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In the theory of integral operators with positive ker-
nels, the Schur test or, differently, the Schur extrapola-
tion theorem is well known (see, e.g., [1, p. 37; 2,
p. 42]); it asserts that an integral operator 
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if and only if there exists a positive almost everywhere
finite function 

 

u

 

(

 

t

 

)

 

 such that the operator is bounded in

the pair 
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. In recent years, in connection with various prob-
lems of analysis (in particular, the quite elementary proof
of the Jones theorem on the factorization of the Macken-
haupt 

 

A

 

p

 

-condition found by Rubio de Francia [3]), the
interest in extrapolation theorems has increased signif-
icantly [3–6].

In extrapolation theorems, the passage from the
Lebesgue space 

 

L

 

p

 

 to the Orlicz spaces seems to be nat-
ural. But it turns out that spaces far from the scale of the

 

L

 

p

 

 spaces cannot be taken. Even for the classical Hardy
operator, the extrapolation theorem in the class of
Orlicz spaces is not true. It also turns out that the exten-
sion of the extrapolation theorem in 

 

L

 

p

 

 from the class of
integral operators with nonnegative kernels to the class
of sublinear operators is impossible too.

We suggest a new extrapolation theorem for some

class of operators where the Lebesgue spaces  and

 are replaced by the Lorentz space 
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*

 

 and the
Marcinkiewicz space 

 

M
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, which are extremal in the
class of symmetric spaces.
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In what follows, we assume that all spaces under

consideration have the Fatou property, i.e., the unit ball
in each space is closed with respect to convergence in
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 [7].
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(weight). If 
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ideal space with norm determined by the equality
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By 
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, we denote the set of continuous functions 

 

ϕ

 

:

 

 → 

 

R

 

+

 

 that are concave and positive homogeneous of
the first degree. Suppose that 
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Calderón–Lozanovskii construction) consists of all 

 

x

 

 ∈

 

S(µ) with finite norm

The construction ϕ(X0, X1) was introduced by Calderón
[8] for ϕ(t, s) = tθs1 – θ and by Lozanovskii [9] for ϕ ∈
U; it is closely related to a method for constructing
Orlicz spaces. In particular, if ϕ(t, s) = tθs1 – θ (0 < θ < 1),
then the Lebesgue spaces satisfy the equality

(L1)θ(L∞)1 – θ = Lp θ = ; if Φ(t) is a convex N-func-

tion and ϕ(t, 1) = Φ–1(t) (t > 0), then we obtain the Orlicz
space ϕ(L1, L∞) = LΦ. We mention that the construction
ϕ(X0, X1) has the interpolation property [10–12].

Let us reformulate the first extrapolation theorem of
Schur in the modern language.

Suppose that T is an integral operator with a nonne-
gative kernel and 1 < p < ∞. Then, the following condi-
tions are equivalent:

(i) for all x from the domain,
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where C is a constant not depending on x;
(ii) there exist two weight functions u(t) and v(t)

such that, for almost all t ∈ Ω,

(2)

and for all x from the domain,

(3)

where C1 is a constant not depending on x.

Note at once that the implication (2), (3) → (1) fol-

lows from the equality ( )θ( )1 – θ = Lp θ =  and

the interpolation theorem for positive operators; it is the
implication (1) → (2), (3) that is the content of the
Schur theorem.

First, consider the possibility of extending the
extrapolation theorem by replacing the class of integral
operators with positive kernels by a larger class.

Let K denote the class of sublinear operators. We say
that an operator T: S(µ) → S(µ) is sublinear (T ∈ K) if
|T(x + y)(t)| ≤ T |x|(t) + T |y |(t) and |T(λx)(t)| ≤ λ|Tx(t)|
(λ ≥ 0).

For a T ∈ K, an operator T ' ∈ K is said to be associ-
ated to T on the scale of spaces Lp if, for all 1 ≤ p ≤ ∞
and all weights u(t), the operator T:  →  is

bounded if and only if T ':  →  also is bounded and

where C > 0 is a constant not depending on u(t) and p

here,  +  = 1 with the usual modification for

p = ∞ .

Note that T ' is determined nonuniquely. If T is a lin-
ear operator, then as T ' we can take the operator λ|T*|,
where λ ≠ 0, T* is the adjoint operator, and |T*|x(t) =
|T*x(t)|.

Theorem 1. Let 1 < p < ∞. Suppose that T ∈ K and
a T ' ∈ K exists. The operator T is bounded in Lp if and
only if there exists a positive almost everywhere finite
function u(t) such that the operator T is bounded in the
pair

where v = . Thus, if T, T ' ∈ K, then the extrapo-
lation theorem holds for T.
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Now, we shall show that, if T ∈ K has no T ' ∈ K,
then the extrapolation theorem may be not valid.

Suppose that x: R+ → R is a Lebesgue measurable
function and x* is a nonincreasing permutation of the
function |x | (see [7] for the definition and properties). A
sublinear Hardy operator is defined by the equality

Note at once that the sublinear Hardy operator H*x(t) is
bounded in all spaces Lp(R+) with 1 < p ≤ ∞.

Theorem 2. Suppose that 1 < p < ∞, θ = . There

exist no weight functions u and v such that

almost everywhere on R+ and the sublinear Hardy oper-
ator H*x(t) is bounded in the pair

Thus, the Schur extrapolation theorem is not valid for
the sublinear Hardy operator H*.

A natural replacement in the Schur theorem is the
change of the Lebesgue space L1 for a symmetric space
X and of the space Lp for the space X(p) = (X)θ(L∞)1 – θ

θ = . Recall [13] that the space X(p) is called the

p-convexification of the space X. Let us discuss the pos-
sibilities suggested by such a replacement.

Recall that a Banach space X on (0, ∞) is said to be
symmetric [7] if x ∈ X and ||x ||X ≤ ||y ||X whenever x*(t) ≤
y*(t) for all t > 0 and y ∈ X. The fundamental function
ϕX(t) of the space X is defined by the equality ϕX(t) =
||χ(0, t)||X (t > 0) (χD is the characteristic function of the
set D).

For a given λ > 0, the dilation operator σλ is defined
by the equality σλx(t) = x(t/λ). It is well known [7] that,
for any symmetric space X, the inequality ||σλ||X → X ≤
max(1, λ) holds. The Boyd indices for X are defined by
the equalities [7, 13]

Generally, 0 ≤ αX ≤ βX ≤ 1.

Theorem 3. Suppose that 0 < θ < 1, X is a symmetric
space on (0, ∞), and weight functions Ë and v satisfy
the equality
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for t > 0. The sublinear Hardy operator H* is bounded
in the pair

,

if and only if u(t) ≈ v(t) ≈ const and βX < 1.

Corollary 1. Let X be a symmetric space on (0, ∞)
with βX = 1. Then, for any 1 < p < ∞, there exist no
weights u and v such that the operator H* is bounded
in the pair

and

Thus, the Schur extrapolation theorem for the sublinear
Hardy operator H* is not valid for the space X(p).

Now, consider the possibility of extending the
extrapolation theorem by replacing the Lebesgue space
Lp by the Orlicz space LΦ.

We set

that is, H is the classical Hardy operator, which is
bounded in any reflexive Orlicz space LΦ [7].

Theorem 4. There exist reflexive Orlicz spaces LΦ

on (0, ∞) for which there exist no weights u0, u1, v0, v1
on (0, ∞) satisfying the relations

and such that the Hardy operator H is bounded in the
pair

In particular, the Schur extrapolation theorem for such
reflexive Orlicz spaces is not valid for the Hardy oper-
ator H.

An essential role in the proof of Theorem 4 is played
by the theorem on representation of spaces proved
in [14].

Let us give several examples of Orlicz spaces for
which Theorem 4 holds.

H*: Xv Xv , H*: Lu
∞ Lu

∞→ →

H*: Xv Xv , H*: Lu
∞ Lu

∞→ →

Xv( )
1
p
---

Lu
∞( )

1 1
p
---–

X p( ).=

Hx t( ) 1
t
--- x s( ) s,d

0

t

∫=

ϕ Lu0

1 Lu1

∞,( ) ϕ L1 L∞,( ) LΦ,= =

ϕ Lv 0

1 Lv 1

∞,( ) ϕ L1 L∞,( ) LΦ= =

H: Lu0

1 Lv 0

1 , H: Lu1
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Example 1. Suppose that 0 < θ0 < θ1 < 1 and 1 = a1 <

a2 < a3 < … is a sequence of numbers such that 

increases to infinity. We set ϕ1(t) =  for 0 ≤ t ≤ 1 and

Then, ϕ1(t) is a quasi-concave function on (0, ∞). It is
well known [7] that there exists a concave function 

such that ϕ1(t) ≤ (t) ≤ 2ϕ1(t). A direct calculation

shows that (L1, L∞) is a reflexive Orlicz space for
which Theorem 4 holds.

Example 2. For small α > 0 and α < θ ≤ 1 –

α, we set

Then, ϕ2(t) is a quasi-concave function on (0, ∞). A
direct calculation shows that (L1, L∞) is a reflexive
Orlicz space for which Theorem 4 holds.

Example 3 [12, pp. 93–94]. For a k > 0 and a p >

k + 2, we set

Then, Φ(t) is an N-function convex on (0, ∞) and LΦ is
a reflexive Orlicz space for which Theorem 4 holds.

All theorems of the type of the Schur extrapolation
theorem factorize operators through L1 and L∞. Below,
we show that, for a certain class of operators, the Leb-

esgue spaces  and  in the extrapolation theorem
can be replaced by the Lorentz and Marcinkiewicz
spaces, respectively.

We say that T ∈ K* if T ∈ K and there exists a con-
stant C > 0 such that

(4)

for all t > 0 and all Lebesgue measurable functions x on
(0, ∞) for which (4) makes sense.
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Examples of T ∈ K* are the sublinear Hardy opera-

tor H*x(t) = (s)ds, the Hardy operator Hx(t) =

(s)ds, the operator M of maximal function calcu-

lated over cubes, and the integral operator Tx(t) =

(t, s)x(s)ds with nonnegative kernel k(t, s) ≥ 0

decreasing with respect to each variable.
Recall the definition of the Lorentz space Λu* and

the Marcinkiewicz space Mu* (see, e.g., [7]). For a
weight function u on (0, ∞), the Lorentz space Λu* is the
space generated by the norm

and the Marcinkiewicz space Mu* is generated by the
norm

Theorem 5. Let 1 < p < ∞. Suppose that T ∈ K* and

T ' ∈ K exists. Then the operator T: Lp → Lp is bounded
if and only if there exists a weight u ∈ Lpp' such that, for
any t > 0,

and the operator T is bounded in the pair of spaces

The proof of the only if part essentially uses Theo-
rem 1 and various properties of the Hardy operator, and
in the proof of the if part, an important role is played by

the real interpolation method and the results obtained
in [15].
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