Amemiya norm induced from L_{φ} (resp. l_{φ}). These norms are order continuous in E_{φ} and h_{φ} but they do not have the Fatou property. Sine l_{∞} is not order continuous the equalities $E_{\varphi} = L_{\infty}$ and

 $l_{\varphi}=l_{\infty}$ are impossible. Note that $l_{\infty}=l_{\varphi}$ and $c_0=h_{\varphi}$ isometrically when $\varphi(u)=0$ for $0\leq u\leq 1$ and $\varphi(u)=\infty$ for $u\leq 1$. It is obvious that both l_{∞} and c_0 are AM-spaces. So, it is natural to ask when E_{φ} and h_{φ} are AM-spaces. Note that if we replace equalities $E_{\varphi}=L_{\infty}$ and $l_{\varphi}=l_{\infty}$ by the inclusions $E_{\varphi}\subset L_{\infty}$ and $l_{\varphi}\subset l_{\infty}$, respectively, then all the theorems remain valid for E_{φ} and h_{φ} in place of L_{φ} and l_{φ} , respectively. The sufficiency is obvious and in the necessity part we always constructed simple functions or sequences with finite number of coordinates different from zero, which were in fact in E_{φ} or h_{φ} , respectively.

References

- K. BARON and H. HUDZIK, Orlicz spaces which are L^p-spaces. Aequationes Math. 48, 254–261 (1994).
- [2] H. HUDZIK, Orlicz spaces of essentially bounded functions and Banach-Orlicz algebras. Arch. Math. 44, 535-538 (1985).
- [3] H. Hudzik and W. Kurc, Monotonicity properties of Musielak-Orlicz spaces and best approximation in Banach lattices. J. Approx. Theory, to appear.
- [4] H. HUDZIK and L. MALIGRANDA, Amemiya norm and Orlicz norm are equal, to appear.
- [5] M. A. Krasnosel'skii and J. B. Rutickii, Convex Functions and Orlicz Spaces. Groningen 1961.
- [6] W. Kurc, Strictly and uniformly monotone Musielak-Orlicz spaces and applications to best approximation. J. Approx. Theory 69, 173-187 (1992).
- [7] J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach Spaces II. Function Spaces. Berlin-Heidelberg-New York 1979.
- [8] L. Maligranda, Orlicz Spaces and Interpolation. Seminars in Math. 5, Campinas 1989.
- [9] J. MUSIELAK, Orlicz Spaces and Modular Spaces. LNM 1034. Berlin-Heidelberg-New York 1983.
- [10] M. M. RAO and Z. D. REN, Theory of Orlicz Spaces. Pure Appl. Math. 146, New York 1991.

Eingegangen am 2. 7. 1996*)

Anschriften der Autoren:

C. E. Finol
Departamento de Matemáticas
Facultad de Ciencias
Universidad Central de Venezuela
Apartado 20513
Caracas 1020-A
Venezuela

H. Hudzik Faculty of Mathematics and Computer Science Adam Mickiewicz University Matejki 48/49 60-769 Poznań Poland L. Maligranda Department of Mathematics Luleå University S-971 87 Luleå Sweden

^{*)} Die vorliegende Fassung ging am 14. 1. 1997 ein.