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ABSTRACT

The structure of the Cesàro function spaces Cesp on both [0,1] and [0,∞) for 1 < p � ∞ is investigated.
We find their dual spaces, which equivalent norms have different description on [0,1] and [0,∞). The
spaces Cesp for 1 < p < ∞ are not reflexive but strictly convex. They are not isomorphic to any Lq

space with 1 � q � ∞. They have “near zero” complemented subspaces isomorphic to lp and “in the
middle” contain an asymptotically isometric copy of l1 and also a copy of L1[0,1]. They do not have
Dunford–Pettis property but they do have the weak Banach–Saks property. Cesàro function spaces on
[0,1] and [0,∞) are isomorphic for 1 < p � ∞. Moreover, we give characterizations in terms of p and
q when Cesp[0,1] contains an isomorphic copy of lq .
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1. INTRODUCTION AND PRELIMINARIES

Let 1 � p � ∞. The Cesàro sequence space cesp is defined as the set of all real
sequences x = {xk} such that

‖x‖c(p) =
[ ∞∑

n=1

(
1

n

n∑
k=1

|xk|
)p]1/p

< ∞ when 1 � p < ∞

and

‖x‖c(∞) = sup
n∈N

1

n

n∑
k=1

|xk| < ∞ when p = ∞.

The Cesàro function spaces Cesp = Cesp(I ) are the classes of Lebesgue measur-
able real functions f on I = [0,1] or I = [0,∞) such that

‖f ‖C(p) =
[∫

I

(
1

x

x∫
0

|f (t)|dt

)p

dx

]1/p

< ∞ for 1 � p < ∞

and

‖f ‖C(∞) = sup
x∈I,x>0

1

x

x∫
0

|f (t)|dt < ∞ for p = ∞.

The Cesàro sequence spaces cesp and ces∞ appeared in 1968 in connection
with the problem of the Dutch Mathematical Society to find their duals. Some
investigations of cesp were done by Shiue [50] in 1970. Then Leibowitz [36] and
Jagers [26] proved that ces1 = {0}, cesp are separable reflexive Banach spaces for
1 < p < ∞ and the lp spaces are continuously and strictly embedded into cesp for
1 < p � ∞. More precisely, ‖x‖c(p) � p′‖x‖p for all x ∈ lp with p′ = p

p−1 when
1 < p < ∞ and p′ = 1 when p = ∞. Moreover, if 1 < p < q � ∞, then cesp ⊂ cesq

with continuous strict embedding. Bennett [8] proved that cesp for 1 < p < ∞ are
not isomorphic to any lq space with 1 � q � ∞ (see also [45] for another proof).

Several geometric properties of the Cesàro sequence spaces cesp were studied in
the last years by many mathematicians (see e.g. [10–16,34]). Some more results on
cesp can be found in two books [8,39].

In 1999–2000 it was proved by Cui and Hudzik [11], Cui, Hudzik and Li [14] and
Cui, Meng and Płuciennik [16] that the Cesàro sequence spaces cesp for 1 < p < ∞
have the fixed point property (cf. also [10, Part 9]). Maligranda, Petrot and Suantai
[45] proved that the Cesàro sequence spaces cesp for 1 < p < ∞ are not uniformly
non-square, that is, there are sequences {xn} and {yn} on the unit sphere such that
limn→∞ min(‖xn + yn‖c(p),‖xn − yn‖c(p)) = 2. They even proved that these spaces
are not B-convex.

The Cesàro function spaces Cesp[0,∞) for 1 � p � ∞ were considered by Shiue
[51], Hassard and Hussein [25] and Sy, Zhang and Lee [54]. The space Ces∞[0,1]
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appeared already in 1948 and it is known as the Korenblyum, Krein and Levin space
K (see [31] and [59]).

Recently, we proved in the paper [4] that, in contrast to Cesàro sequence spaces,
the Cesàro function spaces Cesp(I ) on both I = [0,1] and I = [0,∞) for 1 < p <

∞ are not reflexive and they do not have the fixed point property. In other paper [5]
we investigated Rademacher sums in Cesp[0,1] for 1 � p � ∞. The description is
different for 1 � p < ∞ and p = ∞.

We recall some notions and definitions which we will need later on. By L0 =
L0(I ) we denote the set of all equivalence classes of real-valued Lebesgue mea-
surable functions defined on I = [0,1] or I = [0,∞). A normed function lattice or
normed ideal space X = (X,‖ · ‖) (on I ) is understood to be a normed space in
L0(I ), which satisfies the so-called ideal property: if |f | � |g| a.e. on I and g ∈ X,
then f ∈ X and ‖f ‖ � ‖g‖. If, in addition, X is a complete space, then we say that
X is a Banach function lattice or a Banach ideal space (on I ). Sometimes we write
‖ · ‖X to be sure in which space the norm is taken.

For two normed ideal spaces X and Y on I the symbol X ↪→ Y means that X ⊂ Y

and the imbedding is continuous, and the symbol X
C

↪→ Y means that X ↪→ Y with
the inequality ‖x‖Y � C‖x‖X for all x ∈ X. Moreover, notation X � Y means that
these two spaces are isomorphic.

For a normed ideal space X = (X,‖·‖) on I and 1 � p < ∞ the p-convexification
X(p) of X is the space of all f ∈ L0(I ) such that |f |p ∈ X with the norm

‖f ‖X(p) := ∥∥|f |p∥∥1/p

X
.

X(p) is also a normed ideal space on I .
For a normed ideal space X = (X,‖ ·‖) on I the Köthe dual (or associated space)

X′ is the space of all f ∈ L0(I ) such that the associate norm

‖f ‖′ := sup
g∈X,‖g‖X�1

∫
I

|f (x)g(x)|dx

is finite. The Köthe dual X′ = (X′,‖ ·‖′) is a Banach ideal space. Moreover, X ⊂ X′′
with ‖f ‖ � ‖f ‖′′ for all f ∈ X and we have equality X = X′′ with ‖f ‖ = ‖f ‖′′ if
and only if the norm in X has the Fatou property, that is, if 0 � fn ↗ f a.e. on I

and supn∈N ‖fn‖ < ∞, then f ∈ X and ‖fn‖ ↗ ‖f ‖.
For a normed ideal space X = (X,‖ · ‖) on I with the Köthe dual X′ we have the

following Hölder type inequality: if f ∈ X and g ∈ X′, then fg is integrable and

∫
I

|f (x)g(x)|dx � ‖f ‖X‖g‖X′ .

A function f in a normed ideal space X on I is said to have absolutely continuous
norm in X if, for any decreasing sequence of Lebesgue measurable sets An ⊂ I with
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empty intersection, we have that ‖f χAn‖ → 0 as n → ∞. The set of all functions in
X with absolutely continuous norm is denoted by Xa . If Xa = X, then the space X

itself is said to have absolutely continuous norm. For a normed ideal space X with
absolutely continuous norm, the Köthe dual X′ and the dual space X∗ coincide.
Moreover, a Banach ideal space X is reflexive if and only if both X and its associate
space X′ have absolutely continuous norms.

For general properties of normed and Banach ideal spaces we refer to the books
Krein, Petunin and Semenov [32], Kantorovich and Akilov [28], Bennett and
Sharpley [9], Lindenstrauss and Tzafriri [38] and Maligranda [43].

The paper is organized as follows: In Section 1 some necessary definitions and
notation are collected. In Section 2 some simple results on Cesàro function spaces
are presented. In particular, we can see that the Cesàro function spaces Cesp(I ) are
not reflexive but strictly convex for all 1 < p < ∞.

Sections 3 and 4 contain results on the dual and Köthe dual of Cesàro function
spaces. There is a big difference between the cases on [0,∞) and on [0,1], as
we can see from Theorems 2 and 3. This was also the reason why we put these
investigations into two parts. Important in our investigations were earlier results on
the Köthe dual (cesp)′ and remark on the Köthe dual (Cesp[0,∞))′ due to Bennett
[8]. This remark was recently proved, even for more general spaces, by Kerman,
Milman and Sinnamon [30]. Luxemburg and Zaanen [42] gave a description of the
Köthe dual (Ces∞[0,1])′.

Section 5 deals with the p-concavity and cotype of Cesàro sequence spaces cesp

and Cesàro function spaces Cesp(I ). It is shown, in Theorem 4, that they are p-
concave for 1 < p < ∞ with constant one and, thus, they have cotype max(p,2).

In Section 6 it is proved, in Theorem 6, that the Cesàro function spaces Cesp(I )

contain an order isomorphic and complemented copy of lp . Therefore, they do
not have the Dunford–Pettis property. This result and cotype property imply that
Cesp(I ) are not isomorphic to any Lq(I) space for 1 � q � ∞ (Theorem 7).

The authors proved in [4] that “in the middle” Cesàro function spaces Cesp(I )

contain an asymptotically isometric copy of l1 and consequently they are not
reflexive and do not have the fixed point property. This is a big difference with
Cesàro sequence spaces cesp , which for 1 < p < ∞ are reflexive and which have
the fixed point property.

Section 7 contains the proof that the Cesàro function spaces Cesp[0,1] for 1 �
p < ∞ have the weak Banach–Saks property. Important role in the proof will be
played by the description of the dual space given in Section 4.

In Section 8 we present a construction showing that the Cesàro function spaces
Cesp[0,∞) and Cesp[0,1] for 1 < p � ∞ are isomorphic. The isomorpisms are
different in the cases 1 < p < ∞ and p = ∞.

In Section 9 it is proved that Cesp[0,1] contains an isomorphic copy of lq if and
only if q ∈ [1,2] for the case 1 � p � 2 and in the case when p > 2 this can happen
when either q ∈ [1,2] or q = p. This result is, in fact, different from the one for
Lp[0,1] space.
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2. PRELIMINARY PROPERTIES OF CESÀRO FUNCTION SPACES

The Cesàro function spaces Cesp[0,∞) for 1 � p � ∞ were considered by Shiue
[51], Hassard and Hussein [25] and Sy, Zhang and Lee [54]. The space Ces∞[0,1]
appeared in 1948 and it is known as the Korenblyum, Krein and Levin space K (see
[31] and [59, p. 26 and 61]).

We collect some known or clear properties of Cesp(I ) for both I = [0,1] and
I = [0,∞) in one place.

Theorem 1.

(a) If 1 < p � ∞, then Cesp(I ) are Banach spaces, Ces1[0,1] = L1
w with the

weight w(t) = ln 1
t
, t ∈ (0,1] and Ces1[0,∞) = {0}.

(b) The spaces Cesp(I ) are separable for 1 < p < ∞ and Ces∞(I ) is non-
separable.

(c) If 1 < p � ∞, then Lp(I)
p′
↪→ Cesp(I ), where p′ = p

p−1 and the embedding is
strict.

(d) If 1 < p < ∞, then Cesp[0,1]|[0,a] ↪→ L1[0, a] for any a ∈ (0,1) but not for
a = 1 and Cesp[0,∞)|[0,a] ↪→ L1[0, a] for any 0 < a < ∞ but not for a = ∞,

that is, Cesp[0,∞) �⊂ L1[0,∞). Moreover, Ces∞[0,1] 1
↪→ L1[0,1].

(e) If 1 < p < q � ∞, then Cesq [0,1] 1
↪→ Cesp[0,1] and the embedding is strict.

(f) The spaces Cesp(I ) are not rearrangement invariant.
(g) The spaces Cesp(I ) are not reflexive.
(h) The spaces Cesp(I ) for 1 < p < ∞ are strictly convex, that is, if ‖f ‖C(p) =

‖g‖C(p) = 1 and f �= g, then ‖f +g
2 ‖C(p) < 1.

Proof. (a), (b) Shiue [51] and Hassard and Hussein [25] proved that Cesp(I ) are
separable Banach spaces for 1 < p < ∞ and non-separable ones for p = ∞. We
only show here that Ces1[0,1] is a weighted L1

w[0,1] space with the weight w(t) =
ln 1

t
for 0 < t � 1 and Ces1[0,∞) = {0}. In fact,

1∫
0

(
1

x

x∫
0

|f (t)|dt

)
dx =

1∫
0

( 1∫
t

1

x
dx

)
|f (t)|dt =

1∫
0

|f (t)| ln
1

t
dt.(1)

Moreover, if f ∈ L0[0,∞) and |f (x)| > 0 for x ∈ A with 0 < m(A) < ∞, then there
exists sufficiently large a > 0 such that δ = ∫ a

0 |f (t)|dt > 0. Therefore, for b > a, it
yields that

b∫
0

(
1

x

x∫
0

|f (t)|dt

)
dx �

b∫
a

(
1

x

x∫
0

|f (t)|dt

)
dx

�
b∫

a

(
1

x

a∫
0

|f (t)|dt

)
dx
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= δ ln
b

a
→ ∞ as b → ∞.

Thus f /∈ Ces1[0,∞).
(c) Considering the Hardy operator Hf (x) = 1

x

∫ x

0 f (t) dt and using the Hardy
inequality (cf. [24, Theorem 327] and [33, Theorem 2]) we obtain that

‖f ‖C(p) = ‖H(|f |)‖p � p′‖f ‖p

for all f ∈ Lp(I), which means that the Lp(I)
p′
↪→ Cesp(I ) for 1 < p � ∞.

The embeddings are strict. For example, f = ∑∞
n=1

1
n1/p χ[n2−1,n2) ∈ Cesp(I ) \

Lp(I) for I = [0,∞) and 1 < p < ∞.
(d) If 0 < a < 1 and suppf ⊂ [0, a], then

‖f ‖C(p) �
( 1∫

a

(
1

x

x∫
0

|f (t)|dt

)p

dx

)1/p

�
( 1∫

a

(
1

x

a∫
0

|f (t)|dt

)p

dx

)1/p

=
a∫

0

|f (t)|dt

(
1 − a1−p

p − 1

)1/p

.

For a = 1 this is not the case. In fact, consider function f (x) = 1
1−x

for x ∈ [0,1).
Then 1

x

∫ x

0 f (t) dt = 1
x

ln 1
1−x

and

‖f ‖p

C(p) =
1∫

0

(
1

x
ln

1

1 − x

)p

dx =
∞∫

1

(
t ln t

t − 1

)p
dt

t2

� c +
∞∫

2

(2 ln t)p

t2
dt < ∞

and, hence, f ∈ Cesp[0,1] for any 1 � p < ∞ but clearly, f /∈ L1[0,1].
In the case of Cesp[0,∞) we will have for 0 < a < ∞ with suppf ⊂ [0, a] and

p ∈ (1,∞),

‖f ‖C(p) �
( ∞∫

a

(
1

x

x∫
0

|f (t)|dt

)p

dx

)1/p

�
( ∞∫

a

(
1

x

a∫
0

|f (t)|dt

)p

dx

)1/p

=
a∫

0

|f (t)|dt
1

(p − 1)a1−1/p
.
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For the function f (x) = 1
x
χ[1,∞)(x), x ∈ (0,∞) we have 1

x

∫ x

0 f (t) dt = 1
x

lnx (x �
1) and

‖f ‖p

C(p) =
∞∫

1

(
lnx

x

)p

dx < ∞.

Thus, f ∈ Cesp[0,∞) for any 1 < p < ∞, but clearly f /∈ L1[0,∞).

(e) If 1 < p < q � ∞, then Lq [0,1] 1
↪→ Lp[0,1] and the embedding is strict, and,

thus,

‖f ‖C(p) = ‖H(|f |)‖p � ‖H(|f |)‖q = ‖f ‖C(q)

for all f ∈ Cesq [0,1], that is, Cesq [0,1] 1
↪→ Cesp[0,1] and the embedding is strict

since for positive decreasing functions the norms of Cesp and Lp are equivalent.
The last statement follows from the fact that for a positive decreasing function f on
I we have f (x) � 1

x

∫ x

0 f (t) dt for x ∈ I and so

‖f ‖p � ‖Hf ‖p = ‖f ‖C(p) � p′‖f ‖p for any 0 � f ∈ Lp(I).

(f) Consider f (x) = 1
1−x

for x ∈ [0,1). Then, as it was shown in (d), f ∈
Cesp[0,1] for any 1 � p < ∞. However, its non-increasing rearrangement f ∗(t) =
t−1 (0 < x � 1) does not belong to Cesp[0,1] for any 1 � p � ∞ and therefore the
space Cesp[0,1] is not rearrangement invariant for 1 � p < ∞. In the case when
p = ∞ we can take the function g(x) = 1√

1−x
, x ∈ [0,1) for which 1

x

∫ x

0 g(t) dt =
2
x
(1 − √

1 − x) = 2
1+√

1−x
and so ‖g‖C(∞) = 2 and for its rearrangement g∗(t) =

t−1/2, t ∈ (0,1) we have ‖g∗‖C(∞) = supt∈(0,1) 2t−1/2 = ∞, that is, g∗ /∈ Ces∞[0,1]
and the space Ces∞[0,1] is not rearrangement invariant. Similarly, we can consider
the case when I = [0,∞).

(g) If 1 < p < ∞, then Cesp(I ) contains a copy of L1(I ) (cf. [4], Lemma 1
for I = [0,1] and Theorem 2 for I = [0,∞)) and therefore, in particular, these
spaces cannot be reflexive. Of course, Ces1[0,1] = L1(ln 1/t) is not reflexive and
the space Ces∞(I ) does not have absolutely continuous norm and therefore is also
not reflexive.

(h) Assume that ‖f ‖C(p) = ‖g‖C(p) = 1 and ‖f +g‖C(p) = 2; then ‖H(|f |)‖Lp =
‖H(|g|)‖Lp = 1 and

2 = ‖f + g‖C(p) = ‖H(|f + g|)‖Lp

� ‖H(|f |) + H(|g|)‖Lp � ‖H(|f |)‖Lp + ‖H(|g|)‖Lp

= ‖f ‖C(p) + ‖g‖C(p) = 2.

Thus ‖H(|f |) + H(|g|)‖Lp = 2 and by the strict convexity of Lp(I) for 1 < p < ∞
and the above estimates we obtain that H(|f |)(x) = H(|g|)(x) for almost all x in I .
Therefore, |f (x)| = |g(x)| for almost all x ∈ I . We want to show that this implies
that f (x) = g(x) for almost all x ∈ I . Assume on the contrary that f �= g on I , that

335



is, there exists a set A ⊂ I of positive measure m(A) > 0 such that f (x) �= g(x)

for all x ∈ A. Then f (x) = −g(x) and |f (x)| > 0 for x ∈ A. Moreover, if B = {x ∈
I : m([0, x] ∩ (I \ A)) < x}, then m(B) > 0 and

x∫
0

∣∣∣∣f (t) + g(t)

2

∣∣∣∣dt =
∫

[0,x]∩(I\A)

|f (t)|dt <

x∫
0

|f (t)|dt

for all x ∈ B . Therefore,

1 =
∥∥∥∥f + g

2

∥∥∥∥
p

C(p)

=
∫
I

(
1

x

x∫
0

∣∣∣∣f (t) + g(t)

2

∣∣∣∣dt

)p

dx

<

∫
I

(
1

x

x∫
0

|f (t)|dt

)p

dx = ‖f ‖p

C(p) = 1,

which is a contradiction and the proof is complete. �
3. THE DUAL SPACES OF THE CESÀRO FUNCTION SPACES Cesp[0,∞)

We describe the dual and Köthe dual spaces of Cesp(I ) for 1 < p < ∞ in the
case I = [0,∞). The description appeared as remark in Bennett [8] paper but
it was proved recently, even for more general spaces, by Kerman, Milman and
Sinnamon [30, Theorem D] and they used in the proof some of Sinnamon results
[53, Theorem 2.1] and [52, Proposition 2.1 and Lemma 3.2].

We present here another proof following the Bennett’s idea for Cesàro sequence
spaces together with factorization theorems which are of independent interest. Since
the case I = [0,1] is essentially different it will be considered in the next section.

Theorem 2. Let I = [0,∞). If 1 < p < ∞, then

(Cesp)∗ = (Cesp)′ = D
(
p′), p′ = p

p − 1
,(2)

with ‖f ‖C(p)′ � p′‖f ‖D(p′) � 8p′‖f ‖C(p)′ , where the norm in D(p′) is given by
formula

‖f ‖D(p′) = ‖f̃ ‖
Lp′ with f̃ (x) = ess sup

t∈[x,∞)

|f (t)|.(3)

We need the definition of the G(p) space for 1 � p < ∞, which is the p-
convexification of Ces∞[0,∞), that is, its norm is given by the functional

‖f ‖G(p) = ∥∥|f |p∥∥1/p

C(∞)
= sup

x>0

(
1

x

x∫
0

|f (t)|p dt

)1/p

.
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Proposition 1. If 1 < p < ∞, then

Cesp = Lp · G(
p′),(4)

that is, f ∈ Cesp if and only if f = gh with g ∈ Lp,h ∈ G(p′) and

‖f ‖C(p) ≈ inf‖g‖p‖h‖G(p′),(5)

where infimum is taken over all factorizations f = gh with g ∈ Lp,h ∈ G(p′).

Proof. “Imbedding ↪→”. For f ∈ Cesp,f �≡ 0 let

k(x) =
∞∫

x

u−p

( u∫
0

|f (t)|dt

)p−1

du, x > 0.

Then k(x) > 0, k is decreasing and by the Hölder–Rogers inequality

k(x) =
∞∫

x

u−1

(
1

u

u∫
0

|f (t)|dt

)p−1

du

�
( ∞∫

x

u−p du

)1/p( ∞∫
x

(
1

u

u∫
0

|f (t)|dt

)p

du

)1/p′

= 1

(p − 1)1/px1−1/p
‖f ‖p−1

C(p).

We consider the factorization f = g · h, where

g(x) = (|f (x)|k(x)
)1/p sgnf (x) and h(x) = |f (x)|1/p′

k(x)−1/p.

Then

‖g‖p
p =

∞∫
0

|f (x)|
∞∫

x

u−p

( u∫
0

|f (t)|dt

)p−1

dudx

=
∞∫

0

u−p

( u∫
0

|f (t)|dt

)p−1 u∫
0

|f (x)|dx du = ‖f ‖p

C(p)

and, by the Hölder–Rogers inequality,

( x∫
0

|h(t)|p′
dt

)p

=
( x∫

0

|f (t)|1/p′ |f (t)|1/pk(t)−p′/p dt

)p

�
( x∫

0

|f (t)|dt

)p−1( x∫
0

|f (t)|k(t)−p′
dt

)
.

337



Hence, by the above and using the fact that k is decreasing, it yields that

∞∫
x

(
s−1

x∫
0

|h(t)|p′
dt

)p

ds

�
∞∫

x

s−p

[( x∫
0

|f (t)|dt

)p−1 x∫
0

|f (t)|k(t)−p′
dt

]
ds

= k(x)

x∫
0

|f (t)|k(t)−p′
dt

�
x∫

0

|f (t)|k(t)1−p′
dt =

x∫
0

|h(t)|p′
dt

or, equivalently,

∞∫
x

s−p ds

( x∫
0

|h(t)|p′
dt

)p−1

� 1,

which means that

( x∫
0

|h(t)|p′
dt

)p−1

� (p − 1)xp−1

and, hence,

sup
x>0

1

x

x∫
0

|h(t)|p′
dt � (p − 1)1/(p−1)

or ‖h‖G(p′) � (p − 1)1/p . We have proved that

Cesp ⊂ Lp · G(
p′)

and

inf{‖g‖Lp‖h‖G(p′): f = g · h} � (p − 1)1/p‖f ‖C(p).

“Imbedding ←↩”. Let f = g · h with g ∈ Lp and h ∈ G(p′). Then

x∫
0

|h(t)|p′
dt � ‖h‖p′

G(p′)

x∫
0

dt
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and then, for any positive decreasing function w on (0,∞), we have by [32, property
180, p. 72] that

x∫
0

|h(t)|p′
w(t) dt � ‖h‖p′

G(p′)

x∫
0

w(t) dt.

By the Hölder–Rogers inequality we find that

( x∫
0

|f (t)|dt

)p

=
( x∫

0

|g(t)|w(t)−1/p′ |h(t)|w(t)1/p′
dt

)p

�
x∫

0

|g(t)|pw(t)1−p dt

( x∫
0

|h(t)|p′
w(t) dt

)p−1

�
x∫

0

|g(t)|pw(t)1−p dt‖h‖p

G(p′)

( x∫
0

w(t) dt

)p−1

and, thus,

∞∫
0

(
1

x

x∫
0

|f (t)|dt

)p

dx

�
∞∫

0

x−p

( x∫
0

|g(t)|pw(t)1−p dt

)( x∫
0

w(t) dt

)p−1

dx‖h‖p

G(p′).

Taking in the last estimate w(t) = t−1/p we obtain that

‖f ‖p

C(p) �
∞∫

0

x−p

( x∫
0

|g(t)|pt1−1/p dt

)(
x1−1/p

1 − 1/p

)p−1

dx‖h‖p

G(p′)

= (
p′)p−1

∞∫
0

( x∫
0

|g(t)|pt1−1/p dt

)
x1/p−2 dx‖h‖p

G(p′)

= (
p′)p−1

∞∫
0

( ∞∫
t

x1/p−2 dx

)
|g(t)|pt1−1/p dt‖h‖p

G(p′)

= (
p′)p

∞∫
0

|g(t)|p dt‖h‖p

G(p′) = (
p′)p‖g‖p

p‖h‖p

G(p′)

or

‖f ‖C(p) � p′‖g‖p‖h‖G(p′),
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that is, Lp · G(p′) ⊂ Cesp and

‖f ‖C(p) � p′ inf{‖g‖p‖h‖G(p′): f = gh}.

Putting these facts together we have that Cesp

(p−1)1/p

↪→ Lp · G(p′)
p′
↪→ Cesp and

the proof of Proposition 1 is complete. �
Proposition 2. If 1 � p < ∞, then

D(p) · G(p) = Lp

and

‖f ‖Lp = inf{‖g‖D(p)‖h‖G(p): f = gh,g ∈ D(p),h ∈ G(p)}.
Moreover, G(1)′ = D(1) with equality of the norms.

Proof. It suffices to prove the statement for p = 1 because the general result follows
by p-convexification. Suppose that f = gh with g ∈ D(1), h ∈ G(1). Then

‖f ‖L1 =
∞∫

0

|g(t)h(t)|dt �
∞∫

0

g̃(t)|h(t)|dt.

Moreover, from the definition of the norm in G(1) it follows that

t∫
0

|h(s)|ds � ‖h‖G(1)t = ‖h‖G(1)

t∫
0

χ[0,∞)(s) ds, t > 0.

Therefore, since g̃ decreases it follows by [32, property 180, p. 72], we find that

‖f ‖L1 � ‖h‖G(1)

∞∫
0

g̃(t) dt = ‖h‖G(1)‖g‖D(1).

Hence, D(1) · G(1) ⊂ L1 and

‖f ‖L1 � inf{‖g‖D(1)‖h‖G(1): f = gh,g ∈ D(1), h ∈ G(1)}.
This also means that G(1) ⊂ D(1)′ and ‖h‖D(1)′ � ‖h‖G(1). We show that we have
in fact even equality. If f ∈ D(1)′, then

1

x

x∫
0

|f (t)|dt = 1

x

1∫
0

χ[0,x](t)|f (t)|dt

� 1

x
‖χ[0,x]‖D(1)‖f ‖D(1)′ = ‖f ‖D(1)′,
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for all x > 0, i.e., f ∈ G(1) and so D(1)′ ⊂ G(1) with ‖f ‖G(1) � ‖f ‖D(1)′ . Of
course, G(1)′ = D(1)′′ = D(1) since the norm of D(1) has the Fatou property.
Finally, if f ∈ L1, then, by the Lozanovskiı̆ factorization theorem ([40, Theorem
6, p. 429]; cf. also [43, p. 185]), we can find g ∈ D(1) and h ∈ D(1)′ = G(1) such
that f = g · h and

‖g‖D(1)‖h‖G(1) = ‖f ‖L1 .

This ends the proof of Proposition 2. �
Remark 1. In particular, Proposition 2 shows that (Ces∞[0,∞))′ = G(1)′ = D(1).

Thus, for the Cesàro function space on [0,∞) we get the result analogous to the
Luxemburg–Zaanen theorem (cf. [42]): (Ces∞[0,1])′ = L̃1[0,1], where ‖f ‖L̃1 =
‖f̃ ‖L1[0,1] with f̃ (x) = ess supt∈[x,1] |f (t)|.

Remark 2. For a positive weight function w and 1 � p < ∞ let us define the
weighted spaces D(w,p) and G(w,p) by the norms ‖f ‖D(w,p) = (

∫ ∞
0 f̃ (x)p ×

w(x)dx)1/p , where f̃ (x) = ess supt∈[x,∞) |f (t)|, and ‖f ‖G(w,p) = supx>0(
1

W(x)
×∫ x

0 |f (t)|p dt)1/p,W(x) = ∫ x

0 w(t) dt , respectively. Proposition 2 is valid for weight-
ed spaces: If 1 � p < ∞, then D(w,p)·G(w,p) = Lp and ‖f ‖Lp = inf{‖g‖D(w,p)×
‖h‖G(w,p): f = gh,g ∈ D(w,p),h ∈ G(w,p)}.

Proposition 3. Let 1 < p < ∞. If g ∈ (Cesp)′, then g̃(x) = ess supt∈[x,∞) |g(t)| ∈
(Cesp)′ and

‖g̃‖C(p)′ � 8‖g‖C(p)′ .

Proof. Let f ∈ Cesp,f � 0. Then
∫ x

0 f (t) dt → 0 if x → 0+. Consider two cases:

(a) If
∫ ∞

0 f (s) ds = ∞, then we select a two-sided sequence {ak}k∈Z such that
0 � ak < ak+1, ak → ∞ when k → ∞ and

ak∫
ak−1

f (s) ds = 2k, k ∈ Z.(6)

(b) If A = ∫ ∞
0 f (s) ds < ∞, we find a one-sided sequence {ak}k�0 such that

0 � ak < ak+1, a0 = ∞ and

ak∫
ak−1

f (s) ds = 2k−1A, k � 0.(7)

By J let us denote either Z or {k ∈ Z: k � 0} depending on which of the cases
(a) or (b) we have, and let
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P =
{
k ∈ J : there is a set Ak ⊂ [ak−1, ak) such that m(Ak) > 0

and |g(s)| � 1

2
g̃(ak−1) for all s ∈ Ak

}
.

Note that P �= ∅. In fact, let k ∈ J be arbitrary and let i be the first “time” such that
i � k and

m

{
s ∈ (ai−1, ai]: |g(s)| � 1

2
g̃(ak−1)

}
> 0.

Since g̃(ai−1) = g̃(ak−1), then i ∈ P .
Let P = {ki}mi=l , where ki < kj (i < j) and l may be −∞. Moreover, it is easily

seen that either m = ∞ and ki → ∞ when i → ∞ (in the case (a)) or km = 0 and
tkm = ∞ (in the case (b)).

Define the function

f̄ (t) =
m∑

i=l

∫
�i

f (s) ds
1

m(Aki
)
χAki

(t),

where �i = (aki−1, aki
], and estimate its norm in Cesp .

Let ā = limi→−∞ aki
if l = −∞ and ā = akl

if l is finite. If ā > 0, then f̄ (t) = 0
for all t ∈ [0, ā). Therefore

x∫
0

f̄ (t) dt = 0 (0 < x � ā).(8)

Suppose x > ā. Then either (1o) t ∈ �i for some i or (2o) there is i < m such that
t ∈ (aki

, aki+1−1]. In the first case, by (6) or (7) it yields that

x∫
0

f̄ (t) dt =
i−1∑
j=l

∫
�j

f (s) ds
1

m(Akj
)
m(Akj

)

+ m(Aki
∩ (aki−1, t])

m(Aki
)

∫
�i

f (s) ds

�

aki∫
0

f (s) ds � 2

x∫
0

f (s) ds.

Analogously, in the second case we have that

x∫
0

f̄ (t) dt �

aki∫
0

f (s) ds �
x∫

0

f (s) ds.
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The last inequalities and equality (8) show that

‖f̄ ‖C(p) � 2‖f ‖C(p).(9)

Moreover, for any i running from l to m we find that∫
�i

f̄ (t)|g(t)|dt =
∫

Aki

f̄ (t)|g(t)|dt � 1

2
g̃(aki−1)

∫
Aki

f̄ (t) dt

= 1

2
g̃(aki−1)

∫
�i

f (t) dt.(10)

Since g̃ decreases, then (10) implies, in particular, that∫
�i

f̄ (t)|g(t)|dt � 1

2

∫
�i

f (t)g̃(t) dt.(11)

Note that, by definition of the set P , it yields that g̃(t) � g̃(aki−1) a.e. on the interval
(aki−1 , aki−1] if i > l and on the interval (0, akl−1] if l is finite. Moreover, taking into
account (6) or (7) once again, we have that

aki−1∫
aki−1

f (s) ds �
∫
�i

f (s) ds if i > l

and

akl−1∫
0

f (s) ds �
∫
�l

f (s) ds if l is finite.

Therefore, by (10), it follows that

∫
�i

f̄ (t)|g(t)|dt � 1

2
g̃(aki−1)

∫
�i

f (t) dt � 1

2
g̃(aki−1)

aki−1∫
aki−1

f (t) dt

� 1

2

aki−1∫
aki−1

g̃(t)f (t) dt,

where al−1 = 0 if l is finite.
Since f = 0 a.e. on the interval (0, ā], when l = −∞ and ā = limi→−∞ aki

> 0,
then, by summing the last inequalities and inequality (11) over all i, we get that

2

∞∫
0

f̄ (t)|g(t)|dt � 2
m∑

i=l

∫
�i

f̄ (t)|g(t)|dt � 1

2

∞∫
0

g̃(t)f (t) dt,
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whence,

∞∫
0

g̃(t)f (t) dt � 4

∞∫
0

f̄ (t)|g(t)|dt.

Combining the last inequality with (9), we obtain that

‖g̃‖C(p)′ = sup

{ ∞∫
0

g̃(t)f (t) dt : ‖f ‖C(p) � 1

}

� 4 sup

{ ∞∫
0

f̄ (t)|g(t)|dt : ‖f ‖C(p) � 1

}

� 4 sup

{ ∞∫
0

f̄ (t)|g(t)|dt : ‖f̄ ‖C(p) � 2

}
= 8‖g‖C(p)′

and the proof is complete. �
Proof of Theorem 2. Firstly, we show that D(p′) 1

↪→ (Lp · G(p′))′. In fact, let f ∈
D(p′) and g ∈ Lp ·G(p′), then g = h · k with h ∈ Lp and k ∈ G(p′). By the Hölder–

Rogers inequality and the imbedding D(p′) · G(p′) 1
↪→ Lp′

proved in Proposition 2
we obtain that

‖fg‖L1 = ‖f hk‖L1 � ‖h‖Lp‖f k‖
Lp′ � ‖h‖Lp‖k‖G(p′)‖f ‖D(p′),

from which it follows that D(p′) ⊂ (Lp · G(p′))′ and ‖f ‖(Lp ·G(p′))′ � ‖f ‖D(p′).
Since, by Proposition 1 we have equality Cesp = Lp · G(p′), it follows that

D
(
p′) p′

↪→ (Cesp)′.

To prove the converse, take f ∈ (Cesp)′. Since f̃ � |f | and D(p′) is a Banach
lattice, then by Proposition 3, we may (and will) assume that f is a non-negative
decreasing function on (0,∞), i.e., f = f̃ . Then, by the Hardy inequality, we find
that

‖f ‖D(p′) = ‖f ‖
Lp′ = sup

{ ∞∫
0

|f (x)g(x)|dx: ‖g‖Lp � 1

}

� p′ sup

{ ∞∫
0

|f (x)g(x)|dx: ‖g‖C(p) � 1

}
= p′‖f ‖(Cesp)′ .

Therefore, f ∈ D(p′) and (Cesp)′
8p′
↪→ D(p′). �
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4. THE DUAL SPACES OF THE CESÀRO FUNCTION SPACES Cesp[0,1]

We describe the dual and Köthe dual of Cesp(I ) for 1 < p < ∞ in the case I =
[0,1]. Surprisingly this will have a different description than in the case I = [0,∞).
For p = ∞ the space Ces∞[0,1] introduced by Korenblyum, Kreı̆n and Levin [31]
we denote by K and its separable part by K0.

As we already mentioned the Köthe dual space K ′ was found by Luxemburg and
Zaanen [42]: K ′ = L̃1 with equality of norms, where

‖f ‖L̃1 = ‖f̃ ‖L1 , with f̃ (x) = ess sup
t∈[x,1]

|f (t)|.

Earlier the dual space of K0 was found by Tandori [56]: (K0)
∗ = L̃1 with equality

of norms.
We will find the Köthe dual space (Cesp[0,1])′ for 1 < p < ∞. Consider, for

1 < p < ∞, a Banach ideal space U(p) on I = [0,1] which norm is given by the
formula

‖f ‖U(p) =
∥∥∥∥ 1

1 − x1/(p−1)
f̃ (x)

∥∥∥∥
Lp

=
[ 1∫

0

(
f̃ (x)

1 − x1/(p−1)

)p

dx

]1/p

,(12)

where f̃ (x) = ess supt∈[x,1] |f (t)|.

Remark 3. Since min(1,p−1) � 1−x

1−x1/(p−1) � max(1,p−1) for all x ∈ (0,1), then
the norm (12) in U(p) is equivalent to the norm

‖f ‖0
U(p) =

[ 1∫
0

(
f̃ (x)

1 − x

)p

dx

]1/p

.

Theorem 3. If 1 < p < ∞, then

(Cesp)∗ = (Cesp)′ = U
(
p′), p′ = p

p − 1
,(13)

with equivalent norms.

Before the proof of this theorem we prove some auxiliary results of independent
interest. First, for 1 < p < ∞ we define the Banach ideal space V (p) on I = [0,1]
generated by the functional

‖f ‖V (p) = sup
0<x�1

[
(1 − x1/(p−1))p−1

x

x∫
0

|f (t)|p dt

]1/p

.(14)

Proposition 4. If 1 < p < ∞, then

Cesp ⊂ Lp · V (
p′), p′ = p

p − 1
,(15)
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that is, if f ∈ Cesp , then f = gh with g ∈ Lp,h ∈ V (p′) and

inf
{‖g‖p‖h‖V (p′): f = g · h,g ∈ Lp,h ∈ V

(
p′)} � (p − 1)1/p‖f ‖C(p).(16)

Proof. The proof is analogous to the proof of Proposition 1 (for the case I =
[0,∞)) but we put details to see how the weight w(x) = (1−xp−1)1/(p−1) appeared
in the definition of the space V (p′). For f ∈ Cesp,f �= 0, define

k(x) =
1∫

x

u−p

( u∫
0

|f (t)|dt

)p−1

du, x ∈ [0,1].

Then k(x) > 0, k is decreasing and, by the Hölder–Rogers inequality, we find that

k(x) =
1∫

x

u−1

(
1

u

u∫
0

|f (t)|dt

)p−1

du

�
( 1∫

x

u−p du

)1/p( 1∫
x

(
1

u

u∫
0

|f (t)|dt

)p

du

)1/p′

� 1

(p − 1)1/p

(
1 − xp−1

xp−1

)1/p

‖f ‖p−1
C(p).

Let

g(x) = (|f (x)|k(x)
)1/p sgnf (x) and h(x) = |f (x)|1/p′

k(x)−1/p, 0 < x < 1.

Then f = g · h and

‖g‖p
p =

1∫
0

|f (x)|
1∫

x

u−p

( u∫
0

|f (t)|dt

)p−1

dudx

=
1∫

0

u−p

( u∫
0

|f (t)|dt

)p−1 u∫
0

|f (x)|dx du = ‖f ‖p

C(p),

and, by the Hölder–Rogers inequality,

( x∫
0

|h(t)|p′
dt

)p

=
( x∫

0

|f (t)|1/p′ |f (t)|1/pk(t)−p′/p dt

)p

�
( x∫

0

|f (t)|dt

)p−1( x∫
0

|f (t)|k(t)−p′
dt

)
.
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Hence, by the above and using the fact that k is decreasing, we obtain that

1∫
x

(
s−1

x∫
0

|h(t)|p′
dt

)p

ds

�
1∫

x

s−p

[( x∫
0

|f (t)|dt

)p−1 x∫
0

|f (t)|k(t)−p′
dt

]
ds

�
1∫

x

s−p

[( s∫
0

|f (t)|dt

)p−1 x∫
0

|f (t)|k(t)−p′
dt

]
ds

= k(x)

x∫
0

|f (t)|k(t)−p′
dt

�
x∫

0

|f (t)|k(t)1−p′
dt =

x∫
0

|h(t)|p′
dt

or, equivalently,

1∫
x

s−p ds

( x∫
0

|h(t)|p′
dt

)p−1

� 1,

which means that( x∫
0

|h(t)|p′
dt

)p−1

� (p − 1)
xp−1

1 − xp−1

and, thus,

sup
x>0

(1 − xp−1)1/(p−1)

x

x∫
0

|h(t)|p′
dt � (p − 1)1/(p−1)

or ‖h‖V (p′) � (p − 1)1/p . Summing up we have proved that Cesp ⊂ Lp · V (p′) and

inf{‖g‖Lp‖h‖V (p′): f = g · h} � (p − 1)1/p‖f ‖C(p). �
Remark 4. In the above imbedding we cannot take instead of the space V (p′),
where the weight w(x) = (1 − xp−1)1/(p−1) appeared, the corresponding space
without this weight, that is, the p′-convexification K(p′) of K . This space is too
small since if the imbedding Cesp[0,1] ⊂ Lp · K(p′) would be valid, then since
Lp · K(p′) ⊂ Lp · Lp′ ⊂ L1[0,1] we will have a contradiction because Cesp[0,1]
is not embedded into L1[0,1] (cf. Theorem 1(d)) and the problem is “near 1”,
therefore this weight w is really needed in the imbedding (15).
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Proposition 5. If 1 < p < ∞, then
(a) U(p) · V (p) ⊂ Lp with

‖f ‖Lp � inf{‖g‖U(p)‖h‖V (p): f = g · h,g ∈ U(p),h ∈ V (p)}.
(b) U(p) ⊂ (V (p) · Lp′

)′ and ‖f ‖
(V (p)·Lp′

)′ � ‖f ‖U(p) for all f ∈ U(p).

Proof. (a) Let f = g · h,g ∈ U(p),h ∈ V (p). Since |g| � g̃ it follows that

‖f ‖p

Lp �
1∫

0

g̃(t)p|h(t)|p dt.(17)

On the other hand, by the definition of the norm in V (p) and using the equality

d

dx

(
x

(1 − x1/(p−1))p−1

)
= 1

(1 − x1/(p−1))p
,

we obtain that

x∫
0

|h(t)|p dt � ‖h‖p

V (p)

x

(1 − x1/(p−1))p−1

= ‖h‖p

V (p)

x∫
0

1

(1 − t1/(p−1))p
dt

for all x ∈ (0,1]. Since g̃p decreases, then, by [32, property 180, p. 72], the last
inequality implies that

1∫
0

g̃(t)p|h(t)|p dt � ‖h‖p

V (p)

1∫
0

(
g̃(t)

1 − t1/(p−1)

)p

dt.

Therefore, by (17), f ∈ Lp and

‖f ‖Lp � ‖g‖U(p) · ‖h‖V (p),

and the proof of (a) is complete.
(b) For any f ∈ U(p) and g ∈ V (p) ·Lp′

we have g = h ·k with h ∈ V (p), k ∈ Lp′

and, by the Hölder–Rogers inequality and Proposition 5(a), we obtain that

1∫
0

|fg|dx =
1∫

0

|f hk|dx �
( 1∫

0

|f h|p dx

)1/p( 1∫
0

|k|p′
dx

)1/p′

� ‖f ‖U(p)‖h‖V (p)‖k‖
Lp′ = ‖h‖V (p)‖k‖

Lp′ ‖f ‖U(p)

or f ∈ (V (p) ·Lp′
)′ and ‖f ‖

(V (p)·Lp′
)′ � ‖f ‖U(p). The proof of (b) is complete. �
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Proposition 6. Let 1 � p < ∞. If g ∈ (Cesp)′, then g̃(x) = ess supt∈[x,1] |g(t)| ∈
(Cesp)′ and

‖g̃‖C(p)′ � 8‖g‖C(p)′ .

Proof. When p = 1, then the assertion is obvious since Ces1 = L1(ln 1/t) and
(Ces1)

′ = L∞(ln−1 1/t). Let p > 1 and f ∈ Cesp,f � 0. Consider two cases:
(a) If

∫ 1
0 f (s) ds = ∞, then we select a two-sided sequence {ak}k∈Z such that 0 �

ak < ak+1, ak → 1 when k → ∞ and

ak∫
ak−1

f (s) ds = 2k, k ∈ Z.(18)

(b) If A = ∫ 1
0 f (s) ds < ∞, then we can find an one-sided sequence {ak}k�0 such

that 0 � ak < ak+1, a0 = 1 and

ak∫
ak−1

f (s) ds = 2k−1A, k � 0.(19)

The remaining part of the proof is completely analogous to the proof of Proposi-
tion 3 so we omit the details. �
Proof of Theorem 3. “Imbedding ⊃”. If f ∈ U(p′), then, by Proposition 5(b) and
Proposition 4, we obtain that

U
(
p′) ⊂ (

V
(
p′) · Lp

)′ ⊂ (Cesp)′ and ‖f ‖C(p)′ � (p − 1)1/p‖f ‖U(p′).

“Imbedding ⊂”. Let f ∈ (Cesp)′. Since f̃ � |f | and U(p′) is a Banach lattice,
then by Proposition 6 we may (and we will) assume that f is a non-negative
decreasing function on (0,1], i.e., f = f̃ . Define the weight

w(x) = χ[0,1/2](x) + (1 − x)χ[1/2,1](x), 0 < x � 1.

Since 1 − x � w(x) � 2(1 − x) for x ∈ (0,1], then according to Remark 3 it is
enough to prove that for some constant Ap > 0 we have that

∥∥∥∥f

w

∥∥∥∥
Lp′ =

[ 1∫
0

(
f (x)

w(x)

)p′
dx

]1/p

� Ap‖f ‖C(p)′(20)

since

‖f ‖U(p′) =
∥∥∥∥ 1

1 − x1/(p′−1)
f (x)

∥∥∥∥
Lp′ � max

(
1,p′ − 1

)∥∥∥∥ 1

1 − x
f (x)

∥∥∥∥
Lp′

� 2 max
(
1,p′ − 1

)‖f/w‖
Lp′ .
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We now prove that if h ∈ Lp,h � 0, then h/w ∈ Cesp and

‖h/w‖C(p) �
(
p′ + 2p

)‖h‖Lp .(21)

To prove this we first show that the operator Sw defined by

Swh(x) =
x∫

0

h(t)

w(t)
dt (0 < x � 1)

is bounded in Lp[0,1] for 1 � p < ∞. In fact, for 0 < x � 1/2 we have that

Swh(x) =
x∫

0

h(t) dt =
1∫

1−x

h(1 − t) dt �
1∫

1−x

h(1 − t)

t
dt

and for 1/2 � x � 1

Swh(x) =
1/2∫
0

h(t) dt +
x∫

1/2

h(t)

1 − t
dt

=
1∫

1/2

h(1 − t) dt +
1/2∫

1−x

h(1 − t)

t
dt �

1∫
1−x

h(1 − t)

t
dt.

Thus,

Swh(x) � H ′(h̄)(1 − x) for 0 < x < 1,

where h̄(t) = h(1 − t) and H ′ is the associated Hardy operator, i.e., H ′h(x) =∫ 1
x

h(t)
t

dt . It is well known that H ′ is bounded in Lp[0,1] for 1 � p < ∞ (cf. [32],
pp. 138–139) and, thus,

‖Swh‖Lp �
∥∥H ′(h̄)

∥∥
Lp �

∥∥H ′∥∥‖h̄‖Lp = ∥∥H ′∥∥‖h‖Lp .

Since

1

x
Swh(x) = 1

x

x∫
0

h(t)

w(t)
dt � 1

x

x∫
0

h(t) dtχ[0, 1
2 ](x) + 2Swh(x)χ[ 1

2 ,1](x)

it follows that

‖h/w‖C(p) =
∥∥∥∥ 1

x
Swh(x)

∥∥∥∥
Lp

� ‖Hh‖Lp + 2‖Swh‖Lp

� p′‖h‖Lp + 2p‖h‖Lp = (
p′ + 2p

)‖h‖Lp
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and the estimate (21) is proved. Moreover, by using this fact we obtain that

∥∥∥∥f

w

∥∥∥∥
Lp′ = sup

{ 1∫
0

f (t)

w(t)
h(t) dt : h � 0,‖h‖Lp � 1

}

� sup

{ 1∫
0

f (t)

w(t)
h(t) dt : h � 0,

∥∥∥∥ h

w

∥∥∥∥
C(p)

� p′ + 2p

}

�
(
p′ + 2p

)‖f ‖C(p)′

and also the estimate (20) is proved, which shows that (Cesp)′ ⊂ U(p′) and for
every f ∈ (Cesp)′

‖f ‖U(p′) � 16 max
(
1,p′ − 1

)(
p′ + 2p

)‖f ‖C(p)′ ,

and the proof is complete. �
Remark 5. Let 1 < p < ∞. The Lp spaces have the property that the restriction
of Lp[0,∞) to [0,1] gives the space Lp[0,1]. The situation is different for Cesàro
function spaces. In fact, if f ∈ Cesp[0,∞) and suppf ⊂ [0,1], then

‖f ‖p

Cesp[0,∞)
=

∞∫
0

(
1

x

x∫
0

|f (t)|dt

)p

dx

=
1∫

0

(
1

x

x∫
0

|f (t)|dt

)p

dx +
∞∫

1

(
1

x

1∫
0

|f (t)|dt

)p

dx

= ‖f ‖p

Cesp[0,1)
+ 1

p − 1
‖f ‖p

L1[0,1],

which means that

Cesp[0,∞)|[0,1] = Cesp[0,1] ∩ L1[0,1].
Therefore,

(Cesp[0,1] ∩ L1[0,1])′ = (
Cesp[0,∞)

)′|[0,1] = D
(
p′)|[0,1]

or

U
(
p′) + L∞[0,1] = D

(
p′)|[0,1].

The last equality can be easily verified. For example, for f ∈ D(p′)|[0,1] we can take
as a decomposition f = g + h,g ∈ U(p′), h ∈ L∞[0,1] the functions

g(x) = (1 − x)f (x) and h(x) = xf (x), x ∈ [0,1].
Then f = g + h and g̃(x) = ess supt∈[x,1](1 − t)|f (t)| � (1 − x)f̃ (x), which shows
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that g ∈ U(p′) since f ∈ D(p′). Moreover,

‖h‖∞ = ess sup
x∈[0,1]

x|f (x)| � ess sup
x∈[0,1]

xf̃ (x)

� ‖f̃ ‖L1 � ‖f̃ ‖
Lp′ = ‖f ‖D(p′),

so that h ∈ L∞[0,1].

5. ON p -CONCAVITY, TYPE AND COTYPE OF CESÀRO SEQUENCE AND FUNCTION
SPACES

A Banach lattice X is said to be p-convex (1 � p < ∞) with constant K � 1,
respectively q-concave (1 � q < ∞) with constant L � 1 if

∥∥∥∥∥
(

n∑
k=1

|xk|p
)1/p∥∥∥∥∥ � K

(
n∑

k=1

‖xk‖p

)1/p

,

respectively

(
n∑

k=1

‖xk‖q

)1/q

� L

∥∥∥∥∥
(

n∑
k=1

|xk|q
)1/q∥∥∥∥∥,

for every choice of vectors x1, x2, . . . , xn in X.
Of course, every Banach lattice is 1-convex with constant 1. In particular, cesp

and Cesp(I ) are 1-convex with constant 1. The spaces Lp(I) are p-convex and
p-concave with constant 1.

If the above estimates hold for pairwise disjoint elements {xk}nk=1 in X, that is,

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ � K

(
n∑

k=1

‖xk‖p

)1/p

,

respectively

(
n∑

k=1

‖xk‖q

)1/q

� L

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥,

then we say that X satisfies an upper p-estimate with constant K and a lower q-
estimate with constant L, respectively. It is obvious that a p-convex (q-concave)
Banach lattice satisfies upper p-estimate (lower q-estimate).

Let rn : [0,1] → R, n ∈ N, be the Rademacher functions, that is, rn(t) =
sign(sin 2nπt). A Banach space X has type 1 � p � 2 if there is a constant K > 0
such that, for any choice of finitely many vectors x1, . . . , xn from X,

1∫
0

∥∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥∥dt � K

(
n∑

k=1

‖xk‖p

)1/p

.
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A Banach space X has cotype q � 2 if there is a constant K > 0 such that, for
any choice of finitely many vectors x1, . . . , xn from X,

(
n∑

k=1

‖xk‖q

)1/q

� K

1∫
0

∥∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥∥dt.

In order to complete this definition for q = ∞ the left-hand side should be replaced
by max1�k�n ‖xk‖.

We say that the space X has trivial type or trivial cotype, if it does not have any
type bigger than one or any finite cotype, respectively.

More information and connections among the above notions may be found in
[17] and [38].

Theorem 4. If 1 < p < ∞, then Cesp(I ) are p-concave with constant 1, that is,

(
n∑

k=1

‖fk‖p

C(p)

)1/p

�
∥∥∥∥∥
(

n∑
k=1

|fk|p
)1/p∥∥∥∥∥

C(p)

,(22)

for all f1, f2, . . . , fn ∈ Cesp(I ).

Proof. Inequality (22) taken to the power p means that

n∑
k=1

∫
I

(
1

x

x∫
0

|fk(t)|dt

)p

dx �
∫
I

[
1

x

x∫
0

(
n∑

k=1

|fk(t)|p
)1/p

dt

]p

dx.

If we show that

n∑
k=1

(
1

x

x∫
0

|fk(t)|dt

)p

�
[

1

x

x∫
0

(
n∑

k=1

|fk(t)|p
)1/p

dt

]p

for every x ∈ I , then we are done. The last estimate can also be written as

[
n∑

k=1

( x∫
0

|fk(t)|dt

)p]1/p

�
x∫

0

(
n∑

k=1

|fk(t)|p
)1/p

dt,

which is the p-concavity of L1[0, x] for every x ∈ I .
It is clear that L1(J ), J = Jx = [0, x] is 1-convex with constant 1 and it is well

known that then L1(J ) is p-concave with constant 1 (cf. [38, Proposition 1.d.5] or
[44, Theorem 4.3]). We can also prove this fact directly as in [44, Theorem 4.3]: by
the Hölder–Rogers inequality for t ∈ J it yields that

n∑
k=1

|fk(t)||ak| �
(

n∑
k=1

|fk(t)|p
)1/p

‖{ak}‖p′
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and, by integrating over J ,

∫
J

n∑
k=1

|fk(t)||ak|dt � ‖{ak}‖p′
∫
I

(
n∑

k=1

|fk(t)|p
)1/p

dt

= ‖{ak}‖p′

∥∥∥∥∥
(

n∑
k=1

|fk|p
)1/p∥∥∥∥∥

L1(J )

.

Taking the supremum over all {ak} such that ‖{ak}‖p′ � 1 we obtain, by the Landau
theorem,

sup

{∫
J

n∑
k=1

|fk(t)||ak|dt : ‖{ak}‖p′ � 1

}

= sup

{
n∑

k=1

|ak|
∫
J

|fk(t)|dt : ‖{ak}‖p′ � 1

}

=
∥∥∥∥
{∫

J

|fk(t)|dt

}∥∥∥∥
p

=
[

n∑
k=1

(∫
J

|fk(t)|dt

)p
]1/p

=
(

n∑
k=1

‖fk‖p

L1(J )

)1/p

.

Thus,

(
n∑

k=1

‖fk‖p

L1(J )

)1/p

�
∥∥∥∥∥
(

n∑
k=1

|fk|p
)1/p∥∥∥∥∥

L1(J )

,

and putting these facts together we obtain the estimate (22). �
Theorem 5. If 1 < p < ∞, then the space Cesp(I ) has trivial type and cotype
max(p,2). The space Ces∞(I ) has trivial type and trivial cotype.

Proof. Let 1 < p < ∞. The space Cesp(I ) contains a copy of L1(I ) (cf. [4],
Lemma 1 for I = [0,1] and Theorem 2 for I = [0,∞)) which implies that Cesp(I )

has trivial type.
On the other hand, since, by Theorem 4 the space Cesp(I ) is p-concave, then

by a well-known theorem (cf. Lindenstrauss and Tzafiri [38, p. 100]) it has cotype
max(p,2). The fact that this space has no smaller cotype follows, for example, from
Theorem 6 showing that Cesp(I ) contains an isomorphic copy of lp and the fact that
the space lp has cotype max(p,2) and this value is the best possible (cf. [38, p. 73]
or [44, pp. 91–94]).

For p = ∞ the space Ces∞(I ) has no absolutely continuous norm and, by the
Lozanovskiı̆ theorem (see [40, Theorem 5, p. 65]; cf. also [28, Theorem 4 in X.4]
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and [59, Theorem 4.1]), it contains an isomorphic copy of l∞, therefore it has trivial
type and trivial cotype. The proof is complete. �
Remark 6. Similarly as in Theorem 4 we can prove that the Cesàro sequence
spaces cesp are p-concave with constant 1 since l1 is p-concave with constant 1.
Moreover, similarly as in Theorem 5 we can obtain that the Cesàro sequence spaces
cesp have trivial type and cotype max(p,2) for 1 < p < ∞. Also ces∞ has trivial
type and trivial cotype.

6. COPIES OF lp SPACES IN THE CESÀRO FUNCTION SPACES Cesp

The Cesàro function space Cesp(I ) contains a copy of L1(I ) and as we will see in
the next theorem also complemented copies of lp .

Theorem 6. If 1 < p < ∞, then Cesp(I ) contains an order isomorphic and
complemented copy of lp .

Proof. Let I = [0,1]. We shall construct a sequence {fn}∞n=1 ⊂ Cesp[0,1] with
disjoint supports which spans an isomorphic copy of lp in Cesp[0,1] and the closed
linear span [fn]Cesp is complemented in Cesp[0,1]. Let us denote

fn = χ[2−n−1,2−n] and Fn(t) = 1

t

t∫
0

fn(s) ds, n = 1,2, . . . .

Since

Fn(t) =

⎧⎪⎨
⎪⎩

0, if 0 < t � 2−n−1,
1 − 1

2n+1t
, if 2−n−1 � t � 2−n,

1
2n+1t

, if t � 2−n,

it follows that

‖fn‖p

C(p) = ‖Fn‖p

Lp =
2−n∫

2−n−1

(
1 − 1

2n+1t

)p

dt + 2−(n+1)p 2n(p−1) − 1

p − 1
.

Note that the first term in the above sum is not bigger than 2−p−n−1 and the second
one satisfies the inequalities

1 − 2−p+1

p − 1
2−p−n � 2−(n+1)p 2n(p−1) − 1

p − 1
� 2−p−n

p − 1
.

Therefore,

‖fn‖C(p) ≈ ‖fn‖Lp ≈ 2−n/p(23)
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with constants which depend only on p. If

f̄n = fn

‖fn‖C(p)

, n = 1,2, . . . ,

then

1 = ‖f̄n‖C(p) ≈ ‖f̄n‖Lp , n ∈ N.

Let us denote

x(t) =
∞∑

n=1

αnf̄n, αn ∈ R.

Since f̄n are disjoint functions we may assume that αn � 0. By Theorem 1(c) (the
Hardy inequality) and the above equivalence

‖x‖C(p) � p

p − 1
‖x‖Lp = p

p − 1

( ∞∑
n=1

αp
n ‖f̄n‖p

Lp

)1/p

� Cp

( ∞∑
n=1

αp
n

)1/p

.

On the other hand, by Theorem 4, for any n ∈ N,

∥∥∥∥∥
n∑

k=1

αkf̄k

∥∥∥∥∥
C(p)

�
(

n∑
k=1

‖αkf̄k‖p

C(p)

)1/p

=
(

n∑
k=1

α
p

k

)1/p

and passing to the limit as n → ∞ we arrive at the inequality

‖x‖C(p) �
( ∞∑

k=1

α
p

k

)1/p

≈ ‖x‖Lp,

which together with estimation from above gives us that

[f̄n]Cesp � [f̄n]Lp � lp.(24)

Next, we prove that [f̄n]Cesp is complemented in Cesp for 1 < p < ∞. Let x ∈
Cesp, x � 0 and suppx ⊂ [2−n−1,2−n], n ∈ N. Then

1

t

t∫
0

x(s) ds = 1

t

t∫
2−n−1

x(s) dsχ[2−n−1,2−n](t) + 1

t
‖x‖L1χ[2−n,1](t)

and

‖x‖p

C(p) =
2−n∫

2−n−1

(
1

t

t∫
2−n−1

x(s) ds

)p

dt + ‖x‖p

L1

1∫
2−n

t−p dt.
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The first term in the last sum is not bigger than

‖x‖p

L1

2−n∫
2−n−1

t−p dt = 2p−1 − 1

p − 1
2n(p−1)‖x‖L1,

and the second one is equal to

‖x‖p

L1

2n(p−1) − 1

p − 1
.

Therefore,

‖x‖C(p) ≈ ‖x‖L12n(1−1/p), n = 1,2, . . . ,(25)

with constants which depend only on p. We consider the orthogonal projector

T x(t) :=
∞∑

k=1

2k+1

2−k∫
2−k−1

x(s) dsχ[2−k−1,2−k ](t)(26)

and prove that it is bounded in Cesp .
For arbitrary x ∈ Cesp, x � 0 we set xk = xχ[2−k−1,2−k ] (k = 1,2, . . .). Since

T xk = ‖xk‖L12k+1χ[2−k−1,2−k ],

then (23) and (25) imply that

‖T xk‖C(p) = ‖xk‖L12k+1‖fk‖C(p) � B‖xk‖L12k+12−k/p � C‖xk‖C(p).

Therefore, by (24) and Theorem 4, we have that

‖T x‖C(p) � C′
( ∞∑

k=1

‖T xk‖p

C(p)

)1/p

� C′C
( ∞∑

k=1

‖xk‖p

C(p)

)1/p

� C′C

∥∥∥∥∥
∞∑

k=1

xk

∥∥∥∥∥
C(p)

= C′C‖x‖C(p),

and the proof of the boundedness of T in Cesp is complete. Since the image of T

coincides with [xn]Cesp , then Theorem 6 is proved. �
The above theorem shows that the Cesàro function spaces Cesp[0,1] behave

“near zero” similar to the lp spaces. The authors proved in [4] that “in the middle”
Cesàro function spaces Cesp(I ) contain an asymptotically isometric copy of l1,
that is, there exist a sequence {εn} ⊂ (0,1), εn → 0 as n → ∞ and a sequence of
functions {fn} ⊂ Cesp[0,1] such that, for arbitrary {αn} ∈ l1, we have that

∞∑
n=1

(1 − εn)|αn| �
∥∥∥∥∥

∞∑
n=1

αnfn

∥∥∥∥∥
C(p)

�
∞∑

n=1

|αn|.(27)
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Consequently, these spaces are not reflexive and do not have the fixed point property.
This is a big difference with the Cesàro sequence spaces cesp , which for 1 < p < ∞
are reflexive and have the fixed point property.

Let us recall that a Banach space X has the Dunford–Pettis property if xn → 0
weakly in X and fn → 0 weakly in the dual space X∗ imply fn(xn) → 0. The
classical examples of Banach spaces with the Dunford–Pettis property are the
AL-spaces and AM-spaces. It is clear that if X∗ has the Dunford–Pettis property,
then X has itself this property (cf. [2, pp. 334–336]). Of course, the Cesàro sequence
spaces cesp , 1 < p < ∞, as reflexive spaces do not have the Dunford–Pettis
property.

Corollary 1. If 1 < p < ∞, then Cesp(I ) do not have the Dunford–Pettis property.

Proof. By Theorem 6, Cesp(I ) contains a complemented copy of lp and lp do
not have the Dunford–Pettis property. On the other hand, it is easy to show that, if a
Banach space has the Dunford–Pettis property, then its complemented subspace has
also the Dunford–Pettis property (cf. Wnuk [58, Lemma 1(i)] or [23, Proposition
11.37]). Thus, Cesp(I ) do not have the Dunford–Pettis property. �

As it was mentioned before the Cesàro sequence spaces cesp are not isomorphic
to the lq space for any 1 � q � ∞. An analogous theorem is true for Cesàro function
spaces.

Theorem 7. If 1 < p � ∞, then Cesp(I ) are not isomorphic to any Lq(I) space
for any 1 � q � ∞.

Proof. If 1 < q < ∞, then Cesp(I ) has trivial type but Lq(I) has type min(q,2) > 1
and therefore they cannot be isomorphic. The space Cesp(I ) for 1 < p < ∞ is not
isomorphic to L1(I ) since L1(I ) has the Dunford–Pettis property but Cesp(I ), as
we have seen in Corollary 1, do not have the Dunford–Pettis property. Also Cesp(I )

for 1 < p < ∞ is not isomorphic to L∞(I ) since the first space is separable and the
second one is non-separable.

It only remains to show that Ces∞(I ) is not isomorphic to L∞(I ). Since, by
Pełczyński theorem L∞(I ) is isomorphic to 
∞ (cf. Albiac and Kalton [1, Theorem
4.3.10]), therefore it is enough to show that Ces∞(I ) is not isomorphic to 
∞.

We show this for K = Ces∞[0,1] since for the case of Ces∞(0,∞) the proof
is similar. For fixed a ∈ (0,1) define a continuous projection P :K → K by Pf =
f χ[a,1]. Then

1∫
a

|Pf (t)|dt �
1∫

0

|Pf (t)|dt � ‖Pf ‖K = sup
0<x�1

1

x

x∫
0

|f (t)χ[a,1](t)|dt

= sup
a�x�1

1

x

x∫
a

|f (t)χ[a,1](t)|dt � 1

a

1∫
a

|Pf (t)|dt.
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Hence, P(K) is isomorphic to L1[a,1], i.e., K contains a complemented copy of a
separable space while no separable subspace of 
∞ is complemented in 
∞ because

∞ is prime, that is, every infinite dimensional complemented subspace of 
∞ is
isomorphic to 
∞ (see Lindenstrauss and Tzafriri [37, Theorem 2.a.7], or Albiac
and Kalton [1, Theorem 5.6.5]). Therefore, K and 
∞ are not isomorphic. �
7. ON THE WEAK BANACH–SAKS PROPERTY OF THE CESÀRO FUNCTION SPACES

Let us recall that a Banach space X is said to have the weak Banach–Saks property
if every weakly null sequence in X, say (xn), contains a subsequence (xnk

) whose
first arithmetical means converge strongly to zero, that is,

lim
m→∞

1

m

∥∥∥∥∥
m∑

k=1

xnk

∥∥∥∥∥ = 0.

It is known that uniformly convex spaces, c0, l1 and L1 have the weak Banach–
Saks property, whereas C[0,1] and l∞ do not have. We should mention that the
result on L1 space, proved by Szlenk [55] in 1965, was a very important break-
through in studying of the weak Banach–Saks property.

In 1982, Rakov [48, Theorem 1] proved that a Banach space with non-trivial
type (or equivalently B-convex) has the weak Banach–Saks property (cf. also
[57, Theorem 1]). Recently Dodds, Semenov and Sukochev [19] investigated the
weak Banach–Saks property of rearrangement invariant spaces and Astashkin and
Sukochev [6] have got a complete description of Marcinkiewicz spaces with the
latter property.

The spaces Cesp[0,1] for 1 � p < ∞ are neither B-convex (they have trivial
type) nor rearrangement invariant. Nevertheless, we will prove that Cesp for all
1 � p < ∞ have the weak Banach–Saks property.

Theorem 8. If 1 � p < ∞, then the Cesàro function space Cesp[0,1] has the weak
Banach–Saks property.

We begin with some auxiliary notation and results.
If I = [a, b] and J = [c, d] are two closed intervals, then we write I < J if b � c.

Let {In}∞n=1 be a sequence of closed intervals In = [an, bn] ⊂ [0,1]. Then In → 0
means that I1 > I2 > · · · and bn → 0+. Analogously, In → 1 means that I1 < I2 <

· · · and an → 1−. Moreover, in what follows suppf = {t : f (t) �= 0}.

Lemma 1 (Weakly null sequences in Cesp[0,1],1 < p < ∞). Let {xn}∞n=1 ⊂
Cesp . Then xn

w→ 0 in Cesp if and only if

(a) there exists a constant M > 0 such that ‖xn‖C(p) � M for all n = 1,2, . . . ,

and

(b) for every set A ⊂ [0,1] such that A ⊂ [h,1 − h] for some h ∈ (0, 1
2 ) we have∫

A
xn(t) dt → 0 as n → ∞.
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Proof. It is enough to check that the set of all functions of the form

a(t) =
n∑

k=1

akχAk
(t),(28)

where n ∈ N, ak ∈ R and Ak ⊂ [0,1] are pairwise disjoint sets such that Ak ⊂ [h,1−
h] for some h ∈ (0, 1

2 ), is dense in the space U(p′) = (Cesp)∗ = (Cesp)′,p′ = p
p−1 ,

with the norm

‖y‖U(p′) =
( 1∫

0

(
ỹ(t)

1 − t

)p′
dt

)1/p′

, ỹ(t) = ess sup
s∈[t,1]

|y(s)|.

Let y ∈ U(p′) and ε > 0. Note that ỹ(1−) = limt→1− ỹ(t) = 0. In fact, if ỹ(t) �
c > 0 (0 < t < 1), then since p′ > 1 we have that ‖y‖p′

U(p′) � c
∫ 1

0
1

(1−t)p
′ dt = ∞.

Therefore, we may choose δ ∈ (0,1) and h ∈ (0, δ) so that

max

( δ∫
0

(
ỹ(t)

1 − t

)p′
dt,

1∫
1−δ

(
ỹ(t)

1 − t

)p′
dt

)
� εp′

(29)

and

ỹ(1 − h) � ε ·
(

p′ − 1

δ1−p′ − 1

)1/p′
.(30)

Since y ∈ U(p′), then ỹ(t) is finite for every t ∈ (0,1) which implies that y(t) is
a bounded measurable function on the interval [h,1 − h]. Therefore, there exists a
function a(t) of the form (28) such that suppa ⊂ [h,1 − h] and

‖(y − a)χ[h,1−h]‖L∞ � ε ·
(

p′ − 1

h1−p′ − 1

)1/p′
.(31)

By the triangle inequality we have that

‖y − a‖U(p′)
� ‖yχ[0,h]‖U(p′) + ‖(y − a)χ[h,1−h]‖U(p′) + ‖yχ[1−h,1]‖U(p′),(32)

and let us estimate each of the three terms separately. At first, since 0 < h < δ, then,
by (29),

‖yχ[0,h]‖p′
U(p′) �

δ∫
0

(
ỹ(t)

1 − t

)p′
dt � εp′

.(33)

Next, (31) implies

‖(y − a)χ[h,1−h]‖p′
U(p′) �

1−h∫
0

dt

(1 − t)p
′ · εp′ ·

(
p′ − 1

h1−p′ − 1

)
= εp′

.(34)
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Finally, (30) and (29) imply that

‖yχ[1−h,1]‖p′
U(p′) �

1−δ∫
0

(
ỹ(1 − h)

1 − t

)p′
dt +

1∫
1−δ

(
ỹ(t)

1 − t

)p′
dt � 2εp′

.(35)

Thus, by (32)–(35), we have that ‖y − a‖U(p′) � 41/p′
ε, and the proof is com-

plete. �
Corollary 2. Let {In}∞n=1 be a sequence of intervals from [0,1] such that either

In → 0 or In → 1. Then, for every p ∈ (1,∞), we have
χIn‖χIn‖C(p)

w→ 0 in Cesp[0,1].

Following Kadec and Pełczyński [27] (see also [46] and [47]) we will use the
following notation: Let X be a Banach function lattice on [0,1]. For every x ∈ X

and α ∈ (0,1] we set

η(x,α) = sup
A⊂[0,1],m(A)=α

‖xχA‖X.

Moreover, if K ⊂ X, then

η(K,α) = sup
x∈K

η(x,α), η(K,0+) = lim
α→0+ η(K,α).

Lemma 2. If a Banach function lattice X on [0,1] satisfies a lower p-estimate
(1 � p < ∞) with constant one, then for any disjointly supported x, y ∈ X and
α > 0, β > 0 we have that

η(x + y,α + β)p � η(x,α)p + η(y,β)p.

Proof. For any ε > 0 choose the sets A and B from [0,1] such that A ⊂ suppx,B ⊂
suppy,m(A) � α,m(B) � β , and

‖xχA‖p

X � η(x,α)p − ε, ‖yχB‖p

X � η(y,β)p − ε.

Since m(A ∪ B) � α + β and X satisfies a lower p-estimate with constant one it
follows that

η(x + y,α + β) � ‖(x + y)χA∪B‖X = ‖xχA + yχB‖X

�
(‖xχA‖p

X + ‖yχB‖p

X

)1/p

�
(
η(x,α)p + η(y,β)p − 2ε

)1/p
,

and the proof of the lemma follows by letting ε → 0+. �
Let X be a Banach function lattice on [0,1] and a set K ⊂ X. We say that

K consists of elements having equicontinuous norms in X if

lim
A⊂[0,1],m(A)→0

sup
x∈K

‖xχA‖X = 0.
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An important tool in the proof of Theorem 8 will be the following assertion:

Proposition 7 (Subsequence splitting property). Let 1 < p < ∞, {xn}∞n=1 ⊂
Cesp[0,1], ‖xn‖C(p) = 1 and xn

w→ 0 in Cesp[0,1]. Then there exists a subsequence
{x′

n} ⊂ {xn} such that

x′
n = yn + zn, n = 1,2, . . . ,

where {yn}∞n=1 consists of elements having equicontinuous norms in Cesp and
supp zn ⊂ I ′

n ∪ I ′′
n with {I ′

n, I
′′
n }∞n=1 being a sequence of pairwise disjoint intervals

from [0,1] such that I ′
n → 0, I ′′

n → 1. Moreover, yn
w→ 0, zn

w→ 0 in Cesp .

Proof. We set η0 = η({xn},0+). If η0 = 0, then the sequence {xn} consists of
elements with equicontinuous norms in Cesp and we have nothing to prove.
Therefore, assume that η0 > 0. By the definition of η0, there exists a sequence of
sets An ⊂ [0,1],m(An) = αn → 0 and a subsequence of {xn} (which will be denoted
also by {xn}) such that for all n ∈ N

‖xnχAn‖C(p) � η0 − 1

n
.(36)

Let us denote

un = xnχAn and vn = xn − un.(37)

Since Cesp[0,1] is p-concave with constant one, then, by Lemma 2, it yields that

η(vn,α)p � η(xn,α + αn)
p − η(un,αn)

p � η(xn,α + αn)
p −

(
η0 − 1

n

)p

.

Hence, for 0 < α � 1/2 we have that

lim sup
n→∞

η(vn,α)p � η({xn},2α)p − η
p

0 .

Since Cesp is a separable space the last inequality implies that

η
({vn},0+) = 0,(38)

that is, {vn} consists of elements with equicontinuous norms in Cesp .
According to Lemma 1, for every h ∈ (0, 1

2 ),

xnχ[h,1−h]
w→ 0 in Cesp .(39)

Therefore, since Cesp[0,1]|[h,1−h] = L1[h,1 − h] with equivalent norms (see [4,

Lemma 1]) we have that xnχ[h,1−h]
w→ 0 in L1. Moreover, since η({vn},0+) = 0 it

follows that

ηL1
({vnχ[h,1−h]},0+) = 0
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(where ηL1 is calculated in the space L1) and

‖vnχ[h,1−h]‖L1 � C‖vnχ[h,1−h]‖C(p) � C.

Thus, by the classical Dunford–Pettis criterion (see, for example, [22, Theorem
4.21.2] or [1, Theorem 5.2.9]), the sequence {vnχ[h,1−h]}∞n=1 is a relatively weakly
compact subset of L1 and, hence, simultaneously in Cesp . Therefore, there is a

subsequence {vnk
} ⊂ {vn} such that vnk

χ[h,1−h]
w→ v, where v ∈ Cesp . By combining

the last mentioned facts with (39) and with the equality xn = un + vn, we get that
unk

χ[h,1−h]
w→ −v in Cesp , and, hence, in L1. Taking into account the definition of

un (see (36) and (37)) and using again the Dunford–Pettis criterion we conclude
that for every h ∈ (0,1/2) there exists a subsequence {unk

} ⊂ {un} (depending on h)
such that

‖unk
χ[h,1−h]‖C(p) → 0 as k → ∞.

Since Cesp is a separable space, then by a standard procedure, we may choose
a subsequence of {unk

} (denote it again by {unk
}) and pairwise disjoint intervals

{I ′
k, I

′′
k }k∈N, I ′

k → 0, I ′′
k → 1 such that

‖unk
χ[0,1]\(I ′

k
∪I ′′

k
)‖C(p) → 0 as k → ∞.(40)

Setting x′
k = yk + zk , with

yk = vnk
+ unk

χ[0,1]\(I ′
k
∪I ′′

k
), zk = unk

χI ′
k
∪I ′′

k
,

we see that, by (38) and (40), this representation satisfies all conditions. In
particular, according to Lemma 1, we have that zk

w→ 0 and yk
w→ 0. The proof

is complete. �
Now, we may proceed with the proof of Theorem 8.

Proof of Theorem 8. Since Ces1[0,1] = L1(ln 1/t) (with equality of norms) and
L1(ln 1/t) is isometric to L1, then in the case p = 1 the result follows from the
Szlenk theorem [55]. Therefore, we will consider the case when 1 < p < ∞. Taking
into account Proposition 7 it is enough to prove the following: if {xn} ⊂ Cesp, xn

w→
0 and either

(a) {xn} consists of elements with equicontinuous norms

or

(b) suppxn ⊂ In, where In → 1

or

(c) suppxn ⊂ In, where In → 0,

then there is a subsequence {x′
n} ⊂ {xn} such that

1

m

∥∥∥∥∥
m∑

k=1

x′
k

∥∥∥∥∥
C(p)

→ 0 as m → ∞.(41)
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Case (a). We will use the following remark from Szlenk paper [55, Remark 1]:
a sequence {xn} ⊂ X,xn

w→ 0 in X (X is a Banach space) contains a subsequence
{x′

n} such that 1
m

‖∑m
k=1 x′

k‖X → 0 as m → ∞ if and only if it contains a subse-
quence {xnk

} such that

lim
m→∞ sup

k1<···<km

∥∥∥∥∥ 1

m

m∑
i=1

xnki

∥∥∥∥∥
X

= 0.(42)

Let {xn} ⊂ Cesp, xn
w→ 0 and ε > 0. At first, setting

An,m = {t ∈ [0,1]: |xn(t)| � m}, m,n = 1,2, . . . ,

we prove that

lim
m→∞ sup

n∈N

m(An,m) = 0.(43)

We may assume that ‖xn‖C(p) = 1(n = 1,2, . . .). Therefore,

1 = ‖xn‖C(p) � ‖xn‖C(1) = ‖xn‖L1(ln 1/t) =
1∫

0

|xn(t)| ln
1

t
dt

�
∫

An,m

|xn(t)| ln
1

t
dt � m

∫
An,m

ln
1

t
dt,

i.e., ∫
An,m

ln
1

t
dt � 1

m
for all n,m ∈ N.(44)

Assume that (43) does not hold, that is, there exists a δ > 0 such that for every m ∈ N

there is nm ∈ N such that m(Anm,m) > δ. Clearly, we may assume that nm → ∞ as
m → ∞. Since

m

(
Anm,m ∩

[
0,1 − δ

2

])
>

δ

2
,

then we have that, for any m ∈ N,

∫
Anm,m

ln
1

t
dt �

∫
Anm,m∩[0,1− δ

2 ]

ln
1

t
dt

� ln
2

2 − δ
m

(
Anm,m ∩

[
0,1 − δ

2

])
>

δ

2
ln

2

2 − δ
.

The last inequality contradicts (44) and, therefore, (43) is proved.
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We recall that {xn} consists of functions having equicontinuous norms. Hence, by
(43), for some m0 and all n ∈ N,

‖xnχAn,m0
‖C(p) <

ε

3
.(45)

Denote yn = xnχAn,m0
(n = 1,2, . . .). Then |xn(t)−yn(t)| � m0 for t ∈ [0,1], so that,

in particular, xn − yn ∈ Lp and ‖xn − yn‖Lp � m0. Since Lp is a reflexive space
for 1 < p < ∞ and since Lp has the Banach–Saks property (cf. [7, Chapter XII,
Theorem 2]), we may choose an increasing sequence of natural numbers {nk}∞k=1

such that xnk
− ynk

w→ v in Lp , where v ∈ Lp , and (see (42))

lim
m→∞ sup

k1<···<km

∥∥∥∥∥ 1

m

m∑
i=1

(xnki
− ynki

) − v

∥∥∥∥∥
Lp

= 0.(46)

Using the imbedding Lp ⊂ Cesp (see Theorem 1(c)) we obtain that xnk
−ynk

w→ v in

Cesp . Therefore, since xnk

w→ 0 in Cesp , we get that ynk

w→ −v in Cesp . Moreover,
from (45) it follows that ‖ynk

‖C(p) < ε
3 so that ‖v‖C(p) � ε

3 . At last, by Theorem 1(c)
and (46), for large enough m ∈ N,

sup
k1<···<km

∥∥∥∥∥ 1

m

m∑
i=1

(xnki
− ynki

) − v

∥∥∥∥∥
C(p)

� p′ sup
k1<···<km

∥∥∥∥∥ 1

m

m∑
i=1

(xnki
− ynki

) − v

∥∥∥∥∥
Lp

� ε

3
.

The last inequalities give us that

sup
k1<···<km

∥∥∥∥∥ 1

m

m∑
i=1

xnki

∥∥∥∥∥
C(p)

� sup
k1<···<km

(∥∥∥∥∥ 1

m

m∑
i=1

(xnki
− ynki

) − v

∥∥∥∥∥
C(p)

+ 1

m

∥∥∥∥∥
m∑

i=1

ynki

∥∥∥∥∥
C(p)

+‖v‖C(p)

)
� ε,

if m is large enough. Thus, {xnk
} satisfies condition (42) and in this case everything

is proved.

Case (b). Let {xn} ⊂ Cesp, xn
w→ 0, suppxn ⊂ In = [an, bn](n = 1,2, . . .), I1 <

I2 < · · · and an → 1−. We may suppose that xn � 0,‖xn‖C(p) = 1 and a1 � 1/2.
Since p > 1, it is enough to show that {xn} contains a subsequence (for simplicity,

it will be denoted also by {xn}) such that∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
C(p)

� Cn1/p,(47)
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where C > 0 is independent of n ∈ N. We will choose xn inductively. Suppose
that m � 2 and x1, x2, . . . , xm−1 are already chosen. Then a1 < b1 � · · · � am−1 <

bm−1 < 1 are fixed and, since an → 1−, we may take am so that

1 − am � (1 − bm−1) · 2−p.(48)

Then for xm we take the function corresponding to the interval Im = [am,bm] (that
is, suppxm ⊂ Im). Let’s check that inequality (47) holds. For all n ∈ N and t ∈ (0,1]
we have that

1

t

t∫
0

∣∣∣∣∣
n∑

k=1

xk(s)

∣∣∣∣∣ds = 1

t

n∑
m=1

(
m−1∑
i=1

bi∫
ai

xi(s) ds +
t∫

am

xm(s) ds

)
χ[am,bm](t)

+ 1

t

n∑
m=1

m∑
i=1

bi∫
ai

xi(s) dsχ[bm,am+1](t)

= S1(t) + S2(t) + S3(t),

where an+1 = 1 and

S1(t) = 1

t

n∑
m=2

m−1∑
i=1

bi∫
ai

xi(s) dsχ[am,bm](t),

S2(t) = 1

t

n∑
m=1

m∑
i=1

bi∫
ai

xi(s) dsχ[bm,am+1](t),

S3(t) = 1

t

n∑
m=1

t∫
am

xm(s) dsχ[am,bm](t).

Since, by Theorem 3, (Cesp[0,1])∗ = (Cesp[0,1])′ = U(p′) it follows that, for all
i ∈ N,

bi∫
ai

xi(s) ds � A‖xi‖C(p) · ‖χ[ai ,bi ]‖U(p′) = A

( bi∫
0

dt

(1 − t)p
′

)1/p′

= A(p − 1)1/p′
[

1

(1 − bi)p
′−1

− 1

]1/p′
� B

(1 − bi)1/p
,

where B > 0 depends only on p. Moreover, by (48), for every i = 1,2, . . . ,m − 1,

(
1 − am

1 − bi

)1/p

�
m−1∏
j=i

(
1 − aj+1

1 − bj

)1/p

� 2i−m.
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Therefore,

‖S1‖p
p =

n∑
m=2

(
m−1∑
i=1

bi∫
ai

xi(s) ds

)p bm∫
am

dt

tp

� Bp

n∑
m=2

(
m−1∑
i=1

(1 − bi)
−1/p

)p
b

p−1
m − a

p−1
m

(p − 1)a
p−1
m b

p−1
m

� C
p

1

n∑
m=2

(
m−1∑
i=1

(1 − bi)
−1/p

)p

(1 − am)

� C
p

1

n∑
m=2

(
m−1∑
i=1

2i−m

)p

� C
p

1 n,

so that ‖S1‖p � C1n
1/p , where C1 > 0 depends only on p. Similarly,

‖S2‖p
p � Bp

n∑
m=1

(
m∑

i=1

(1 − bi)
−1/p

)p
a

p−1
m+1 − b

p−1
m

(p − 1)a
p−1
m+1b

p−1
m

� C
p

2

n∑
m=1

(
m∑

i=1

(
1 − bm

1 − bi

)1/p
)p

� C
p

2

n∑
m=1

(
1 +

m−1∑
i=1

2i−m

)p

� (2C2)
pn,

which implies that ‖S2‖p � 2C2n
1/p , where C2 > 0 depends only on p. Finally, it is

easy to see that

‖S3‖p �
(

n∑
m=1

‖xm‖p

C(p)

)1/p

= n1/p.

Thus, combining the estimates of S1, S2 and S3 we get∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
C(p)

�
3∑

k=1

‖Sk‖p � (1 + C1 + 2C2) · n1/p,

where C := 1 + C1 + 2C2 is independent of n ∈ N, that is, inequality (47) is proved.

Case (c). Let {xn} ⊂ Cesp, xn
w→ 0, suppxn ⊂ In = [an, bn] (n = 1,2, . . .), I1 >

I2 > · · · and bn → 0+. Again we may assume that xn � 0,‖xn‖C(p) = 1 and b1 �
1/2. As in the case (b) it is enough to prove inequality (47) for some subsequence
of {xn} (it will be denoted also by {xn}), which will be chosen inductively.

Suppose that m � 2 and the functions x1, x2, . . . , xm−1 are chosen. Then b1 >

a1 � · · · � bm−1 > am−1 > 0 are fixed and, since bn → 0+, we may take bm so that

bm � 2−p′
am−1.(49)
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Let us show that the corresponding subsequence {xn} satisfies inequality (47). For
any n ∈ N and t ∈ (0,1] we have that

1

t

t∫
0

∣∣∣∣∣
n∑

k=1

xk(s)

∣∣∣∣∣ds

= 1

t

n∑
j=1

(
n∑

i=n−j+2

bi∫
ai

xi(s) ds +
t∫

an−j+1

xn−j+1(s) ds

)
χ[an−j+1,bn−j+1](t)

+ 1

t

n∑
j=1

n∑
i=n−j+1

bi∫
ai

xi(s) dsχ[bn−j+1,an−j ](t)

= T1(t) + T2(t) + T3(t),

where a0 = 1 and

T1(t) = 1

t

n∑
j=2

n∑
i=n−j+2

bi∫
ai

xi(s)]dsχ[an−j+1,bn−j+1](t),

T2(t) = 1

t

n∑
j=1

n∑
i=n−j+1

bi∫
ai

xi(s) dsχ[bn−j+1,an−j ](t),

T3(t) = 1

t

n∑
j=1

t∫
an−j+1

xn−j+1(s) dsχ[an−j+1,bn−j+1](t).

Using again the duality result, as in the proof of (b), we find that

bi∫
ai

xi(s) ds � A‖xi‖C(p) · ‖χ[ai ,bi ]‖U(p′)

= A(p − 1)1/p′
[

1 − (1 − bi)
p′−1

(1 − bi)p
′−1

]1/p′

� B ′b1/p′
i (i = 1,2, . . .),

where B ′ > 0 depends only on p. Since, by (49), for any k < i

(
bi

ak

)1/p′
�

i∏
m=k

(
bm

am−1

)1/p′
� 2k−i−1,
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then

‖T1‖p
p =

n∑
j=2

(
n∑

i=n−j+2

bi∫
ai

xi(s) ds

)p bn−j+1∫
an−j+1

dt

tp

�
(
B ′)p

n∑
j=2

(
n∑

i=n−j+2

b
1/p′
i

)p
b

p−1
n−j+1 − a

p−1
n−j+1

(p − 1)a
p−1
n−j+1b

p−1
n−j+1

� B
p

1

n∑
j=2

(
n∑

i=n−j+2

b
1/p′
i

)p

a
1−p

n−j+1

� B
p

1

n∑
j=2

(
n∑

i=n−j+2

2n−i−j+1

)p

� B1n,

so that ‖T1‖p � B1n
1/p , where B1 > 0 depends only on p. Similarly,

‖T2‖p
p �

(
B ′)p

n∑
j=1

(
n∑

i=n−j+1

b
1/p′
i

)p
a

p−1
n−j − b

p−1
n−j+1

(p − 1)a
p−1
n−j b

p−1
n−j+1

� B
p

2

n∑
j=1

(
n∑

i=n−j+1

(
bi

bn−j+1

)1/p′)p

� B
p

2

n∑
j=1

(
1 +

n∑
i=n−j+2

2n−i−j+1

)p

� (2B2)
pn.

Hence, ‖T2‖p � 2B2n
1/p , where B2 > 0 depends only on p. Moreover, it is clear

that

‖T3‖p �
(

n∑
j=1

‖xj‖p

C(p)

)1/p

= n1/p.

Thus, combining the estimates of T1, T2 and T3 we get that

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
C(p)

�
3∑

k=1

‖Tk‖p � (1 + B1 + 2B2) · n1/p,

where B := 1 + B1 + 2B2 is independent of n ∈ N. Since all cases (a)–(c) are
examined, the theorem is proved. �
8. THE CESÀRO FUNCTION SPACES Cesp [0,∞) AND Cesp [0,1] ARE ISOMORPHIC FOR
1 < p � ∞

The main result in this Section is a construction of an isomorphism between the
Cesàro function spaces Cesp[0,∞) and Cesp[0,1] for 1 < p � ∞.
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Theorem 9. If 1 < p � ∞, then the Cesàro function spaces Cesp[0,1] and
Cesp[0,∞) are isomorphic.

Proof. The proof will go in two parts. Let 1 < p < ∞. Sy, Zhang and Lee proved
in [54] that the norm in Cesp[0,∞) is equivalent to the functional

‖f ‖0 =
[ ∞∑

n=1

(
1

n

n∑
k=1

sk(f )

)p

+
∞∑

m=1

(
m

∞∑
k=m

tk(f )

)p

m−2

]1/p

,(50)

where

sk(f ) =
k+1∫
k

|f (s)|ds and tk(f ) =
1
k∫

1
k+1

|f (s)|ds, k = 1,2, . . . .

Let’s prove the analogous assertion for the space Cesp[0,1]. At first, if 1
m+1 � x �

1
m

,m = 1,2, . . . , then

m + 1

2

1/(m+1)∫
0

|f | � 1

x

x∫
0

|f | � (m + 1)

x∫
0

|f | � 2m

1/m∫
0

|f |.

Therefore,

2−p

∞∑
m=1

(
(m + 1)

1/(m+1)∫
0

|f |
)p(

1

m
− 1

m + 1

)

�
∞∑

m=1

1/m∫
1/(m+1)

(
1

x

x∫
0

|f |
)p

dx

=
1∫

0

(
1

x

x∫
0

|f |
)p

dx

and

1/2∫
0

(
1

x

x∫
0

|f |
)p

dx =
∞∑

m=2

1/m∫
1/(m+1)

(
1

x

x∫
0

|f |
)p

dx

� 2p

∞∑
m=2

(
m

1/m∫
0

|f |
)p(

1

m
− 1

m + 1

)
.
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The first of these inequalities implies that

2−p

∞∑
m=2

(
m

1/m∫
0

|f |
)p(

1

m
− 1

m + 1

)

= 2−p

∞∑
m=1

(
(m + 1)

1/(m+1)∫
0

|f |
)p(

1

m + 1
− 1

m + 2

)

�
1∫

0

(
1

x

x∫
0

|f |
)p

dx = ‖f ‖p

C(p),

and the second one yields that

2−p

1/2∫
0

(
1

x

x∫
0

|f |
)p

dx �
∞∑

m=2

(
m

1/m∫
0

|f |
)p(

1

m
− 1

m + 1

)
� 2p‖f ‖p

C(p).(51)

Denote

αn = 1

2

(
2 − n1−p

)
, n = 1,2, . . . .

It is easy to check that 1
2 = α1 � αn < αn+1 � 2αn,n = 1,2, . . . , and αn → 1 as

n → ∞. Thus, if αn � x � αn+1, then

1

2αn

αn∫
0

|f | � 1

αn+1

αn∫
0

|f | � 1

x

x∫
0

|f |

� 1

αn

αn+1∫
0

|f | � 2

αn+1

αn+1∫
0

|f |,

which implies that

2−p

∞∑
n=1

(
1

αn

αn∫
0

|f |
)p

(αn+1 − αn)(52)

�
∞∑

n=1

αn+1∫
αn

(
1

x

x∫
0

|f |
)p

dx

=
1∫

1/2

(
1

x

x∫
0

|f |
)p

dx
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and

1∫
1/2

(
1

x

x∫
0

|f |
)p

dx =
∞∑

n=1

αn+1∫
αn

(
1

x

x∫
0

|f |
)p

dx(53)

� 2p

∞∑
n=1

(
1

αn+1

αn+1∫
0

|f |
)p

(αn+1 − αn).

Moreover, since

αn+1 − αn = 1

2

(
1

np−1
− 1

(n + 1)p−1

)
= p − 1

2

n+1∫
n

1

tp
dt

and 1
np �

∫ n+1
n

1
tp

dt � 1
(n+1)p

� 1
(2n)p

= 2−p 1
np , it follows that

p − 1

2p+1np
� αn+1 − αn � p − 1

2np
, n = 1,2, . . . ,(54)

and we conclude that

αn+1 − αn � p − 1

2np
� 4p p − 1

2p+1(n + 1)p

� 4p(αn+2 − αn+1), n = 1,2, . . . .

Therefore,

∞∑
n=1

(
1

αn

αn∫
0

|f |
)p

(αn+1 − αn)

=
(

1

α1

α1∫
0

|f |
)p

(α2 − α1) +
∞∑

n=1

(
1

αn+1

αn+1∫
0

|f |
)p

(αn+2 − αn+1)

� 4−p

∞∑
n=1

(
1

αn+1

αn+1∫
0

|f |
)p

(αn+1 − αn).

By combining the last inequality with (52) we obtain that

∞∑
n=1

(
1

αn+1

αn+1∫
0

|f |
)p

(αn+1 − αn) � 8p

1∫
1/2

(
1

x

x∫
0

|f |
)p

dx.(55)
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From (51), (53) and (55) it follows that

‖f ‖p

C(p) � 2p

∞∑
m=2

(
m

1/m∫
0

|f |
)p(

1

m
− 1

m + 1

)

+ 2p

∞∑
n=1

(
1

αn+1

αn+1∫
0

|f |
)p

(αn+1 − αn)

and

∞∑
m=2

(
m

1/m∫
0

|f |
)p(

1

m
− 1

m + 1

)
+

∞∑
n=1

(
1

αn+1

αn+1∫
0

|f |
)p

(αn+1 − αn)

� 2p

1∫
0

(
1

x

x∫
0

|f |
)p

dx + 8p

1∫
1/2

(
1

x

x∫
0

|f |
)p

dx

� 2p
(
4p + 1

)‖f ‖p

C(p).

Thus, taking into account (54), we obtain that

‖f ‖C(p) ≈
[ ∞∑

n=1

(
1

nαn+1

αn+1∫
0

|f (t)|dt

)p

+
∞∑

m=2

(
m

1/m∫
0

|f (t)|dt

)p

m−2

]1/p

.(56)

Note that

1/m∫
0

|f (t)|dt =
∞∑

k=m

tk(f ),

where tk(f ) =
1/k∫

1/(k+1)

|f (t)|dt,

and

αn+1∫
0

|f (t)|dt =
1/2∫
0

|f (t)|dt +
n∑

k=1

bk(f ),

where bk(f ) =
αk+1∫
αk

|f (t)|dt.
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Since αn � 1
2 (n = 1,2, . . .) it follows that the first sum in (56) does not exceed

2p

∞∑
n=1

( 1/2∫
0

|f (t)|dt +
n∑

k=1

bk(f )

)p

n−p

� 22p

[ ∞∑
n=1

(
1

n

n∑
k=1

bk(f )

)p

+
( 1/2∫

0

|f (t)|dt

)p ∞∑
n=1

n−p

]
.

Because p > 1 and the second sum on the right-hand side of (56) contains
(
∫ 1/2

0 |f (t)|dt)p , then

‖f ‖C(p) ≈
[ ∞∑

n=1

(
1

n

n∑
k=1

bk(f )

)p

+
∞∑

m=2

(
m

∞∑
k=m

tk(f )

)p

m−2

]1/p

.(57)

Denote by kn and lm one-to-one affine mappings such that

kn : [n,n + 1] → [αn,αn+1],
(n,m = 1,2, . . .)

lm :

[
1

m + 1
,

1

m

]
→

[
1

m + 2
,

1

m + 1

]

and define the linear operator T for f ∈ Cesp[0,1] by

Tf (x) =
∞∑

n=1

(αn+1 − αn)f
(
kn(x)

)
χ[n,n+1](x)

+
∞∑

m=1

f
(
lm(x)

)
χ[ 1

m+1 , 1
m ](x).

Since

n+1∫
n

∣∣f (
kn(x)

)∣∣dx = 1

αn+1 − αn

αn+1∫
αn

|f (t)|dt

and

1/m∫
1/(m+1)

∣∣f (
lm(x)

)∣∣dx = m + 2

m

1/(m+1)∫
1/(m+2)

|f (t)|dt

for n,m = 1,2, . . . , then the equivalences (50) and (57) show that

‖Tf ‖Cp[0,∞) ≈ ‖Tf ‖0

=
[ ∞∑

n=1

(
1

n

n∑
k=1

sk(Tf )

)p

+
∞∑

m=1

(
m

∞∑
k=m

tk(Tf )

)p

m−2

]1/p
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≈
[ ∞∑

n=1

(
1

n

n∑
k=1

bk(f )

)p

+
∞∑

m=2

(
m

∞∑
k=m

tk(f )

)p

m−2

]1/p

≈ ‖f ‖Cp[0,1].

Therefore, T : Cesp[0,1] → Cesp[0,∞) is an isomorphism and the proof for 1 <

p < ∞ is complete.
If p = ∞ the construction of isomorphism will be different and the proof

is even working for the p-convexifications, that is, if 1 � p < ∞, then the
spaces Ces(p)

∞ [0,1] and Ces(p)
∞ [0,∞) are isomorphic. In particular, Ces∞[0,1] and

Ces∞[0,∞) are isomorphic.
It is easy to check that

‖f ‖C(∞)(p)[0,∞) ≈ sup
k∈Z

(
2−k+1

∫
{2k−1<t�2k}

|f (t)|p dt

)1/p

(58)

and

‖f ‖C(∞)(p)[0,1] ≈ sup
k=0,−1,−2,...

(
2−k+1

∫
{2k−1<t�2k}

|f (t)|p dt

)1/p

.(59)

Moreover, for every k ∈ Z,

2−k+1

2k∫
2k−1

|f (t)|p dt =
1∫

0

∣∣f (
2k−1(t + 1)

)∣∣p dt.(60)

Define the linear transforms

T1 : Ces∞[0,∞) → l∞
( ∞∑

k=−∞
⊕Lp[0,1]

)
, T1f = (

f
(
2k−1(t + 1)

)
k∈Z

)

and

T2 : Ces∞[0,1] → l∞
(−∞∑

k=0

⊕Lp[0,1]
)

, T2f = (
f

(
2k−1(t + 1)

)−∞
k=0

)
.

Formulas (58)–(60) show that T1 and T2 are isomorphisms. It is obvious that the
spaces l∞(

∑∞
k=−∞ ⊕Lp[0,1]) and l∞(

∑−∞
k=0 ⊕Lp[0,1]) are isomorphic. There-

fore, the spaces Ces(p)∞ [0,∞) and Ces(p)∞ [0,1] are isomorphic. �
Problem 1. Is the Cesàro function space Ces∞(I ) isomorphic with the Cesàro
sequence space ces∞?
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9. A DESCRIPTION OF ISOMORPHIC COPIES OF lq IN Cesp[0,1]

In Theorem 6 we proved that Cesp[0,1] contains an isomorphic copy of lp . Now
we try to investigate when this is true for the spaces lq .

Theorem 10.

(a) If 1 � p � 2, then the space lq is embedded isomorphically into Cesp[0,1] if
and only if q ∈ [1,2].

(b) If 2 < p < ∞, then the space lq is embedded isomorphically into Cesp[0,1] if
and only if either q ∈ [1,2] or q = p.

Proof. Firstly, Cesp[0,1] contains a copy of L1[0,1] (cf. [4, Lemma 1]) and in turn
lq is embedded into L1[0,1] if 1 � q � 2 (cf. [1, Theorem 6.4.18]). Moreover, by
Theorem 6, lp is embedded into Cesp[0,1] for every p ∈ [1,∞) so we have to prove
only the necessity.

In the case when 1 � p � 2 necessity is obvious as a consequence of the fact that
Cesp[0,1] has cotype 2.

If p > 2 noting that Cesp[0,1] ⊂ Ces1[0,1] = L1(ln 1/t) we consider two cases:
(a) Assume that the norms of the spaces Cesp[0,1] and L1(ln 1/t) are equivalent

on a subspace X ⊂ Cesp[0,1] which is isomorphic to lq . In other words, X is a
subspace of L1(ln 1/t). Since the last space has cotype 2, then q � 2.

(b) The norms of the spaces Cesp[0,1] and L1(ln 1/t) are not equivalent on X ≈
lq . Then there is a sequence {xn} ⊂ X such that ‖xn‖C(p) = 1 and ‖xn‖L1(ln 1/t) → 0.
In particular, xn → 0 weakly in L1(ln 1/t), i.e.,

1∫
0

xn(t)y(t) dt → 0 for every y ∈ L∞(
ln−1 1/t

)
.

Denote F := ⋃
0<δ<1 L∞[0, δ]. Obviously, it yields that F ⊂ L∞(ln−1 1/t) and F is

dense in (Cesp[0,1])′ = U(p′) (see Theorem 3). Therefore, ‖xn‖C(p) = 1 and xn →
0 weakly in Cesp[0,1]. By a known result (cf. [37, Proposition 1.a.12]) there exists
a subsequence {x′

n} ⊂ {xn} which is equivalent to a seminormalized block basis of
the canonical basis of lq and, consequently, is equivalent to the canonical basis of lq

itself (see [1, Lemma 2.1.1 and Remark 2.1.2]). Moreover, ‖x′
n‖C(p) = 1 and x′

n → 0
in the Lebesgue measure m. Next, since Cesp[0,1] is separable for 1 � p < ∞, then
applying the Kadec–Pełczyński procedure we may find a subsequence {x′′

n} ⊂ {x′
n}

and a sequence of disjoint sets An ⊂ [0,1] such that ‖x′′
n − x′′

nχAn‖C(p) → 0. Using
a standard argument we can select a subsequence {x′′

nk
} ⊂ {x′′

n}, which is equivalent
to the sequence of disjoint functions zk := x′′

nk
χAnk

. Note that {x′′
nk

} and {zk} as well
are equivalent to the canonical basis of lq . To show that either q ∈ [1,2] or q = p

we consider separately two cases:
(1) firstly, assume that there is h ∈ (0, 1

2 ) such that supp zk ⊂ [h,1 − h] for all
k = 1,2, . . . . Since Cesp[h,1 − h] � L1[h,1 − h] (cf. [4, Lemma 1]), then lq will
be embedded into L1[h,1 − h] � L1[0,1], so that q ∈ [1,2].
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(2) otherwise, there is a subsequence {z′
k} ⊂ {zk} such that supp zk ⊂ Ik for some

intervals Ik satisfying either Ik → 0 or Ik → 1. Then, using the same arguments as
in the proof of Theorem 8, we may select a subsequence {z′′

k } ⊂ {z′
k} such that

∥∥∥∥∥
m∑

k=1

z′′
k

∥∥∥∥∥
C(p)

� Cm1/p,

where the constant C > 0 does not depend on m = 1,2, . . . . Since [z′′
k ] � lq , then we

have q � p. On the other hand, q � p because Cesp[0,1] has cotype p, thus q = p

and the proof is complete. �
Let us remind that Lp[0,1] contains an isomorphic copy of lq if and only if

q ∈ [p,2] for the case 1 � p � 2 and in the case when p > 2 this can be when either
q = p or q = 2. We can see then the difference between Lp[0,1] and Cesp[0,1]
spaces. In particular, if 1 < p < ∞, then Cesp[0,1] contains an isomorphic copy of
l1 but not Lp[0,1].
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