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On a decomposition of some functions

Abstract. A representation of submultiplicative and supermultiplicative functions on (0, 1) is
given with some applications to Orlicz spaces.

1. Decomposition theorem. Let I be a subset of R, = [0, o) such that
xyel whenever x, yel, ie., '

(D I'Ic1,

and let f: I - R, be a measurable positive function which is zero at zero if
Oel satisfying the inequality

@ F<fx)fly) for all x, yel.

Then f will be called submultiplicative on I. If the reverse inequality holds, then
we say that f is supermultiplicative on I. ‘

Examples of submultiplicative functions on (0, 1), (0, <o) and [1, c0) may
be found in [7], [12] and [6]. They appear in many places and are related to
diverse subjects.

THEOREM 1. (3) If f is a submultiplicative function on I=(0, 1), then

. Inf(x)
S x]ffi Inx
exists and ,
€)) fx) =x*g(x)

with g(x) =2 1 for xel and lim,_q+ x*g(x) =0 for every &> 0.
(b) If f is a supermultiplicative function on I = (0, 1), then

o Inf(x)
p= x]_1’n01+ Inx
exists and
) %) = xFh(x)

with h(x) <1 for xel and lim .+ x *h(x) = co for every &> 0.
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Proof Note that if f is submultiplicative on I, then 1/f is supermulti-
plicative on I and vice versa. Therefore, it is enough to prove (a). Let f(xy)
< f(x) f() for x, yel and let F(x)=Inf(e™™). Then

F(x+y) < F(x)-i—.F(y) for x, ye(0, o).
Hence F is a measurable subadditive function on (0, co). A result from [7], p.
244, asserts that
lim F(x)/x = inf F(x)/x = —a.

X+ x>0
Replacing —x by Iny yields

o T Infle™) _ lim JDf(.v)_
—X y0+ Iny

X

If 0 < g(x,) < 1 for some 0 < x, < 1, then for any n
In £ (x3)/lnxf = a+Ing(xf)/lnxg > a+Ing(x,)/Inx, > a,

and so
lim In f(x)/Inx = a+1ng(xy)/Inx, > o.

x—~+0+

This contradiction means that g(x) > 1 for xel.
If lim,.o+x*g(x) >0 for some ¢>0, then there exist constants
¢>0, x, >0, with g(x) = ¢cx™* for 0 <x < x,, and

In f(x)/Inx = a+In g (x)/Inx < ¢+ (Inc—¢elnx)/Inx
so that
lim ln f(x)/Inx < a—¢,
x—0*
a contradiction. This completes the proof.

Note that if lim,_, o+ f(x) = 0 then « > 0. Indeed, if 0 < f(x,) < 1 for some
0 <x, <1, then

In £ (<) > In f (xgf/inh = In f (xg)/lnxo
and hence
¢ = lim In f(x%)/Inx} > In f (x,)/Inx, > 0.

X+
Remark 1. The above representation for a bounded supermultiplicative
function was stated in [3], p. 147, and used to obtain some estimate of the
modulus of convexity of Lorentz sequence spaces. In [1] a representation
theorem for supermultiplicative functions on (0, 1) was proved with a nonde-
creasing factor h. But, as we will see in some examples (submultiplicative case),
the factor h is not always a monotonic function.
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Remark 2. The above theorem is also true for functions on I = (1, o),
because f is submultiplicative or supermultiplicative on (1, co) if and only if
fi(x) =1/f(1/x) is supermultiplicative or submultiplicative on (0, 1), respec-
tively.

Let us give some examples (always p > 1).

ExampLE 1. Let I be an interval such that (1) holds and let f(x) be x? for
x rational from I and 2x? for x irrational from I. Then f is submultiplicative on
I,a =p and g(x) = x"?f(x) is not monotonic on any subinterval of L

ExAMPLE 2 (see [12], Ex. 5). Let f(x) = x?(1 +[sinInx]) or f(x) = xPelinin=l,
Then f is a submultiplicative continuous increasing function on (0, o) with
f(1)=1 and with g(x) =x7Zf(x) not monotonic on any interval (0, &),
O<e<l.

ExampLE 3. Define, for x>0 and n=1,2,..., )
() = x/n if (m—1n2 < x<n*(n+2),
T+ D)n+2)—x  if n?(n+2) < x < n(n+1)%

Then u(x)/x is nonincreasing and so u is subadditive on (0, co). This example
was introduced in [3], p. 141. Let, for x€(0, 1) and p = 2,

f(x)=xPg(x) with g(x)=exp (u(ln%)).

Then f is a submultiplicative increasing convex function on (0, 1), =p,
lim, ¢+ g(x) = 0 and g is not monotonic on any interval (0, ¢), 0 <e < 1.

ExaMmpLE 4. Define, for x>0 and n=2, 3, ...,
X2 if 0<x<2,
v(x) =< x/n! "’ if n! <x<nnl,
n—n—-Dx/m! if nnl<x<@+1)L

Then v(x)/x is nonincreasing and so » is subadditive on (0, o). Let, for x€(0, 1),
and p> 2,

f(x)=xPg(x) with g(x)= exp(v(ln%)).

Then f is a submultiplicative increasing convex function on (0, 1), a =p,
liminf, o+ g(%) = exp(lim,- » v(n!) = e, imsup,.o+ g(x) = exp(lim,-., v(nn!))
= oo and g is not monotonic on any interval (0,¢), 0 <e< 1

2. Vector-valued Orlicz spaces and Orlicz spaces on product spaces. Let us
recall some notations from the theory of Orlicz spaces. An Orlicz function ¢ is
a continuous convex increasing function on [0, o) so that ¢(0) =0.
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The Orlicz space L,=L,(S) on a o-finite measure space (S, X, y) is
the Banach space of Z-measurable functions (with the usual identification)

det'med by

= {x: S—>R measurable|m,(rx) = [ p(r|x(s)|)du(s) < o for some r > 0}
S

with the Luxemburg-Nakano norm
x|, = inf{a > 0: m,(x/a) < 1}.

In recent years a number of papers have appeared in which spaces of
vector-valued functions are considered. In the proof of theorems about
vector-valued L, spaces it is often used that L,(S,, L,(S,)) = L,(S, x S,), that
is, it is possible to consider that space as an L, space on a product space. An
essential limitation to the extension for Orlicz spaces will be the content of the
following theorem.

THEOREM 2. Let I =(0, 1) and let ¢,, ¢,, ¢ be Orlicz functions. Let
Ly, (I, Ly, (D) and L, (I x I) be the vector-valued Orlicz space on I and the Orlicz
space on IxI. Then -

&) Lw;(Is Lq:z(I)) = Lq;(I x I)
if and only if Lo (I) = L,,(I) = L,(I)=L,) ﬁ-)r some p 2= 1.

Proof It is sufficient to prove the necessity. Assume that for some
positive constants a and b,

allxllzy Ly < IXlLyaxn < bIX|L, 4L,
Then, in particular, for any measurable subsets 4 and B of I,
Al Lan 8yt gn < Waxalleyirn < Bl Linsle, atp
- 1.e,
a 1 b

© - < < .
58 sl B Y e ] il [ 1 1
e (a)ers) ) () ()

First, putting mA = 1/u and mB = 1 in (6), and then m4 = 1 and mB = 1/u we
get

93 (1) 1( )

b

o1 for u>1,

o1 W) < 07w <

and

1()

pz'(w) foru>1,

4
2l ortw <ot <
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respectively. The above inequalities mean that L,,(I) = L,(I) = Ly,(I) and
c 1 d

I L s s 1 1

—f 2 -1 2 ) -1 i Y -1 1
() Ga) + () 7)o Ga)

with ¢ = apr *(1)@3 1(1)/b?, d = cb*/a®. Therefore, f(u) = c/p™"(1/u) is a su-

permultiplicative function on I = (0, 1) and f(4) = djp~1(1/u) is a submulti-
plicative function on I. From the representation theorem:

¢ = yPp 3 d. — yllp 3
=1u u) with h(w) <1, — =u u) with g(u) =1,
and so
e — 1P 1 1p _ d
=uPhu) <u'f<u u) = — for all uel.
(p_l(lfu) ( ) g( ) 1(1/u) -

Hence, d ?v* < o(v) < ¢”?v? for ve[d, ) and so L,(I) = L,(I).

Remark 3. If (S,, Z;, u), i = 1, 2, are nonatomic o-finite measure spaces,
then L, (Sy, Le,(S2)) = Ly(S, xSy if and only if L,,(S) = Ly, (S) = L,(S)
= L,(S), i=1, 2, for some p > 1. The proof is the same as that of the above
theorem.

Remark 4. The first part of our Theorem 2, ie., only the equalities
Ly, = L,, = L,, was also proved in [2], [5), [91, [13].

3. Strictly singular inclusions between some Orlicz spaces. Now we will
consider the case of Orlicz sequence spaces [,. Kalton [8] proved that if an
Orlicz function o satisfies the A,-condition at zero (ie. lim sup,~o+ @(2u)/ (1)
< ) and () = Cu? for some C>0,1<p<© and for every 0 <u<1,
then the imbedding i: I, 5 [, is a strictly singular operator (i.e. there is no
infinite-dimensional subspace E of [, such that i|g is an isomorphism) if and
only if :

™ sl il T i [P 5

— [ —=dt = 0.
=0+ o<ssiln(1/3)e.5ptp+1

For example, if ¢,,(u) = u?(1+[lnu))? with ¢ > 1 and p > 3q then ¢,, is an
Orlicz function and . ‘
.. . e 1 1 '
$(@p.q» D) = 5(@p,1, p) = liminf inf (ln—+—1n-) = 8
>0+ 0<s<i\ S 2 &
and so the imbedding I, . <[, is strictly singular.
Note that ¢, , is a submultiplicative function on (0, ). In general it is not
a simple matter to verify when (7) holds, but using the above representation
theorem we prove the strict singularity of the imbedding [, & I, provided that
@ is a submultiplicative or supermultiplicative function on (0, 1).
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THEOREM 3. Let @ be an Orlicz function satisfying the A,-condition at zero
and such that ¢(u) = Cu® for some C>0,1<p<® and every 0 <u < 1. Let
lim sup,—o+ @W)/u? = o0, i.e, @ is not equivalent at zero to u?. If @ is either
a supermultiplicative function on (0, 1) or a submultiplicative function on (0, 1)
with lim,.o+ @(W)/u? = co, then the imbedding i: I, & I, is strictly singular.

Proof. First, if ¢@(u) is equivalent at zero to u? with 1<g<p then
i: 1, 1, is strictly singular.

If @ is a submultiplicative function on (0, 1) not equivalent at zero to u for
any q = 1, then by assumption and the representation theorem

C <o) =uwhw)<uwf for 0<u<l,

and so B < p (if B = p, then @(u) is equivalent at zero to uP). The exponent f is
precisely the Matuszewska—Orlicz index f, (see [4], [12]). Therefore, being the
intervals associated to the functions ¢ and u? disjoint, it follows from a result of
Lindberg [10] that I, and [, are totally incomparable, i.e., they have no
isomorphic infinite-dimensional subspaces and so any bounded linear operator
from [, into [, is strictly singular. In particular, the imbedding [, 1, is strictly
singular.

If @ is a submultiplicative function on (0, 1) not equivalent at zero to u? for
any g = 1, then by Theorem 1(a) we have

W <utgu)=@u) for 0<u<l,

and by the assumption,
Ing(u) < lim In(Cu?) _

=

Inu uoo+ DU

¢ = lim

u—=+0+*

If « < p then the imbedding [, 1, is strictly singular and since the imbedding

I, & I, is continuous, it follows that the imbedding [, [, is strictly singular.

We have used here the well-known fact that the composition of a strictly

singular operator with a bounded operator is also strictly singular.

Let o = p and lim,.¢+ g(u) = co. The function
gy = inf glsw)= inf g()

0<s=1 0<t<€u

is nonincreasing, §(u) < g(u) and lim,..o+ §(u) = . Therefore,

i 1 3 R
o) =i ot o) GO/ > 2 S, 0OV

1
Jlaoyd g

= lim =5——= = 0,
S0+ S0+ 1
=0 j‘dt/t g—+0 /8

Hence (7) holds and the imbedding I, 5 [, is strictly singular.
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(x Inf (x
» Tl a= |im —ﬁ-ﬂjfl(‘ v ML CYOMYNBTH-
; repo M
ILOIRATHBILAX 11 CYU@PMYIBTHIAHKATHE 61X Ha  oTpeske
I=[0,1] ¢yurunii.” B Teopeve 2 jokaswaercs, uto
paBencTiso [‘m. (/. L‘Fa U)):[,% (/X 7) Boamouaio Torga
. TOIBKO  7toraa, korja [.(p' (I):Lm2 ([)=L%(I)-—— |
=Lp (p>1). Yepea L'?i (£==0. 1, 2) odusnavawores 1po-
crpaiersa Opmima, uepes L,P] r; L. (I))—npoctpancreo

Opanua L. sewrop-gyncuni co SHAUCHIAMII B HpocT-
"3
paucroe  Qpuua Lo B reopene 3 s KOODJINATHLIX

(hyurium

fpoctpancts Opaina /, yeranasansalotes nouwe yCJI0BHS
CTPOrOfi  CHHIYJHPHOCTH OmCpaTopa puoMeHHs lyeol, (cp.
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