ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXX (1991) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria I: PRACE MATEMATYCZNE XXX (1991)

C. E. FINOL and L. MALIGRANDA (Caracas)

On a decomposition of some functions

Abstract. A representation of submultiplicative and supermultiplicative functions on (0, 1) is given with some applications to Orlicz spaces.

1. Decomposition theorem. Let I be a subset of $\mathbf{R}_+ = [0, \infty)$ such that $xy \in I$ whenever $x, y \in I$, i.e.,

$$(1) I \cdot I \subset I,$$

and let $f: I \to \mathbb{R}_+$ be a measurable positive function which is zero at zero if $0 \in I$ satisfying the inequality

(2)
$$f(xy) \le f(x)f(y)$$
 for all $x, y \in I$.

Then f will be called *submultiplicative* on I. If the reverse inequality holds, then we say that f is *supermultiplicative* on I.

Examples of submultiplicative functions on (0, 1), $(0, \infty)$ and $[1, \infty)$ may be found in [7], [12] and [6]. They appear in many places and are related to diverse subjects.

THEOREM 1. (a) If f is a submultiplicative function on I = (0, 1), then

$$\alpha = \lim_{x \to 0^+} \frac{\ln f(x)}{\ln x}$$

exists and

$$f(x) = x^{\alpha}g(x)$$

with $g(x) \ge 1$ for $x \in I$ and $\lim_{x \to 0^+} x^{\varepsilon} g(x) = 0$ for every $\varepsilon > 0$. (b) If f is a supermultiplicative function on I = (0, 1), then

$$\beta = \lim_{x \to 0^+} \frac{\ln f(x)}{\ln x}$$

exists and

$$(4) f(x) = x^{\beta}h(x)$$

with $h(x) \le 1$ for $x \in I$ and $\lim_{x \to 0^+} x^{-\epsilon} h(x) = \infty$ for every $\epsilon > 0$.

Proof. Note that if f is submultiplicative on I, then 1/f is supermultiplicative on I and vice versa. Therefore, it is enough to prove (a). Let $f(xy) \le f(x) f(y)$ for $x, y \in I$ and let $F(x) = \ln f(e^{-x})$. Then

$$F(x+y) \le F(x) + F(y)$$
 for $x, y \in (0, \infty)$.

Hence F is a measurable subadditive function on $(0, \infty)$. A result from [7], p. 244, asserts that

$$\lim_{x\to\infty} F(x)/x = \inf_{x>0} F(x)/x = -\alpha.$$

Replacing -x by $\ln y$ yields

$$\alpha = \lim_{x \to \infty} \frac{\ln f(e^{-x})}{-x} = \lim_{y \to 0^+} \frac{\ln f(y)}{\ln y}.$$

If $0 < g(x_0) < 1$ for some $0 < x_0 < 1$, then for any n

$$\ln f(x_0^n) / \ln x_0^n = \alpha + \ln g(x_0^n) / \ln x_0^n \geqslant \alpha + \ln g(x_0) / \ln x_0 > \alpha,$$

and so

$$\lim_{x \to 0^+} \ln f(x) / \ln x \geqslant \alpha + \ln g(x_0) / \ln x_0 > \alpha.$$

This contradiction means that $g(x) \ge 1$ for $x \in I$.

If $\lim_{x\to 0^+} x^{\varepsilon} g(x) > 0$ for some $\varepsilon > 0$, then there exist constants c > 0, $x_0 > 0$, with $g(x) \ge cx^{-\varepsilon}$ for $0 < x < x_0$, and

$$\ln f(x)/\ln x = \alpha + \ln g(x)/\ln x \le \alpha + (\ln c - \varepsilon \ln x)/\ln x$$

so that

$$\lim_{x\to 0^+} \ln f(x) / \ln x \leq \alpha - \varepsilon,$$

a contradiction. This completes the proof.

Note that if $\lim_{x\to 0^+} f(x) = 0$ then $\alpha > 0$. Indeed, if $0 < f(x_0) < 1$ for some $0 < x_0 < 1$, then

$$\ln f(x_0^n)/\ln x_0^n \ge \ln f(x_0)^n/\ln x_0^n = \ln f(x_0)/\ln x_0$$

and hence

$$\alpha = \lim_{n \to \infty} \ln f(x_0^n) / \ln x_0^n \ge \ln f(x_0) / \ln x_0 > 0.$$

Remark 1. The above representation for a bounded supermultiplicative function was stated in [3], p. 147, and used to obtain some estimate of the modulus of convexity of Lorentz sequence spaces. In [1] a representation theorem for supermultiplicative functions on (0, 1) was proved with a nondecreasing factor h. But, as we will see in some examples (submultiplicative case), the factor h is not always a monotonic function.

Remark 2. The above theorem is also true for functions on $I = (1, \infty)$, because f is submultiplicative or supermultiplicative on $(1, \infty)$ if and only if $f_*(x) = 1/f(1/x)$ is supermultiplicative or submultiplicative on (0, 1), respectively.

Let us give some examples (always $p \ge 1$).

EXAMPLE 1. Let I be an interval such that (1) holds and let f(x) be x^p for x rational from I and $2x^p$ for x irrational from I. Then f is submultiplicative on I, $\alpha = p$ and $g(x) = x^{-p}f(x)$ is not monotonic on any subinterval of I.

EXAMPLE 2 (see [12], Ex. 5). Let $f(x) = x^p(1 + |\sin \ln x|)$ or $f(x) = x^p e^{|\sin \ln x|}$. Then f is a submultiplicative continuous increasing function on $(0, \infty)$ with f(1) = 1 and with $g(x) = x^{-p}f(x)$ not monotonic on any interval $(0, \varepsilon)$, $0 < \varepsilon \le 1$.

Example 3. Define, for $x \ge 0$ and n = 1, 2, ...,

$$u(x) = \begin{cases} x/n & \text{if } (n-1)n^2 \le x \le n^2(n+2), \\ n(n+1)(n+2) - x & \text{if } n^2(n+2) \le x \le n(n+1)^2. \end{cases}$$

Then u(x)/x is nonincreasing and so u is subadditive on $(0, \infty)$. This example was introduced in [3], p. 141. Let, for $x \in (0, 1)$ and $p \ge 2$,

$$f(x) = x^p g(x)$$
 with $g(x) = \exp\left(u\left(\ln\frac{1}{x}\right)\right)$.

Then f is a submultiplicative increasing convex function on (0, 1), $\alpha = p$, $\lim_{x\to 0^+} g(x) = \infty$ and g is not monotonic on any interval $(0, \varepsilon)$, $0 < \varepsilon < 1$.

Example 4. Define, for $x \ge 0$ and n = 2, 3, ...,

$$v(x) = \begin{cases} x/2 & \text{if } 0 \le x \le 2, \\ x/n! & \text{if } n! \le x \le nn!, \\ n^2 - (n-1)x/n! & \text{if } nn! \le x \le (n+1)!. \end{cases}$$

Then v(x)/x is nonincreasing and so v is subadditive on $(0, \infty)$. Let, for $x \in (0, 1)$, and $p \ge 2$,

$$f(x) = x^p g(x)$$
 with $g(x) = \exp\left(v\left(\ln\frac{1}{x}\right)\right)$.

Then f is a submultiplicative increasing convex function on (0, 1), $\alpha = p$, $\lim \inf_{x\to 0^+} g(x) = \exp(\lim_{n\to\infty} v(n!)) = e$, $\lim \sup_{x\to 0^+} g(x) = \exp(\lim_{n\to\infty} v(nn!)) = \infty$ and g is not monotonic on any interval $(0, \varepsilon)$, $0 < \varepsilon < 1$.

2. Vector-valued Orlicz spaces and Orlicz spaces on product spaces. Let us recall some notations from the theory of Orlicz spaces. An Orlicz function φ is a continuous convex increasing function on $[0, \infty)$ so that $\varphi(0) = 0$.

The Orlicz space $L_{\varphi}=L_{\varphi}(S)$ on a σ -finite measure space $(S,\, \Sigma,\, \mu)$ is the Banach space of Σ -measurable functions (with the usual identification) defined by

$$L_{\varphi} = \{x \colon S \to \mathbb{R} \text{ measurable } | m_{\varphi}(rx) = \int_{S} \varphi(r|x(s)|) d\mu(s) < \infty \text{ for some } r > 0\}$$

with the Luxemburg-Nakano norm

$$||x||_{\varphi} = \inf\{a > 0: m_{\varphi}(x/a) \le 1\}.$$

In recent years a number of papers have appeared in which spaces of vector-valued functions are considered. In the proof of theorems about vector-valued L_p spaces it is often used that $L_p(S_1, L_p(S_2)) = L_p(S_2 \times S_1)$, that is, it is possible to consider that space as an L_p space on a product space. An essential limitation to the extension for Orlicz spaces will be the content of the following theorem.

THEOREM 2. Let I=(0,1) and let $\varphi_1, \varphi_2, \varphi$ be Orlicz functions. Let $L_{\varphi_1}(I, L_{\varphi_2}(I))$ and $L_{\varphi}(I \times I)$ be the vector-valued Orlicz space on I and the Orlicz space on $I \times I$. Then

(5)
$$L_{\varphi_1}(I, L_{\varphi_2}(I)) = L_{\varphi}(I \times I)$$

if and only if $L_{\varphi_1}(I) = L_{\varphi_2}(I) = L_{\varphi}(I) = L_p(I)$ for some $p \geqslant 1$.

Proof. It is sufficient to prove the necessity. Assume that for some positive constants a and b,

$$a \|x\|_{L_{\varphi_1}(I, L_{\varphi_2}(I))} \le \|x\|_{L_{\varphi}(I \times I)} \le b \|x\|_{L_{\varphi_1}(I, L_{\varphi_2}(I))}.$$

Then, in particular, for any measurable subsets A and B of I.

$$a\|1_{A\times B}\|_{L_{\varphi_1}(I,L_{\varphi_2}(I))} \leqslant \|1_{A\times B}\|_{L_{\varphi}(I\times I)} \leqslant b\|1_{A\times B}\|_{L_{\varphi_1}(I,L_{\varphi_2}(I))},$$

i.e.,

(6)
$$\frac{a}{\varphi_1^{-1}\left(\frac{1}{mA}\right)\varphi_2^{-1}\left(\frac{1}{mB}\right)} \leqslant \frac{1}{\varphi^{-1}\left(\frac{1}{mAmB}\right)} \leqslant \frac{b}{\varphi_1^{-1}\left(\frac{1}{mA}\right)\varphi_2^{-1}\left(\frac{1}{mB}\right)}.$$

First, putting mA = 1/u and mB = 1 in (6), and then mA = 1 and mB = 1/u we get

$$\frac{\varphi_2^{-1}(1)}{b}\varphi_1^{-1}(u) \leqslant \varphi^{-1}(u) \leqslant \frac{\varphi_2^{-1}(1)}{a}\varphi_1^{-1}(u) \quad \text{for } u > 1,$$

and

$$\frac{\varphi_1^{-1}(1)}{b}\varphi_2^{-1}(u) \leqslant \varphi^{-1}(u) \leqslant \frac{\varphi_1^{-1}(1)}{a}\varphi_2^{-1}(u) \quad \text{for } u > 1,$$

respectively. The above inequalities mean that $L_{\varphi_1}(I) = L_{\varphi}(I) = L_{\varphi_2}(I)$ and

$$\frac{c}{\varphi^{-1}\left(\frac{1}{mA}\right)\varphi^{-1}\left(\frac{1}{mB}\right)} \leqslant \frac{1}{\varphi^{-1}\left(\frac{1}{mAmB}\right)} \leqslant \frac{d}{\varphi^{-1}\left(\frac{1}{mA}\right)\varphi^{-1}\left(\frac{1}{mB}\right)}$$

with $c = a\varphi_1^{-1}(1)\varphi_2^{-1}(1)/b^2$, $d = cb^3/a^3$. Therefore, $f(u) = c/\varphi^{-1}(1/u)$ is a supermultiplicative function on I = (0, 1) and $f(u) = d/\varphi^{-1}(1/u)$ is a submultiplicative function on I. From the representation theorem:

$$\frac{c}{\varphi^{-1}(1/u)} = u^{1/p}h(u) \quad \text{with } h(u) \le 1, \quad \frac{d}{\varphi^{-1}(1/u)} = u^{1/p}g(u) \quad \text{with } g(u) \ge 1,$$

and so

$$\frac{c}{\varphi^{-1}(1/u)} = u^{1/p} h(u) \leqslant u^{1/p} \leqslant u^{1/p} g(u) = \frac{d}{\varphi^{-1}(1/u)} \quad \text{for all } u \in I.$$

Hence, $d^{-p}v^p \leqslant \varphi(v) \leqslant c^{-p}v^p$ for $v \in [d, \infty)$ and so $L_{\varphi}(I) = L_p(I)$.

Remark 3. If (S_i, Σ_i, μ_i) , i = 1, 2, are nonatomic σ -finite measure spaces, then $L_{\sigma_1}(S_1, L_{\sigma_2}(S_2)) = L_{\sigma}(S_2 \times S_1)$ if and only if $L_{\sigma_1}(S_i) = L_{\sigma_2}(S_i) = L_{\sigma}(S_i) = L_{\sigma}(S_i)$ $= L_{\rho}(S_i)$, i = 1, 2, for some $p \ge 1$. The proof is the same as that of the above theorem.

Remark 4. The first part of our Theorem 2, i.e., only the equalities $L_{\varphi_1} = L_{\varphi_2} = L_{\varphi}$, was also proved in [2], [5], [9], [13].

3. Strictly singular inclusions between some Orlicz spaces. Now we will consider the case of Orlicz sequence spaces l_{φ} . Kalton [8] proved that if an Orlicz function φ satisfies the Δ_2 -condition at zero (i.e. $\limsup_{u\to 0^+} \varphi(2u)/\varphi(u) < \infty$) and $\varphi(u) \geqslant Cu^p$ for some C>0, $1 \leqslant p < \infty$ and for every $0 \leqslant u \leqslant 1$, then the imbedding i: $l_{\varphi} \subsetneq l_p$ is a strictly singular operator (i.e. there is no infinite-dimensional subspace E of l_{φ} such that $i|_E$ is an isomorphism) if and only if

(7)
$$s(\varphi, p) = \liminf_{\varepsilon \to 0^+} \inf_{0 < s \le 1} \frac{1}{\ln(1/\varepsilon)} \int_{\varepsilon}^{1} \frac{\varphi(st)}{s^p t^{p+1}} dt = \infty.$$

For example, if $\varphi_{p,q}(u) = u^p(1+|\ln u|)^q$ with $q \ge 1$ and $p \ge 3q$ then $\varphi_{p,q}$ is an Orlicz function and

$$s(\varphi_{p,q}, p) \geqslant s(\varphi_{p,1}, p) = \liminf_{\varepsilon \to 0^+} \inf_{0 < s \leq 1} \left(\ln \frac{e}{s} + \frac{1}{2} \ln \frac{1}{\varepsilon} \right) = \infty,$$

and so the imbedding $l_{\varphi_{p,q}} \subseteq l_p$ is strictly singular.

Note that $\varphi_{p,q}$ is a submultiplicative function on $(0, \infty)$. In general it is not a simple matter to verify when (7) holds, but using the above representation theorem we prove the strict singularity of the imbedding $l_{\varphi} \subseteq l_{p}$, provided that φ is a submultiplicative or supermultiplicative function on (0, 1).

THEOREM 3. Let φ be an Orlicz function satisfying the Δ_2 -condition at zero and such that $\varphi(u) \geqslant Cu^p$ for some C>0, $1 and every <math>0 \leqslant u \leqslant 1$. Let $\limsup_{u\to 0^+} \varphi(u)/u^p = \infty$, i.e., φ is not equivalent at zero to u^p . If φ is either a supermultiplicative function on (0,1) or a submultiplicative function on (0,1) with $\lim_{u\to 0^+} \varphi(u)/u^p = \infty$, then the imbedding i: $l_{\varphi} \subsetneq l_p$ is strictly singular.

Proof. First, if $\varphi(u)$ is equivalent at zero to u^q with $1 \le q < p$ then $i: l_{\varphi} \subseteq l_p$ is strictly singular.

If φ is a submultiplicative function on (0, 1) not equivalent at zero to u^q for any $q \ge 1$, then by assumption and the representation theorem

$$Cu^p \leqslant \varphi(u) = u^\beta h(u) \leqslant u^\beta$$
 for $0 \leqslant u \leqslant 1$,

and so $\beta < p$ (if $\beta = p$, then $\varphi(u)$ is equivalent at zero to u^p). The exponent β is precisely the Matuszewska-Orlicz index β_{φ} (see [4], [12]). Therefore, being the intervals associated to the functions φ and u^p disjoint, it follows from a result of Lindberg [10] that l_{φ} and l_p are totally incomparable, i.e., they have no isomorphic infinite-dimensional subspaces and so any bounded linear operator from l_{φ} into l_p is strictly singular. In particular, the imbedding $l_{\varphi} \subseteq l_p$ is strictly singular.

If φ is a submultiplicative function on (0, 1) not equivalent at zero to u^q for any $q \ge 1$, then by Theorem 1(a) we have

$$u^{\alpha} \leqslant u^{\alpha} g(u) = \varphi(u)$$
 for $0 \leqslant u \leqslant 1$,

and by the assumption,

$$\alpha = \lim_{u \to 0^+} \frac{\ln \varphi(u)}{\ln u} \leqslant \lim_{u \to 0^+} \frac{\ln (Cu^p)}{\ln u} = p.$$

If $\alpha < p$ then the imbedding $l_{\alpha} \subseteq l_{p}$ is strictly singular and since the imbedding $l_{\varphi} \subseteq l_{\alpha}$ is continuous, it follows that the imbedding $l_{\varphi} \subseteq l_{p}$ is strictly singular. We have used here the well-known fact that the composition of a strictly singular operator with a bounded operator is also strictly singular.

Let $\alpha = p$ and $\lim_{u \to 0^+} g(u) = \infty$. The function

$$\tilde{g}(u) = \inf_{0 < s \le 1} g(su) = \inf_{0 < t \le u} g(t)$$

is nonincreasing, $\tilde{g}(u) \leq g(u)$ and $\lim_{u\to 0^+} \tilde{g}(u) = \infty$. Therefore,

$$s(\varphi, p) = \liminf_{\varepsilon \to 0^{+}} \inf_{0 < s \leq 1} \frac{1}{\ln(1/\varepsilon)} \int_{\varepsilon}^{1} (g(st)/t) dt \geqslant \liminf_{\varepsilon \to 0^{+}} \frac{1}{\ln(1/\varepsilon)} \int_{\varepsilon}^{1} (\tilde{g}(t)/t) dt$$
$$= \lim_{\varepsilon \to 0^{+}} \frac{\int_{\varepsilon}^{1} (\tilde{g}(t)/t) dt}{\int_{\varepsilon}^{1} dt/t} = \lim_{\varepsilon \to 0^{+}} \frac{\tilde{g}(\varepsilon)/\varepsilon}{1/\varepsilon} = \infty,$$

Hence (7) holds and the imbedding $l_{\varphi} \subseteq l_{p}$ is strictly singular.

References

- [1] Z. Altshuler, The modulus of convexity of Lorentz and Orlicz spaces, in: Notes in Banach Spaces, Univ. of Texas Press, Austin, Texas 1980, 359-378.
- [2] T. K. Donaldson, Inhomogeneous Orlicz-Sobolev spaces and nonlinear parabolic initial value problems, J. Differential Equations 16 (1974), 201-256.
- [3] T. Figiel, On the moduli of convexity and smoothness, Studia Math. 56 (1976), 121-155.
- [4] C. E. Finol, On the inclusion map between some Orlicz spaces, preprint, Universidad Central de Venezuela, Caracas 1985, 14 pp.
- [5] B. Firley and W. Matuszewska, Some remarks on spaces provided with mixed norm, Comment. Math. Prace Mat. 17 (1974), 347-357.
- [6] J. Gustavsson, L. Maligranda and J. Peetre, A submultiplicative function, Indag. Math. 51 (1989), 435-442.
- [7] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc., Providence 1957.
- [8] N. J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Cambridge Philos. Soc. 81 (1977), 253-277.
- [9] M. T. Lacroix, Comparaison des espaces $E_M(\Omega_1, E_M(\Omega_2))$ et $E_M(\Omega_1 \times \Omega_2)$, Publ. Math. Fac. Sci. Besançon Année 1974–75, Exp. No. 2, 1–7.
- [10] K. Lindberg, On subspaces of Orlicz sequence spaces, Studia Math. 45 (1973), 119-146.
- [11] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I. Sequence Spaces, Springer, Berlin 1977.
- [12] L. Maligranda, Indices and interpolation, Dissertationes Math. 234 (1985), 1-49.
- [13] M. Milman, A note on L(p, q) spaces and Orlicz spaces with mixed norms, Proc. Amer. Math. Soc. 83 (1981), 743-746.
- [14] R. O'Neil, Integral transforms and tensor products on Orlicz spaces and L(p, q) spaces, J. Analyse Math. 21 (1968), 1-276.

DEPARTAMENTO DE MATEMATICAS, UNIVERSIDAD CENTRAL DE VENEZUELA APARTADO 20513 CARACAS 1020-A, VENEZUELA

DEPARTAMENTO DE MATEMATICAS, IVIC APARTADO 21827 CARACAS 1020-A, VENEZUELA

ERRATA

Page	For	Read
285 ₈ 285 ₃ 317 ₆	exists and exists and R	exists. If α is finite, then exists. If β is finite, then R
129¹	$\sum_{u \leqslant \tau}$	$\leq \sum_{\mu \leq \tau}$
171 ₁₆	\bigvee_{T}	\wedge_{τ}

Commentationes Mathematicae 30.2

92f:46028 46E30

Finol, C. E. (YV-UCV); Maligranda, L. (YV-IVIC)

On a decomposition of some functions.

Comment. Math. Prace Mat. 30 (1991), no. 2, 285-291.

A representation of submultiplicative and supermultiplicative functions on (0, 1) is given with some applications to Orlicz spaces. For example. Theorem 3: Let φ be an Orlicz function satisfying the Δ_2 -condition at zero and such that $\varphi(u) \geq Cu^p$ for some C > 0, $1 and every <math>0 \le u \le 1$. If φ is either a supermultiplicative or a submultiplicative function on (0,1) with $\lim_{u\to 0^+} \varphi(u)/u^p =$ ∞ , then the embedding $i: l_{\varphi} \hookrightarrow l_{p}$ is strictly singular (i.e., there is no infinite-dimensional subspace E of l_{φ} such that $i|_{E}$ is an isomorphism). Ting Fu Wang (PRC-HARST)

Zbl. Math. 756

Finol, C. E.; Maligranda, L. On a decomposition of some functions.

26004

Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 30, No. 2, 285-291 (1991). The authors give a representation of submultiplicative and supermultiplicative functions on J. Appell (Würzburg).

> 2 Б663. О разложении некоторых функций. Оп а decomposition of some functions / Finol C. E., Maligranda L. // Rocz. PTM. Ser. 1.— 1991.— 30, № 2.— С. 285—291.— Англ.

285—291.— Англ. В теореме I устанавливаются некоторые свойства функции $\frac{f(x)}{x^{\alpha}}$, где $\alpha=\lim_{x\to+0}\frac{\ln f(x)}{\ln x}$, для субмультипликативных и супермультипликативных на отрезке I=[0,1] функций. В теореме 2 доказывается, что равенство $L_{\phi_1}(I,L_{\phi_2}(I))=L_{\phi_0}(I\times I)$ возможно тогда и только тогда, когда $L_{\phi_1}(I)=L_{\phi_2}(I)=L_{\phi_0}(I)=$ пространств Орлича l_{ϕ} устанавливаются повые условия строгой сингулярности оператора вложения $l_{\phi} \leftarrow l_{p}$ (ср. РЖМат, 1977, 11Б751). Библ. 14. Я. Рутицкий