A note on the distribution of residual autocorrelations in \textit{VARMA}(p,q) models

Huong Nguyen Thu

Abstract

This paper generalizes the distribution of residual autocovariance matrices in \textit{VARMA}(p,q) models obtained previously in Hosking (1980). A new simplified version of the multivariate relation between sample correlation matrix of the errors and its residuals is also established. The modifications are effective tools for identifying and dealing with the curse of dimensionality in multivariate time series.

Mathematics Subject Classification: 62M10; 62H10; 60E05

Keywords: Asymptotic distribution; Covariance matrix; Correlation matrix; Multivariate time series; \textit{VARMA}(p,q) models

1 Introduction

Consider a causal and invertible \(m\)–variate autoregressive moving average

1 Department of Business Administration, Technology and Social Sciences, Luleå University of Technology, 971 87 Luleå, Sweden. E-mail: huong.nguyen.thu@ltu.se.
Department of Mathematics, Foreign Trade University, Hanoi, Vietnam.

Article Info: Received : May 12, 2015. Revised : June 10, 2015.
Published online : September 1, 2015
VARMA\((p,q)\) process

\[
\Phi(B)(X_t - \mu) = \Theta(B)\varepsilon_t ,
\]

where \(B\) is backward shift operator \(BX_t = X_{t-1}\). \(\mu\) is the \(m \times 1\) mean vector and \(\{\varepsilon_t : t \in \mathbb{Z}\}\) is a zero mean white noise sequence \(WN(0, \Sigma)\), where \(\Sigma\) is a \(m \times m\) positive definite matrix. Additionally, \(\Phi(z) = I_m - \Phi_1 z - \cdots - \Phi_p z^p\) and \(\Theta(z) = I_m + \Theta_1 z + \cdots + \Theta_q z^q\) are matrix polynomials, where \(I_m\) is the \(m \times m\) identity matrix, and \(\Phi_1, \ldots, \Phi_p, \Theta_1, \ldots, \Theta_q\) are \(m \times m\) real matrices such that the roots of the determinantal equations \(|\Phi(z)| = 0\) and \(|\Theta(z)| = 0\) all lie outside the unit circle. We also assume that both \(\Phi\) and \(\Theta\) are non-null matrices, and that the identifiability condition of \([1]\), \(r(\Phi, \Theta) = m\), holds.

Let \(P = \max(p,q)\) and define the \(m \times mp\) matrix \(\Phi = (\Phi_1, \ldots, \Phi_p)\), the \(m \times mq\) matrix \(\Theta = (\Theta_1, \ldots, \Theta_q)\), and the \(m^2(p+q) \times 1\) vector of parameters \(\Lambda = \text{vec}(\Phi, \Theta)\). The residual vectors \(\hat{\varepsilon}_t, t = 1, \ldots, n\), are defined recursively, in the form

\[
\hat{\varepsilon}_t = (X_t - \bar{X}_n) - \sum_{i=1}^{p} \hat{\Phi}_i (X_{t-i} - \bar{X}_n) - \sum_{j=1}^{q} \hat{\Theta}_j \hat{\varepsilon}_{t-j}, \quad t = 1, \ldots, n ,
\]

with the usual conditions \(X_t - \bar{X}_n \equiv 0 \equiv \hat{\varepsilon}_t\), for \(t \leq 0\). In practice, only residual vectors for \(t > P = \max(p,q)\) are considered. Define \(m \times m\) sample error covariance matrix at lag \(k\) with the notation \(C_k = (1/n) \sum_{t=1}^{n-k} \varepsilon_t \varepsilon_{t+k}'\), \(0 \leq k \leq n - 1\). Similarly, the \(m \times m\) \(k\)th residual covariance matrix is given by \(\hat{C}_k = (1/n) \sum_{t=k}^{n-1-k} \hat{\varepsilon}_t \hat{\varepsilon}'_{t+k}\), \(0 \leq k \leq n - (P + 1)\). Following \([2]\), let \(R_k = C_k' C_{-1}^{0}\) be the \(k\)th sample correlation matrix of the errors \(\varepsilon_t\). Its residual analogue is given by \(\hat{R}_k = \hat{C}_k' \hat{C}_{-1}^{0}\).

Properties of the residual covariance matrices and correlation matrices and their practical use in multivariate Portmanteau statistic have been considered by many authors, see, for example, \([2]\), \([3]\), \([4]\), \([5]\). The linear relation between the residual and error covariance matrices in \([3]\) is highly dimensional. For convenience in applications, a new representation is suggested in section 2. To this end, this paper uses the family of statistics proposed in \([6]\). The orthogonal projection matrix in \([3]\) is also generalized. The advantage of the new tool lies in standard properties of the trace operator. The associated correlation matrix of the residuals is useful in identification and diagnostic checking. Section 3 examines the large sample distribution of the transformed multivariate residual autocorrelations. Section 4 concludes.
2 Distribution of residual autocovariance

This section examines the asymptotic properties of residual autocovariance. We start by considering the \(m \times m \) coefficients of the series expansions \(\Phi^{-1}(z)\Theta(z) \)

\[
= \sum_{j=0}^{\infty} \Omega_j z^j \quad \text{and} \quad \Theta^{-1}(z) = \sum_{j=0}^{\infty} L_j z^j
\]

where \(\Omega_0 = L_0 = I_m \). Define also the collection of matrices \(G_k = \sum_{j=0}^{k} (\Sigma \Omega_j \otimes L_{k-j}) \) and \(F_k = \Sigma \otimes L_k, \quad k \geq 0 \).

By convention, \(G_k = F_k = 0 \) for \(k < 0 \), it follows that

\[
\hat{C}^\prime_k = C^\prime_k - \sum_{i=1}^{p} \sum_{r=0}^{k-i} L_{k-i-r} (\hat{\Phi}_i - \Phi_i) \Omega_r - \sum_{j=1}^{q} L_{k-j} (\hat{\Theta}_j - \Theta_j) \Sigma + O_P\left(\frac{1}{n}\right).
\]

This construction is due to [3, p.603].

Set the sequence of \(m^2 M \times m^2 (p+q) \) matrices \(Z_M = (X_M, Y_M), \quad M \geq 1 \), where

\[
X_M = \begin{pmatrix}
G_0 & 0 & 0 & \cdots & 0 \\
G_1 & G_0 & 0 & \cdots & 0 \\
G_2 & G_1 & G_0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
G_{M-1} & G_{M-2} & G_{M-3} & \cdots & G_{M-p}
\end{pmatrix},
\]

and

\[
Y_M = \begin{pmatrix}
F_0 & 0 & 0 & \cdots & 0 \\
F_1 & F_0 & 0 & \cdots & 0 \\
F_2 & F_1 & F_0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
F_{M-1} & F_{M-2} & F_{M-3} & \cdots & F_{M-q}
\end{pmatrix}.
\]

Put the \(Mm^2 \times Mm^2 \) block diagonal matrix \(W = \text{diag}(C_0 \otimes C_0, \cdots, C_0 \otimes C_0) = I_M \otimes C_0 \otimes C_0 \). The residual counterpart is \(\hat{W} = I_M \otimes \hat{\Sigma} \otimes \hat{\Sigma} \). For convenience, consider \(Mm^2 \times 1 \) random vectors \(\hat{H}_M = [\text{vec}(\hat{C}_1^\prime), \ldots, \text{vec}(\hat{C}_M^\prime)]' \) and \(H_M = [\text{vec}(C_1^\prime), \ldots, \text{vec}(C_M^\prime)]' \) and \(W = I_M \otimes \Sigma \otimes \Sigma \). After taking vecs in both sides of (3), hence, for each \(M \geq 1 \),

\[
\hat{H}_M = H_M - Z_M \text{vec}[(\hat{\Phi}, \hat{\Theta}) - (\Phi, \Theta)] + O_P\left(\frac{1}{n}\right).
\]

According to [3], the below orthogonality condition holds.

\[
Z'_M W^{-1} \hat{H}_M = O_P(1/n).
\]
Combining (4) with (5), Hosking [3] concluded that

\[\hat{W}^{-1/2}\hat{H}_M = (I_{Mm^2} - P_H)W^{-1/2}H_M + O_P\left(\frac{1}{n}\right), \]

where \(P_H = W^{-1/2}Z_M(Z_M W^{-1/2}Z_M)^{-1}Z_M W^{-1/2} \) is the \(Mm^2 \times Mm^2 \) orthogonal projection matrix onto the subspace spanned by the columns of \(W^{-1/2}Z_M \).

In practice, the relation (6) is difficult to deal with as \(m \geq 5 \) because of the curse of dimensionality. As a solution, we define a \(Mm^2 \times Mm^2 \) matrix \(Q_M = (I_M \otimes a')(I_M \otimes a) \), where \(a = \text{vec}(I_m)/\sqrt{m} \). Put also \(Mm^2 \times Mm^2 \) matrix \(P_M = (I_M \otimes a')W^{-1/2}Z_M(W^{-1/2}Q_M W^{-1/2}Z_M)^{-1}Z_M W^{-1/2}(I_M \otimes a) \). Note that \(P_M \) is the orthogonal projection matrix onto the subspace spanned by the columns of \((I_M \otimes a')W^{-1/2}Z_M \).

Remark 2.1. The matrices \(P_H \) and \(P_M \) are idempotent.

Lemma 2.2. Suppose that the error vectors \(\{\varepsilon_t\} \) are i.i.d. with \(E[\varepsilon_t] = 0 \); \(\text{Var}[\varepsilon_t] = \Sigma > 0 \); and finite fourth order moments \(E[\|\varepsilon_t\|^4] < +\infty \). Then, as \(n \rightarrow \infty \),

\[Q_M \hat{W}^{-1/2}\hat{H}_M = (I_{Mm^2} - P_M)W^{-1/2}H_M + O_P\left(\frac{1}{n}\right). \]

Proof. We begin by recalling the result in [6] that

\[\sqrt{n}H_M \xrightarrow{D} W^{1/2}[V_1, \ldots, V_M]', \quad k \geq 1, \]

where \(V_j, j = 1, \ldots, k \) are i.i.d. \(N_{m^2}(0, I_{m^2}) \). See more details in [6, Lemma 3.1].

From (8), under the assumptions of Lemma 2.2, we obtain

\[\sqrt{n}Q_M W^{-1/2}H_M \xrightarrow{D} Q_M W^{1/2}[V_1, \ldots, V_M]', \quad k \geq 1. \]

Notice first that

\[Q_M \hat{W}^{-1/2}\hat{H}_M = Q_M W^{-1/2}\hat{H}_M + Q_M(\hat{W}^{-1/2} - W^{-1/2})\hat{H}_M. \]

As a consequence of (3), (4) and (9), the second summand of (10) is \(O_P(1/n) \). We can rewrite (5) as

\[Q_M Z_M W^{-1/2}\hat{H}_M = O_P\left(\frac{1}{n}\right). \]
Taking into account that \hat{C}_0' is consistent for the matrix Σ, hence $W^{-1/2} - W^{-1/2} = O_P(1/\sqrt{n})$. Those results combined with (4) and (9) lead to (7) and Lemma 2.2 follows.

Next section refers to a simplified multivariate linear relation between the residual autocorrelation matrices and the error ones.

3 Distribution of residual autocorrelation

Define $M \times 1$ random vectors

$$\hat{T}_M = [\text{tr}({\hat{R}_1}), \ldots, \text{tr}({\hat{R}_M})]' \tag{12}$$

and

$$T_M = [\text{tr}(R_1), \ldots, \text{tr}(R_M)]' . \tag{13}$$

Theorem 3.1 provides a solution to the highly dimensional relation (7).

Theorem 3.1. Under the assumptions of Lemma 2.2, as $n \rightarrow \infty$,

$$\frac{1}{\sqrt{m}} \hat{T}_M = (I_M - P_M) \frac{1}{\sqrt{m}} T_M + O_P(\frac{1}{n}). \tag{14}$$

Proof. We introduce the notion of a linear relationship for dimension-reduction purpose, following [6],

$$\frac{1}{\sqrt{m}} T_M = (I_M \otimes a') W^{-1/2} H_M , \quad M \geq 1 . \tag{15}$$

Its residual version is given by

$$\frac{1}{\sqrt{m}} \hat{T}_M = (I_M \otimes a') \hat{W}^{-1/2} \hat{H}_M , \quad M \geq 1 . \tag{16}$$

Combining (7), (15) and (16) finishes the proof of (14).

The objective now is to establish the large sample distribution of the random vector \hat{H}_M.

Theorem 3.2. Under the assumptions of Lemma 2.2, as $n \rightarrow \infty$,

$$\sqrt{n} Q_M \hat{W}^{-1/2} \hat{H}_M \overset{D}{=} (I_Mm^2 - P_M)N_{Mm^2}(0, I_{Mm^2}) . \tag{17}$$
Proof. The proof is completed by using (7) and (9).

Let us mention an important consequence of the Theorem 3.2. It is a practical tool to construct a goodness of fit process for selecting a proper time series model.

4 Conclusions

The main results of this paper were announced in Lemma 2.2, Theorems 3.1 and 3.2. Goodness of fit methods make those properties more attractive in practice especially for large time series datasets.

ACKNOWLEDGEMENTS. This work was carried out while the author was a PhD student at Department of Statistics, Universidad Carlos III de Madrid. I am very grateful to Prof. Santiago Velilla for his sharing, encouragement and guidance as my adviser.

References

