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Rademacher functions in BMO

by

Sergey V. Astashkin (Samara), Mikhail Leibov (New York)
and Lech Maligranda (Luleå)

Abstract. The Rademacher sums are investigated in the BMO space on [0, 1]. They
span an uncomplemented subspace, in contrast to the dyadic BMOd space on [0, 1], where
they span a complemented subspace isomorphic to l2. Moreover, structural properties of
infinite-dimensional closed subspaces of the span of the Rademacher functions in BMO
are studied and an analog of the Kadec–Pełczyński type alternative with l2 and c0 spaces
is proved.

1. Introduction. In 1961, when studying some problems concerning
partial differential equations, F. John and L. Nirenberg introduced the space
BMO of functions of bounded mean oscillation. In 1971 Fefferman [6] an-
nounced that the dual to the real Hardy space H1 on Rn is BMO . Next
year, the proof was published by Fefferman and Stein in their paper [7, The-
orem 2] (see also Garnett [8, Theorem 4.4], Grafakos [12, Theorem 7.2.2],
Kashin and Saakyan [15, Theorem 5.5], and Stein [30, pp. 142–144]). This
duality result of Fefferman called considerable attention to the BMO space
and after 1971 many results were proved about this space (see e.g. Garnett
[8, Chapter VI], Grafakos [12, Chapter 7] and Stein [30, Chapter IV]).

There is also a larger dyadic counterpart BMOd of the space of functions
of bounded mean oscillation, BMOd ) BMO . This dyadic space related to
BMO was studied already by Garnett and Jones [9]. Since BMO is trans-
lation invariant and BMOd is not, BMO is more important in analysis. On
the other hand, it is much easier to work with BMOd because of the fact
that dyadic cubes are nested (if two open dyadic cubes intersect then one of
them is contained in the other).

Consider the Rademacher functions on [0, 1] defined by

rk(t) = sign[sin(2kπt)], k ∈ N, t ∈ [0, 1],

2010 Mathematics Subject Classification: 46E30, 46B20, 46B42.
Key words and phrases: Rademacher functions, BMO space, dyadic BMO space, sub-
spaces, complemented subspaces.

DOI: 10.4064/sm205-1-6 [83] c© Instytut Matematyczny PAN, 2011



84 S. V. Astashkin et al.

and the set of Rademacher sums

Rn(t) =
n∑
k=1

akrk(t), ak ∈ R, for k = 1, . . . , n and n ∈ N.

The behaviour of Rademacher sums in the spaces Lp = Lp[0, 1] is well known
and it is described by the classical Khintchine inequalities: there exist con-
stants Ap, Bp > 0 such that for every sequence {ak}nk=1 of real numbers and
any n ∈ N we have

(1) Ap

( n∑
k=1

|ak|2
)1/2

≤ ‖Rn‖Lp[0,1] ≤ Bp
( n∑
k=1

|ak|2
)1/2

, 0 < p <∞.

Hence, the Rademacher functions {rn} span an isomorphic copy of l2 in
Lp for every 0 < p < ∞. Moreover, the subspace [rn]∞n=1 is complemented
in Lp for 1 < p < ∞ and it is not complemented in L1 since no com-
plemented infinite-dimensional subspace of L1 can be reflexive. In L∞ we
have ‖Rn‖L∞[0,1] =

∑n
k=1 |ak| and so the Rademacher functions span an

isometric copy of l1, which is known to be uncomplemented in L∞. Inves-
tigations of Rademacher sums in general symmetric (rearrangement invari-
ant) spaces are well presented in the books by Lindenstrauss–Tzafriri [21],
Krĕın–Petunin–Semenov [17] and Astashkin [2], where also the definition
and several properties of symmetric spaces can be found.

The purpose of this paper is to investigate sums of Rademacher functions
in the BMO space on [0, 1]. Some results are contained in Leibov’s disserta-
tion [18] (Proposition 2 with some estimates of type (7), which we correct in
this paper, and partly Theorem 5) but, in fact, they are not known to a wide
audience since they were not published in any journal and the dissertation
is not available.

The paper is organized as follows: after the introduction in Section 1,
we collect some necessary definitions, notation, and auxiliary results in Sec-
tion 2. The main result in Section 3 is Theorem 2 describing the behaviour of
Rademacher sums in BMO [0, 1]. In Section 4 we discuss the complementabil-
ity of Rademacher subspaces Rd and R in BMOd and in BMO , respectively.
Namely, it is well-known thatRd is complemented in BMOd (Theorem 3). At
the same time we prove that R is not complemented in BMO (Theorem 4).
Finally, in Section 5, we investigate the structure of infinite-dimensional
subspaces of R. In particular, in Theorem 5 we state the following analogue
of the Kadec–Pełczyński type alternative for R: every infinite-dimensional
closed subspace X ⊂ R is either isomorphic to l2 and complemented in
BMO , or contains a subspace Y isomorphic to c0 and complemented in R.
Then, in Examples 1 and 2, we construct block bases of the Rademacher
system whose span is l2 and c0, respectively.
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2. Preliminaries and auxiliary results. For any function f ∈ L1[0, 1]
and arbitrary interval I ⊂ [0, 1] we denote

fI =
1
|I|

�

I

f(s) ds,

where |I| is the Lebesgue measure of I. Then, as usual, the space BMO =
BMO [0, 1] consists of all f ∈ L1[0, 1] such that

(2) ‖f‖BMO := sup
I

1
|I|

�

I

|f(s)− fI | ds <∞.

The quantity ‖f‖BMO is only a seminorm, since ‖f‖BMO = 0 if f equals a
constant a.e. To turn BMO into a Banach space we can either restrict (2)
to the linear space{

f ∈ L1[0, 1] :
1�

0

f(x) dx = 0 with ‖f‖BMO <∞
}

(with identification of functions equal a.e.) or consider in BMO one of the
norms ‖f‖′BMO = ‖f‖BMO + |

	1
0 f(x) dx| or ‖f‖′′BMO = ‖f‖BMO + ‖f‖L1[0,1].

We also introduce a dyadic version of BMO . If Ikn = (k/2n, (k + 1)/2n],
k = 0, 1, . . . , 2n − 1, n = 0, 1, 2, . . . , are dyadic intervals in [0, 1], then the
space BMOd = BMOd[0, 1] consists of all f ∈ L1[0, 1] such that

‖f‖d = ‖f‖BMOd
:= sup

k,n

1
|Ikn|

�

Ik
n

|f(s)− fIk
n
| ds <∞.

It is clear that BMO ⊂ BMOd and ‖f‖d ≤ ‖f‖BMO for all f ∈ BMO .
Moreover, L∞ ⊂ BMO and, for f ∈ L∞[0, 1], we have

‖f‖BMO ≤ sup
I

(
1
|I|

�

I

(f(s)− fI)2 ds
)1/2

≤ sup
I

(
1
|I|

�

I

|f(s)|2 ds
)1/2

= ‖f‖L∞ .

At the same time, BMO 6= L∞ and BMOd 6= BMO . For example, we have
ln |s− 1/2|χ[0,1](s) ∈ BMO \L∞ and ln |s− 1/2|χ[1/2,1](s) ∈ BMOd \BMO .

To find a connection between the BMO- and BMOd-norms, we introduce
the functional

A(f) := sup
I1,I2

|fI1 − fI2 |, f ∈ L1[0, 1],

where the supremum is taken over all adjacent dyadic intervals I1, I2 of the
same length.
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The following assertion is an exercise from Garnett’s book (cf. [8, Problem
12(b), p. 266]). We present the proof with concrete constants for the sake of
completeness.

Proposition 1. For any f ∈ L1[0, 1] we have

(3)
1
3
[‖f‖d +A(f)] ≤ ‖f‖BMO ≤ 32[‖f‖d +A(f)].

Proof. It is clear that the left-hand inequality of (3) is an immediate
consequence of the estimate

(4) A(f) ≤ 2‖f‖BMO .

To prove (4), take two adjacent dyadic intervals I1 and I2 of the same length.
Then

(5) fI1∪I2 =
1
2

(
1
|I1|

�

I1

f ds+
1
|I2|

�

I2

f ds

)
=

1
2
(fI1 + fI2).

Therefore, for I := I1 ∪ I2 we have

1
|I1|

�

I1

|f − fI | ds =
1

2|I1|

�

I1

|(f − fI1) + (f − fI2)| ds

≥ 1
2

∣∣∣∣ 1
|I1|

�

I1

(f − fI1) ds+
1
|I1|

�

I1

(f − fI2) ds
∣∣∣∣

=
1
2
|fI1 − fI2 |,

and similarly
1
|I2|

�

I2

|f − fI | ds ≥
1
2
|fI1 − fI2 |.

Thus,

1
|I|

�

I

|f − fI | ds =
1
2

(
1
|I1|

�

I1

|f − fI | ds+
1
|I2|

�

I2

|f − fI)| ds
)

≥ 1
2
|fI1 − fI2 |,

which implies (4).
Let us prove the right-hand inequality of (3). For any I ⊂ [0, 1] we can find

adjacent dyadic intervals I1 and I2 of the same length such that I ⊂ I1 ∪ I2
and

1
2
|I1| ≤ |I| ≤ 2|I1|.
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Then
1
|I|

�

I

|f(s)− fI | ds =
1
|I|

�

I

∣∣∣∣f(s)− 1
|I|

�

I

f(t) dt
∣∣∣∣ ds

≤ 1
|I|2

�

I

�

I

|f(s)− f(t)| dt ds

≤ 16
|I1 ∪ I2|2

�

I1∪I2

�

I1∪I2

|f(s)− f(t)| dt ds

≤ 16
|I1 ∪ I2|2

�

I1∪I2

�

I1∪I2

|f(s)− fI1∪I2 | ds dt

+
16

|I1 ∪ I2|2
�

I1∪I2

�

I1∪I2

|f(t)− fI1∪I2 | ds dt

=
32

|I1 ∪ I2|

�

I1∪I2

|f(s)− fI1∪I2 | ds.

The above estimate and equality (5) imply that
1
|I|

�

I

|f(s)− fI | ds ≤
16
|I1|

�

I1

|f(s)− 1
2
(fI1 + fI2)| ds

+
16
|I2|

�

I2

|f(s)− 1
2
(fI1 + fI2)| ds

≤ 16
|I1|

�

I1

|f(s)− fI1 | ds+
16
|I2|

�

I2

|f(s)− fI2 | ds

+ 16|fI1 − fI2 | ≤ 32‖f‖d + 16A(f).

Hence,
‖f‖BMO ≤ 32‖f‖d + 16A(f) ≤ 32[‖f‖d +A(f)].

3. Rademacher sums in BMO spaces. The main purpose of this
paper is to investigate the behaviour of Rademacher sums in the BMO and
BMOd spaces.

Proposition 2. For any ak ∈ R, k = 1, . . . , n, we have

(6)
1√
2
‖(ak)nk=1‖l2 ≤

∥∥∥ n∑
k=1

akrk

∥∥∥
d
≤ ‖(ak)nk=1‖l2

and

(7)
2
3

max
0≤j<m≤n

∣∣∣ m∑
k=j+1

ak

∣∣∣ ≤ A( n∑
k=1

akrk

)
≤ 4 max

0≤j<m≤n

∣∣∣ m∑
k=j+1

ak

∣∣∣.
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Proof. Set f =
∑n

k=1 akrk and let I be a dyadic interval of length 2−m,
that is, I = Iim = (i/2m, (i+ 1)/2m]. Then

(rk)I =
{

sgn(rk|I) if k ≤ m,
0 if k > m,

and so

fI =
n∑
k=1

ak(rk)I =
min(m,n)∑
k=1

ak sgn(rk|I).

Thus, if m ≥ n, then f |I is a constant and therefore the oscillation of f on
I vanishes, i.e., OI(f) := |I|−1

	
I |f(x)− fI | dx = 0. Otherwise, if m < n, we

have

OI(f) =
1
|I|

�

I

|f(x)− fI | dx =
1
|I|

�

I

∣∣∣ n∑
k=1

akrk(x)−
m∑
k=1

ak sgn(rk|I)
∣∣∣ dx

=
1
|I|

�

I

∣∣∣ n∑
k=m+1

akrk(x)
∣∣∣ dx =

1�

0

∣∣∣ n∑
k=m+1

akrk−m(x)
∣∣∣ dx

=
∥∥∥ n∑
k=m+1

akrk−m

∥∥∥
L1

.

Using Khintchine’s inequality (1) for the space L1[0, 1] with the sharp con-
stant A1 = 1/

√
2 (cf. [31]), we obtain

1√
2

( n∑
k=m+1

a2
k

)1/2
≤
∥∥∥ n∑
k=m+1

akrk−m

∥∥∥
L1

≤
( n∑
k=m+1

a2
k

)1/2
.

Thus,
1√
2

( n∑
k=1

a2
k

)1/2
≤
∥∥∥ n∑
k=1

akrk

∥∥∥
d
≤
( n∑
k=1

a2
k

)1/2
.

Let now I1 and I2 be adjacent dyadic intervals of length 2−m each. Then by
the above observation,

fI1 − fI2 =
min(m,n)∑
k=1

ak sgn(rk|I1)−
min(m,n)∑
k=1

ak sgn(rk|I2).

Let I be the smallest dyadic interval containing I1∪I2; let I have length 2−j .
Of course, j < m and rk|I1 = rk|I2 if k ≤ j. Then for j > n we have fI1 = fI2 ,
and for j ≤ n,

fI1 − fI2 =
min(m,n)∑
k=j+1

ak[sgn(rk|I1)− sgn(rk|I2)].
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From the definition of I it follows that I1 ∪ I2 is in the middle of I. Suppose
that I1 lies to the left of I2. Then it is easy to see that rj+1|I1 = 1, rj+1|I2 =
−1 and rk|I1 = −1, rk|I2 = 1 if j + 2 ≤ k ≤ m. Thus,

|fI1 − fI2 | = 2
∣∣∣min(m,n)∑
k=j+2

ak − aj+1

∣∣∣
and

A(f) = 2 max
0≤j<m≤n

∣∣∣ m∑
k=j+2

ak − aj+1

∣∣∣.
It is not hard to check that

1
3

max
0≤j<m≤n

∣∣∣ m∑
k=j+1

ak

∣∣∣ ≤ max
0≤j<m≤n

∣∣∣ m∑
k=j+2

ak − aj+1

∣∣∣ ≤ 2 max
0≤j<m≤n

∣∣∣ m∑
k=j+1

ak

∣∣∣.
Combining this inequality with the previous equality, we obtain (7).

The following well-known assertion is an immediate consequence of in-
equalities (6) from Proposition 2. It was already proved by Garsia [10], [11]
and even for martingale BMO spaces. It was also obtained by Müller and
Schechtman [25, Theorem 1] and Kochneff, Sagher and Zhou [16, Theorem 1],
who also gave an example showing that the similar result for BMO is not
true.

Theorem 1. The sequence {rk}∞k=1 of Rademacher functions is equiva-
lent in BMOd to the standard unit basis in l2.

From Propositions 1 and 2 and the elementary observation that

max
1≤m≤n

∣∣∣ m∑
k=1

ak

∣∣∣ ≤ max
0≤j<m≤n

∣∣∣ m∑
k=j+1

ak

∣∣∣ ≤ 2 max
1≤m≤n

∣∣∣ m∑
k=1

ak

∣∣∣,
we obtain the following assertion:

Theorem 2. For any ak ∈ R, k = 1, . . . , n, and n ∈ N we have

2
9

[( n∑
k=1

a2
k

)1/2
+ max

1≤m≤n

∣∣∣ m∑
k=1

ak

∣∣∣] ≤ ∥∥∥ n∑
k=1

akrk

∥∥∥
BMO

≤ 256
[( n∑

k=1

a2
k

)1/2
+ max

1≤m≤n

∣∣∣ m∑
k=1

ak

∣∣∣].
In particular, the following equivalence holds:

(8)
∥∥∥ ∞∑
k=1

akrk

∥∥∥
BMO

� ‖(ak)∞k=1‖l2 + sup
n∈N

∣∣∣ n∑
k=1

ak

∣∣∣.
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Corollary 1. The sequence {rk}∞k=1 of Rademacher functions is equiv-
alent in BMO to each of its subsequences.

Corollary 2. The system {rk}∞k=1 does not contain an unconditional
basic subsequence in BMO .

For example,
∑∞

k=1 (−1)krk/k ∈ R and
∑∞

k=1 rk/k /∈ R.
Corollary 3. L∞[0, 1] is a unique (up to equivalence of norms) sym-

metric space on [0, 1] which is embedded into BMOd.

Proof. For arbitrary δ ∈ (0, 1) let us introduce the “δ-translation” of the
dyadic BMO , that is, the space BMOd(δ) with the norm ‖f‖d,δ := ‖fδ‖d,
where

(9) fδ(s) := f(s− δ)χ[δ,1](s) + f(s− δ + 1)χ[0,δ](s), s ∈ [0, 1].

Mei proved in [23] that there exists a δ0 ∈ (0, 1) such that

BMO = BMOd ∩ BMOd(δ0).

If X is a symmetric space on [0, 1] such that X ⊂ BMOd, then X ⊂
BMOd(δ0) as well. Thus, X ⊂ BMO . Next, since {rk}∞k=1 is an uncondi-
tional basic sequence with constant 1 in an arbitrary symmetric space (see,
for example, [2, Corollary 1.7]), by Theorem 2 we obtain∥∥∥ ∞∑

k=1

akrk

∥∥∥
X

=
∥∥∥ ∞∑
k=1

|ak|rk
∥∥∥
X
≥ c1

∥∥∥ ∞∑
k=1

|ak|rk
∥∥∥
BMO

≥ c2‖(ak)‖l1 .

On the other hand, we have∥∥∥ ∞∑
k=1

akrk

∥∥∥
X
≤ C

∥∥∥ ∞∑
k=1

akrk

∥∥∥
L∞

= C‖(ak)‖l1 .

Therefore, {rk}∞k=1 is equivalent in X to the standard unit basis in l1 and,
hence, by the Rodin–Semenov theorem [27, Theorem 7], we conclude that
X = L∞ with equivalent norms.

Corollary 4. The sequence {rk}∞k=1 of Rademacher functions is not
weakly convergent to zero in BMO .

Proof. Define a linear functional on R by

ϕ0

( n∑
k=1

akrk

)
=

n∑
k=1

ak, ak ∈ R, k = 1, . . . , n, n ∈ N.

Then, by the Hahn–Banach theorem, it can be extended to a functional
ϕ0 ∈ R∗, because in view of Theorem 2 we have∣∣∣ϕ0

( ∞∑
k=1

akrk

)∣∣∣ = ∣∣∣ ∞∑
k=1

ak

∣∣∣ ≤ C∥∥∥ ∞∑
k=1

akrk

∥∥∥
BMO

.

Since ϕ0(rn) = 1 9 0, we see that rn 9 0 weakly in BMO .
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Remark 1. Astashkin and Maligranda [3] recently proved an equiva-
lence completely similar to (8) for Cesàro function spaces Kp on [0, 1] defined
by the norms ‖f‖Kp = sup0<x≤1(x−1

	x
0 |f(t)|p dt)1/p (1 ≤ p <∞):∥∥∥ n∑

k=1

akrk

∥∥∥
Kp

� ‖{ak}nk=1‖l2 + max
1≤m≤n

∣∣∣ m∑
k=1

ak

∣∣∣.
It is worth noting that the spaces Kp and BMO are not comparable, that is,
neither is embedded in the other one.

4. On complementability of Rademacher subspaces in BMO and
BMOd. We investigate the geometrical properties of the subspaces Rd :=
[rk]BMOd

and R := [rk]BMO generated by the Rademacher system in BMOd

and BMO , respectively. In fact, complementability of Rd in BMOd is well-
known (see, for example, Garsia [10], [11], Müller and Schechtman [25]).
However, we present a simple proof.

Theorem 3. The subspace Rd is complemented in BMOd.

Proof. In view of a dyadic version of the John–Nirenberg theorem, which
can be proved in the same way as the classical John–Nirenberg theorem (see,
for example, [12, pp. 124–127]), for an arbitrary f ∈ BMOd, any dyadic
interval Ikn and τ > 0 we have

m{x ∈ Ikn : |f(x)− fIk
n
| > τ} ≤ e|Ikn| exp

(
− τ

2e‖f‖d

)
.

This inequality implies that, for any 1 ≤ p <∞,

‖f‖d � ‖f‖d,p := sup
k,n

(
1
|Ikn|

�

Ik
n

|f(x)− fIk
n
|p dx

)1/p

,

with a constant depending on p (see [12, p. 128] and [26, p. 525]). More
precisely,

‖f‖d ≤ ‖f‖d,p ≤ 2e[pΓ (p)e]1/p‖f‖d.
Therefore, for every 1 ≤ p <∞, we have BMOd ⊂ Lp[0, 1]. It is well-known
that the orthogonal projector P generated by the Rademacher system is
bounded from Lp[0, 1] onto [rk]∞k=1 if 1 < p < ∞. Then, by (6) and the
Khintchine inequality (1), for all p ∈ (1,∞) and f ∈ BMOd,

‖Pf‖d � ‖Pf‖Lp ≤ ‖P‖ ‖f‖Lp ≤ Cp‖P‖ ‖f‖d.
Thus, P is bounded in BMOd and the proof is complete.

In contrast with Theorem 3 and with the remarkable theorem of Maurey
[22] (cf. also [24, pp. 229–242]) which states that BMO [0, 1] is isomorphic
to dyadic BMOd[0, 1], the subspace R is an uncomplemented subspace of
BMO . To prove this, we will need an auxiliary assertion.
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Denote by U = {un}∞n=1 a block basis of the Rademacher system, that is,

un =
mn+1∑

k=mn+1

akrk (n = 1, 2, . . .),

where 1 ≤ m1 < m2 < · · · and ak ∈ R. Moreover, let

γn(U) =
mn+1∑

k=mn+1

ak, n = 1, 2, . . . .

Proposition 3. The subspace R contains a complemented subspace E
isomorphic to c0.

Proof. Take a block basis U = {un}∞n=1 satisfying the following assump-
tions:

(a) ‖un‖BMO = 1, n = 1, 2, . . . .
(b) ‖un‖d � (

∑mn+1

k=mn+1 a
2
k)

1/2 ≤ 2−n, n = 1, 2, . . . .
(c) |γn(U)| ≤ 2−n, n = 1, 2, . . . .

It is clear that such a block basis exists. Let us prove that [un]BMO is
isomorphic to c0.

If f =
∑∞

n=1 βn un ∈ R with βn ∈ R, then

f =
∞∑
n=1

( mn+1∑
k=mn+1

βnakrk

)
=
∞∑
k=1

γkrk,

where γk = βnak if k = mn + 1, . . . ,mn+1. Assuming that p, q ∈ N satisfy

mn−1 ≤ p < mn < mn+l < q ≤ mn+l+1

with some positive integers n and l, we will estimate the sum
∑q

k=p γk. Using
(c), (a), Proposition 2 and inequality (4), we have∣∣∣ q∑

k=p

γk

∣∣∣ = ∣∣∣mn∑
k=p

γk +
mn+l∑

k=mn+1

γk +
q∑

k=mn+l+1

γk

∣∣∣
=
∣∣∣mn∑
k=p

βn−1ak +
n+l−1∑
i=n

mi+1∑
k=mi+1

βiak +
q∑

k=mn+l+1

βn+lak

∣∣∣
≤ |βn−1|

∣∣∣mn∑
k=p

ak

∣∣∣+ n+l−1∑
i=n

|βi|
∣∣∣ mi+1∑
k=mi+1

ak

∣∣∣+ |βn+l|
∣∣∣ q∑
k=mn+l+1

ak

∣∣∣
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≤ sup
n
|βn|

(∣∣∣mn∑
k=p

ak

∣∣∣+ n+l−1∑
i=n

∣∣∣ mi+1∑
k=mi+1

ak

∣∣∣+ ∣∣∣ q∑
k=mn+l+1

ak

∣∣∣)

≤ sup
n
|βn|

(
3
2
A(un−1) +

3
2
A(un+l) +

n+l−1∑
i=n

2−i
)

≤ (3‖un−1‖BMO + 3‖un+l‖BMO + 1)‖{βn}‖c0 = 7‖{βn}‖c0 .
Then from Theorem 2 and (b) it follows that ‖f‖BMO ≤ C‖{βn}‖c0 .

On the other hand, by (a), (b) and Theorem 2, there is a δ > 0 such that
A(un) ≥ δ for all n ∈ N. Therefore, by (4) and Proposition 2, we obtain

‖f‖BMO ≥
1
2
A(f) ≥ 1

3
sup
n∈N

sup
mn+1≤p<q≤mn+1

∣∣∣ q∑
k=p

βnak

∣∣∣
≥ 1

12
sup
n∈N
|βn|A(un) ≥

δ

12
‖{βn}‖c0 .

Thus, we have proved that E := [un]BMO ≈ c0. Since R is separable, the
Sobczyk theorem (see, for example, [1, Corollary 2.5.9]) implies that E is a
complemented subspace in R.

Theorem 4. The subspace R is not complemented in BMO .

Proof. Assume on the contrary that R is complemented in BMO and let
P1 : BMO → R be a bounded linear projection whose range is R. By Propo-
sition 3, there is a subspace E complemented in R and such that E ≈ c0. Let
P2 : R → E be a bounded linear projection. Then P := P2 ◦ P1 is a linear
projection bounded in BMO with image E. Thus, BMO contains a comple-
mented subspace E ≈ c0. Since BMO is a conjugate space (more precisely,
BMO = (ReH1)∗—see, for example, [15, p. 195]), this contradicts the well
known result due to Bessaga–Pełczyński that a conjugate space cannot con-
tain a complemented subspace isomorphic to c0 (see [5, Corollary 4], which
follows from Theorem 4 and its proof in [4]). This contradiction proves the
theorem.

5. Structure of subspaces of R. Sarason [29] introduced the VMO =
VMO [0, 1] space (space of vanishing mean oscillation in [0, 1]) consisting of
all f ∈ BMO [0, 1] for which lim|I|→0 |I|−1

	
I |f(x) − fI | dx = 0. This is a

closed subspace of BMO containing the space C[0, 1] of continuous func-
tions and is equal to the BMO-closure of C[0, 1]. The space VMO was in-
vestigated by several authors. For example, it is known that VMO is not
complemented in BMO (see, e.g., [13]). Structural properties of closed sub-
spaces of VMO were considered by Leibov [18], [19] who proved an analog
of the Kadec–Pełczyński theorem for VMO (Kadec–Pełczyński type alter-
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native [14]): an infinite-dimensional closed subspace of VMO is either com-
plemented in BMO and isomorphic to l2, or, for every ε > 0, it contains a
subspace which is complemented in VMO and (1 + ε)-isometric to c0 (cf.
[18, Theorem 3.4] and [19]). A similar dichotomy for the dyadic VMO space
was proved by Müller and Schechtman [25].

Our purpose here is to prove the Kadec–Pełczyński type alternative for
the Rademacher subspace R of BMO .

Theorem 5. Every infinite-dimensional closed subspace X ⊂ R is ei-
ther isomorphic to l2 and complemented in BMO , or contains a subspace Y
isomorphic to c0 and complemented in R.

In the proof of this theorem we will need some auxiliary result. Since
rn 9 0 weakly in BMO (cf. Corollary 4), it follows that the corresponding
system of functionals biorthogonal to {rk}∞k=1 is not a basis of the space R∗.
Nevertheless, the following assertion holds.

Proposition 4. The space R∗ has a basis.

Proof. Consider the sequence

sn = rn − rn−1, n = 1, 2, . . . , with r0 = 0.

If f =
∑∞

n=1 βn sn, then

f =
∞∑
n=1

βn(rn − rn−1) =
∞∑
n=0

(βn − βn+1)rn, where β0 = 0.

Therefore, by Theorem 2,

(10) ‖f‖BMO �
( ∞∑
n=0

(βn − βn+1)2
)1/2

+ sup
0≤m<n<∞

|βm − βn|

with a constant c > 0. This implies, in particular, that

(11) |βn| ≤ |βn − β1|+ |β1| ≤ 2c‖f‖BMO , n = 1, 2, . . . .

Let us prove that {sn}∞n=1 is a shrinking basis in R, that is, for any ϕ ∈ R∗,
(12) ‖ϕ|[sn]∞n=m

‖ → 0 as m→∞.
Assume that (12) does not hold. Then there exist ε ∈ (0, 1), a functional

ϕ ∈ R∗ with ‖ϕ‖ = 1, and a sequence of functions fn =
∑∞

k=mn
amn
k sk, where

m1 < m2 < · · · , such that ‖fn‖BMO = 1 and ϕ(fn) ≥ ε > 0 (n = 1, 2, . . .).
We construct two sequences of positive integers, {qi}∞i=1 and {pi}∞i=1,

1 < q1 < p1 < q2 < p2 < · · · , in the following way: q1 = m1 and p1 is chosen
so that ‖

∑∞
k=p1+1 a

q1
k sk‖BMO < ε/2; q2 is the least mn > p1 and p2 is such

that ‖
∑∞

k=p2+1 a
q2
k sk‖BMO < ε/2; q3 is the least mn > p2 and p3 is such

that ‖
∑∞

k=p3+1 a
q3
k sk‖BMO < ε/2; and so on.
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Set aqik = 0 if pi < k < qi+1, i = 1, 2, . . . . Then U = {ui}, where
ui =

∑qi+1−1
k=qi

aqik sk, is a block basis of {sn}∞n=1. Moreover, by the definition
of ui,

(13) sup
i∈N
‖ui‖BMO ≤ 2

and

(14) ϕ(ui) = ϕ(fi)− ϕ
( ∞∑
k=pi+1

aqik sk

)
≥ ϕ(fi)−

∥∥∥ ∞∑
k=pi+1

aqik sk

∥∥∥
BMO

≥ ε

2
.

Let us show that for every nonnegative sequence {γn}∞n=1 such that
∞∑
n=1

γ2
n <∞ and

∞∑
n=1

γn =∞

the series
∑∞

n=1 γnun converges in BMO .
Let bk = aqik γi for qi ≤ k < qi+1, i = 1, 2, . . . . If qi ≤ k < qi+1, then, in

view of (11) and (13), we obtain |bk| ≤ 4cγi, and hence

(15) lim
k→∞

bk = 0.

Moreover,
∞∑
k=1

(bk − bk+1)2 =
∞∑
i=1

qi+1−2∑
k=qi

(aqik γi − a
qi
k+1γi)

2

+
∞∑
i=1

(aqiqi+1−1γi − a
qi+1
qi+1γi+1)2 = A1 +A2.

We will estimate A1 and A2 separately. By (10),

A1 =
∞∑
i=1

γ2
i

qi+1−2∑
k=qi

(aqik − a
qi
k+1)

2 ≤ c2
∞∑
i=1

γ2
i ,

and, by (11),

A2 ≤ 2
∞∑
i=1

(
(aqiqi+1−1)

2γ2
i + (aqi+1

qi+1)
2γ2
i+1

)
≤ 4 sup

i∈N
max

qi≤k<qi+1

|aqik |
2
∞∑
i=1

γ2
i ≤ 16c2

∞∑
i=1

γ2
i .

Therefore, according to (10) and (15), the series
∞∑
n=1

γnun =
∞∑
k=1

bksk
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converges in BMO . On the other hand, taking into account (14), we have

ϕ
( ∞∑
n=1

γnun

)
=
∞∑
n=1

γn ϕ(un) ≥
ε

2

∞∑
n=1

γn =∞,

which contradicts ϕ ∈ R∗. Thus, (12) is proved.
Finally, by Proposition 1.b.1 in [20], the biorthogonal system {s∗n}∞n=1 of

functionals is a basis in the space R∗ and the proof is complete.

Proof of Theorem 5. Assume that there is an ε > 0 such that ‖f‖d ≥
ε‖f‖BMO for every f ∈ X. Then, according to (6) and (1), for every 1 ≤ p
<∞ and all f =

∑∞
k=1 akrk ∈ X,

(16) ‖f‖BMO ≤ ε−1‖f‖d ≤ ε−1
( ∞∑
k=1

a2
k

)1/2
≤ ε−1A−1

p ‖f‖Lp[0,1].

On the other hand, BMO ⊂ Lp for every 1 ≤ p < ∞ (see the proof of
Theorem 3). Therefore, the BMO-norm onX is equivalent to the Lp-norm for
every 1 ≤ p <∞. In particular, this implies that X is isomorphic to l2. Since
the subspaceRp generated by the Rademacher system is complemented in Lp
if 1 < p <∞, and Rp is isomorphic to l2, it follows that X is complemented
in Lp as well. Denote by P a linear projection bounded from Lp onto X.
Then, by (16),

‖Pf‖BMO ≤ ε−1A−1
p ‖Pf‖Lp ≤ A−1

p ε−1‖P‖Lp→Lp‖f‖Lp

≤ Cp(ε)‖P‖Lp→Lp‖f‖BMO .

Therefore, X is complemented in BMO .
Now, assume that there is a sequence {fn}∞n=1 ⊂ X with ‖fn‖BMO = 1

(n = 1, 2, . . .) such that ‖fn‖d → 0 as n → ∞. Then {fn}∞n=1 does not
contain any subsequence converging in BMO . In fact, if limk→∞ fnk

= f ∈
BMO for some {fnk

} ⊂ {fn}, then we have both ‖f‖BMO = 1 and ‖f‖d = 0
(and therefore f = 0), which is impossible.

Hence, passing to a subsequence if necessary, we may assume that for
some δ > 0,

(17) ‖fm − fn‖BMO ≥ δ > 0 for all m,n = 1, 2, . . . , m 6= n.

Let {s∗k}∞k=1 be the basis of R∗ constructed in the proof of Proposition 4.
Using the diagonal process, it is not hard to choose a subsequence {fni}∞i=1 ⊂
{fn} such that for any k ∈ N we have

s∗k(fni+1 − fni)→ 0 as i→∞.
Since {s∗k}∞k=1 is a basis of R∗ and ‖fn‖BMO = 1 (n = 1, 2, . . . ), it follows
that

fni+1 − fni → 0 weakly in BMO .
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Then, by (17) and by Proposition 1.a.12 in [20], there is a block basis U =
{uk}∞k=1 of the Rademacher system, which is equivalent to some subsequence
of {fni+1 − fni}∞i=1 (denoted {fni+1 − fni} as well). In particular,

‖uk − (fnk+1
− fnk

)‖BMO ≤ 2−k, k = 1, 2, . . . .

This implies that both uk → 0 weakly in BMO and ‖uk‖d → 0 as k →∞.
Let ϕ0 ∈ R∗ be as in the proof of Corollary 4. If uk =

∑mk+1

i=mk+1 airi,
1 ≤ m1 < m2 < · · · , then

ϕ0(uk) =
mk+1∑
i=mk+1

ai → 0 as k →∞.

Therefore, using the same arguments as in the proof of Proposition 3, we
may choose a subsequence {uki

}∞i=1 such that [uki
]∞i=1 ≈ c0 and [uki

]∞i=1 is
complemented in R.

Using Theorem 5, we are able to describe the structure of subspaces of
R in the following way.

Corollary 5. Let X ⊂ R be an infinite-dimensional closed subspace
of BMO . The following conditions are equivalent:

(1) X does not contain a subspace isomorphic to c0.
(2) X is isomorphic to a dual space.
(3) X is reflexive.
(4) X is isomorphic to l2.
(5) X is complemented in BMO .
(6) The BMO-norm on X is equivalent to the L1-norm.

Proof. By Theorem 5, condition (1) implies either of conditions (2)–(6).
Conversely, it is obvious that each of the conditions (3), (4) and (6) im-
plies (1). The implications (2)⇒(1) and (5)⇒(1) are consequences of the
above mentioned results of Bessaga–Pełczyński.

Recall that the function fδ was defined in (9).

Corollary 6. There is a δ ∈ (0, 1) such that no bounded linear pro-
jection P in BMOd with range Rd commutes with the δ-shift on Kδ :=
BMOd ∩ BMOd(δ). This means that for every such projection there is a
function f ∈ Kδ such that P (fδ) 6= (Pf)δ.

Proof. Suppose, on the contrary, that for any δ ∈ (0, 1) there exists a
bounded linear projection P : BMOd → Rd such that P (fδ) = (Pf)δ for
every f ∈ Kδ. By Mei’s theorem (cf. [23]) there is δ0 ∈ (0, 1) such that
Kδ0 = BMO and

‖f‖BMO � max(‖f‖d, ‖f‖d,δ0).



98 S. V. Astashkin et al.

Then for any f ∈ BMO , by assumption,

‖Pf‖BMO � max(‖Pf‖d, ‖Pf‖d,δ0) ≤ max(C‖f‖d, ‖(Pf)δ0‖d)
= max(C‖f‖d, ‖P (fδ0)‖d) ≤ Cmax(‖f‖d, ‖fδ0‖d)
= Cmax(‖f‖d, ‖f‖d,δ0) � ‖f‖BMO ,

which implies that P is bounded in BMO , contrary to Theorem 4.

To end the paper, we consider some examples of block bases of the
Rademacher system whose span is l2 and c0, respectively.

Example 1. A block basis of the Rademacher system which spans l2 in
BMO . Let uk := r2k+1 − r2k and f =

∑n
k=1 akuk, n = 1, 2, . . . . Then

f =
n∑
k=1

ak(r2k+1 − r2k) =
n∑
k=1

akr2k+1 −
n∑
k=1

akr2k

and, by (7),
A(f) � max

1≤k≤n
|ak| = ‖{ak}nk=1‖c0 .

On the other hand, according to (6),
1√
2
‖{ak}nk=1‖l2 ≤ ‖f‖d ≤ 2‖{ak}nk=1‖l2 .

Combining these relations with Theorem 2, we obtain∥∥∥ n∑
k=1

akuk

∥∥∥
BMO

� ‖{ak}nk=1‖l2 , n = 1, 2, . . . .

Example 2. A block basis of the Rademacher system which spans c0 in
BMO . Take a block basis U = {un}∞n=1, where

un =
mn+1∑

k=mn+1

akrk with mn+1 −mn = 22n, n = 1, 2, . . . ,

and

ak =
{

2−2n if mn + 1 ≤ k ≤ (mn +mn+1)/2,
−2−2n if (mn +mn+1)/2 + 1 ≤ k ≤ mn+1.

Then, by (6) and (8),

‖un‖d �
( mn+1∑
k=mn+1

2−4n
)1/2

= 2−n, n = 1, 2, . . . ,

and

‖un‖BMO � 2−2nmn+1 −mn

2
+ 2−n � 1

2
, n = 1, 2, . . . .
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Moreover,

γn(U) =
(mn+mn+1)/2∑
k=mn+1

2−2n −
mn+1∑

k=(mn+mn+1)/2+1

2−2n = 0.

Then (see the proof of Proposition 3) [un]BMO ≈ c0.
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