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Rademacher functions in Cesàro type spaces

by

Sergei V. Astashkin (Samara) and Lech Maligranda (Lule̊a)

Abstract. The Rademacher sums are investigated in the Cesàro spaces Cesp (1 ≤
p ≤ ∞) and in the weighted Korenblyum–Krĕın–Levin spaces Kp,w on [0, 1]. They span
l2 space in Cesp for any 1 ≤ p < ∞ and in Kp,w if and only if the weight w is larger

than t log
p/2
2 (2/t) on (0, 1). Moreover, the span of the Rademachers is not complemented

in Cesp for any 1 ≤ p < ∞ or in K1,w for any quasi-concave weight w. In the case when
p > 1 and when w is such that the span of the Rademacher functions is isomorphic to l2,
this span is a complemented subspace in Kp,w.

1. Introduction and preliminaries. Consider the Rademacher func-
tions on [0, 1] defined by rk(t) = sign(sin 2kπt), k ∈ N, t ∈ [0, 1], and the set
of Rademacher sums

Rn(t) =
n∑
k=1

akrk(t), ak ∈ R for k = 1, . . . , n, and n ∈ N.

The behaviour of Rademacher sums in Lp = Lp[0, 1] spaces is well known (cf.
[6, p. 10]). In particular, it follows from the classical Khintchine inequality
that there exist constants Ap, Bp > 0 such that for any sequence {ak}nk=1 of
real numbers and any n ∈ N we have

(1) Ap

( n∑
k=1

|ak|2
)1/2

≤ ‖Rn‖Lp[0,1] ≤ Bp
( n∑
k=1

|ak|2
)1/2

, 0 < p <∞,

and hence the Rademacher functions {rn} span an isomorphic copy of l2 in
Lp for every 0 < p <∞. Moreover, the subspace [rn] ' l2 is complemented
in Lp for 1 < p < ∞ and is not complemented in L1 since no comple-
mented infinite-dimensional subspace of L1 can be reflexive. In L∞ we have
‖Rn‖L∞[0,1] =

∑n
k=1 |ak| and so the Rademacher functions span an isometric

copy of l1, which is known to be uncomplemented in L∞.
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In the case of rearrangement invariant spaces X on [0, 1], Rodin and
Semenov [16] proved that ‖

∑∞
k=1 akrk‖X ≈ (

∑∞
k=1 |ak|2)1/2 if and only if

G ⊂ X, where G is the closure of L∞[0, 1] in the Orlicz space LM [0, 1]
generated by the function M(u) = eu

2 − 1. Note that this Orlicz space
coincides with the Marcinkiewicz space M(ϕ) generated by the function
ϕ(t) = t log1/2

2 (2/t), 0 < t ≤ 1, where the norm is given by ‖f‖M(ϕ) =
sup0<x≤1 (1/ϕ(x))

	x
0 f
∗(t) dt. Here, f∗ is the non-increasing rearrangement

of |f |. Moreover, Rodin–Semenov [17] and Lindenstrauss–Tzafriri [12, pp.
134–138] proved that [rn] ' l2 is complemented in X if and only if G ⊂
X ⊂ G′, where G′ is the Köthe dual space to G.

By contrast, Astashkin [2] considered rearrangement invariant spaces X
which are interpolation spaces between G and L∞. It turns out that there
exists a one-to-one correspondence between them and the sequence spaces F
which are interpolation spaces for the couple (l1, l2); namely, ‖

∑∞
k=1 akrk‖X

≈ ‖{ak}∞k=1‖F , where X = (L∞, G)KΦ and F = (l1, l2)KΦ , with the same
parameter space Φ.

Investigations of Rademacher sums in rearrangement invariant spaces are
well presented in the books by Lindenstrauss–Tzafriri [12], Krĕın–Petunin–
Semenov [10] and Astashkin [3].

The main purpose of this paper is to investigate the behaviour of Rade-
macher functions in the Cesàro function spaces Cesp = Cesp[0, 1], which
are not rearrangement invariant (cf. [4] and [5], where also other properties
are investigated). These spaces are the classes of all Lebesgue measurable
real-valued functions f on [0, 1] such that

‖f‖Cesp =
[ 1�

0

(
1
x

x�

0

|f(t)| dt
)p

dx

]1/p

<∞ for 1 ≤ p <∞,

and

‖f‖Ces∞ = sup
0<x≤1

1
x

x�

0

|f(t)| dt <∞ for p =∞.

We will see that there is an essential difference between the cases p < ∞
and p = ∞. Namely, for any 1 ≤ p < ∞, the Rademacher functions {rn}
span an isomorphic copy of l2 in Cesp[0, 1]. At the same time, in Ces∞[0, 1]
this system does not contain an unconditional basic subsequence.

In fact, we will consider the Rademacher functions not only in the space
Ces∞ =: K, known as the Korenblyum–Krĕın–Levin space [9], but also in
more general Kp,w spaces or weighted Korenblyum–Krĕın–Levin spaces.

Let 1 ≤ p < ∞ and w be a quasi-concave function on I = [0, 1], that
is, w(0) = 0, w is non-decreasing, and w(x)/x is non-increasing on (0, 1].
The spaces Kp,w = Kp,w[0, 1] are the classes of all Lebesgue measurable
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real-valued functions f on [0, 1] such that the norm

(2) ‖f‖Kp,w = sup
x∈I,x>0

(
1

w(x)

x�

0

|f(t)|p dt
)1/p

is finite. These spaces are Banach ideal spaces on I. The ideal property
means that if |f | ≤ |g| a.e. on I and g ∈ Kp,w, then f ∈ Kp,w and ‖f‖Kp,w ≤
‖g‖Kp,w . In the special cases when w(x) = 1 and w(x) = x we obtain the
well-known spaces Lp and the Korenblyum–Krĕın–Levin spaces Kp (see [9]),
respectively. Moreover, K1 = K = Ces∞.

For two Banach spaces X and Y the symbol X
C
↪→ Y means that the

imbedding X ⊂ Y is continuous with norm not greater than C, i.e., ‖x‖Y ≤
C‖x‖X for all x ∈ X.

2. Rademacher sums in Cesàro type spaces. First we consider the
Rademacher sums in the spaces Cesp[0, 1] with 1 ≤ p <∞.

Theorem 1. For any 1 ≤ p <∞, the Rademacher functions {rn} span
an isomorphic copy of l2 in Cesp[0, 1].

Proof. We need to prove that there are positive constants A′p, B
′
p such

that

(3) A′p

( n∑
k=1

a2
k

)1/2
≤
∥∥∥ n∑
k=1

akrk

∥∥∥
Cesp

≤ B′p
( n∑
k=1

a2
k

)1/2

for every n ∈ N and any real numbers a1, . . . , an.
Firstly, let us show that the following continuous embeddings hold:

(4) Lp
p′

↪→ Cesp
1
↪→ Ces1 = L1(ln 1/t)

54
↪→ L1/3 if 1 < p <∞,

and

(5) L2

√
2

↪→ Ces1 = L1(ln 1/t)
54
↪→ L1/3 if p = 1.

The first embedding in (4) is a consequence of the well-known Hardy in-

equality [7] and the second one follows directly from the fact that Lp[0, 1]
1
↪→

L1[0, 1]. Since

1�

0

(
1
x

x�

0

|f(t)| dt
)
dx =

1�

0

( 1�

t

1
x
dx

)
|f(t)| dt =

1�

0

|f(t)| ln 1
t
dt,

we have Ces1 = L1(ln 1/t). Assume now f ∈ L1(ln 1/t) with ‖f‖L1(ln 1/t) = 1.
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Since ln 1/t ≥ 1− t if 0 < t ≤ 1, it follows that

1 =
1�

0

|f(t)| ln 1/t dt ≥
1�

0

|f(t)|(1− t) dt ≥
1�

0

f∗(1− t)(1− t) dt

=
1�

0

f∗(s)s ds ≥
t�

0

f∗(s)s ds ≥ f∗(t)t2/2,

or f∗(t) ≤ 2/t2. Thus,
1�

0

|f(t)|1/3 dt =
1�

0

f∗(t)1/3 dt ≤
1�

0

(2t−2)1/3 dt = 3 · 21/3

and so ‖f‖L1/3
≤ 54, which finishes the proof of the last imbedding in (4)

and (5).
For p = 1 the first embedding in (5) is a consequence of the Hölder–

Rogers inequality
1�

0

|f(t)| ln 1
t
dt ≤ ‖f‖L2

( 1�

0

ln2 1
t
dt

)1/2

=
√

2 ‖f‖L2 ,

and the second one is obviously still true for p = 1.
In view of the Khintchine inequality (1) we obtain ‖Rn‖Cesp≈‖{ak}nk=1‖l2

or, more precisely,
A1/3

54
‖{ak}nk=1‖l2 ≤

1
54
‖Rn‖Cesp ≤ Dp‖Rn‖Lp ≤ DpBp‖{ak}nk=1‖l2 ,

where Dp = p′ := p/(p− 1) if p > 1 and Dp =
√

2 if p = 1, and inequalities
(3) are proved.

The next result concerns the behaviour of the Rademacher sums in the
space Ces∞ := K and in its weighted version, i.e., the Kp,w space. Our main
result is the following:

Theorem 2. For every 1 ≤ p <∞,

(6) ‖Rn‖Kp,w ≈ ‖{ak}nk=1‖l2 + max
1≤m≤n

(
2−m

w(2−m)

)1/p∣∣∣ m∑
k=1

ak

∣∣∣.
Proof. Firstly, we note that it is easy to see that for every p ≥ 1 and all

m = 0, 1, . . . , n we have

(7)
2−m�

0

|Rn(t)|p dt = 2−n
∑
εk=±1

|a1 + · · ·+ am + εm+1am+1 + · · ·+ εnan|p,

where the sum is taken over all choices of signs εm+1 = ±1, . . . , εn = ±1.
Therefore, by (2) and by the Hölder–Rogers inequality, for everym=1, . . . , n,



Rademacher functions in Cesàro spaces 239

we obtain

‖Rn‖Kp,w ≥
(

1
w(2−m)

2−m�

0

|Rn(t)|p dt
)1/p

≥ 2m(1−1/p)

w(2−m)1/p

2−m�

0

|Rn(t)| dt

=
2m(1−1/p)−n

w(2−m)1/p
∑
εk=±1

|a1 + · · ·+ am + εm+1am+1 + · · ·+ εnan|

≥ 2m(1−1/p)−n

w(2−m)1/p

∣∣∣ ∑
εk=±1

(a1 + · · ·+ am + εm+1am+1 + · · ·+ εnan)
∣∣∣

=
2m(1−1/p)−n

w(2−m)1/p
2n−m

∣∣∣ m∑
k=1

ak

∣∣∣ =
(

2−m

w(2−m)

)1/p∣∣∣ m∑
k=1

ak

∣∣∣.
Hence, for every m = 1, . . . , n,

(8) ‖Rn‖Kp,w ≥
(

2−m

w(2−m)

)1/p∣∣∣ m∑
k=1

ak

∣∣∣.
On the other hand, by (2) and the classical Khintchine inequality (1), we
obtain

‖Rn‖Kp,w ≥
1

w(1)1/p
sup

0<x≤1

( x�
0

|Rn(t)|p dt
)1/p

=
1

w(1)1/p
‖Rn‖Lp[0,1] ≥

Ap

w(1)1/p
‖{ak}nk=1‖l2 .

This together with (8) implies that

‖Rn‖Kp,w ≥ Cp,w
(
‖{ak}nk=1‖l2 + max

1≤m≤n

(
2−m

w(2−m)

)1/p∣∣∣ n∑
k=1

ak

∣∣∣),
where Cp,w = 1

2 max{Apw(1)−1/p, 1}.
Let us prove the converse inequality. Since Rn(t) is a constant on [0, 2−n],

we have

1
x

x�

0

|Rn(t)|p dt = 2n
2−n�

0

|Rn(t)|p dt (0 < x ≤ 2−n).

Moreover, by the quasi-concavity of w, one has x/w(x) ≤ 2−n/w(2−n) if
0 < x ≤ 2−n and w(2−j) ≤ 2w(x) if x ≥ 2−j−1 (j = 1, 2, . . . ). Therefore, we
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obtain

sup
x∈(0,1]

1
w(x)

x�

0

|Rn(t)|pdt

= max
[

sup
x∈(0,2−n]

1
w(x)

x�

0

|Rn(t)|pdt, max
1≤k≤n

sup
x∈[2−n+k−1,2−n+k]

1
w(x)

x�

0

|Rn(t)|pdt
]

≤max
[

sup
x∈(0,2−n]

x

w(x)
1
x

x�

0

|Rn(t)|pdt, max
1≤k≤n

1
w(2−n+k−1)

2−n+k�

0

|Rn(t)|pdt
]

≤max
[

1
w(2−n)

2−n�

0

|Rn(t)|pdt, max
1≤k≤n

2
w(2−n+k)

2−n+k�

0

|Rn(t)|pdt
]

≤ 2max
[

1
w(2−n)

2−n�

0

|Rn(t)|pdt, max
1≤k≤n

1
w(2−n+k)

2−n+k�

0

|Rn(t)|pdt
]

= 2 max
0≤k≤n

1
w(2−n+k)

2−n+k�

0

|Rn(t)|pdt,

and so

(9) ‖Rn‖Kp,w ≤ 21/p max
0≤k≤n

(
1

w(2k−n)

2−n+k�

0

|Rn(t)|p dt
)1/p

.

Now, taking into account (7) and using the Minkowski inequality together
with the upper estimate from the Khintchine inequality (1), we see that for
all k = 0, 1, . . . , n,( 2k−n�

0

|Rn(t)|p dt
)1/p

=
(

2−n
∑
εi=±1

|a1 + · · ·+ an−k + εn−k+1an−k+1 + · · ·+ εnan|p
)1/p

≤
(

2−n
∑
εi=±1

|a1 + · · ·+ an−k|p
)1/p

+
(

2−n
∑
εi=±1

|εn−k+1an−k+1 + · · ·+ εnan|p
)1/p

= 2(k−n)/p
(∣∣∣ n−k∑

i=1

ai

∣∣∣+
∥∥∥ k∑
j=1

an−k+jrj

∥∥∥
Lp[0,1]

)
≤ 2(k−n)/p

(∣∣∣ n−k∑
i=1

ai

∣∣∣+Bp‖{an−k+j}kj=1‖l2
)
.
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Therefore, using (9), we get

‖Rn‖Kp,w ≤ 21/p

(
Bpw(1)−1/p‖{ak}nk=1‖l2 + max

1≤m≤n

(
2−m

w(2−m)

)1/p∣∣∣ m∑
k=1

ak

∣∣∣)

≤ 21/p max{Bpw(1)−1/p, 1}
(
‖{ak}nk=1‖l2 + max

1≤m≤n

(
2−m

w(2−m)

)1/p∣∣∣ m∑
k=1

ak

∣∣∣),
and the proof is complete.

Theorem 3. The norms ‖Rn‖Kp,w are uniformly equivalent to the norms
‖{ak}nk=1‖l2 with respect to n ∈ N if and only if there is a constant c > 0
such that

(10) w(t) ≥ ct logp/22 (2/t) for all 0 < t ≤ 1.

Proof. If (10) holds, then for all 1 ≤ m ≤ n we have

(11)
(

2−m

w(2−m)

)1/p

m1/2 ≤ c−1/p.

Since, by the Cauchy–Schwarz inequality,∣∣∣ m∑
k=1

ak

∣∣∣ ≤ m1/2‖{ak}mk=1‖l2 ,

(6) and (10) give the required equivalence.
Conversely, suppose that condition (10) does not hold. Then, by the

quasi-concavity of w, inequality (11) is not satisfied and hence there exists
a sequence of natural numbers mk →∞ such that

(12)
(

2−mk

w(2−mk)

)1/p

m
1/2
k →∞ as k →∞.

Consider the Rademacher sums Rk(t) corresponding to the sequences of
coefficients ak = (aki )

mk
i=1, where aki = m

−1/2
k , 1 ≤ i ≤ mk. We have ‖ak‖l2 = 1

for all k = 1, 2, . . . , but
∑m

i=1 a
k
i = m

1/2
k (k = 1, 2, . . .), which together with

(12) and (6) implies that ‖Rk‖Kp,w →∞ as k →∞.

Remark 1. Let 1 ≤ p < ∞ and let w be a quasi-concave function
on [0, 1]. Consider the p-convexification Mp,w of the Marcinkiewicz space
M1,w = M(w) with the norm given by

‖f‖Mp,w = sup
0<x≤1

(
1

w(x)

x�

0

f∗(t)p dt
)1/p

.

The space Mp,w can be treated as a rearrangement invariant version of Kp,w.
It is not hard to check that the embedding G ⊂Mp,w (see Section 1) holds
if and only if the condition (10) is satisfied. Therefore, by Theorem 3 and by
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the result of Rodin–Semenov [16] (see also [12, Th. 2.b.4]), it follows that
the Rademacher functions span l2 in Mp,w if and only if they span l2 in Kp,w.

Moreover, it is instructive to compare the behaviour of Rademacher sums
in the spaces M1,w = M(w) and K1,w in the case when w(t) = t log1/q

2 (2/t),
where q > 2. Then (10) does not hold and, by (6),

‖Rn‖K1,w ≈ ‖{ak}nk=1‖l2 + max
1≤m≤n

m−1/q
∣∣∣ m∑
k=1

ak

∣∣∣.
On the other hand, by the result of Rodin–Semenov [16, p. 221] and Pisier
[15] (see also Marcus–Pisier [14, pp. 277–278]), the norm ‖Rn‖M(w) is equiva-
lent to the norm of the sequence of coefficients in the Marcinkiewicz sequence
space lq,∞ given by

‖{ak}‖lq,∞ = sup
m=1,2,...

m−1/q
m∑
k=1

a∗k,

where {a∗k} is the non-increasing rearrangement of {|ak|}∞k=1.

The following corollaries follow directly from Theorem 1 in the special
case w(x) = x.

Corollary 1. For any 1 ≤ p <∞ we have the equivalence

(13) ‖Rn‖Kp ≈ ‖{ak}nk=1‖l2 + max
1≤m≤n

∣∣∣ m∑
k=1

ak

∣∣∣,
and, in particular, the same holds for the space Ces∞[0, 1] = K1.

Corollary 2. Let 1 ≤ p < ∞. The series
∑∞

k=1 akrk is convergent in
Kp if and only if

∑∞
k=1 a

2
k <∞ and the series

∑∞
k=1 ak is convergent.

Corollary 3. The sequence of Rademacher functions is equivalent in
Kp to each of its subsequences.

Corollary 4. The system of Rademacher functions does not contain
an unconditional basic subsequence in Kp.

Remark 2. From (13) we obtain

(14)
∥∥∥ ∞∑
k=1

akrk

∥∥∥
Kp

≈ ‖{ak}∞k=1‖l2 + sup
m∈N

∣∣∣ m∑
k=1

ak

∣∣∣.
A similar equivalence holds also for the BMO space on [0, 1]. In 1985 Mikhail
Lĕıbov showed in his PhD dissertation [11] that∥∥∥ ∞∑

k=1

akrk

∥∥∥
BMO

≈ ‖{ak}∞k=1‖l2 + sup
l,m∈N, l≤m

∣∣∣ m∑
k=l

ak

∣∣∣.
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Noting that

sup
m∈N

∣∣∣ m∑
k=1

ak

∣∣∣ ≤ sup
l,m∈N, l≤m

∣∣∣ m∑
k=l

ak

∣∣∣
= sup

l,m∈N,l≤m

∣∣∣ m∑
k=1

ak −
l−1∑
k=1

ak

∣∣∣ ≤ 2 sup
m∈N

∣∣∣ m∑
k=1

ak

∣∣∣,
we obtain estimates which are similar to (14) but with BMO instead of Kp.
Note that the spaces Kp and BMO are not comparable, that is, no one of
them is embedded in the other.

3. Complementability of Rademacher subspaces in Cesàro type
spaces. We first consider the problem of complementability of the closed
linear span [rn]∞n=1 in the spaces Kp,w. We begin with the case when p = 1.

Theorem 4. For every quasi-concave function w, the subspace [rn]∞n=1

of the Banach space K1,w is not complemented in that space.

Proof. We will consider only the case when limx→0+ x/w(x) > 0 (in other
words, when K1,w coincides with the Korenblyum–Krĕın–Levin space K :=
Ces∞[0, 1] with equivalence of norms) because the proof in the remaining
case when limx→0+ x/w(x) = 0 is completely similar and even a little easier.

Suppose that [rn]∞n=1 is a complemented subspace of K, and P is the cor-
responding bounded linear projector. Since, by Theorem 2, the Rademacher
functions form a basic sequence in K, there exist functionals φn ∈ K∗

(n = 1, 2, . . .) such that

(15) Pf(x) =
∞∑
n=1

φn(f)rn(x) (f ∈ K).

By [13], the Köthe dual K ′ equals L̃1 with equality of norms, where

‖f‖L̃1
= ‖f̃‖L1 , with f̃(x) = ess sup

t∈[x,1]
|f(t)|.

Since L̃1 is a total set in K, by [8, Ch. 10, Theorem 3.6, Russian edition],

(16) K∗ = K ′ ⊕ (K ′)d,

where (K ′)d is the set of all singular bounded linear functionals on K. In
particular, if θ ∈ (K ′)d, then

(17) θ(f) = 0 for every f ∈ K0,

where K0 is the separable part of K.
Equality (16) implies that φn = ψn + θn, where ψn ∈ K ′ and θn ∈ (K ′)d

(n = 1, 2, . . .). Moreover, since P is a projection onto [rn]∞n=1,

(18) ψn(rn) + θn(rn) = 1 and ψn(ri) + θn(ri) = 0 if i 6= n.
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By (17), θn(ri) = θn(χ[0,1]) := cn for all positive integers n and i. Therefore,
(18) implies that ψn(ri) = −cn for all i 6= n. On the other hand,

(19) ψn(f) =
1�

0

gn(t)f(t) dt,

where gn ∈ L̃1 (n = 1, 2, . . .). Taking into account that L̃1 ⊂ L1 and that
{ri} is a uniformly bounded orthonormal sequence of functions we have
ψn(ri)→ 0 as i→∞ for every n = 1, 2, . . . . Therefore, cn = 0 (n = 1, 2, . . .),
and, by (18) and (19), we conclude that

(20)
1�

0

gn(t)rn(t) dt = 1 and
1�

0

gn(t)ri(t) dt = 0 if i 6= n.

Moreover, the restriction of the projection P from (15) to the separable part
K0 (we will denote it in the same way) may be represented in the form

Pf(x) =
∞∑
n=1

1�

0

gn(t)f(t) dt rn(x) (f ∈ K0).

Next, we note that there exist a small enough h ∈ (0, 1) and a positive
integer n0 such that for all n ≥ n0,

(21)
∣∣∣ 1�

h

gn(t)rn(t) dt
∣∣∣ ≥ 1

2
.

In fact, otherwise, (20) implies that there is a subsequence {gnk
} ⊂ {gn}

satisfying

(22)
1/i�

0

|gni(t)| dt ≥
∣∣∣ 1/i�

0

gni(t)rni(t) dt
∣∣∣ ≥ 1

2
(i = 1, 2, . . .).

By Theorem 1, for every f ∈ L∞ ⊂ K we have
∞∑
n=1

( 1�

0

gn(t)f(t) dt
)2

<∞,

which implies that gn
w−→ 0 in L1[0, 1]. Therefore, by the Dunford–Pettis

criterion [1, Theorem 5.2.9], {gn}∞n=1 is an equi-integrable set in L1[0, 1],
which contradicts (22). Thus, inequalities (21) hold for all n ≥ n0.

Now consider the operator Ph defined by

Phf(x) =
∞∑
n=1

1�

h

gn(t)f(t) dt rn(x).
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Since, by Theorem 2 and the classical Khintchine inequality (1),∥∥∥ ∞∑
n=1

anrn

∥∥∥
L1[0,1]

≤ C
∥∥∥ ∞∑
n=1

anrn

∥∥∥
K
,

Ph acts boundedly from K into L1[0, 1]. At the same time, if f is a measur-
able function on [0, 1] such that supp f ⊂ [h, 1], then

‖f‖L1[h,1] ≤ ‖f‖K = sup
h≤x≤1

1
x

1�

x

|f(t)| dt ≤ 1
h
‖f‖L1[h,1],

and therefore Ph : L1[h, 1]→ L1[0, 1] is bounded. Moreover, by the definition
of the operator Ph and inequality (1), we see that Ph is weakly compact.
Since the space L1[h, 1] has the Dunford–Pettis property [1, Theorem 5.4.5]
it follows that Ph is weak-to-norm sequentially continuous. Therefore, taking
into account that rnχ[h,1]

w→ 0 in L1[h, 1], we find that ‖Ph(rnχ[h,1])‖L1[0,1]

→ 0. On the other hand, by (1) and (21),

‖Ph(rnχ[h,1])‖L1[0,1] �
( ∞∑
i=1

( 1�

h

gi(t)rn(t) dt
)2)1/2

≥
∣∣∣ 1�

h

gn(t)rn(t) dt
∣∣∣ ≥ 1

2
,

for all n ≥ n0. This contradiction concludes the proof.

In the case p > 1 the situation is completely different.

Theorem 5. Let 1 < p < ∞. If the weight w satisfies condition (10),
then the subspace [rn]∞n=1 is complemented in Kp,w.

Proof. By [17] (cf. [12, pp. 134–138]), the orthogonal projection

Qf(x) =
∞∑
n=1

1�

0

rn(t)f(t) dt rn(x)

is bounded in Lp[0, 1] (1 < p <∞). Therefore, Theorem 3 yields

‖Qf‖Kp,w ≤ C‖Qf‖Lp ≤ C‖Q‖Lp→Lp‖f‖Lp ≤ C‖Q‖Lp→Lpw(1)1/p‖f‖Kp,w ,

which implies that Q is bounded in Kp,w.

Remark 3. In contrast to the spaces K1,w, the subspace [rn]∞n=1 is com-
plemented in a Marcinkiewicz space M1,w = M(w) if and only if G ⊂
M(w) ⊂ G′ (cf. [17] and [12, pp. 134–138]). Note that the left hand em-
bedding is equivalent to condition (10).

Finally, let us consider the case of Cesàro spaces with finite p. First we
note that, in contrast to K = Ces∞[0, 1], the spaces Cesp[0, 1] (1 ≤ p <∞)
are separable. This implies that Cesp[0, 1]∗ coincides with the Köthe dual
Cesp[0, 1]′ (described in [4]). It is also easy to see that for any h ∈ (0, 1)
there is a constant Ch > 0 such that for every measurable function f on [0, 1]
with supp f ⊂ [h, 1], we have ‖f‖Cesp ≤ Ch‖f‖L1 . Therefore, by Theorem 1,
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arguing in the same way as in the proof of Theorem 4, we can prove the
following result:

Theorem 6. For any 1 ≤ p <∞, the subspace [rn] is not complemented
in Cesp[0, 1].
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[9] B. I. Korenblyum, S. G. Krĕın and B. Ya. Levin, On certain nonlinear questions

of the theory of singular integrals, Dokl. Akad. Nauk SSSR 62 (1948), 17–20 (in
Russian).
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