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Suppose that 

 

E

 

 is an r.i. space on [0, 1] (the defini-
tion is given below), 
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. We denote the set of
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 such that 
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n

 

,

 

 

 

a

 

 is uniformly complemented in 
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,
i.e., there exist projectors 

 

P

 

n

 

 from 

 

E

 

 onto 

 

Q

 

n

 

,

 

 

 

a

 

 with

 

 < 

 

∞

 

, by 

 

�

 

(
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. This paper studies the set 

 

�

 

(
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and the class of r.i. spaces 

 

E

 

 coinciding with 

 

�

 

(

 

E

 

)

 

. It
turns out that 

 

�

 

(

 

E

 

)

 

 is closely related to the space of ten-
sor multipliers acting in 

 

E

 

.

Below, we give the necessary definitions.

A Banach space 

 

E

 

 of measurable functions on [0, 1]
is called symmetric or rearrangement invariant (r.i.) if
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(ii) the equimeasurability of functions 
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 and 

 

y

 

 and
the inclusion 

 

y
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Following [1], we assume that 

 

E

 

 is separable or dual
to a separable space.

Examples of r.i. spaces are 

 

L

 

p

 

 with 
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≤

 

 

 

p

 

 

 

≤

 

 

 

∞

 

 and the
Orlicz, Lorentz, and Marcinkiewicz spaces. Let 

 

Ω

 

denote the set of increasing concave functions 

 

ϕ

 

(

 

t

 

)

 

 on
[0, 1] such that 

 

ϕ

 

(0) = 

 

ϕ

 

(+0) = 0

 

 and 

 

ϕ

 

(1)

 

 = 1. Each

an k, t( )
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function 

 

ϕ ∈ Ω

 

 generates a Lorentz space 

 

Λ(ϕ) and a
Marcinkiewicz space M(ϕ) with norms

where x*(t) is the permutation of |x(t)| in decreasing
order. The space Λ(ϕ) is separable, and (Λ(ϕ))* = M(ϕ).

If Φ(t) is a convex increasing function on [0, ∞) and

then the Orlitz space LΦ is, by definition, the set of func-
tions such that Φ(εx) ∈ L1 for some ε > 0 with norm

The condition Φ ∈ ∆ 2 means that Φ(2t) ≤ CΦ(t) for
some constant C > 0 and all t > 1.

In any r.i. space E, the operator family

acts continuously. The numbers

are called the Boyd indices of the space E. We always
have 0 ≤ αE ≤ βE ≤ 1. We use the Calderon–Lozanovskii
construction [2]. If E0 and E1 are r.i. spaces and 0 < θ < 1,

then  denotes the space of functions with the
norm
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For any r.i. space 

 

E

 

, the continuous embeddings

 

L

 

∞

 

 

 

⊂

 

 

 

E

 

 

 

⊂ 

 

L

 

1

 

 hold. For an r.i. space 

 

E

 

, 

 

E

 

0

 

 denotes the clo-
sure of 

 

L

 

∞

 

 

 

in 

 

E

 

. If 

 

E

 

 is separable, then 

 

E

 

0

 

 = 

 

E

 

; if 

 

E

 

 ≠ L∞,
then E0 is separable. The equality of two r.i. spaces
means that they coincide as sets. By the closed graph
theorem, their norms are equivalent. By E ' we denote
the space of functions for which

The space E ' is isometrically embedded in E*. If E is
separable, then E ' = E* and the norms are equal.

There exists a measure-preserving one-to-one map-
ping of [0, 1] onto the square [0, 1] × [0, 1]; therefore,
for any r.i. space E on [0, 1], the measure-preserving
mapping generates a space of functions on the square
isomeric to this space. We denote this function space on
the square by the same symbol E. This allows us to con-
sider the tensor multiplier (x ⊗  y)(t, s) = x(t)y(s) as a
bilinear operator in Lp, where 1 ≤ p ≤ ∞. Every r.i. space
E generates a space �(E) of tensor multipliers with the
norm

Obviously, the embeddings L∞ ⊂ �(E) ⊂ E hold. Ten-
sor products of r.i. spaces are considered in [3, 4] and
elsewhere, and the space of tensor multipliers are stud-
ied in [5]. In more detail, the r.i. spaces are studied in
[1, 6]. Subspaces generated by shifts of one function
from an r.i. space on [0, ∞) are examined in [7].

The central result of this paper is the following the-
orem.

Theorem 1. Let E be an r.i. space. Then,

Theorem 1 solves the problem of finding �(E) for
separable r.i. spaces. In this case, �(E) coincides with
�(E). Using the results describing �(E) [3–5], we
obtain the following corollary.

Corollary 1. (i) If 1 < p < ∞ and 1 ≤ q < ∞, then

�(Lp, q) = Lp, min(p, q) and �( ) = Lp.

(ii) If ϕ ∈ Ω  and (t) = , then

The equality �(Λ(ϕ)) = Λ(ϕ) holds if and only if ϕ(ts) ≤
Cϕ(t)ϕ(s) for some C > 0 and all t, s ∈  [0, 1].

(iii) If Φ ∈ ∆ 2, then �(LΦ) = LΦ if and only if Φ is
semimultiplicative, i.e., there exists a C > 0 such that
Φ(uv) ≤ CΦ(u)Φ(v) for all u, v ≥ 1.

(iv) If E is a separable r.i. space, then �(E) = L∞ if
and only if αE = 0. 
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For nonseparable r.i. spaces 

 

E

 

, the set 
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(
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)

 

 may dif-
fer from 

 

�

 

(

 

E

 

)

 

, and the problem of describing 

 

�

 

(

 

E

 

)

 

becomes more complicated.
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, 

 

i.e.,

 

Theorem 2 shows that the set 

 

�

 

(

 

E

 

)

 

 may be nonlin-
ear if 

 

E

 

 is nonseparable.

 

Theorem 3.

 

 If 

 

ϕ ∈ Ω

 

 

 

and

 

 

 

 < 

 

∞

 

, 

 

then

 

Let 

 

�

 

 denote the set of r.i. spaces 

 

E

 

 coinciding with

 

�

 

(

 

E

 

)

 

. Theorem 3 shows that some nonseparable r.i.
spaces belong to the class 

 

�

 

. The class � is stable with
respect to the complex interpolation method.

Theorem 4. Suppose that E0 and E1 are separable r.i.

spaces; E0, E1 ∈  �; and 0 < θ < 1. Then,  ∈  �.

Corollary 1(i) shows that the class � is not stable
with respect to the real interpolation method. Below, we
give yet another description of the class �.

Theorem 5. Let E be an r.i. space. The following
conditions are equivalent.

(i) �(E) = E;
(ii) �(E) = E;
(iii) There exists a constant C > 0 such that

for all a ∈  E and all cn, k ∈ �1, where k = 1, 2, …, 2n

and n = 0, 1, …; here, χn, k is the characteristic function
of the interval ((k – 1) · 2–n, k · 2–n).

The spaces Lp have the following characteristic
property in terms of the class �.

Theorem 6. Let E be an r.i. space. The following
conditions are equivalent.

(i) �(E) = E and �(E ') = E ';
(ii) The tensor product operators ⊗  from E × E to E

and from E ' × E ' to E ' are bounded;
(iii) There exists a p ∈ [1, ∞] such that E = Lp. 
Thus, if an r.i. space E does not coincide with Lp for

1 ≤ p ≤ ∞, then the class � cannot contain more than
one of the spaces E and E '.

The problem of describing �(Lp, ∞) (1 < p < ∞)
remains unsolved. It is clear only that �(Lp, ∞) ∩

 = Lp.
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