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[1] A Monte Carlo method is used to study the propagation
of temperature uncertainties into relative humidity with
respect to ice (RHi) calculated from specific humidity. For a
flat specific humidity distribution and Gaussian temperature
uncertainties the resulting RHi distribution drops
exponentially at high RHi values—much slower than a
Gaussian. This agrees well with the RHi distribution
measured by the Microwave Limb Sounder (MLS), which
means that such remotely measured RHi distributions can
be explained, at least partly, by temperature uncertain-
ties. INDEX TERMS: 1640 Global Change: Remote sensing;

1655 Global Change: Water cycles (1836); 1694 Global Change:

Instruments and techniques; 3399 Meteorology and Atmospheric

Dynamics: General or miscellaneous. Citation: Buehler, S., and

N. Courcoux, The impact of temperature errors on perceived

humidity supersaturation, Geophys. Res. Lett., 30(14), 1759,

doi:10.1029/2003GL017691, 2003.

1. Introduction

[2] The equilibrium vapor pressure of water molecules
over a plane surface of liquid water (ew) or ice (ei) depends
only on temperature (T) (Strictly, this is only true for water
vapor in the pure phase. If water vapor is mixed in air, ew and
ei are slightly enhanced. However, the enhancement is below
0.5% according to Sonntag [1994], and hence can be safely
neglected for the purpose of this paper.) There are a number
of empirical formulas in use to calculate ew(T ) and ei(T ).
The calculations presented here are based on the formulas by
Sonntag [1994], but differences between the different param-
eterizations are small and have no impact on the results.
Figure 1 shows ew(T ) and ei(T ). The curves separate at
T = 0�C, at higher temperature ei(T ) is not defined. Note
the strong and non-linear temperature dependence.
[3] The equilibrium water vapor pressure is used to

define relative humidity with respect to liquid water
(RHw) and ice (RHi):

RHw ¼ e

ew Tð Þ RHi ¼
e

ei Tð Þ ð1Þ

where e is the actual water vapor pressure. Because ei is
lower than ew, RHi will always be higher than RHw. Thus, it
is possible that RHi exceeds 100%, while RHw is still below
100%.
[4] While RHw > 100% does not occur in the Earth’s

atmosphere, RHi > 100% does occur quite frequently, as is
well documented for example by Wallace and Hobbs

[1977]. The phenomenon can be explained with the absence
of ice nuclei. Such supersaturation with respect to ice
recently has received a lot of attention [Spichtinger et al.
[2002b], Gierens et al. [1999], Jensen et al. [2001]]. As an
example, Figure 2 shows a distribution of RHi at 215 hPa
derived from the UARS MLS UTH data set, which has been
described by Read et al. [2001]. This figure is roughly the
same as Figure 1 in Spichtinger et al. [2002b].
[5] A closer inspection of Figure 2 reveals that some of

the data points show even supersaturation with respect to
liquid water. Consider the ratio of ew(T)/ei(T), which is
displayed in Figure 3. At a temperature of 220 K, consistent
with the chosen altitude, the ratio is approximately 1.7,
which means that RHi values above 170% are above liquid
water saturation and hence rather unlikely. It should be
noted that Read et al. [2001] themselves recommend to set
data above 120% RHi to 100%, for completely different
reasons related to the radiative effect of cirrus clouds.
[6] Ignoring these problems and using the data anyway

for arguments sake, one can say that the problem with the
distribution shown in Figure 2 is that all remote sensing
methods rely on the fundamental law stating that the amount
of radiation absorbed, emitted, or scattered is proportional to
the amount of the interacting substance. (For extinction, this
is stated by the Lambert-Beer law.) Hence, any remote
sensing method will not measure relative humidity, but
absolute humidity. An absolute humidity parameter is for
example the specific humidity (q), defined as

q ¼ mw

mw þ ma

kg

kg

� �
ð2Þ

where mw is the mass of water molecules in a unit volume,
and ma is the mass of other air molecules.
[7] To convert from q to RHi, one must know the

equilibrium water vapor pressure ei(T ), hence the temper-
ature T. However, T will generally be known only with a
limited accuracy. The purpose of this study is to demon-
strate how uncertainties in T will lead to apparent supersat-
uration, even if there is no true supersaturation.

2. Methodology

[8] A Monte Carlo approach was chosen for the study.
This has the advantage that non-Gaussian statistics and non-
linearities can be correctly taken into account. As a simplistic
example, assume that the true RHi is 100%. Assuming fixed
temperature T and pressure p, this can be converted to a q
value. The T uncertainty is modeled by creating a random
ensemble of T ( j) values representing a Gaussian distribution
around the correct T (Figure 4, plot a). The index j runs from
1 to the total number of values in the ensemble (N), in this
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case N = 107. The ensemble size N just has to be large
enough to obtain a smooth distribution. A Gaussian
distribution was chosen because in the absence of other
information this can be taken as representative for typical
measurement errors.
[9] The temperature ensemble can be used to simulate an

ensemble

RH
jð Þ

i ¼ e qð Þ
ei T jð Þð Þ

ð3Þ

of measured RHi values (Figure 4, plot b). Note that the
distribution of the RHi

( j) ensemble is not Gaussian, but has
a much higher tail towards high RHi values.
[10] In contrast, Gaussian errors on the measurement of q

will lead to also Gaussian errors on the RHi, as demon-
strated by Figure 4, plots c and d.

3. Setup

[11] A very simple setup was chosen for the study,
because the aim is to illustrate a fundamental point, not to

be as realistic as possible. Pressure and true temperature are
assumed to be fixed at p = 215 hPa and T = 220 K,
consistent with average midlatitude upper troposphere con-
ditions. This is the same pressure level that was used in
Spichtinger et al. [2002b]. For these conditions RHi = 100%
corresponds to q = 7.6742 � 10�5 kg/kg.
[12] The true RHi distribution was assumed to be flat for

RHi � 100% and zero for RHi > 100. (All RHi values below
100% are equally likely.) Although a flat distribution is a
rather simplistic assumption, it is well supported by radio-
sonde data, as shown in Figure 5. The sharp cut at
RHi = 100% is for arguments sake only, in reality there will
be some supersaturation.

Figure 1. Equilibrium water vapor pressure over liquid
water (solid line) and over ice (dashed line) as a function of
temperature. Note the logarithmic scale.

Figure 2. Distribution (fractional occurrence per 1% RHi

bin) of relative humidity with respect to ice (RHi) at
215 hPa, derived from the UARS MLS UTH data set (solid
line). A fitted exponential function (dashed-dotted line)
shows that the number of occurrences decreases exponen-
tially with increasing RHi between 100% and 230%.
Vertical dotted lines indicate fitting boundaries. See Table 1
for the parameters of the fitted line.

Figure 3. Ratio of equilibrium water vapor pressure over a
plane of liquid water (ew(T)) and equilibrium water vapor
pressure over a plane of ice (ei(T)) plotted against
temperature (T).

Figure 4. Top: Mapping of temperature uncertainties.
Shown are distributions of temperature measurement error
(a) and the resulting ‘‘measured’’ relative humidity with
respect to ice (b). Bottom: Mapping of humidity uncertain-
ties. Shown are distributions of specific humidity measure-
ment error (c) and again the resulting ‘‘measured’’ relative
humidity with respect to ice (d). Note that only temperature
errors lead to an asymmetric relative humidity distribution.

ASC 11 - 2 BUEHLER AND COURCOUX: IMPACT OF T ERRORS ON SUPERSATURATION



[13] The temperature measurement error was assumed to
follow a Gaussian distribution with a standard deviation of
initially sT = 2 K, a typical value that was also assumed by
Read et al. [2001] The measurement error in q is assumed to
be sq = 7.6742 � 10�6 kg/kg = 10%.

4. Results and Discussion

[14] Figure 6 shows the simulated measured RHi sepa-
rately for (a) only 2 K temperature error and (b) only 10%
specific humidity error. The distribution (a) is very similar
to the one found for the MLS data (compare Figure 2). In
particular, it drops off much slower at high supersaturation

values than a Gaussian distribution. The drop-off behavior
can be well described by a simple exponential function.
[15] Such a distribution cannot be explained by specific

humidity measurement errors, as should be clear from curve
(b). In fact, to obtain the observed probability of 9 � 10�6 at
200% RHi, one would have to assume a sq of 36%, a value
that is unrealistically high. Furthermore, the distribution
would not have the same exponential drop-off behavior.
[16] An exponential function of the form

p Sð Þ ¼ A e�BS ð4Þ

was fitted to both MLS data and Monte Carlo results. Here,
S = RHi � 100% is the supersaturation, p(S ) is the
probability to find supersaturation value S, and A and B are
fit parameters. The results are summarized in Table 1.
[17] The table can also be used to estimate what accuracy

of temperature knowledge would be necessary to do super-
saturation studies with remote sensing data. Of course, if the
statistics of the temperature errors were known exactly, their
impact could be removed by calculations similar to those

Figure 5. The distribution of relative humidity with
respect to ice at 215 hPa from Lindenberg radiosonde data
([Leiterer et al., 1997]), for the time period January to
December 2001. As described by Leiterer et al., [1997],
particular care has been taken to correct and quality-control
these data for the low humidities and cold temperatures
typical for the upper troposphere.

Figure 6. Distributions (occurrence per 1% RHi bin) of
‘‘measured’’ relative humidity with respect to ice computed
from specific humidity. Solid line (a): considering only
temperature measurement errors, dashed line (b): considering
only specific humidity measurement errors. As in Figure 2
the fitted straight line shows that the number of occurrences
decreases exponentially with increasing RHi for curve (a).
Vertical dotted lines show fitting boundaries. See Table 1 for
the actual fit parameters.

Figure 7. Fitted exponent for the exponential drop-off of
the p(S) distribution (B) and relative humidity standard
deviation (sRHi

) as a function of temperature standard
deviation (sT).

Table 1. Relative Humidity Standard Deviations (sRHi
) and Fitted

Exponents B for the Exponential Drop-Off of the p(S) Distribution

for Different Temperature Uncertainties

Case sRHi
(lin) sRHi

(MC) B * 100 Fitted Range

sT = 0.5 K 6.4% 6.4% 36.9 100–115% RHi

SP Lind. 21
sT = 1 K 12.7% 12.9% 17.3 110–145% RHi

sT = 2 K 25.4% 26.9% 6.3 110–210% RHi

SP MLS 4.6
MLS 4.0

sT = 2.7 K 34.3% 38.2% 4.0 110–210% RHi

sT = 3 K 38.1% 43.6% 3.5 110–210% RHi

sT = 5 K 63.5% 93.5% 1.9 110–210% RHi

The sRHi
have been calculated in two different ways, by linear error

propagation (‘‘lin’’) using dRHi/dT, and by our Monte Carlo method
(‘‘MC’’). The value marked ‘‘SP Lind.’’ is found by Spichtinger et al.
[2002a] for Lindenberg radiosonde data, the value marked ‘‘SP MLS’’ is
found by Spichtinger et al. [2002b] for global tropospheric MLS data. The
value marked ‘‘MLS’’ is the one from our own fit to MLS data presented in
Figure 2. The last column indicates the RHi range that was used to
determine B. For smaller sT values this has to be closer to 100%, since the
drop-off is faster.
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presented in this paper, so that the magnitude of the sT
would not matter. However, it is unlikely that the statistics
will be sufficiently well known for real data. A conservative
approach is to demand that the drop-off resulting from the
temperature uncertainty should be significantly steeper than
the one resulting from true supersaturation. As observed
drop-off coefficients B are as large as 0.21 [Spichtinger et
al., 2002a], sT would have to be around 0.5 K or smaller.
[18] Figure 7 shows the B parameter as a function of sT. It

can be used to infer the necessary temperature precision, if
one wants to detect supersaturation with a certain drop-off
characteristic. Standard deviations of RHi are also shown.
For example, a sT of 2 K would result in a sRHi

of 27%.
This value is compatible to the error analysis of Read et al.
[2001], who also assumed 2 K for sT and estimate the total
sRHi

as 10–30% depending on height and latitude bin (this
includes also other error sources, not just temperature). Our
value being in the upper part of this range is partially due to
the fact that the Monte Carlo method takes into account the
nonlinearity. Simple linear error propagation (shown also in
Table 1 for comparison) leads to somewhat lower values,
but for sT = 2 K this effect is still small. The more important
reason is that the sRHi

value scales with the actual value of
RHi and we have assumed the true RHi to be 100%. Thus,
for drier conditions the sRHi

value is much smaller.
[19] In a final step, it was also investigated how temper-

ature errors influence the result if RHw is measured and RHi

is calculated from that. This is the normal case if radiosonde
data from Vaisala humidity sensors are used. The results are
shown in Figure 8, again separately for a 2 K temperature
error and a 10% error in RHw. The figure shows that in this
case temperature errors are not critical. This can be explained
with the fact that while ei(T ) and ew(T ) are strongly
nonlinear functions, the ratio ew(T )/ei(T ) is a close to linear
function (Figure 3). It should be noted, though, that radio-
sondes may have other problems at high humidities and cold
temperatures, such as icing, which are not discussed here.

5. Conclusions

[20] Temperature uncertainties have a strong impact on
perceived supersaturation if the relative humidity is calcu-
lated from measurements of absolute humidity. Even for
moderate temperature uncertainties, very high perceived
supersaturation can occur, because the strongly non-linear
temperature dependence of the equilibrium water vapor
pressure enhances the ‘tail’ of the distribution towards high
RH values. The resulting distribution for a flat q distribution
and a Gaussian T error distribution is non-Gaussian, featur-
ing an exponential drop-off behavior towards high RH
values.
[21] With an assumed T uncertainty of 2.7 K, the RHi

distribution measured by MLS can be reproduced without
assuming any ‘real’ supersaturation. However, the point of
this study is not to deny the reality of supersaturation, but to
emphasize that the use of remotely sensed data for studies of
supersaturation is problematic, and in particular requires a
careful analysis of the influence of temperature uncertain-
ties. A T uncertainty of 2 K, as assumed in Read et al.
[2001], would still account for a large part of the observed
supersaturation.
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Figure 8. Distributions of ‘‘measured’’ relative humidity
with respect to ice (RHi) computed from relative humidity
with respect to liquid water (RHw). Solid line (a):
considering only T measurement errors, dashed line (b):
considering only RHw measurement errors.
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