## Structure of Cesàro function spaces **

by Sergei V. Astashkin ${ }^{\text {a }}$ and Lech Maligranda ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Mathematics and Mechanics, Samara State University, Acad. Pavlova 1, 443011 Samara, Russia<br>${ }^{\text {b }}$ Department of Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden

Communicated by Prof. H.W. Broer


#### Abstract

The structure of the Cesàro function spaces $\operatorname{Ces}_{p}$ on both $[0,1]$ and $[0, \infty)$ for $1<p \leqslant \infty$ is investigated. We find their dual spaces, which equivalent norms have different description on $[0,1]$ and $[0, \infty)$. The spaces $\operatorname{Ces}_{p}$ for $1<p<\infty$ are not reflexive but strictly convex. They are not isomorphic to any $L^{q}$ space with $1 \leqslant q \leqslant \infty$. They have "near zero" complemented subspaces isomorphic to $l^{p}$ and "in the middle" contain an asymptotically isometric copy of $l^{1}$ and also a copy of $L^{1}[0,1]$. They do not have Dunford-Pettis property but they do have the weak Banach-Saks property. Cesàro function spaces on $[0,1]$ and $[0, \infty)$ are isomorphic for $1<p \leqslant \infty$. Moreover, we give characterizations in terms of $p$ and $q$ when $\operatorname{Ces}_{p}[0,1]$ contains an isomorphic copy of $l^{q}$.


[^0]Let $1 \leqslant p \leqslant \infty$. The Cesàro sequence space $\operatorname{ces}_{p}$ is defined as the set of all real sequences $x=\left\{x_{k}\right\}$ such that

$$
\|x\|_{c(p)}=\left[\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|\right)^{p}\right]^{1 / p}<\infty \quad \text { when } 1 \leqslant p<\infty
$$

and

$$
\|x\|_{c(\infty)}=\sup _{n \in \mathbf{N}} \frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|<\infty \quad \text { when } p=\infty
$$

The Cesàro function spaces $\operatorname{Ces}_{p}=\operatorname{Ces}_{p}(I)$ are the classes of Lebesgue measurable real functions $f$ on $I=[0,1]$ or $I=[0, \infty)$ such that

$$
\|f\|_{C(p)}=\left[\int_{I}\left(\frac{1}{x} \int_{0}^{x}|f(t)| d t\right)^{p} d x\right]^{1 / p}<\infty \quad \text { for } 1 \leqslant p<\infty
$$

and

$$
\|f\|_{C(\infty)}=\sup _{x \in I, x>0} \frac{1}{x} \int_{0}^{x}|f(t)| d t<\infty \quad \text { for } p=\infty
$$

The Cesàro sequence spaces $\operatorname{ces}_{p}$ and $\operatorname{ces}_{\infty}$ appeared in 1968 in connection with the problem of the Dutch Mathematical Society to find their duals. Some investigations of $\operatorname{ces}_{p}$ were done by Shiue [50] in 1970. Then Leibowitz [36] and Jagers [26] proved that $\operatorname{ces}_{1}=\{0\}, \operatorname{ces}_{p}$ are separable reflexive Banach spaces for $1<p<\infty$ and the $l^{p}$ spaces are continuously and strictly embedded into ces ${ }_{p}$ for $1<p \leqslant \infty$. More precisely, $\|x\|_{c(p)} \leqslant p^{\prime}\|x\|_{p}$ for all $x \in l^{p}$ with $p^{\prime}=\frac{p}{p-1}$ when $1<p<\infty$ and $p^{\prime}=1$ when $p=\infty$. Moreover, if $1<p<q \leqslant \infty$, then $\operatorname{ces}_{p} \subset \operatorname{ces}_{q}$ with continuous strict embedding. Bennett [8] proved that $\operatorname{ces}_{p}$ for $1<p<\infty$ are not isomorphic to any $l^{q}$ space with $1 \leqslant q \leqslant \infty$ (see also [45] for another proof).

Several geometric properties of the Cesàro sequence spaces ces ${ }_{p}$ were studied in the last years by many mathematicians (see e.g. [10-16,34]). Some more results on $\operatorname{ces}_{p}$ can be found in two books [8,39].

In 1999-2000 it was proved by Cui and Hudzik [11], Cui, Hudzik and Li [14] and Cui, Meng and Płuciennik [16] that the Cesàro sequence spaces ces ${ }_{p}$ for $1<p<\infty$ have the fixed point property (cf. also [10, Part 9]). Maligranda, Petrot and Suantai [45] proved that the Cesàro sequence spaces $\operatorname{ces}_{p}$ for $1<p<\infty$ are not uniformly non-square, that is, there are sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ on the unit sphere such that $\lim _{n \rightarrow \infty} \min \left(\left\|x_{n}+y_{n}\right\|_{c(p)},\left\|x_{n}-y_{n}\right\|_{c(p)}\right)=2$. They even proved that these spaces are not $B$-convex.

The Cesàro function spaces $\operatorname{Ces}_{p}[0, \infty)$ for $1 \leqslant p \leqslant \infty$ were considered by Shiue [51], Hassard and Hussein [25] and Sy, Zhang and Lee [54]. The space $\mathrm{Ces}_{\infty}[0,1]$
appeared already in 1948 and it is known as the Korenblyum, Krein and Levin space $K$ (see [31] and [59]).

Recently, we proved in the paper [4] that, in contrast to Cesàro sequence spaces, the Cesàro function spaces $\operatorname{Ces}_{p}(I)$ on both $I=[0,1]$ and $I=[0, \infty)$ for $1<p<$ $\infty$ are not reflexive and they do not have the fixed point property. In other paper [5] we investigated Rademacher sums in $\operatorname{Ces}_{p}[0,1]$ for $1 \leqslant p \leqslant \infty$. The description is different for $1 \leqslant p<\infty$ and $p=\infty$.

We recall some notions and definitions which we will need later on. By $L^{0}=$ $L^{0}(I)$ we denote the set of all equivalence classes of real-valued Lebesgue measurable functions defined on $I=[0,1]$ or $I=[0, \infty)$. A normed function lattice or normed ideal space $X=(X,\|\cdot\|)$ (on $I$ ) is understood to be a normed space in $L^{0}(I)$, which satisfies the so-called ideal property: if $|f| \leqslant|g|$ a.e. on $I$ and $g \in X$, then $f \in X$ and $\|f\| \leqslant\|g\|$. If, in addition, $X$ is a complete space, then we say that $X$ is a Banach function lattice or a Banach ideal space (on I). Sometimes we write $\|\cdot\|_{X}$ to be sure in which space the norm is taken.
For two normed ideal spaces $X$ and $Y$ on $I$ the symbol $X \hookrightarrow Y$ means that $X \subset Y$ and the imbedding is continuous, and the symbol $X \stackrel{C}{\hookrightarrow} Y$ means that $X \hookrightarrow Y$ with the inequality $\|x\|_{Y} \leqslant C\|x\|_{X}$ for all $x \in X$. Moreover, notation $X \simeq Y$ means that these two spaces are isomorphic.

For a normed ideal space $X=(X,\|\cdot\|)$ on $I$ and $1 \leqslant p<\infty$ the $p$-convexification $X^{(p)}$ of $X$ is the space of all $f \in L^{0}(I)$ such that $|f|^{p} \in X$ with the norm

$$
\|f\|_{X^{(p)}}:=\left\||f|^{p}\right\|_{X}^{1 / p} .
$$

$X^{(p)}$ is also a normed ideal space on $I$.
For a normed ideal space $X=(X,\|\cdot\|)$ on $I$ the Köthe dual (or associated space) $X^{\prime}$ is the space of all $f \in L^{0}(I)$ such that the associate norm

$$
\|f\|^{\prime}:=\sup _{g \in X,\|g\|_{X} \leqslant 1} \int_{I}|f(x) g(x)| d x
$$

is finite. The Köthe dual $X^{\prime}=\left(X^{\prime},\|\cdot\|^{\prime}\right)$ is a Banach ideal space. Moreover, $X \subset X^{\prime \prime}$ with $\|f\| \leqslant\|f\|^{\prime \prime}$ for all $f \in X$ and we have equality $X=X^{\prime \prime}$ with $\|f\|=\|f\|^{\prime \prime}$ if and only if the norm in $X$ has the Fatou property, that is, if $0 \leqslant f_{n} \nearrow f$ a.e. on $I$ and $\sup _{n \in \mathbf{N}}\left\|f_{n}\right\|<\infty$, then $f \in X$ and $\left\|f_{n}\right\| \nearrow\|f\|$.
For a normed ideal space $X=(X,\|\cdot\|)$ on $I$ with the Köthe dual $X^{\prime}$ we have the following Hölder type inequality: if $f \in X$ and $g \in X^{\prime}$, then $f g$ is integrable and

$$
\int_{I}|f(x) g(x)| d x \leqslant\|f\|_{X}\|g\|_{X^{\prime}}
$$

A function $f$ in a normed ideal space $X$ on $I$ is said to have absolutely continuous norm in $X$ if, for any decreasing sequence of Lebesgue measurable sets $A_{n} \subset I$ with
empty intersection, we have that $\left\|f \chi_{A_{n}}\right\| \rightarrow 0$ as $n \rightarrow \infty$. The set of all functions in $X$ with absolutely continuous norm is denoted by $X_{a}$. If $X_{a}=X$, then the space $X$ itself is said to have absolutely continuous norm. For a normed ideal space $X$ with absolutely continuous norm, the Köthe dual $X^{\prime}$ and the dual space $X^{*}$ coincide. Moreover, a Banach ideal space $X$ is reflexive if and only if both $X$ and its associate space $X^{\prime}$ have absolutely continuous norms.

For general properties of normed and Banach ideal spaces we refer to the books Krein, Petunin and Semenov [32], Kantorovich and Akilov [28], Bennett and Sharpley [9], Lindenstrauss and Tzafriri [38] and Maligranda [43].
The paper is organized as follows: In Section 1 some necessary definitions and notation are collected. In Section 2 some simple results on Cesàro function spaces are presented. In particular, we can see that the Cesàro function spaces $\operatorname{Ces}_{p}(I)$ are not reflexive but strictly convex for all $1<p<\infty$.

Sections 3 and 4 contain results on the dual and Köthe dual of Cesàro function spaces. There is a big difference between the cases on $[0, \infty)$ and on $[0,1]$, as we can see from Theorems 2 and 3. This was also the reason why we put these investigations into two parts. Important in our investigations were earlier results on the Köthe dual $\left(\operatorname{ces}_{p}\right)^{\prime}$ and remark on the Köthe dual $\left(\operatorname{Ces}_{p}[0, \infty)\right)^{\prime}$ due to Bennett [8]. This remark was recently proved, even for more general spaces, by Kerman, Milman and Sinnamon [30]. Luxemburg and Zaanen [42] gave a description of the Köthe dual ( $\left.\mathrm{Ces}_{\infty}[0,1]\right)^{\prime}$.

Section 5 deals with the $p$-concavity and cotype of Cesàro sequence spaces ces ${ }_{p}$ and Cesàro function spaces $\operatorname{Ces}_{p}(I)$. It is shown, in Theorem 4, that they are $p$ concave for $1<p<\infty$ with constant one and, thus, they have cotype $\max (p, 2)$.

In Section 6 it is proved, in Theorem 6, that the Cesàro function spaces $\operatorname{Ces}_{p}(I)$ contain an order isomorphic and complemented copy of $l^{p}$. Therefore, they do not have the Dunford-Pettis property. This result and cotype property imply that $\operatorname{Ces}_{p}(I)$ are not isomorphic to any $L^{q}(I)$ space for $1 \leqslant q \leqslant \infty$ (Theorem 7).

The authors proved in [4] that "in the middle" Cesàro function spaces $\operatorname{Ces}_{p}(I)$ contain an asymptotically isometric copy of $l^{1}$ and consequently they are not reflexive and do not have the fixed point property. This is a big difference with Cesàro sequence spaces $\operatorname{ces}_{p}$, which for $1<p<\infty$ are reflexive and which have the fixed point property.

Section 7 contains the proof that the Cesàro function spaces $\operatorname{Ces}_{p}[0,1]$ for $1 \leqslant$ $p<\infty$ have the weak Banach-Saks property. Important role in the proof will be played by the description of the dual space given in Section 4.

In Section 8 we present a construction showing that the Cesàro function spaces $\operatorname{Ces}_{p}[0, \infty)$ and $\operatorname{Ces}_{p}[0,1]$ for $1<p \leqslant \infty$ are isomorphic. The isomorpisms are different in the cases $1<p<\infty$ and $p=\infty$.

In Section 9 it is proved that $\operatorname{Ces}_{p}[0,1]$ contains an isomorphic copy of $l^{q}$ if and only if $q \in[1,2]$ for the case $1 \leqslant p \leqslant 2$ and in the case when $p>2$ this can happen when either $q \in[1,2]$ or $q=p$. This result is, in fact, different from the one for $L^{p}[0,1]$ space.

The Cesàro function spaces $\operatorname{Ces}_{p}[0, \infty)$ for $1 \leqslant p \leqslant \infty$ were considered by Shiue [51], Hassard and Hussein [25] and Sy, Zhang and Lee [54]. The space $\mathrm{Ces}_{\infty}[0,1]$ appeared in 1948 and it is known as the Korenblyum, Krein and Levin space $K$ (see [31] and [59, p. 26 and 61]).

We collect some known or clear properties of $\operatorname{Ces}_{p}(I)$ for both $I=[0,1]$ and $I=[0, \infty)$ in one place.

## Theorem 1.

(a) If $1<p \leqslant \infty$, then $\operatorname{Ces}_{p}(I)$ are Banach spaces, $\operatorname{Ces}_{1}[0,1]=L_{w}^{1}$ with the weight $w(t)=\ln \frac{1}{t}, t \in(0,1]$ and $\operatorname{Ces}_{1}[0, \infty)=\{0\}$.
(b) The spaces $\operatorname{Ces}_{p}(I)$ are separable for $1<p<\infty$ and $\operatorname{Ces}_{\infty}(I)$ is nonseparable.
(c) If $1<p \leqslant \infty$, then $L^{p}(I) \stackrel{p^{\prime}}{\hookrightarrow} \operatorname{Ces}_{p}(I)$, where $p^{\prime}=\frac{p}{p-1}$ and the embedding is strict.
(d) If $1<p<\infty$, then $\operatorname{Ces}_{p}[0,1]_{[[0, a]} \hookrightarrow L^{1}[0, a]$ for any $a \in(0,1)$ but not for $a=1$ and $\operatorname{Ces}_{p}[0, \infty)_{\mid[0, a]} \hookrightarrow L^{1}[0, a]$ for any $0<a<\infty$ but not for $a=\infty$, that is, $\operatorname{Ces}_{p}[0, \infty) \not \subset L^{1}[0, \infty)$. Moreover, $\operatorname{Ces}_{\infty}[0,1] \stackrel{1}{\hookrightarrow} L^{1}[0,1]$.
(e) If $1<p<q \leqslant \infty$, then $\operatorname{Ces}_{q}[0,1] \stackrel{1}{\hookrightarrow} \operatorname{Ces}_{p}[0,1]$ and the embedding is strict.
(f) The spaces $\mathrm{Ces}_{p}(I)$ are not rearrangement invariant.
(g) The spaces $\operatorname{Ces}_{p}(I)$ are not reflexive.
(h) The spaces $\operatorname{Ces}_{p}(I)$ for $1<p<\infty$ are strictly convex, that is, if $\|f\|_{C(p)}=$ $\|g\|_{C(p)}=1$ and $f \neq g$, then $\left\|\frac{f+g}{2}\right\|_{C(p)}<1$.

Proof. (a), (b) Shiue [51] and Hassard and Hussein [25] proved that $\operatorname{Ces}_{p}(I)$ are separable Banach spaces for $1<p<\infty$ and non-separable ones for $p=\infty$. We only show here that $\operatorname{Ces}_{1}[0,1]$ is a weighted $L_{w}^{1}[0,1]$ space with the weight $w(t)=$ $\ln \frac{1}{t}$ for $0<t \leqslant 1$ and $\operatorname{Ces}_{1}[0, \infty)=\{0\}$. In fact,

$$
\begin{equation*}
\int_{0}^{1}\left(\frac{1}{x} \int_{0}^{x}|f(t)| d t\right) d x=\int_{0}^{1}\left(\int_{t}^{1} \frac{1}{x} d x\right)|f(t)| d t=\int_{0}^{1}|f(t)| \ln \frac{1}{t} d t . \tag{1}
\end{equation*}
$$

Moreover, if $f \in L^{0}[0, \infty)$ and $|f(x)|>0$ for $x \in A$ with $0<m(A)<\infty$, then there exists sufficiently large $a>0$ such that $\delta=\int_{0}^{a}|f(t)| d t>0$. Therefore, for $b>a$, it yields that

$$
\begin{aligned}
\int_{0}^{b}\left(\frac{1}{x} \int_{0}^{x}|f(t)| d t\right) d x & \geqslant \int_{a}^{b}\left(\frac{1}{x} \int_{0}^{x}|f(t)| d t\right) d x \\
& \geqslant \int_{a}^{b}\left(\frac{1}{x} \int_{0}^{a}|f(t)| d t\right) d x
\end{aligned}
$$

$$
=\delta \ln \frac{b}{a} \rightarrow \infty \quad \text { as } b \rightarrow \infty
$$

Thus $f \notin \operatorname{Ces}_{1}[0, \infty)$.
(c) Considering the Hardy operator $H f(x)=\frac{1}{x} \int_{0}^{x} f(t) d t$ and using the Hardy inequality (cf. [24, Theorem 327] and [33, Theorem 2]) we obtain that

$$
\|f\|_{C(p)}=\|H(|f|)\|_{p} \leqslant p^{\prime}\|f\|_{p}
$$

for all $f \in L^{p}(I)$, which means that the $L^{p}(I) \stackrel{p^{\prime}}{\hookrightarrow} \operatorname{Ces}_{p}(I)$ for $1<p \leqslant \infty$.
The embeddings are strict. For example, $f=\sum_{n=1}^{\infty} \frac{1}{n^{1 / p}} \chi_{\left[n^{2}-1, n^{2}\right)} \in \operatorname{Ces}_{p}(I) \backslash$ $L^{p}(I)$ for $I=[0, \infty)$ and $1<p<\infty$.
(d) If $0<a<1$ and $\operatorname{supp} f \subset[0, a]$, then

$$
\begin{aligned}
\|f\|_{C(p)} & \geqslant\left(\int_{a}^{1}\left(\frac{1}{x} \int_{0}^{x}|f(t)| d t\right)^{p} d x\right)^{1 / p} \\
& \geqslant\left(\int_{a}^{1}\left(\frac{1}{x} \int_{0}^{a}|f(t)| d t\right)^{p} d x\right)^{1 / p}=\int_{0}^{a}|f(t)| d t\left(\frac{1-a^{1-p}}{p-1}\right)^{1 / p}
\end{aligned}
$$

For $a=1$ this is not the case. In fact, consider function $f(x)=\frac{1}{1-x}$ for $x \in[0,1)$. Then $\frac{1}{x} \int_{0}^{x} f(t) d t=\frac{1}{x} \ln \frac{1}{1-x}$ and

$$
\begin{aligned}
\|f\|_{C(p)}^{p} & =\int_{0}^{1}\left(\frac{1}{x} \ln \frac{1}{1-x}\right)^{p} d x=\int_{1}^{\infty}\left(\frac{t \ln t}{t-1}\right)^{p} \frac{d t}{t^{2}} \\
& \leqslant c+\int_{2}^{\infty} \frac{(2 \ln t)^{p}}{t^{2}} d t<\infty
\end{aligned}
$$

and, hence, $f \in \operatorname{Ces}_{p}[0,1]$ for any $1 \leqslant p<\infty$ but clearly, $f \notin L^{1}[0,1]$.
In the case of $\operatorname{Ces}_{p}[0, \infty)$ we will have for $0<a<\infty$ with supp $f \subset[0, a]$ and $p \in(1, \infty)$,

$$
\begin{aligned}
\|f\|_{C(p)} & \geqslant\left(\int_{a}^{\infty}\left(\frac{1}{x} \int_{0}^{x}|f(t)| d t\right)^{p} d x\right)^{1 / p} \\
& \geqslant\left(\int_{a}^{\infty}\left(\frac{1}{x} \int_{0}^{a}|f(t)| d t\right)^{p} d x\right)^{1 / p}=\int_{0}^{a}|f(t)| d t \frac{1}{(p-1) a^{1-1 / p}}
\end{aligned}
$$

For the function $f(x)=\frac{1}{x} \chi_{[1, \infty)}(x), x \in(0, \infty)$ we have $\frac{1}{x} \int_{0}^{x} f(t) d t=\frac{1}{x} \ln x(x \geqslant$ 1) and

$$
\|f\|_{C(p)}^{p}=\int_{1}^{\infty}\left(\frac{\ln x}{x}\right)^{p} d x<\infty
$$

Thus, $f \in \operatorname{Ces}_{p}[0, \infty)$ for any $1<p<\infty$, but clearly $f \notin L^{1}[0, \infty)$.
(e) If $1<p<q \leqslant \infty$, then $L^{q}[0,1] \stackrel{1}{\hookrightarrow} L^{p}[0,1]$ and the embedding is strict, and, thus,

$$
\|f\|_{C(p)}=\|H(|f|)\|_{p} \leqslant\|H(|f|)\|_{q}=\|f\|_{C(q)}
$$

for all $f \in \operatorname{Ces}_{q}[0,1]$, that is, $\operatorname{Ces}_{q}[0,1] \stackrel{1}{\hookrightarrow} \operatorname{Ces}_{p}[0,1]$ and the embedding is strict since for positive decreasing functions the norms of $\mathrm{Ces}_{p}$ and $L^{p}$ are equivalent. The last statement follows from the fact that for a positive decreasing function $f$ on $I$ we have $f(x) \leqslant \frac{1}{x} \int_{0}^{x} f(t) d t$ for $x \in I$ and so

$$
\|f\|_{p} \leqslant\|H f\|_{p}=\|f\|_{C(p)} \leqslant p^{\prime}\|f\|_{p} \quad \text { for any } 0 \leqslant f \in L^{p}(I)
$$

(f) Consider $f(x)=\frac{1}{1-x}$ for $x \in[0,1)$. Then, as it was shown in (d), $f \in$ $\operatorname{Ces}_{p}[0,1]$ for any $1 \leqslant p<\infty$. However, its non-increasing rearrangement $f^{*}(t)=$ $t^{-1}(0<x \leqslant 1)$ does not belong to $\operatorname{Ces}_{p}[0,1]$ for any $1 \leqslant p \leqslant \infty$ and therefore the space $\operatorname{Ces}_{p}[0,1]$ is not rearrangement invariant for $1 \leqslant p<\infty$. In the case when $p=\infty$ we can take the function $g(x)=\frac{1}{\sqrt{1-x}}, x \in[0,1)$ for which $\frac{1}{x} \int_{0}^{x} g(t) d t=$ $\frac{2}{x}(1-\sqrt{1-x})=\frac{2}{1+\sqrt{1-x}}$ and so $\|g\|_{C(\infty)}=2$ and for its rearrangement $g^{*}(t)=$ $t^{-1 / 2}, t \in(0,1)$ we have $\left\|g^{*}\right\|_{C(\infty)}=\sup _{t \in(0,1)} 2 t^{-1 / 2}=\infty$, that is, $g^{*} \notin \operatorname{Ces}_{\infty}[0,1]$ and the space $\operatorname{Ces}_{\infty}[0,1]$ is not rearrangement invariant. Similarly, we can consider the case when $I=[0, \infty)$.
(g) If $1<p<\infty$, then $\operatorname{Ces}_{p}(I)$ contains a copy of $L^{1}(I)$ (cf. [4], Lemma 1 for $I=[0,1]$ and Theorem 2 for $I=[0, \infty)$ ) and therefore, in particular, these spaces cannot be reflexive. Of course, $\operatorname{Ces}_{1}[0,1]=L^{1}(\ln 1 / t)$ is not reflexive and the space $\mathrm{Ces}_{\infty}(I)$ does not have absolutely continuous norm and therefore is also not reflexive.
(h) Assume that $\|f\|_{C(p)}=\|g\|_{C(p)}=1$ and $\|f+g\|_{C(p)}=2$; then $\|H(|f|)\|_{L^{p}}=$ $\|H(|g|)\|_{L^{p}}=1$ and

$$
\begin{aligned}
2 & =\|f+g\|_{C(p)}=\|H(|f+g|)\|_{L^{p}} \\
& \leqslant\|H(|f|)+H(|g|)\|_{L^{p}} \leqslant\|H(|f|)\|_{L^{p}}+\|H(|g|)\|_{L^{p}} \\
& =\|f\|_{C(p)}+\|g\|_{C(p)}=2
\end{aligned}
$$

Thus $\|H(|f|)+H(|g|)\|_{L^{p}}=2$ and by the strict convexity of $L^{p}(I)$ for $1<p<\infty$ and the above estimates we obtain that $H(|f|)(x)=H(|g|)(x)$ for almost all $x$ in $I$. Therefore, $|f(x)|=|g(x)|$ for almost all $x \in I$. We want to show that this implies that $f(x)=g(x)$ for almost all $x \in I$. Assume on the contrary that $f \neq g$ on $I$, that
is, there exists a set $A \subset I$ of positive measure $m(A)>0$ such that $f(x) \neq g(x)$ for all $x \in A$. Then $f(x)=-g(x)$ and $|f(x)|>0$ for $x \in A$. Moreover, if $B=\{x \in$ $I: m([0, x] \cap(I \backslash A))<x\}$, then $m(B)>0$ and

$$
\int_{0}^{x}\left|\frac{f(t)+g(t)}{2}\right| d t=\int_{[0, x] \cap(I \backslash A)}|f(t)| d t<\int_{0}^{x}|f(t)| d t
$$

for all $x \in B$. Therefore,

$$
\begin{aligned}
1 & =\left\|\frac{f+g}{2}\right\|_{C(p)}^{p}=\int_{I}\left(\frac{1}{x} \int_{0}^{x}\left|\frac{f(t)+g(t)}{2}\right| d t\right)^{p} d x \\
& <\int_{I}\left(\frac{1}{x} \int_{0}^{x}|f(t)| d t\right)^{p} d x=\|f\|_{C(p)}^{p}=1,
\end{aligned}
$$

which is a contradiction and the proof is complete.

## 3. THE dual spaces of the cesìro function SPaCES $\operatorname{Ces}_{p}[0, \infty)$

We describe the dual and Köthe dual spaces of $\operatorname{Ces}_{p}(I)$ for $1<p<\infty$ in the case $I=[0, \infty)$. The description appeared as remark in Bennett [8] paper but it was proved recently, even for more general spaces, by Kerman, Milman and Sinnamon [30, Theorem D] and they used in the proof some of Sinnamon results [53, Theorem 2.1] and [52, Proposition 2.1 and Lemma 3.2].

We present here another proof following the Bennett's idea for Cesàro sequence spaces together with factorization theorems which are of independent interest. Since the case $I=[0,1]$ is essentially different it will be considered in the next section.

Theorem 2. Let $I=[0, \infty)$. If $1<p<\infty$, then

$$
\begin{equation*}
\left(\operatorname{Ces}_{p}\right)^{*}=\left(\operatorname{Ces}_{p}\right)^{\prime}=D\left(p^{\prime}\right), \quad p^{\prime}=\frac{p}{p-1} \tag{2}
\end{equation*}
$$

with $\|f\|_{C(p)^{\prime}} \leqslant p^{\prime}\|f\|_{D\left(p^{\prime}\right)} \leqslant 8 p^{\prime}\|f\|_{C(p)^{\prime}}$, where the norm in $D\left(p^{\prime}\right)$ is given by formula

$$
\begin{equation*}
\|f\|_{D\left(p^{\prime}\right)}=\|\tilde{f}\|_{L^{p^{\prime}}} \quad \text { with } \tilde{f}(x)=\operatorname{ess} \sup _{t \in[x, \infty)}|f(t)| . \tag{3}
\end{equation*}
$$

We need the definition of the $G(p)$ space for $1 \leqslant p<\infty$, which is the $p$ convexification of $\operatorname{Ces}_{\infty}[0, \infty)$, that is, its norm is given by the functional

$$
\|f\|_{G(p)}=\left\||f|^{p}\right\|_{C(\infty)}^{1 / p}=\sup _{x>0}\left(\frac{1}{x} \int_{0}^{x}|f(t)|^{p} d t\right)^{1 / p}
$$

Proposition 1. If $1<p<\infty$, then
(4) $\operatorname{Ces}_{p}=L^{p} \cdot G\left(p^{\prime}\right)$,
that is, $f \in \operatorname{Ces}_{p}$ if and only if $f=g h$ with $g \in L^{p}, h \in G\left(p^{\prime}\right)$ and

$$
\begin{equation*}
\|f\|_{C(p)} \approx \inf \|g\|_{p}\|h\|_{G\left(p^{\prime}\right)}, \tag{5}
\end{equation*}
$$

where infimum is taken over all factorizations $f=g h$ with $g \in L^{p}, h \in G\left(p^{\prime}\right)$.
Proof. "Imbedding $\hookrightarrow "$. For $f \in \operatorname{Ces}_{p}, f \not \equiv 0$ let

$$
k(x)=\int_{x}^{\infty} u^{-p}\left(\int_{0}^{u}|f(t)| d t\right)^{p-1} d u, \quad x>0
$$

Then $k(x)>0, k$ is decreasing and by the Hölder-Rogers inequality

$$
\begin{aligned}
k(x) & =\int_{x}^{\infty} u^{-1}\left(\frac{1}{u} \int_{0}^{u}|f(t)| d t\right)^{p-1} d u \\
& \leqslant\left(\int_{x}^{\infty} u^{-p} d u\right)^{1 / p}\left(\int_{x}^{\infty}\left(\frac{1}{u} \int_{0}^{u}|f(t)| d t\right)^{p} d u\right)^{1 / p^{\prime}} \\
& =\frac{1}{(p-1)^{1 / p} x^{1-1 / p}}\|f\|_{C(p)}^{p-1}
\end{aligned}
$$

We consider the factorization $f=g \cdot h$, where

$$
g(x)=(|f(x)| k(x))^{1 / p} \operatorname{sgn} f(x) \quad \text { and } \quad h(x)=|f(x)|^{1 / p^{\prime}} k(x)^{-1 / p}
$$

Then

$$
\begin{aligned}
\|g\|_{p}^{p} & =\int_{0}^{\infty}|f(x)| \int_{x}^{\infty} u^{-p}\left(\int_{0}^{u}|f(t)| d t\right)^{p-1} d u d x \\
& =\int_{0}^{\infty} u^{-p}\left(\int_{0}^{u}|f(t)| d t\right)^{p-1} \int_{0}^{u}|f(x)| d x d u=\|f\|_{C(p)}^{p}
\end{aligned}
$$

and, by the Hölder-Rogers inequality,

$$
\begin{aligned}
\left(\int_{0}^{x}|h(t)|^{p^{\prime}} d t\right)^{p} & =\left(\int_{0}^{x}|f(t)|^{1 / p^{\prime}}|f(t)|^{1 / p} k(t)^{-p^{\prime} / p} d t\right)^{p} \\
& \leqslant\left(\int_{0}^{x}|f(t)| d t\right)^{p-1}\left(\int_{0}^{x}|f(t)| k(t)^{-p^{\prime}} d t\right)
\end{aligned}
$$

Hence, by the above and using the fact that $k$ is decreasing, it yields that

$$
\begin{aligned}
& \int_{x}^{\infty}\left(s^{-1} \int_{0}^{x}|h(t)|^{p^{\prime}} d t\right)^{p} d s \\
& \leqslant \int_{x}^{\infty} s^{-p}\left[\left(\int_{0}^{x}|f(t)| d t\right)^{p-1} \int_{0}^{x}|f(t)| k(t)^{-p^{\prime}} d t\right] d s \\
& \quad=k(x) \int_{0}^{x}|f(t)| k(t)^{-p^{\prime}} d t \\
& \leqslant \int_{0}^{x}|f(t)| k(t)^{1-p^{\prime}} d t=\int_{0}^{x}|h(t)|^{p^{\prime}} d t
\end{aligned}
$$

or, equivalently,

$$
\int_{x}^{\infty} s^{-p} d s\left(\int_{0}^{x}|h(t)|^{p^{\prime}} d t\right)^{p-1} \leqslant 1
$$

which means that

$$
\left(\int_{0}^{x}|h(t)|^{p^{\prime}} d t\right)^{p-1} \leqslant(p-1) x^{p-1}
$$

and, hence,

$$
\sup _{x>0} \frac{1}{x} \int_{0}^{x}|h(t)|^{p^{\prime}} d t \leqslant(p-1)^{1 /(p-1)}
$$

or $\|h\|_{G\left(p^{\prime}\right)} \leqslant(p-1)^{1 / p}$. We have proved that

$$
\operatorname{Ces}_{p} \subset L^{p} \cdot G\left(p^{\prime}\right)
$$

and

$$
\inf \left\{\|g\|_{L^{p}}\|h\|_{G\left(p^{\prime}\right)}: f=g \cdot h\right\} \leqslant(p-1)^{1 / p}\|f\|_{C(p)} .
$$

"Imbedding $\hookleftarrow "$. Let $f=g \cdot h$ with $g \in L^{p}$ and $h \in G\left(p^{\prime}\right)$. Then

$$
\int_{0}^{x}|h(t)|^{p^{\prime}} d t \leqslant\|h\|_{G\left(p^{\prime}\right)}^{p^{\prime}} \int_{0}^{x} d t
$$

and then, for any positive decreasing function $w$ on $(0, \infty)$, we have by [32, property $18^{0}$, p. 72] that

$$
\int_{0}^{x}|h(t)|^{p^{\prime}} w(t) d t \leqslant\|h\|_{G\left(p^{\prime}\right)}^{p^{\prime}} \int_{0}^{x} w(t) d t
$$

By the Hölder-Rogers inequality we find that

$$
\begin{aligned}
\left(\int_{0}^{x}|f(t)| d t\right)^{p} & =\left(\int_{0}^{x}|g(t)| w(t)^{-1 / p^{\prime}}|h(t)| w(t)^{1 / p^{\prime}} d t\right)^{p} \\
& \leqslant \int_{0}^{x}|g(t)|^{p} w(t)^{1-p} d t\left(\int_{0}^{x}|h(t)|^{p^{\prime}} w(t) d t\right)^{p-1} \\
& \leqslant \int_{0}^{x}|g(t)|^{p} w(t)^{1-p} d t\|h\|_{G\left(p^{\prime}\right)}^{p}\left(\int_{0}^{x} w(t) d t\right)^{p-1}
\end{aligned}
$$

and, thus,

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x}|f(t)| d t\right)^{p} d x \\
& \quad \leqslant \int_{0}^{\infty} x^{-p}\left(\int_{0}^{x}|g(t)|^{p} w(t)^{1-p} d t\right)\left(\int_{0}^{x} w(t) d t\right)^{p-1} d x\|h\|_{G\left(p^{\prime}\right)}^{p}
\end{aligned}
$$

Taking in the last estimate $w(t)=t^{-1 / p}$ we obtain that

$$
\begin{aligned}
\|f\|_{C(p)}^{p} & \leqslant \int_{0}^{\infty} x^{-p}\left(\int_{0}^{x}|g(t)|^{p} t^{1-1 / p} d t\right)\left(\frac{x^{1-1 / p}}{1-1 / p}\right)^{p-1} d x\|h\|_{G\left(p^{\prime}\right)}^{p} \\
& =\left(p^{\prime}\right)^{p-1} \int_{0}^{\infty}\left(\int_{0}^{x}|g(t)|^{p} t^{1-1 / p} d t\right) x^{1 / p-2} d x\|h\|_{G\left(p^{\prime}\right)}^{p} \\
& =\left(p^{\prime}\right)^{p-1} \int_{0}^{\infty}\left(\int_{t}^{\infty} x^{1 / p-2} d x\right)|g(t)|^{p} t^{1-1 / p} d t\|h\|_{G\left(p^{\prime}\right)}^{p} \\
& =\left(p^{\prime}\right)^{p} \int_{0}^{\infty}|g(t)|^{p} d t\|h\|_{G\left(p^{\prime}\right)}^{p}=\left(p^{\prime}\right)^{p}\|g\|_{p}^{p}\|h\|_{G\left(p^{\prime}\right)}^{p}
\end{aligned}
$$

or

$$
\|f\|_{C(p)} \leqslant p^{\prime}\|g\|_{p}\|h\|_{G\left(p^{\prime}\right)},
$$

that is, $L^{p} \cdot G\left(p^{\prime}\right) \subset \operatorname{Ces}_{p}$ and

$$
\|f\|_{C(p)} \leqslant p^{\prime} \inf \left\{\|g\|_{p}\|h\|_{G\left(p^{\prime}\right)}: f=g h\right\} .
$$

Putting these facts together we have that $\operatorname{Ces}_{p} \stackrel{(p-1)^{1 / p}}{\hookrightarrow} L^{p} \cdot G\left(p^{\prime}\right) \stackrel{p^{\prime}}{\hookrightarrow} \operatorname{Ces}_{p}$ and the proof of Proposition 1 is complete.

Proposition 2. If $1 \leqslant p<\infty$, then

$$
D(p) \cdot G(p)=L^{p}
$$

and

$$
\|f\|_{L^{p}}=\inf \left\{\|g\|_{D(p)}\|h\|_{G(p)}: f=g h, g \in D(p), h \in G(p)\right\} .
$$

Moreover, $G(1)^{\prime}=D(1)$ with equality of the norms.
Proof. It suffices to prove the statement for $p=1$ because the general result follows by $p$-convexification. Suppose that $f=g h$ with $g \in D(1), h \in G(1)$. Then

$$
\|f\|_{L^{1}}=\int_{0}^{\infty}|g(t) h(t)| d t \leqslant \int_{0}^{\infty} \tilde{g}(t)|h(t)| d t .
$$

Moreover, from the definition of the norm in $G(1)$ it follows that

$$
\int_{0}^{t}|h(s)| d s \leqslant\|h\|_{G(1)} t=\|h\|_{G(1)} \int_{0}^{t} \chi_{[0, \infty)}(s) d s, \quad t>0 .
$$

Therefore, since $\tilde{g}$ decreases it follows by [32, property $18^{0}$, p. 72], we find that

$$
\|f\|_{L^{1}} \leqslant\|h\|_{G(1)} \int_{0}^{\infty} \tilde{g}(t) d t=\|h\|_{G(1)}\|g\|_{D(1)} .
$$

Hence, $D(1) \cdot G(1) \subset L^{1}$ and

$$
\|f\|_{L^{1}} \leqslant \inf \left\{\|g\|_{D(1)}\|h\|_{G(1)}: f=g h, g \in D(1), h \in G(1)\right\} .
$$

This also means that $G(1) \subset D(1)^{\prime}$ and $\|h\|_{D(1)^{\prime}} \leqslant\|h\|_{G(1)}$. We show that we have in fact even equality. If $f \in D(1)^{\prime}$, then

$$
\begin{aligned}
\frac{1}{x} \int_{0}^{x}|f(t)| d t & =\frac{1}{x} \int_{0}^{1} \chi_{[0, x]}(t)|f(t)| d t \\
& \leqslant \frac{1}{x}\left\|\chi_{[0, x]}\right\|_{D(1)}\|f\|_{D(1)^{\prime}}=\|f\|_{D(1)^{\prime}},
\end{aligned}
$$

for all $x>0$, i.e., $f \in G(1)$ and so $D(1)^{\prime} \subset G(1)$ with $\|f\|_{G(1)} \leqslant\|f\|_{D(1)^{\prime}}$. Of course, $G(1)^{\prime}=D(1)^{\prime \prime}=D(1)$ since the norm of $D(1)$ has the Fatou property. Finally, if $f \in L^{1}$, then, by the Lozanovskiĭ factorization theorem ([40, Theorem 6, p. 429]; cf. also [43, p. 185]), we can find $g \in D(1)$ and $h \in D(1)^{\prime}=G(1)$ such that $f=g \cdot h$ and

$$
\|g\|_{D(1)}\|h\|_{G(1)}=\|f\|_{L^{1}}
$$

This ends the proof of Proposition 2.

Remark 1. In particular, Proposition 2 shows that $\left(\operatorname{Ces}_{\infty}[0, \infty)\right)^{\prime}=G(1)^{\prime}=D(1)$. Thus, for the Cesàro function space on $[0, \infty)$ we get the result analogous to the Luxemburg-Zaanen theorem (cf. [42]): $\left(\operatorname{Ces}_{\infty}[0,1]\right)^{\prime}=\tilde{L}^{1}[0,1]$, where $\|f\|_{\tilde{L}^{1}}=$ $\|\tilde{f}\|_{L^{1}[0,1]}$ with $\tilde{f}(x)=\operatorname{ess} \sup _{t \in[x, 1]}|f(t)|$.

Remark 2. For a positive weight function $w$ and $1 \leqslant p<\infty$ let us define the weighted spaces $D(w, p)$ and $G(w, p)$ by the norms $\|f\|_{D(w, p)}=\left(\int_{0}^{\infty} \tilde{f}(x)^{p} \times\right.$ $w(x) d x)^{1 / p}$, where $\tilde{f}(x)=\operatorname{ess}_{\sup }^{t \in[x, \infty)},|f(t)|$, and $\|f\|_{G(w, p)}=\sup _{x>0}\left(\frac{1}{W(x)} \times\right.$ $\left.\int_{0}^{x}|f(t)|^{p} d t\right)^{1 / p}, W(x)=\int_{0}^{x} w(t) d t$, respectively. Proposition 2 is valid for weighted spaces: If $1 \leqslant p<\infty$, then $D(w, p) \cdot G(w, p)=L^{p}$ and $\|f\|_{L^{p}}=\inf \left\{\|g\|_{D(w, p)} \times\right.$ $\left.\|h\|_{G(w, p)}: f=g h, g \in D(w, p), h \in G(w, p)\right\}$.

Proposition 3. Let $1<p<\infty$. If $g \in\left(\operatorname{Ces}_{p}\right)^{\prime}$, then $\tilde{g}(x)=\operatorname{ess} \sup _{t \in[x, \infty)}|g(t)| \in$ $\left(\mathrm{Ces}_{p}\right)^{\prime}$ and

$$
\|\tilde{g}\|_{C(p)^{\prime}} \leqslant 8\|g\|_{C(p)^{\prime}}
$$

Proof. Let $f \in \operatorname{Ces}_{p}, f \geqslant 0$. Then $\int_{0}^{x} f(t) d t \rightarrow 0$ if $x \rightarrow 0^{+}$. Consider two cases:
(a) If $\int_{0}^{\infty} f(s) d s=\infty$, then we select a two-sided sequence $\left\{a_{k}\right\}_{k \in \mathbb{Z}}$ such that $0 \leqslant a_{k}<a_{k+1}, a_{k} \rightarrow \infty$ when $k \rightarrow \infty$ and

$$
\begin{equation*}
\int_{a_{k-1}}^{a_{k}} f(s) d s=2^{k}, \quad k \in \mathbb{Z} \tag{6}
\end{equation*}
$$

(b) If $A=\int_{0}^{\infty} f(s) d s<\infty$, we find a one-sided sequence $\left\{a_{k}\right\}_{k \leqslant 0}$ such that $0 \leqslant a_{k}<a_{k+1}, a_{0}=\infty$ and

$$
\begin{equation*}
\int_{a_{k-1}}^{a_{k}} f(s) d s=2^{k-1} A, \quad k \leqslant 0 \tag{7}
\end{equation*}
$$

By $J$ let us denote either $\mathbb{Z}$ or $\{k \in \mathbb{Z}: k \leqslant 0\}$ depending on which of the cases (a) or (b) we have, and let

$$
\begin{aligned}
& \mathcal{P}=\left\{k \in J: \text { there is a set } A_{k} \subset\left[a_{k-1}, a_{k}\right) \text { such that } m\left(A_{k}\right)>0\right. \\
& \text { and } \left.|g(s)| \geqslant \frac{1}{2} \tilde{g}\left(a_{k-1}\right) \text { for all } s \in A_{k}\right\} .
\end{aligned}
$$

Note that $\mathcal{P} \neq \emptyset$. In fact, let $k \in J$ be arbitrary and let $i$ be the first "time" such that $i \geqslant k$ and

$$
m\left\{s \in\left(a_{i-1}, a_{i}\right]:|g(s)| \geqslant \frac{1}{2} \tilde{g}\left(a_{k-1}\right)\right\}>0 .
$$

Since $\tilde{g}\left(a_{i-1}\right)=\tilde{g}\left(a_{k-1}\right)$, then $i \in \mathcal{P}$.
Let $\mathcal{P}=\left\{k_{i}\right\}_{i=l}^{m}$, where $k_{i}<k_{j}(i<j)$ and $l$ may be $-\infty$. Moreover, it is easily seen that either $m=\infty$ and $k_{i} \rightarrow \infty$ when $i \rightarrow \infty$ (in the case (a)) or $k_{m}=0$ and $t_{k_{m}}=\infty$ (in the case (b)).

Define the function

$$
\bar{f}(t)=\sum_{i=l}^{m} \int_{\Delta_{i}} f(s) d s \frac{1}{m\left(A_{k_{i}}\right)} \chi_{A_{k_{i}}}(t),
$$

where $\Delta_{i}=\left(a_{k_{i}-1}, a_{k_{i}}\right]$, and estimate its norm in $\operatorname{Ces}_{p}$.
Let $\bar{a}=\lim _{i \rightarrow-\infty} a_{k_{i}}$ if $l=-\infty$ and $\bar{a}=a_{k_{l}}$ if $l$ is finite. If $\bar{a}>0$, then $\bar{f}(t)=0$ for all $t \in[0, \bar{a})$. Therefore

$$
\begin{equation*}
\int_{0}^{x} \bar{f}(t) d t=0 \quad(0<x \leqslant \bar{a}) . \tag{8}
\end{equation*}
$$

Suppose $x>\bar{a}$. Then either $\left(1^{o}\right) t \in \Delta_{i}$ for some $i$ or $\left(2^{\circ}\right)$ there is $i<m$ such that $t \in\left(a_{k_{i}}, a_{k_{i+1}-1}\right]$. In the first case, by (6) or (7) it yields that

$$
\begin{aligned}
\int_{0}^{x} \bar{f}(t) d t= & \sum_{j=l}^{i-1} \int_{\Delta_{j}} f(s) d s \frac{1}{m\left(A_{k_{j}}\right)} m\left(A_{k_{j}}\right) \\
& +\frac{m\left(A_{k_{i}} \cap\left(a_{k_{i}-1}, t\right]\right)}{m\left(A_{k_{i}}\right)} \int_{\Delta_{i}} f(s) d s \\
\leqslant & \int_{0}^{a_{k_{i}}} f(s) d s \leqslant 2 \int_{0}^{x} f(s) d s .
\end{aligned}
$$

Analogously, in the second case we have that

$$
\int_{0}^{x} \bar{f}(t) d t \leqslant \int_{0}^{a_{k_{i}}} f(s) d s \leqslant \int_{0}^{x} f(s) d s
$$

The last inequalities and equality (8) show that

$$
\begin{equation*}
\|\bar{f}\|_{C(p)} \leqslant 2\|f\|_{C(p)} \tag{9}
\end{equation*}
$$

Moreover, for any $i$ running from $l$ to $m$ we find that

$$
\begin{align*}
\int_{\Delta_{i}} \bar{f}(t)|g(t)| d t & =\int_{A_{k_{i}}} \bar{f}(t)|g(t)| d t \geqslant \frac{1}{2} \tilde{g}\left(a_{k_{i}-1}\right) \int_{A_{k_{i}}} \bar{f}(t) d t \\
& =\frac{1}{2} \tilde{g}\left(a_{k_{i}-1}\right) \int_{\Delta_{i}} f(t) d t . \tag{10}
\end{align*}
$$

Since $\tilde{g}$ decreases, then (10) implies, in particular, that

$$
\begin{equation*}
\int_{\Delta_{i}} \bar{f}(t)|g(t)| d t \geqslant \frac{1}{2} \int_{\Delta_{i}} f(t) \tilde{g}(t) d t \tag{11}
\end{equation*}
$$

Note that, by definition of the set $\mathcal{P}$, it yields that $\tilde{g}(t) \leqslant \tilde{g}\left(a_{k_{i}-1}\right)$ a.e. on the interval $\left(a_{k_{i-1}}, a_{k_{i}-1}\right]$ if $i>l$ and on the interval ( $\left.0, a_{k_{l}-1}\right]$ if $l$ is finite. Moreover, taking into account (6) or (7) once again, we have that

$$
\int_{a_{k_{i-1}}}^{a_{k_{i}-1}} f(s) d s \leqslant \int_{\Delta_{i}} f(s) d s \quad \text { if } i>l
$$

and

$$
\int_{0}^{a_{k_{l}-1}} f(s) d s \leqslant \int_{\Delta_{l}} f(s) d s \quad \text { if } l \text { is finite. }
$$

Therefore, by (10), it follows that

$$
\begin{aligned}
\int_{\Delta_{i}} \bar{f}(t)|g(t)| d t & \geqslant \frac{1}{2} \tilde{g}\left(a_{k_{i}-1}\right) \int_{\Delta_{i}} f(t) d t \geqslant \frac{1}{2} \tilde{g}\left(a_{k_{i}-1}\right) \int_{a_{k_{i-1}}}^{a_{k_{i}-1}} f(t) d t \\
& \geqslant \frac{1}{2} \int_{a_{k_{i-1}}}^{a_{k_{i}-1}} \tilde{g}(t) f(t) d t
\end{aligned}
$$

where $a_{l-1}=0$ if $l$ is finite.
Since $f=0$ a.e. on the interval $(0, \bar{a}]$, when $l=-\infty$ and $\bar{a}=\lim _{i \rightarrow-\infty} a_{k_{i}}>0$, then, by summing the last inequalities and inequality (11) over all $i$, we get that

$$
2 \int_{0}^{\infty} \bar{f}(t)|g(t)| d t \geqslant 2 \sum_{i=l}^{m} \int_{\Delta_{i}} \bar{f}(t)|g(t)| d t \geqslant \frac{1}{2} \int_{0}^{\infty} \tilde{g}(t) f(t) d t
$$

whence,

$$
\int_{0}^{\infty} \tilde{g}(t) f(t) d t \leqslant 4 \int_{0}^{\infty} \bar{f}(t)|g(t)| d t
$$

Combining the last inequality with (9), we obtain that

$$
\begin{aligned}
\|\tilde{g}\|_{C(p)^{\prime}} & =\sup \left\{\int_{0}^{\infty} \tilde{g}(t) f(t) d t:\|f\|_{C(p)} \leqslant 1\right\} \\
& \leqslant 4 \sup \left\{\int_{0}^{\infty} \bar{f}(t)|g(t)| d t:\|f\|_{C(p)} \leqslant 1\right\} \\
& \left.\leqslant 4 \sup \left\{\int_{0}^{\infty} \bar{f}(t)|g(t)| d t:\|\bar{f}\|_{C(p)} \leqslant 2\right\}=8\|g\|_{C(p)^{\prime}}\right\}
\end{aligned}
$$

and the proof is complete.
Proof of Theorem 2. Firstly, we show that $D\left(p^{\prime}\right) \stackrel{1}{\hookrightarrow}\left(L^{p} \cdot G\left(p^{\prime}\right)\right)^{\prime}$. In fact, let $f \in$ $D\left(p^{\prime}\right)$ and $g \in L^{p} \cdot G\left(p^{\prime}\right)$, then $g=h \cdot k$ with $h \in L^{p}$ and $k \in G\left(p^{\prime}\right)$. By the HölderRogers inequality and the imbedding $D\left(p^{\prime}\right) \cdot G\left(p^{\prime}\right) \stackrel{1}{\hookrightarrow} L^{p^{\prime}}$ proved in Proposition 2 we obtain that

$$
\|f g\|_{L^{1}}=\|f h k\|_{L^{1}} \leqslant\|h\|_{L^{p}}\|f k\|_{L^{p^{\prime}}} \leqslant\|h\|_{L^{p}}\|k\|_{G\left(p^{\prime}\right)}\|f\|_{D\left(p^{\prime}\right)},
$$

from which it follows that $D\left(p^{\prime}\right) \subset\left(L^{p} \cdot G\left(p^{\prime}\right)\right)^{\prime}$ and $\|f\|_{\left(L^{p} \cdot G\left(p^{\prime}\right)\right)^{\prime}} \leqslant\|f\|_{D\left(p^{\prime}\right)}$. Since, by Proposition 1 we have equality $\operatorname{Ces}_{p}=L^{p} \cdot G\left(p^{\prime}\right)$, it follows that

$$
D\left(p^{\prime}\right) \stackrel{p^{\prime}}{\longrightarrow}\left(\operatorname{Ces}_{p}\right)^{\prime} .
$$

To prove the converse, take $f \in\left(\operatorname{Ces}_{p}\right)^{\prime}$. Since $\tilde{f} \geqslant|f|$ and $D\left(p^{\prime}\right)$ is a Banach lattice, then by Proposition 3, we may (and will) assume that $f$ is a non-negative decreasing function on $(0, \infty)$, i.e., $f=\tilde{f}$. Then, by the Hardy inequality, we find that

$$
\begin{aligned}
\|f\|_{D\left(p^{\prime}\right)} & =\|f\|_{L^{p^{\prime}}}=\sup \left\{\int_{0}^{\infty}|f(x) g(x)| d x:\|g\|_{L^{p}} \leqslant 1\right\} \\
& \leqslant p^{\prime} \sup \left\{\int_{0}^{\infty}|f(x) g(x)| d x:\|g\|_{C(p)} \leqslant 1\right\}=p^{\prime}\|f\|_{\left(\operatorname{Ces}_{p}\right)^{\prime}} .
\end{aligned}
$$

Therefore, $f \in D\left(p^{\prime}\right)$ and $\left(\operatorname{Ces}_{p}\right)^{\prime} \stackrel{8 p^{\prime}}{\longrightarrow} D\left(p^{\prime}\right)$.

We describe the dual and Köthe dual of $\operatorname{Ces}_{p}(I)$ for $1<p<\infty$ in the case $I=$ $[0,1]$. Surprisingly this will have a different description than in the case $I=[0, \infty)$. For $p=\infty$ the space $\operatorname{Ces}_{\infty}[0,1]$ introduced by Korenblyum, Kreĭn and Levin [31] we denote by $K$ and its separable part by $K_{0}$.

As we already mentioned the Köthe dual space $K^{\prime}$ was found by Luxemburg and Zaanen [42]: $K^{\prime}=\tilde{L}^{1}$ with equality of norms, where

$$
\|f\|_{\tilde{L}^{1}}=\|\tilde{f}\|_{L^{1}}, \quad \text { with } \tilde{f}(x)=\operatorname{ess} \sup _{t \in[x, 1]}|f(t)| .
$$

Earlier the dual space of $K_{0}$ was found by Tandori [56]: $\left(K_{0}\right)^{*}=\tilde{L}^{1}$ with equality of norms.

We will find the Köthe dual space $\left(\operatorname{Ces}_{p}[0,1]\right)^{\prime}$ for $1<p<\infty$. Consider, for $1<p<\infty$, a Banach ideal space $U(p)$ on $I=[0,1]$ which norm is given by the formula

$$
\begin{equation*}
\|f\|_{U(p)}=\left\|\frac{1}{1-x^{1 /(p-1)}} \tilde{f}(x)\right\|_{L^{p}}=\left[\int_{0}^{1}\left(\frac{\tilde{f}(x)}{1-x^{1 /(p-1)}}\right)^{p} d x\right]^{1 / p} \tag{12}
\end{equation*}
$$

where $\tilde{f}(x)=\operatorname{ess}_{\sup }^{t \in[x, 1]}$ $|f(t)|$.
Remark 3. Since $\min (1, p-1) \leqslant \frac{1-x}{1-x^{1 /(p-1)}} \leqslant \max (1, p-1)$ for all $x \in(0,1)$, then the norm (12) in $U(p)$ is equivalent to the norm

$$
\|f\|_{U(p)}^{0}=\left[\int_{0}^{1}\left(\frac{\tilde{f}(x)}{1-x}\right)^{p} d x\right]^{1 / p}
$$

Theorem 3. If $1<p<\infty$, then

$$
\begin{equation*}
\left(\operatorname{Ces}_{p}\right)^{*}=\left(\operatorname{Ces}_{p}\right)^{\prime}=U\left(p^{\prime}\right), \quad p^{\prime}=\frac{p}{p-1} \tag{13}
\end{equation*}
$$

with equivalent norms.
Before the proof of this theorem we prove some auxiliary results of independent interest. First, for $1<p<\infty$ we define the Banach ideal space $V(p)$ on $I=[0,1]$ generated by the functional

$$
\begin{equation*}
\|f\|_{V(p)}=\sup _{0<x \leqslant 1}\left[\frac{\left(1-x^{1 /(p-1)}\right)^{p-1}}{x} \int_{0}^{x}|f(t)|^{p} d t\right]^{1 / p} \tag{14}
\end{equation*}
$$

Proposition 4. If $1<p<\infty$, then

$$
\begin{equation*}
\operatorname{Ces}_{p} \subset L^{p} \cdot V\left(p^{\prime}\right), \quad p^{\prime}=\frac{p}{p-1} \tag{15}
\end{equation*}
$$

that is, if $f \in \operatorname{Ces}_{p}$, then $f=g h$ with $g \in L^{p}, h \in V\left(p^{\prime}\right)$ and

$$
\begin{equation*}
\inf \left\{\|g\|_{p}\|h\|_{V\left(p^{\prime}\right)}: f=g \cdot h, g \in L^{p}, h \in V\left(p^{\prime}\right)\right\} \leqslant(p-1)^{1 / p}\|f\|_{C(p)} \tag{16}
\end{equation*}
$$

Proof. The proof is analogous to the proof of Proposition 1 (for the case $I=$ $[0, \infty)$ ) but we put details to see how the weight $w(x)=\left(1-x^{p-1}\right)^{1 /(p-1)}$ appeared in the definition of the space $V\left(p^{\prime}\right)$. For $f \in \operatorname{Ces}_{p}, f \neq 0$, define

$$
k(x)=\int_{x}^{1} u^{-p}\left(\int_{0}^{u}|f(t)| d t\right)^{p-1} d u, \quad x \in[0,1] .
$$

Then $k(x)>0, k$ is decreasing and, by the Hölder-Rogers inequality, we find that

$$
\begin{aligned}
k(x) & =\int_{x}^{1} u^{-1}\left(\frac{1}{u} \int_{0}^{u}|f(t)| d t\right)^{p-1} d u \\
& \leqslant\left(\int_{x}^{1} u^{-p} d u\right)^{1 / p}\left(\int_{x}^{1}\left(\frac{1}{u} \int_{0}^{u}|f(t)| d t\right)^{p} d u\right)^{1 / p^{\prime}} \\
& \leqslant \frac{1}{(p-1)^{1 / p}}\left(\frac{1-x^{p-1}}{x^{p-1}}\right)^{1 / p}\|f\|_{C(p)}^{p-1}
\end{aligned}
$$

Let

$$
g(x)=(|f(x)| k(x))^{1 / p} \operatorname{sgn} f(x) \quad \text { and } \quad h(x)=|f(x)|^{1 / p^{\prime}} k(x)^{-1 / p}, \quad 0<x<1 .
$$

Then $f=g \cdot h$ and

$$
\begin{aligned}
\|g\|_{p}^{p} & =\int_{0}^{1}|f(x)| \int_{x}^{1} u^{-p}\left(\int_{0}^{u}|f(t)| d t\right)^{p-1} d u d x \\
& =\int_{0}^{1} u^{-p}\left(\int_{0}^{u}|f(t)| d t\right)^{p-1} \int_{0}^{u}|f(x)| d x d u=\|f\|_{C(p)}^{p},
\end{aligned}
$$

and, by the Hölder-Rogers inequality,

$$
\begin{aligned}
\left(\int_{0}^{x}|h(t)|^{p^{\prime}} d t\right)^{p} & =\left(\int_{0}^{x}|f(t)|^{1 / p^{\prime}}|f(t)|^{1 / p} k(t)^{-p^{\prime} / p} d t\right)^{p} \\
& \leqslant\left(\int_{0}^{x}|f(t)| d t\right)^{p-1}\left(\int_{0}^{x}|f(t)| k(t)^{-p^{\prime}} d t\right)
\end{aligned}
$$

Hence, by the above and using the fact that $k$ is decreasing, we obtain that

$$
\begin{aligned}
& \int_{x}^{1}\left(s^{-1} \int_{0}^{x}|h(t)|^{p^{\prime}} d t\right)^{p} d s \\
& \quad \leqslant \int_{x}^{1} s^{-p}\left[\left(\int_{0}^{x}|f(t)| d t\right)^{p-1} \int_{0}^{x}|f(t)| k(t)^{-p^{\prime}} d t\right] d s \\
& \quad \leqslant \int_{x}^{1} s^{-p}\left[\left(\int_{0}^{s}|f(t)| d t\right)^{p-1} \int_{0}^{x}|f(t)| k(t)^{-p^{\prime}} d t\right] d s \\
& \quad=k(x) \int_{0}^{x}|f(t)| k(t)^{-p^{\prime}} d t \\
& \quad \leqslant \int_{0}^{x}|f(t)| k(t)^{1-p^{\prime}} d t=\int_{0}^{x}|h(t)|^{p^{\prime}} d t
\end{aligned}
$$

or, equivalently,

$$
\int_{x}^{1} s^{-p} d s\left(\int_{0}^{x}|h(t)|^{p^{\prime}} d t\right)^{p-1} \leqslant 1
$$

which means that

$$
\left(\int_{0}^{x}|h(t)|^{p^{\prime}} d t\right)^{p-1} \leqslant(p-1) \frac{x^{p-1}}{1-x^{p-1}}
$$

and, thus,

$$
\sup _{x>0} \frac{\left(1-x^{p-1}\right)^{1 /(p-1)}}{x} \int_{0}^{x}|h(t)|^{p^{\prime}} d t \leqslant(p-1)^{1 /(p-1)}
$$

or $\|h\|_{V\left(p^{\prime}\right)} \leqslant(p-1)^{1 / p}$. Summing up we have proved that $\operatorname{Ces}_{p} \subset L^{p} \cdot V\left(p^{\prime}\right)$ and

$$
\inf \left\{\|g\|_{L^{p}}\|h\|_{V\left(p^{\prime}\right)}: f=g \cdot h\right\} \leqslant(p-1)^{1 / p}\|f\|_{C(p)} .
$$

Remark 4. In the above imbedding we cannot take instead of the space $V\left(p^{\prime}\right)$, where the weight $w(x)=\left(1-x^{p-1}\right)^{1 /(p-1)}$ appeared, the corresponding space without this weight, that is, the $p^{\prime}$-convexification $K^{\left(p^{\prime}\right)}$ of $K$. This space is too small since if the imbedding $\operatorname{Ces}_{p}[0,1] \subset L^{p} \cdot K^{\left(p^{\prime}\right)}$ would be valid, then since $L^{p} \cdot K^{\left(p^{\prime}\right)} \subset L^{p} \cdot L^{p^{\prime}} \subset L^{1}[0,1]$ we will have a contradiction because $\operatorname{Ces}_{p}[0,1]$ is not embedded into $L^{1}[0,1]$ (cf. Theorem $1(\mathrm{~d})$ ) and the problem is "near 1 ", therefore this weight $w$ is really needed in the imbedding (15).

Proposition 5. If $1<p<\infty$, then
(a) $U(p) \cdot V(p) \subset L^{p}$ with

$$
\|f\|_{L^{p}} \leqslant \inf \left\{\|g\|_{U(p)}\|h\|_{V(p)}: f=g \cdot h, g \in U(p), h \in V(p)\right\} .
$$

(b) $U(p) \subset\left(V(p) \cdot L^{p^{\prime}}\right)^{\prime}$ and $\|f\|_{\left(V(p) \cdot L^{p^{\prime}}\right)^{\prime}} \leqslant\|f\|_{U(p)}$ for all $f \in U(p)$.

Proof. (a) Let $f=g \cdot h, g \in U(p), h \in V(p)$. Since $|g| \leqslant \tilde{g}$ it follows that

$$
\begin{equation*}
\|f\|_{L^{p}}^{p} \leqslant \int_{0}^{1} \tilde{g}(t)^{p}|h(t)|^{p} d t . \tag{17}
\end{equation*}
$$

On the other hand, by the definition of the norm in $V(p)$ and using the equality

$$
\frac{d}{d x}\left(\frac{x}{\left(1-x^{1 /(p-1)}\right)^{p-1}}\right)=\frac{1}{\left(1-x^{1 /(p-1)}\right)^{p}},
$$

we obtain that

$$
\begin{aligned}
\int_{0}^{x}|h(t)|^{p} d t & \leqslant\|h\|_{V(p)}^{p} \frac{x}{\left(1-x^{1 /(p-1)}\right)^{p-1}} \\
& =\|h\|_{V(p)}^{p} \int_{0}^{x} \frac{1}{\left(1-t^{1 /(p-1)}\right)^{p}} d t
\end{aligned}
$$

for all $x \in(0,1]$. Since $\tilde{g}^{p}$ decreases, then, by [32, property $18^{0}$, p. 72], the last inequality implies that

$$
\int_{0}^{1} \tilde{g}(t)^{p}|h(t)|^{p} d t \leqslant\|h\|_{V(p)}^{p} \int_{0}^{1}\left(\frac{\tilde{g}(t)}{1-t^{1 /(p-1)}}\right)^{p} d t .
$$

Therefore, by (17), $f \in L^{p}$ and

$$
\|f\|_{L^{p}} \leqslant\|g\|_{U(p)} \cdot\|h\|_{V(p)}
$$

and the proof of (a) is complete.
(b) For any $f \in U(p)$ and $g \in V(p) \cdot L^{p^{\prime}}$ we have $g=h \cdot k$ with $h \in V(p), k \in L^{p^{\prime}}$ and, by the Hölder-Rogers inequality and Proposition 5(a), we obtain that

$$
\begin{aligned}
\int_{0}^{1}|f g| d x & =\int_{0}^{1}|f h k| d x \leqslant\left(\int_{0}^{1}|f h|^{p} d x\right)^{1 / p}\left(\int_{0}^{1}|k|^{p^{\prime}} d x\right)^{1 / p^{\prime}} \\
& \leqslant\|f\|_{U(p)}\|h\|_{V(p)}\|k\|_{L^{p^{\prime}}}=\|h\|_{V(p)}\|k\|_{L^{p^{\prime}}}\|f\|_{U(p)}
\end{aligned}
$$

or $f \in\left(V(p) \cdot L^{p^{\prime}}\right)^{\prime}$ and $\|f\|_{\left(V(p) \cdot L^{p^{\prime}}\right)^{\prime}} \leqslant\|f\|_{U(p)}$. The proof of $(\mathrm{b})$ is complete.

Proposition 6. Let $1 \leqslant p<\infty$. If $g \in\left(\operatorname{Ces}_{p}\right)^{\prime}$, then $\tilde{g}(x)=\operatorname{ess} \sup _{t \in[x, 1]}|g(t)| \in$ $\left(\mathrm{Ces}_{p}\right)^{\prime}$ and

$$
\|\tilde{g}\|_{C(p)^{\prime}} \leqslant 8\|g\|_{C(p)^{\prime}}
$$

Proof. When $p=1$, then the assertion is obvious since $\mathrm{Ces}_{1}=L^{1}(\ln 1 / t)$ and $\left(\operatorname{Ces}_{1}\right)^{\prime}=L^{\infty}\left(\ln ^{-1} 1 / t\right)$. Let $p>1$ and $f \in \operatorname{Ces}_{p}, f \geqslant 0$. Consider two cases:
(a) If $\int_{0}^{1} f(s) d s=\infty$, then we select a two-sided sequence $\left\{a_{k}\right\}_{k \in \mathbb{Z}}$ such that $0 \leqslant$ $a_{k}<a_{k+1}, a_{k} \rightarrow 1$ when $k \rightarrow \infty$ and

$$
\begin{equation*}
\int_{a_{k-1}}^{a_{k}} f(s) d s=2^{k}, \quad k \in \mathbb{Z} \tag{18}
\end{equation*}
$$

(b) If $A=\int_{0}^{1} f(s) d s<\infty$, then we can find an one-sided sequence $\left\{a_{k}\right\}_{k \leqslant 0}$ such that $0 \leqslant a_{k}<a_{k+1}, a_{0}=1$ and

$$
\begin{equation*}
\int_{a_{k-1}}^{a_{k}} f(s) d s=2^{k-1} A, \quad k \leqslant 0 \tag{19}
\end{equation*}
$$

The remaining part of the proof is completely analogous to the proof of Proposition 3 so we omit the details.

Proof of Theorem 3. "Imbedding $\supset$ ". If $f \in U\left(p^{\prime}\right)$, then, by Proposition 5(b) and Proposition 4, we obtain that

$$
U\left(p^{\prime}\right) \subset\left(V\left(p^{\prime}\right) \cdot L^{p}\right)^{\prime} \subset\left(\operatorname{Ces}_{p}\right)^{\prime} \quad \text { and } \quad\|f\|_{C(p)^{\prime}} \leqslant(p-1)^{1 / p}\|f\|_{U\left(p^{\prime}\right)}
$$

"Imbedding $\subset "$. Let $f \in\left(\operatorname{Ces}_{p}\right)^{\prime}$. Since $\tilde{f} \geqslant|f|$ and $U\left(p^{\prime}\right)$ is a Banach lattice, then by Proposition 6 we may (and we will) assume that $f$ is a non-negative decreasing function on $(0,1]$, i.e., $f=\tilde{f}$. Define the weight

$$
w(x)=\chi_{[0,1 / 2]}(x)+(1-x) \chi_{[1 / 2,1]}(x), \quad 0<x \leqslant 1 .
$$

Since $1-x \leqslant w(x) \leqslant 2(1-x)$ for $x \in(0,1]$, then according to Remark 3 it is enough to prove that for some constant $A_{p}>0$ we have that

$$
\begin{equation*}
\left\|\frac{f}{w}\right\|_{L^{p^{\prime}}}=\left[\int_{0}^{1}\left(\frac{f(x)}{w(x)}\right)^{p^{\prime}} d x\right]^{1 / p} \leqslant A_{p}\|f\|_{C(p)^{\prime}} \tag{20}
\end{equation*}
$$

since

$$
\begin{aligned}
\|f\|_{U\left(p^{\prime}\right)} & =\left\|\frac{1}{1-x^{1 /\left(p^{\prime}-1\right)}} f(x)\right\|_{L^{p^{\prime}}} \leqslant \max \left(1, p^{\prime}-1\right)\left\|\frac{1}{1-x} f(x)\right\|_{L^{p^{\prime}}} \\
& \leqslant 2 \max \left(1, p^{\prime}-1\right)\|f / w\|_{L^{p^{\prime}}} .
\end{aligned}
$$

We now prove that if $h \in L^{p}, h \geqslant 0$, then $h / w \in \operatorname{Ces}_{p}$ and

$$
\begin{equation*}
\|h / w\|_{C(p)} \leqslant\left(p^{\prime}+2 p\right)\|h\|_{L^{p}} \tag{21}
\end{equation*}
$$

To prove this we first show that the operator $S_{w}$ defined by

$$
S_{w} h(x)=\int_{0}^{x} \frac{h(t)}{w(t)} d t \quad(0<x \leqslant 1)
$$

is bounded in $L^{p}[0,1]$ for $1 \leqslant p<\infty$. In fact, for $0<x \leqslant 1 / 2$ we have that

$$
S_{w} h(x)=\int_{0}^{x} h(t) d t=\int_{1-x}^{1} h(1-t) d t \leqslant \int_{1-x}^{1} \frac{h(1-t)}{t} d t
$$

and for $1 / 2 \leqslant x \leqslant 1$

$$
\begin{aligned}
S_{w} h(x) & =\int_{0}^{1 / 2} h(t) d t+\int_{1 / 2}^{x} \frac{h(t)}{1-t} d t \\
& =\int_{1 / 2}^{1} h(1-t) d t+\int_{1-x}^{1 / 2} \frac{h(1-t)}{t} d t \leqslant \int_{1-x}^{1} \frac{h(1-t)}{t} d t
\end{aligned}
$$

Thus,

$$
S_{w} h(x) \leqslant H^{\prime}(\bar{h})(1-x) \quad \text { for } 0<x<1,
$$

where $\bar{h}(t)=h(1-t)$ and $H^{\prime}$ is the associated Hardy operator, i.e., $H^{\prime} h(x)=$ $\int_{x}^{1} \frac{h(t)}{t} d t$. It is well known that $H^{\prime}$ is bounded in $L^{p}[0,1]$ for $1 \leqslant p<\infty$ (cf. [32], pp. 138-139) and, thus,

$$
\left\|S_{w} h\right\|_{L^{p}} \leqslant\left\|H^{\prime}(\bar{h})\right\|_{L^{p}} \leqslant\left\|H^{\prime}\right\|\|\bar{h}\|_{L^{p}}=\left\|H^{\prime}\right\|\|h\|_{L^{p}}
$$

Since

$$
\frac{1}{x} S_{w} h(x)=\frac{1}{x} \int_{0}^{x} \frac{h(t)}{w(t)} d t \leqslant \frac{1}{x} \int_{0}^{x} h(t) d t \chi_{\left[0, \frac{1}{2}\right]}(x)+2 S_{w} h(x) \chi_{\left[\frac{1}{2}, 1\right]}(x)
$$

it follows that

$$
\begin{aligned}
\|h / w\|_{C(p)} & =\left\|\frac{1}{x} S_{w} h(x)\right\|_{L^{p}} \leqslant\|H h\|_{L^{p}}+2\left\|S_{w} h\right\|_{L^{p}} \\
& \leqslant p^{\prime}\|h\|_{L^{p}}+2 p\|h\|_{L^{p}}=\left(p^{\prime}+2 p\right)\|h\|_{L^{p}}
\end{aligned}
$$

and the estimate (21) is proved. Moreover, by using this fact we obtain that

$$
\begin{aligned}
\left\|\frac{f}{w}\right\|_{L^{p^{\prime}}} & =\sup \left\{\int_{0}^{1} \frac{f(t)}{w(t)} h(t) d t: h \geqslant 0,\|h\|_{L^{p}} \leqslant 1\right\} \\
& \leqslant \sup \left\{\int_{0}^{1} \frac{f(t)}{w(t)} h(t) d t: h \geqslant 0,\left\|\frac{h}{w}\right\|_{C(p)} \leqslant p^{\prime}+2 p\right\} \\
& \leqslant\left(p^{\prime}+2 p\right)\|f\|_{C(p)^{\prime}}
\end{aligned}
$$

and also the estimate (20) is proved, which shows that $\left(\operatorname{Ces}_{p}\right)^{\prime} \subset U\left(p^{\prime}\right)$ and for every $f \in\left(\operatorname{Ces}_{p}\right)^{\prime}$

$$
\|f\|_{U\left(p^{\prime}\right)} \leqslant 16 \max \left(1, p^{\prime}-1\right)\left(p^{\prime}+2 p\right)\|f\|_{C(p)^{\prime}},
$$

and the proof is complete.
Remark 5. Let $1<p<\infty$. The $L^{p}$ spaces have the property that the restriction of $L^{p}[0, \infty)$ to $[0,1]$ gives the space $L^{p}[0,1]$. The situation is different for Cesàro function spaces. In fact, if $f \in \operatorname{Ces}_{p}[0, \infty)$ and $\operatorname{supp} f \subset[0,1]$, then

$$
\begin{aligned}
\|f\|_{\operatorname{Ces}_{p}[0, \infty)}^{p} & =\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x}|f(t)| d t\right)^{p} d x \\
& =\int_{0}^{1}\left(\frac{1}{x} \int_{0}^{x}|f(t)| d t\right)^{p} d x+\int_{1}^{\infty}\left(\frac{1}{x} \int_{0}^{1}|f(t)| d t\right)^{p} d x \\
& =\|f\|_{\operatorname{Ces}_{p}[0,1)}^{p}+\frac{1}{p-1}\|f\|_{L^{1}[0,1]}^{p}
\end{aligned}
$$

which means that

$$
\left.\operatorname{Ces}_{p}[0, \infty)\right|_{[0,1]}=\operatorname{Ces}_{p}[0,1] \cap L^{1}[0,1] .
$$

Therefore,

$$
\left(\operatorname{Ces}_{p}[0,1] \cap L^{1}[0,1]\right)^{\prime}=\left.\left(\operatorname{Ces}_{p}[0, \infty)\right)^{\prime}\right|_{[0,1]}=\left.D\left(p^{\prime}\right)\right|_{[0,1]}
$$

or

$$
U\left(p^{\prime}\right)+L^{\infty}[0,1]=\left.D\left(p^{\prime}\right)\right|_{[0,1]} .
$$

The last equality can be easily verified. For example, for $\left.f \in D\left(p^{\prime}\right)\right|_{[0,1]}$ we can take as a decomposition $f=g+h, g \in U\left(p^{\prime}\right), h \in L^{\infty}[0,1]$ the functions

$$
g(x)=(1-x) f(x) \quad \text { and } \quad h(x)=x f(x), \quad x \in[0,1] .
$$

Then $f=g+h$ and $\tilde{g}(x)=\operatorname{ess} \sup _{t \in[x, 1]}(1-t)|f(t)| \leqslant(1-x) \tilde{f}(x)$, which shows
that $g \in U\left(p^{\prime}\right)$ since $f \in D\left(p^{\prime}\right)$. Moreover,

$$
\begin{aligned}
\|h\|_{\infty} & =\operatorname{ess} \sup _{x \in[0,1]} x|f(x)| \leqslant \operatorname{ess} \sup _{x \in[0,1]} x \tilde{f}(x) \\
& \leqslant\|\tilde{f}\|_{L^{1}} \leqslant\|\tilde{f}\|_{L^{p^{\prime}}}=\|f\|_{D\left(p^{\prime}\right)},
\end{aligned}
$$

so that $h \in L^{\infty}[0,1]$.
5. ON $p$-CONCAVITY, TYPE AND COTYPE OF CESARO SEQUENCE AND FUNCTION SPACES

A Banach lattice $X$ is said to be $p$-convex $(1 \leqslant p<\infty)$ with constant $K \geqslant 1$, respectively $q$-concave $(1 \leqslant q<\infty)$ with constant $L \geqslant 1$ if

$$
\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p}\right\| \leqslant K\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{p}\right)^{1 / p},
$$

respectively

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{q}\right)^{1 / q} \leqslant L\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{q}\right)^{1 / q}\right\|
$$

for every choice of vectors $x_{1}, x_{2}, \ldots, x_{n}$ in $X$.
Of course, every Banach lattice is 1-convex with constant 1 . In particular, $\operatorname{ces}_{p}$ and $\operatorname{Ces}_{p}(I)$ are 1 -convex with constant 1 . The spaces $L^{p}(I)$ are $p$-convex and $p$-concave with constant 1 .

If the above estimates hold for pairwise disjoint elements $\left\{x_{k}\right\}_{k=1}^{n}$ in $X$, that is,

$$
\left\|\sum_{k=1}^{n} x_{k}\right\| \leqslant K\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{p}\right)^{1 / p},
$$

respectively

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{q}\right)^{1 / q} \leqslant L\left\|\sum_{k=1}^{n} x_{k}\right\|,
$$

then we say that $X$ satisfies an upper p-estimate with constant $K$ and a lower $q$ estimate with constant $L$, respectively. It is obvious that a $p$-convex ( $q$-concave) Banach lattice satisfies upper $p$-estimate (lower $q$-estimate).

Let $r_{n}:[0,1] \rightarrow \mathbb{R}, n \in \mathbb{N}$, be the Rademacher functions, that is, $r_{n}(t)=$ $\operatorname{sign}\left(\sin 2^{n} \pi t\right)$. A Banach space $X$ has type $1 \leqslant p \leqslant 2$ if there is a constant $K>0$ such that, for any choice of finitely many vectors $x_{1}, \ldots, x_{n}$ from $X$,

$$
\int_{0}^{1}\left\|\sum_{k=1}^{n} r_{k}(t) x_{k}\right\| d t \leqslant K\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{p}\right)^{1 / p}
$$

A Banach space $X$ has cotype $q \geqslant 2$ if there is a constant $K>0$ such that, for any choice of finitely many vectors $x_{1}, \ldots, x_{n}$ from $X$,

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{q}\right)^{1 / q} \leqslant K \int_{0}^{1}\left\|\sum_{k=1}^{n} r_{k}(t) x_{k}\right\| d t .
$$

In order to complete this definition for $q=\infty$ the left-hand side should be replaced by $\max _{1 \leqslant k \leqslant n}\left\|x_{k}\right\|$.

We say that the space $X$ has trivial type or trivial cotype, if it does not have any type bigger than one or any finite cotype, respectively.

More information and connections among the above notions may be found in [17] and [38].

Theorem 4. If $1<p<\infty$, then $\operatorname{Ces}_{p}(I)$ are $p$-concave with constant 1 , that is,

$$
\begin{equation*}
\left(\sum_{k=1}^{n}\left\|f_{k}\right\|_{C(p)}^{p}\right)^{1 / p} \leqslant\left\|\left(\sum_{k=1}^{n}\left|f_{k}\right|^{p}\right)^{1 / p}\right\|_{C(p)} \tag{22}
\end{equation*}
$$

for all $f_{1}, f_{2}, \ldots, f_{n} \in \operatorname{Ces}_{p}(I)$.
Proof. Inequality (22) taken to the power $p$ means that

$$
\sum_{k=1}^{n} \int_{I}\left(\frac{1}{x} \int_{0}^{x}\left|f_{k}(t)\right| d t\right)^{p} d x \leqslant \int_{I}\left[\frac{1}{x} \int_{0}^{x}\left(\sum_{k=1}^{n}\left|f_{k}(t)\right|^{p}\right)^{1 / p} d t\right]^{p} d x
$$

If we show that

$$
\sum_{k=1}^{n}\left(\frac{1}{x} \int_{0}^{x}\left|f_{k}(t)\right| d t\right)^{p} \leqslant\left[\frac{1}{x} \int_{0}^{x}\left(\sum_{k=1}^{n}\left|f_{k}(t)\right|^{p}\right)^{1 / p} d t\right]^{p}
$$

for every $x \in I$, then we are done. The last estimate can also be written as

$$
\left[\sum_{k=1}^{n}\left(\int_{0}^{x}\left|f_{k}(t)\right| d t\right)^{p}\right]^{1 / p} \leqslant \int_{0}^{x}\left(\sum_{k=1}^{n}\left|f_{k}(t)\right|^{p}\right)^{1 / p} d t
$$

which is the $p$-concavity of $L^{1}[0, x]$ for every $x \in I$.
It is clear that $L^{1}(J), J=J_{x}=[0, x]$ is 1-convex with constant 1 and it is well known that then $L^{1}(J)$ is $p$-concave with constant 1 (cf. [38, Proposition 1.d.5] or [44, Theorem 4.3]). We can also prove this fact directly as in [44, Theorem 4.3]: by the Hölder-Rogers inequality for $t \in J$ it yields that

$$
\sum_{k=1}^{n}\left|f_{k}(t)\left\|a_{k} \mid \leqslant\left(\sum_{k=1}^{n}\left|f_{k}(t)\right|^{p}\right)^{1 / p}\right\|\left\{a_{k}\right\} \|_{p^{\prime}}\right.
$$

and, by integrating over $J$,

$$
\begin{aligned}
\int_{J} \sum_{k=1}^{n}\left|f_{k}(t) \| a_{k}\right| d t & \leqslant\left\|\left\{a_{k}\right\}\right\|_{p^{\prime}} \int_{I}\left(\sum_{k=1}^{n}\left|f_{k}(t)\right|^{p}\right)^{1 / p} d t \\
& =\left\|\left\{a_{k}\right\}\right\|_{p^{\prime}}\left\|\left(\sum_{k=1}^{n}\left|f_{k}\right|^{p}\right)^{1 / p}\right\|_{L^{1}(J)}
\end{aligned}
$$

Taking the supremum over all $\left\{a_{k}\right\}$ such that $\left\|\left\{a_{k}\right\}\right\|_{p^{\prime}} \leqslant 1$ we obtain, by the Landau theorem,

$$
\begin{aligned}
& \sup \left\{\int_{J} \sum_{k=1}^{n}\left|f_{k}(t)\left\|a_{k} \mid d t:\right\|\left\{a_{k}\right\} \|_{p^{\prime}} \leqslant 1\right\}\right. \\
& \quad=\sup \left\{\sum_{k=1}^{n}\left|a_{k}\right| \int_{J}\left|f_{k}(t)\right| d t:\left\|\left\{a_{k}\right\}\right\|_{p^{\prime}} \leqslant 1\right\} \\
& =\left\|\left\{\int_{J}\left|f_{k}(t)\right| d t\right\}\right\|_{p}=\left[\sum_{k=1}^{n}\left(\int_{J}\left|f_{k}(t)\right| d t\right)^{p}\right]^{1 / p} \\
& =\left(\sum_{k=1}^{n}\left\|f_{k}\right\|_{L^{1}(J)}^{p}\right)^{1 / p} .
\end{aligned}
$$

Thus,

$$
\left(\sum_{k=1}^{n}\left\|f_{k}\right\|_{L^{1}(J)}^{p}\right)^{1 / p} \leqslant\left\|\left(\sum_{k=1}^{n}\left|f_{k}\right|^{p}\right)^{1 / p}\right\|_{L^{1}(J)}
$$

and putting these facts together we obtain the estimate (22).
Theorem 5. If $1<p<\infty$, then the space $\operatorname{Ces}_{p}(I)$ has trivial type and cotype $\max (p, 2)$. The space $\operatorname{Ces}_{\infty}(I)$ has trivial type and trivial cotype.

Proof. Let $1<p<\infty$. The space $\operatorname{Ces}_{p}(I)$ contains a copy of $L^{1}(I)$ (cf. [4], Lemma 1 for $I=[0,1]$ and Theorem 2 for $I=[0, \infty)$ ) which implies that $\operatorname{Ces}_{p}(I)$ has trivial type.

On the other hand, since, by Theorem 4 the space $\operatorname{Ces}_{p}(I)$ is $p$-concave, then by a well-known theorem (cf. Lindenstrauss and Tzafiri [38, p. 100]) it has cotype $\max (p, 2)$. The fact that this space has no smaller cotype follows, for example, from Theorem 6 showing that $\operatorname{Ces}_{p}(I)$ contains an isomorphic copy of $l^{p}$ and the fact that the space $l^{p}$ has cotype $\max (p, 2)$ and this value is the best possible (cf. [38, p. 73] or [44, pp. 91-94]).

For $p=\infty$ the space $\operatorname{Ces}_{\infty}(I)$ has no absolutely continuous norm and, by the Lozanovskiĭ theorem (see [40, Theorem 5, p. 65]; cf. also [28, Theorem 4 in X.4]
and [59, Theorem 4.1]), it contains an isomorphic copy of $l^{\infty}$, therefore it has trivial type and trivial cotype. The proof is complete.

Remark 6. Similarly as in Theorem 4 we can prove that the Cesàro sequence spaces ces ${ }_{p}$ are $p$-concave with constant 1 since $l^{1}$ is $p$-concave with constant 1 . Moreover, similarly as in Theorem 5 we can obtain that the Cesàro sequence spaces $\operatorname{ces}_{p}$ have trivial type and cotype $\max (p, 2)$ for $1<p<\infty$. Also $\operatorname{ces}_{\infty}$ has trivial type and trivial cotype.
6. COPIES OF $l^{p}$ SPACES IN THE CESÀRo FUNCTION SPACES Ces $p_{p}$

The Cesàro function space $\operatorname{Ces}_{p}(I)$ contains a copy of $L^{1}(I)$ and as we will see in the next theorem also complemented copies of $l^{p}$.

Theorem 6. If $1<p<\infty$, then $\operatorname{Ces}_{p}(I)$ contains an order isomorphic and complemented copy of $l^{p}$.

Proof. Let $I=[0,1]$. We shall construct a sequence $\left\{f_{n}\right\}_{n=1}^{\infty} \subset \operatorname{Ces}_{p}[0,1]$ with disjoint supports which spans an isomorphic copy of $l^{p}$ in $\operatorname{Ces}_{p}[0,1]$ and the closed linear span $\left[f_{n}\right]_{\operatorname{Ces}_{p}}$ is complemented in $\operatorname{Ces}_{p}[0,1]$. Let us denote

$$
f_{n}=\chi_{\left[2^{-n-1}, 2^{-n}\right]} \quad \text { and } \quad F_{n}(t)=\frac{1}{t} \int_{0}^{t} f_{n}(s) d s, \quad n=1,2, \ldots
$$

Since

$$
F_{n}(t)= \begin{cases}0, & \text { if } 0<t \leqslant 2^{-n-1}, \\ 1-\frac{1}{2^{n+1_{t}}}, & \text { if } 2^{-n-1} \leqslant t \leqslant 2^{-n}, \\ \frac{1}{2^{n+1} t}, & \text { if } t \geqslant 2^{-n},\end{cases}
$$

it follows that

$$
\left\|f_{n}\right\|_{C(p)}^{p}=\left\|F_{n}\right\|_{L^{p}}^{p}=\int_{2^{-n-1}}^{2^{-n}}\left(1-\frac{1}{2^{n+1} t}\right)^{p} d t+2^{-(n+1) p} \frac{2^{n(p-1)}-1}{p-1} .
$$

Note that the first term in the above sum is not bigger than $2^{-p-n-1}$ and the second one satisfies the inequalities

$$
\frac{1-2^{-p+1}}{p-1} 2^{-p-n} \leqslant 2^{-(n+1) p} \frac{2^{n(p-1)}-1}{p-1} \leqslant \frac{2^{-p-n}}{p-1} .
$$

Therefore,

$$
\begin{equation*}
\left\|f_{n}\right\|_{C(p)} \approx\left\|f_{n}\right\|_{L^{p}} \approx 2^{-n / p} \tag{23}
\end{equation*}
$$

with constants which depend only on $p$. If

$$
\bar{f}_{n}=\frac{f_{n}}{\left\|f_{n}\right\|_{C(p)}}, \quad n=1,2, \ldots
$$

then

$$
1=\left\|\bar{f}_{n}\right\|_{C(p)} \approx\left\|\bar{f}_{n}\right\|_{L^{p}}, \quad n \in \mathbb{N}
$$

Let us denote

$$
x(t)=\sum_{n=1}^{\infty} \alpha_{n} \bar{f}_{n}, \quad \alpha_{n} \in \mathbb{R}
$$

Since $\bar{f}_{n}$ are disjoint functions we may assume that $\alpha_{n} \geqslant 0$. By Theorem 1(c) (the Hardy inequality) and the above equivalence

$$
\|x\|_{C(p)} \leqslant \frac{p}{p-1}\|x\|_{L^{p}}=\frac{p}{p-1}\left(\sum_{n=1}^{\infty} \alpha_{n}^{p}\left\|\bar{f}_{n}\right\|_{L^{p}}^{p}\right)^{1 / p} \leqslant C_{p}\left(\sum_{n=1}^{\infty} \alpha_{n}^{p}\right)^{1 / p}
$$

On the other hand, by Theorem 4, for any $n \in \mathbb{N}$,

$$
\left\|\sum_{k=1}^{n} \alpha_{k} \bar{f}_{k}\right\|_{C(p)} \geqslant\left(\sum_{k=1}^{n}\left\|\alpha_{k} \bar{f}_{k}\right\|_{C(p)}^{p}\right)^{1 / p}=\left(\sum_{k=1}^{n} \alpha_{k}^{p}\right)^{1 / p}
$$

and passing to the limit as $n \rightarrow \infty$ we arrive at the inequality

$$
\|x\|_{C(p)} \geqslant\left(\sum_{k=1}^{\infty} \alpha_{k}^{p}\right)^{1 / p} \approx\|x\|_{L^{p}}
$$

which together with estimation from above gives us that

$$
\begin{equation*}
\left[\bar{f}_{n}\right]_{\operatorname{Ces}_{p}} \simeq\left[\bar{f}_{n}\right]_{L^{p}} \simeq l^{p} \tag{24}
\end{equation*}
$$

Next, we prove that $\left[\bar{f}_{n}\right]_{\operatorname{Ces}_{p}}$ is complemented in $\operatorname{Ces}_{p}$ for $1<p<\infty$. Let $x \in$ $\operatorname{Ces}_{p}, x \geqslant 0$ and $\operatorname{supp} x \subset\left[2^{-n-1}, 2^{-n}\right], n \in \mathbb{N}$. Then

$$
\frac{1}{t} \int_{0}^{t} x(s) d s=\frac{1}{t} \int_{2^{-n-1}}^{t} x(s) d s \chi_{\left[2^{-n-1}, 2^{-n}\right]}(t)+\frac{1}{t}\|x\|_{L^{1}} \chi_{\left[2^{-n}, 1\right]}(t)
$$

and

$$
\|x\|_{C(p)}^{p}=\int_{2^{-n-1}}^{2^{-n}}\left(\frac{1}{t} \int_{2^{-n-1}}^{t} x(s) d s\right)^{p} d t+\|x\|_{L^{1}}^{p} \int_{2^{-n}}^{1} t^{-p} d t
$$

The first term in the last sum is not bigger than

$$
\|x\|_{L^{1}}^{p} \int_{2^{-n-1}}^{2^{-n}} t^{-p} d t=\frac{2^{p-1}-1}{p-1} 2^{n(p-1)}\|x\|_{L^{1}}
$$

and the second one is equal to

$$
\|x\|_{L^{1}}^{p} \frac{2^{n(p-1)}-1}{p-1}
$$

Therefore,

$$
\begin{equation*}
\|x\|_{C(p)} \approx\|x\|_{L^{1}} 2^{n(1-1 / p)}, \quad n=1,2, \ldots, \tag{25}
\end{equation*}
$$

with constants which depend only on $p$. We consider the orthogonal projector

$$
\begin{equation*}
T x(t):=\sum_{k=1}^{\infty} 2^{k+1} \int_{2^{-k-1}}^{2^{-k}} x(s) d s \chi_{\left[2^{-k-1}, 2^{-k}\right]}(t) \tag{26}
\end{equation*}
$$

and prove that it is bounded in $\mathrm{Ces}_{p}$.
For arbitrary $x \in \operatorname{Ces}_{p}, x \geqslant 0$ we set $x_{k}=x \chi_{\left[2^{-k-1}, 2^{-k}\right]}(k=1,2, \ldots)$. Since

$$
T x_{k}=\left\|x_{k}\right\|_{L^{1}} 2^{k+1} \chi_{\left[2^{-k-1}, 2^{-k}\right]},
$$

then (23) and (25) imply that

$$
\left\|T x_{k}\right\|_{C(p)}=\left\|x_{k}\right\|_{L^{1}} 2^{k+1}\left\|f_{k}\right\|_{C(p)} \leqslant B\left\|x_{k}\right\|_{L^{1}} 2^{k+1} 2^{-k / p} \leqslant C\left\|x_{k}\right\|_{C(p)} .
$$

Therefore, by (24) and Theorem 4, we have that

$$
\begin{aligned}
\|T x\|_{C(p)} & \leqslant C^{\prime}\left(\sum_{k=1}^{\infty}\left\|T x_{k}\right\|_{C(p)}^{p}\right)^{1 / p} \leqslant C^{\prime} C\left(\sum_{k=1}^{\infty}\left\|x_{k}\right\|_{C(p)}^{p}\right)^{1 / p} \\
& \leqslant C^{\prime} C \sum_{k=1}^{\infty} x_{k}\left\|_{C(p)}=C^{\prime} C\right\| x \|_{C(p)}
\end{aligned}
$$

and the proof of the boundedness of $T$ in $\operatorname{Ces}_{p}$ is complete. Since the image of $T$ coincides with $\left[x_{n}\right]_{\operatorname{Ces}_{p}}$, then Theorem 6 is proved.

The above theorem shows that the Cesàro function spaces $\operatorname{Ces}_{p}[0,1]$ behave "near zero" similar to the $l^{p}$ spaces. The authors proved in [4] that "in the middle" Cesàro function spaces $\operatorname{Ces}_{p}(I)$ contain an asymptotically isometric copy of $l^{1}$, that is, there exist a sequence $\left\{\varepsilon_{n}\right\} \subset(0,1), \varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ and a sequence of functions $\left\{f_{n}\right\} \subset \operatorname{Ces}_{p}[0,1]$ such that, for arbitrary $\left\{\alpha_{n}\right\} \in l^{1}$, we have that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(1-\varepsilon_{n}\right)\left|\alpha_{n}\right| \leqslant\left\|\sum_{n=1}^{\infty} \alpha_{n} f_{n}\right\|_{C(p)} \leqslant \sum_{n=1}^{\infty}\left|\alpha_{n}\right| . \tag{27}
\end{equation*}
$$

Consequently, these spaces are not reflexive and do not have the fixed point property. This is a big difference with the Cesàro sequence spaces $\operatorname{ces}_{p}$, which for $1<p<\infty$ are reflexive and have the fixed point property.

Let us recall that a Banach space $X$ has the Dunford-Pettis property if $x_{n} \rightarrow 0$ weakly in $X$ and $f_{n} \rightarrow 0$ weakly in the dual space $X^{*}$ imply $f_{n}\left(x_{n}\right) \rightarrow 0$. The classical examples of Banach spaces with the Dunford-Pettis property are the AL-spaces and AM-spaces. It is clear that if $X^{*}$ has the Dunford-Pettis property, then $X$ has itself this property (cf. [2, pp. 334-336]). Of course, the Cesàro sequence spaces $\operatorname{ces}_{p}, 1<p<\infty$, as reflexive spaces do not have the Dunford-Pettis property.

Corollary 1. If $1<p<\infty$, then $\operatorname{Ces}_{p}(I)$ do not have the Dunford-Pettis property.
Proof. By Theorem 6, $\operatorname{Ces}_{p}(I)$ contains a complemented copy of $l^{p}$ and $l^{p}$ do not have the Dunford-Pettis property. On the other hand, it is easy to show that, if a Banach space has the Dunford-Pettis property, then its complemented subspace has also the Dunford-Pettis property (cf. Wnuk [58, Lemma 1(i)] or [23, Proposition 11.37]). Thus, $\operatorname{Ces}_{p}(I)$ do not have the Dunford-Pettis property.

As it was mentioned before the Cesàro sequence spaces ces $p$ are not isomorphic to the $l^{q}$ space for any $1 \leqslant q \leqslant \infty$. An analogous theorem is true for Cesàro function spaces.

Theorem 7. If $1<p \leqslant \infty$, then $\operatorname{Ces}_{p}(I)$ are not isomorphic to any $L^{q}(I)$ space for any $1 \leqslant q \leqslant \infty$.

Proof. If $1<q<\infty$, then $\operatorname{Ces}_{p}(I)$ has trivial type but $L^{q}(I)$ has type $\min (q, 2)>1$ and therefore they cannot be isomorphic. The space $\operatorname{Ces}_{p}(I)$ for $1<p<\infty$ is not isomorphic to $L^{1}(I)$ since $L^{1}(I)$ has the Dunford-Pettis property but $\operatorname{Ces}_{p}(I)$, as we have seen in Corollary 1, do not have the Dunford-Pettis property. Also Ces $p_{p}(I)$ for $1<p<\infty$ is not isomorphic to $L^{\infty}(I)$ since the first space is separable and the second one is non-separable.

It only remains to show that $\operatorname{Ces}_{\infty}(I)$ is not isomorphic to $L^{\infty}(I)$. Since, by Pełczyński theorem $L^{\infty}(I)$ is isomorphic to $\ell^{\infty}$ (cf. Albiac and Kalton [1, Theorem 4.3.10]), therefore it is enough to show that $\operatorname{Ces}_{\infty}(I)$ is not isomorphic to $\ell^{\infty}$.

We show this for $K=\operatorname{Ces}_{\infty}[0,1]$ since for the case of $\operatorname{Ces}_{\infty}(0, \infty)$ the proof is similar. For fixed $a \in(0,1)$ define a continuous projection $P: K \rightarrow K$ by $P f=$ $f \chi_{[a, 1]}$. Then

$$
\begin{aligned}
\int_{a}^{1}|P f(t)| d t & \leqslant \int_{0}^{1}|P f(t)| d t \leqslant\|P f\|_{K}=\sup _{0<x \leqslant 1} \frac{1}{x} \int_{0}^{x}\left|f(t) \chi_{[a, 1]}(t)\right| d t \\
& =\sup _{a \leqslant x \leqslant 1} \frac{1}{x} \int_{a}^{x}\left|f(t) \chi_{[a, 1]}(t)\right| d t \leqslant \frac{1}{a} \int_{a}^{1}|P f(t)| d t
\end{aligned}
$$

Hence, $P(K)$ is isomorphic to $L^{1}[a, 1]$, i.e., $K$ contains a complemented copy of a separable space while no separable subspace of $\ell^{\infty}$ is complemented in $\ell^{\infty}$ because $\ell^{\infty}$ is prime, that is, every infinite dimensional complemented subspace of $\ell^{\infty}$ is isomorphic to $\ell^{\infty}$ (see Lindenstrauss and Tzafriri [37, Theorem 2.a.7], or Albiac and Kalton [1, Theorem 5.6.5]). Therefore, $K$ and $\ell^{\infty}$ are not isomorphic.

## 7. ON THE WEAK BANACH-SAKS PROPERTY OF THE CESÀRO FUNCTION SPACES

Let us recall that a Banach space $X$ is said to have the weak Banach-Saks property if every weakly null sequence in $X$, say $\left(x_{n}\right)$, contains a subsequence $\left(x_{n_{k}}\right)$ whose first arithmetical means converge strongly to zero, that is,

$$
\lim _{m \rightarrow \infty} \frac{1}{m}\left\|\sum_{k=1}^{m} x_{n_{k}}\right\|=0
$$

It is known that uniformly convex spaces, $c_{0}, l^{1}$ and $L^{1}$ have the weak BanachSaks property, whereas $C[0,1]$ and $l^{\infty}$ do not have. We should mention that the result on $L^{1}$ space, proved by Szlenk [55] in 1965, was a very important breakthrough in studying of the weak Banach-Saks property.

In 1982, Rakov [48, Theorem 1] proved that a Banach space with non-trivial type (or equivalently $B$-convex) has the weak Banach-Saks property (cf. also [57, Theorem 1]). Recently Dodds, Semenov and Sukochev [19] investigated the weak Banach-Saks property of rearrangement invariant spaces and Astashkin and Sukochev [6] have got a complete description of Marcinkiewicz spaces with the latter property.

The spaces $\operatorname{Ces}_{p}[0,1]$ for $1 \leqslant p<\infty$ are neither $B$-convex (they have trivial type) nor rearrangement invariant. Nevertheless, we will prove that $\mathrm{Ces}_{p}$ for all $1 \leqslant p<\infty$ have the weak Banach-Saks property.

Theorem 8. If $1 \leqslant p<\infty$, then the Cesàro function space $\operatorname{Ces}_{p}[0,1]$ has the weak Banach-Saks property.

We begin with some auxiliary notation and results.
If $I=[a, b]$ and $J=[c, d]$ are two closed intervals, then we write $I<J$ if $b \leqslant c$. Let $\left\{I_{n}\right\}_{n=1}^{\infty}$ be a sequence of closed intervals $I_{n}=\left[a_{n}, b_{n}\right] \subset[0,1]$. Then $I_{n} \rightarrow 0$ means that $I_{1}>I_{2}>\cdots$ and $b_{n} \rightarrow 0^{+}$. Analogously, $I_{n} \rightarrow 1$ means that $I_{1}<I_{2}<$ $\cdots$ and $a_{n} \rightarrow 1^{-}$. Moreover, in what follows supp $f=\{t: f(t) \neq 0\}$.

Lemma 1 (Weakly null sequences in $\operatorname{Ces}_{p}[0,1], 1<p<\infty$ ). Let $\left\{x_{n}\right\}_{n=1}^{\infty} \subset$ $\operatorname{Ces}_{p}$. Then $x_{n} \xrightarrow{w} 0$ in $\operatorname{Ces}_{p}$ if and only if
(a) there exists a constant $M>0$ such that $\left\|x_{n}\right\|_{C(p)} \leqslant M$ for all $n=1,2, \ldots$,
and
(b) for every set $A \subset[0,1]$ such that $A \subset[h, 1-h]$ for some $h \in\left(0, \frac{1}{2}\right)$ we have $\int_{A} x_{n}(t) d t \rightarrow 0$ as $n \rightarrow \infty$.

Proof. It is enough to check that the set of all functions of the form

$$
\begin{equation*}
a(t)=\sum_{k=1}^{n} a_{k} \chi_{A_{k}}(t), \tag{28}
\end{equation*}
$$

where $n \in \mathbb{N}, a_{k} \in \mathbb{R}$ and $A_{k} \subset[0,1]$ are pairwise disjoint sets such that $A_{k} \subset[h, 1-$ $h]$ for some $h \in\left(0, \frac{1}{2}\right)$, is dense in the space $U\left(p^{\prime}\right)=\left(\operatorname{Ces}_{p}\right)^{*}=\left(\operatorname{Ces}_{p}\right)^{\prime}, p^{\prime}=\frac{p}{p-1}$, with the norm

$$
\|y\|_{U\left(p^{\prime}\right)}=\left(\int_{0}^{1}\left(\frac{\tilde{y}(t)}{1-t}\right)^{p^{\prime}} d t\right)^{1 / p^{\prime}}, \quad \tilde{y}(t)=\operatorname{ess} \sup _{s \in[t, 1]}|y(s)| .
$$

Let $y \in U\left(p^{\prime}\right)$ and $\varepsilon>0$. Note that $\tilde{y}\left(1^{-}\right)=\lim _{t \rightarrow 1^{-}} \tilde{y}(t)=0$. In fact, if $\tilde{y}(t) \geqslant$ $c>0(0<t<1)$, then since $p^{\prime}>1$ we have that $\|y\|_{U\left(p^{\prime}\right)}^{p^{\prime}} \geqslant c \int_{0}^{1} \frac{1}{(1-t)^{p^{\prime}}} d t=\infty$. Therefore, we may choose $\delta \in(0,1)$ and $h \in(0, \delta)$ so that

$$
\begin{equation*}
\max \left(\int_{0}^{\delta}\left(\frac{\tilde{y}(t)}{1-t}\right)^{p^{\prime}} d t, \int_{1-\delta}^{1}\left(\frac{\tilde{y}(t)}{1-t}\right)^{p^{\prime}} d t\right) \leqslant \varepsilon^{p^{\prime}} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{y}(1-h) \leqslant \varepsilon \cdot\left(\frac{p^{\prime}-1}{\delta^{1-p^{\prime}}-1}\right)^{1 / p^{\prime}} \tag{30}
\end{equation*}
$$

Since $y \in U\left(p^{\prime}\right)$, then $\tilde{y}(t)$ is finite for every $t \in(0,1)$ which implies that $y(t)$ is a bounded measurable function on the interval $[h, 1-h]$. Therefore, there exists a function $a(t)$ of the form (28) such that supp $a \subset[h, 1-h]$ and

$$
\begin{equation*}
\left\|(y-a) \chi_{[h, 1-h]}\right\|_{L^{\infty}} \leqslant \varepsilon \cdot\left(\frac{p^{\prime}-1}{h^{1-p^{\prime}}-1}\right)^{1 / p^{\prime}} \tag{31}
\end{equation*}
$$

By the triangle inequality we have that

$$
\begin{align*}
& \|y-a\|_{U\left(p^{\prime}\right)} \\
& \quad \leqslant\left\|y \chi_{[0, h]}\right\|_{U\left(p^{\prime}\right)}+\left\|(y-a) \chi_{[h, 1-h]}\right\|_{U\left(p^{\prime}\right)}+\left\|y \chi_{[1-h, 1]}\right\|_{U\left(p^{\prime}\right)}, \tag{32}
\end{align*}
$$

and let us estimate each of the three terms separately. At first, since $0<h<\delta$, then, by (29),

$$
\begin{equation*}
\left\|y \chi_{[0, h]}\right\|_{U\left(p^{\prime}\right)}^{p^{\prime}} \leqslant \int_{0}^{\delta}\left(\frac{\tilde{y}(t)}{1-t}\right)^{p^{\prime}} d t \leqslant \varepsilon^{p^{\prime}} \tag{33}
\end{equation*}
$$

Next, (31) implies

$$
\begin{equation*}
\left\|(y-a) \chi_{[h, 1-h]}\right\|_{U\left(p^{\prime}\right)}^{p^{\prime}} \leqslant \int_{0}^{1-h} \frac{d t}{(1-t)^{p^{\prime}}} \cdot \varepsilon^{p^{\prime}} \cdot\left(\frac{p^{\prime}-1}{h^{1-p^{\prime}}-1}\right)=\varepsilon^{p^{\prime}} \tag{34}
\end{equation*}
$$

Finally, (30) and (29) imply that

$$
\begin{equation*}
\left\|y \chi_{[1-h, 1]}\right\|_{U\left(p^{\prime}\right)}^{p^{\prime}} \leqslant \int_{0}^{1-\delta}\left(\frac{\tilde{y}(1-h)}{1-t}\right)^{p^{\prime}} d t+\int_{1-\delta}^{1}\left(\frac{\tilde{y}(t)}{1-t}\right)^{p^{\prime}} d t \leqslant 2 \varepsilon^{p^{\prime}} \tag{35}
\end{equation*}
$$

Thus, by (32)-(35), we have that $\|y-a\|_{U\left(p^{\prime}\right)} \leqslant 4^{1 / p^{\prime}} \varepsilon$, and the proof is complete.

Corollary 2. Let $\left\{I_{n}\right\}_{n=1}^{\infty}$ be a sequence of intervals from $[0,1]$ such that either $I_{n} \rightarrow 0$ or $I_{n} \rightarrow 1$. Then, for every $p \in(1, \infty)$, we have $\frac{\chi_{I_{n}}}{\left\|\chi_{I_{n}}\right\|_{C(p)}} \xrightarrow{w} 0$ in $\operatorname{Ces}_{p}[0,1]$.

Following Kadec and Pełczyński [27] (see also [46] and [47]) we will use the following notation: Let $X$ be a Banach function lattice on [0,1]. For every $x \in X$ and $\alpha \in(0,1]$ we set

$$
\eta(x, \alpha)=\sup _{A \subset[0,1], m(A)=\alpha}\left\|x \chi_{A}\right\|_{X} .
$$

Moreover, if $K \subset X$, then

$$
\eta(K, \alpha)=\sup _{x \in K} \eta(x, \alpha), \eta\left(K, 0^{+}\right)=\lim _{\alpha \rightarrow 0^{+}} \eta(K, \alpha) .
$$

Lemma 2. If a Banach function lattice $X$ on $[0,1]$ satisfies a lower p-estimate $(1 \leqslant p<\infty)$ with constant one, then for any disjointly supported $x, y \in X$ and $\alpha>0, \beta>0$ we have that

$$
\eta(x+y, \alpha+\beta)^{p} \geqslant \eta(x, \alpha)^{p}+\eta(y, \beta)^{p} .
$$

Proof. For any $\varepsilon>0$ choose the sets $A$ and $B$ from [0,1] such that $A \subset \operatorname{supp} x, B \subset$ $\operatorname{supp} y, m(A) \leqslant \alpha, m(B) \leqslant \beta$, and

$$
\left\|x \chi_{A}\right\|_{X}^{p} \geqslant \eta(x, \alpha)^{p}-\varepsilon, \quad\left\|y \chi_{B}\right\|_{X}^{p} \geqslant \eta(y, \beta)^{p}-\varepsilon .
$$

Since $m(A \cup B) \leqslant \alpha+\beta$ and $X$ satisfies a lower $p$-estimate with constant one it follows that

$$
\begin{aligned}
\eta(x+y, \alpha+\beta) & \geqslant\left\|(x+y) \chi_{A \cup B}\right\|_{X}=\left\|x \chi_{A}+y \chi_{B}\right\|_{X} \\
& \geqslant\left(\left\|x \chi_{A}\right\|_{X}^{p}+\left\|y \chi_{B}\right\|_{X}^{p}\right)^{1 / p} \\
& \geqslant\left(\eta(x, \alpha)^{p}+\eta(y, \beta)^{p}-2 \varepsilon\right)^{1 / p}
\end{aligned}
$$

and the proof of the lemma follows by letting $\varepsilon \rightarrow 0^{+}$.
Let $X$ be a Banach function lattice on $[0,1]$ and a set $K \subset X$. We say that $K$ consists of elements having equicontinuous norms in $X$ if

$$
\lim _{A \subset[0,1], m(A) \rightarrow 0} \sup _{x \in K}\left\|x \chi_{A}\right\|_{X}=0
$$

An important tool in the proof of Theorem 8 will be the following assertion:
Proposition 7 (Subsequence splitting property). Let $1<p<\infty,\left\{x_{n}\right\}_{n=1}^{\infty} \subset$ $\operatorname{Ces}_{p}[0,1],\left\|x_{n}\right\|_{C(p)}=1$ and $x_{n} \xrightarrow{w} 0$ in $\operatorname{Ces}_{p}[0,1]$. Then there exists a subsequence $\left\{x_{n}^{\prime}\right\} \subset\left\{x_{n}\right\}$ such that

$$
x_{n}^{\prime}=y_{n}+z_{n}, \quad n=1,2, \ldots,
$$

where $\left\{y_{n}\right\}_{n=1}^{\infty}$ consists of elements having equicontinuous norms in $\operatorname{Ces}_{p}$ and $\operatorname{supp} z_{n} \subset I_{n}^{\prime} \cup I_{n}^{\prime \prime}$ with $\left\{I_{n}^{\prime}, I_{n}^{\prime \prime}\right\}_{n=1}^{\infty}$ being a sequence of pairwise disjoint intervals from $[0,1]$ such that $I_{n}^{\prime} \rightarrow 0, I_{n}^{\prime \prime} \rightarrow 1$. Moreover, $y_{n} \xrightarrow{w} 0, z_{n} \xrightarrow{w} 0$ in $\operatorname{Ces}_{p}$.

Proof. We set $\eta_{0}=\eta\left(\left\{x_{n}\right\}, 0^{+}\right)$. If $\eta_{0}=0$, then the sequence $\left\{x_{n}\right\}$ consists of elements with equicontinuous norms in $\mathrm{Ces}_{p}$ and we have nothing to prove. Therefore, assume that $\eta_{0}>0$. By the definition of $\eta_{0}$, there exists a sequence of sets $A_{n} \subset[0,1], m\left(A_{n}\right)=\alpha_{n} \rightarrow 0$ and a subsequence of $\left\{x_{n}\right\}$ (which will be denoted also by $\left.\left\{x_{n}\right\}\right)$ such that for all $n \in \mathbb{N}$

$$
\begin{equation*}
\left\|x_{n} \chi_{A_{n}}\right\|_{C(p)} \geqslant \eta_{0}-\frac{1}{n} \tag{36}
\end{equation*}
$$

Let us denote

$$
\begin{equation*}
u_{n}=x_{n} \chi_{A_{n}} \quad \text { and } \quad v_{n}=x_{n}-u_{n} . \tag{37}
\end{equation*}
$$

Since $\mathrm{Ces}_{p}[0,1]$ is $p$-concave with constant one, then, by Lemma 2, it yields that

$$
\eta\left(v_{n}, \alpha\right)^{p} \leqslant \eta\left(x_{n}, \alpha+\alpha_{n}\right)^{p}-\eta\left(u_{n}, \alpha_{n}\right)^{p} \leqslant \eta\left(x_{n}, \alpha+\alpha_{n}\right)^{p}-\left(\eta_{0}-\frac{1}{n}\right)^{p} .
$$

Hence, for $0<\alpha \leqslant 1 / 2$ we have that

$$
\lim \sup _{n \rightarrow \infty} \eta\left(v_{n}, \alpha\right)^{p} \leqslant \eta\left(\left\{x_{n}\right\}, 2 \alpha\right)^{p}-\eta_{0}^{p}
$$

Since $\mathrm{Ces}_{p}$ is a separable space the last inequality implies that

$$
\begin{equation*}
\eta\left(\left\{v_{n}\right\}, 0^{+}\right)=0, \tag{38}
\end{equation*}
$$

that is, $\left\{v_{n}\right\}$ consists of elements with equicontinuous norms in $\operatorname{Ces}_{p}$.
According to Lemma 1, for every $h \in\left(0, \frac{1}{2}\right)$,

$$
\begin{equation*}
x_{n} \chi_{[h, 1-h]} \xrightarrow{w} 0 \quad \text { in } \operatorname{Ces}_{p} . \tag{39}
\end{equation*}
$$

Therefore, since $\operatorname{Ces}_{p}[0,1]_{[h, 1-h]}=L^{1}[h, 1-h]$ with equivalent norms (see [4, Lemma 1]) we have that $x_{n} \chi_{[h, 1-h]} \xrightarrow{w} 0$ in $L^{1}$. Moreover, since $\eta\left(\left\{v_{n}\right\}, 0^{+}\right)=0$ it follows that

$$
\eta_{L^{1}}\left(\left\{v_{n} \chi_{[h, 1-h]}\right\}, 0^{+}\right)=0
$$

(where $\eta_{L^{1}}$ is calculated in the space $L^{1}$ ) and

$$
\left\|v_{n} \chi_{[h, 1-h]}\right\|_{L^{1}} \leqslant C\left\|v_{n} \chi_{[h, 1-h]}\right\|_{C(p)} \leqslant C
$$

Thus, by the classical Dunford-Pettis criterion (see, for example, [22, Theorem 4.21.2] or [1, Theorem 5.2.9]), the sequence $\left\{v_{n} \chi_{[h, 1-h]}\right\}_{n=1}^{\infty}$ is a relatively weakly compact subset of $L^{1}$ and, hence, simultaneously in $\mathrm{Ces}_{p}$. Therefore, there is a subsequence $\left\{v_{n_{k}}\right\} \subset\left\{v_{n}\right\}$ such that $v_{n_{k}} \chi_{[h, 1-h]} \xrightarrow{w} v$, where $v \in \operatorname{Ces}_{p}$. By combining the last mentioned facts with (39) and with the equality $x_{n}=u_{n}+v_{n}$, we get that $u_{n_{k}} \chi_{[h, 1-h]} \xrightarrow{w}-v$ in Ces ${ }_{p}$, and, hence, in $L^{1}$. Taking into account the definition of $u_{n}$ (see (36) and (37)) and using again the Dunford-Pettis criterion we conclude that for every $h \in(0,1 / 2)$ there exists a subsequence $\left\{u_{n_{k}}\right\} \subset\left\{u_{n}\right\}$ (depending on $h$ ) such that

$$
\left\|u_{n_{k}} \chi_{[h, 1-h]}\right\|_{C(p)} \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

Since $\mathrm{Ces}_{p}$ is a separable space, then by a standard procedure, we may choose a subsequence of $\left\{u_{n_{k}}\right\}$ (denote it again by $\left\{u_{n_{k}}\right\}$ ) and pairwise disjoint intervals $\left\{I_{k}^{\prime}, I_{k}^{\prime \prime}\right\}_{k \in \mathbb{N}}, I_{k}^{\prime} \rightarrow 0, I_{k}^{\prime \prime} \rightarrow 1$ such that

$$
\begin{equation*}
\left\|u_{n_{k}} \chi_{[0,1] \backslash\left(I_{k}^{\prime} \cup I_{k}^{\prime \prime}\right)}\right\|_{C(p)} \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{40}
\end{equation*}
$$

Setting $x_{k}^{\prime}=y_{k}+z_{k}$, with

$$
y_{k}=v_{n_{k}}+u_{n_{k}} \chi_{[0,1] \backslash\left(I_{k}^{\prime} \cup I_{k}^{\prime \prime}\right)}, \quad z_{k}=u_{n_{k}} \chi_{I_{k}^{\prime} \cup I_{k}^{\prime \prime}},
$$

we see that, by (38) and (40), this representation satisfies all conditions. In particular, according to Lemma 1 , we have that $z_{k} \xrightarrow{w} 0$ and $y_{k} \xrightarrow{w} 0$. The proof is complete.

Now, we may proceed with the proof of Theorem 8.
Proof of Theorem 8. Since $\operatorname{Ces}_{1}[0,1]=L^{1}(\ln 1 / t)$ (with equality of norms) and $L^{1}(\ln 1 / t)$ is isometric to $L^{1}$, then in the case $p=1$ the result follows from the Szlenk theorem [55]. Therefore, we will consider the case when $1<p<\infty$. Taking into account Proposition 7 it is enough to prove the following: if $\left\{x_{n}\right\} \subset \operatorname{Ces}_{p}, x_{n} \xrightarrow{w}$ 0 and either
(a) $\left\{x_{n}\right\}$ consists of elements with equicontinuous norms
or
(b) $\operatorname{supp} x_{n} \subset I_{n}$, where $I_{n} \rightarrow 1$
or
(c) $\operatorname{supp} x_{n} \subset I_{n}$, where $I_{n} \rightarrow 0$,
then there is a subsequence $\left\{x_{n}^{\prime}\right\} \subset\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\frac{1}{m}\left\|\sum_{k=1}^{m} x_{k}^{\prime}\right\|_{C(p)} \rightarrow 0 \quad \text { as } m \rightarrow \infty \tag{41}
\end{equation*}
$$

Case (a). We will use the following remark from Szlenk paper [55, Remark 1]: a sequence $\left\{x_{n}\right\} \subset X, x_{n} \xrightarrow{w} 0$ in $X$ ( $X$ is a Banach space) contains a subsequence $\left\{x_{n}^{\prime}\right\}$ such that $\frac{1}{m}\left\|\sum_{k=1}^{m} x_{k}^{\prime}\right\|_{X} \rightarrow 0$ as $m \rightarrow \infty$ if and only if it contains a subsequence $\left\{x_{n_{k}}\right\}$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup _{k_{1}<\cdots<k_{m}}\left\|\frac{1}{m} \sum_{i=1}^{m} x_{n_{k_{i}}}\right\|_{X}=0 . \tag{42}
\end{equation*}
$$

Let $\left\{x_{n}\right\} \subset \operatorname{Ces}_{p}, x_{n} \xrightarrow{w} 0$ and $\varepsilon>0$. At first, setting

$$
A_{n, m}=\left\{t \in[0,1]:\left|x_{n}(t)\right| \geqslant m\right\}, \quad m, n=1,2, \ldots,
$$

we prove that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup _{n \in \mathbb{N}} m\left(A_{n, m}\right)=0 \tag{43}
\end{equation*}
$$

We may assume that $\left\|x_{n}\right\|_{C(p)}=1(n=1,2, \ldots)$. Therefore,

$$
\begin{aligned}
1 & =\left\|x_{n}\right\|_{C(p)} \geqslant\left\|x_{n}\right\|_{C(1)}=\left\|x_{n}\right\|_{L^{1}(\ln 1 / t)}=\int_{0}^{1}\left|x_{n}(t)\right| \ln \frac{1}{t} d t \\
& \geqslant \int_{A_{n, m}}\left|x_{n}(t)\right| \ln \frac{1}{t} d t \geqslant m \int_{A_{n, m}} \ln \frac{1}{t} d t
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\int_{A_{n, m}} \ln \frac{1}{t} d t \leqslant \frac{1}{m} \quad \text { for all } n, m \in \mathbb{N} \tag{44}
\end{equation*}
$$

Assume that (43) does not hold, that is, there exists a $\delta>0$ such that for every $m \in \mathbb{N}$ there is $n_{m} \in \mathbb{N}$ such that $m\left(A_{n_{m}, m}\right)>\delta$. Clearly, we may assume that $n_{m} \rightarrow \infty$ as $m \rightarrow \infty$. Since

$$
m\left(A_{n_{m}, m} \cap\left[0,1-\frac{\delta}{2}\right]\right)>\frac{\delta}{2},
$$

then we have that, for any $m \in \mathbb{N}$,

$$
\begin{aligned}
\int_{A_{n_{m}, m}} \ln \frac{1}{t} d t & \geqslant \int_{A_{n_{m}, m} \cap\left[0,1-\frac{\delta}{2}\right]} \ln \frac{1}{t} d t \\
& \geqslant \ln \frac{2}{2-\delta} m\left(A_{n_{m}, m} \cap\left[0,1-\frac{\delta}{2}\right]\right)>\frac{\delta}{2} \ln \frac{2}{2-\delta} .
\end{aligned}
$$

The last inequality contradicts (44) and, therefore, (43) is proved.

We recall that $\left\{x_{n}\right\}$ consists of functions having equicontinuous norms. Hence, by (43), for some $m_{0}$ and all $n \in \mathbb{N}$,

$$
\begin{equation*}
\left\|x_{n} \chi_{A_{n, m_{0}}}\right\|_{C(p)}<\frac{\varepsilon}{3} \tag{45}
\end{equation*}
$$

Denote $y_{n}=x_{n} \chi_{A_{n, m_{0}}}(n=1,2, \ldots)$. Then $\left|x_{n}(t)-y_{n}(t)\right| \leqslant m_{0}$ for $t \in[0,1]$, so that, in particular, $x_{n}-y_{n} \in L^{p}$ and $\left\|x_{n}-y_{n}\right\|_{L^{p}} \leqslant m_{0}$. Since $L^{p}$ is a reflexive space for $1<p<\infty$ and since $L^{p}$ has the Banach-Saks property (cf. [7, Chapter XII, Theorem 2]), we may choose an increasing sequence of natural numbers $\left\{n_{k}\right\}_{k=1}^{\infty}$ such that $x_{n_{k}}-y_{n_{k}} \xrightarrow{w} v$ in $L^{p}$, where $v \in L^{p}$, and (see (42))

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup _{k_{1}<\cdots<k_{m}}\left\|\frac{1}{m} \sum_{i=1}^{m}\left(x_{n_{k_{i}}}-y_{n_{k_{i}}}\right)-v\right\|_{L^{p}}=0 . \tag{46}
\end{equation*}
$$

Using the imbedding $L^{p} \subset \operatorname{Ces}_{p}$ (see Theorem 1(c)) we obtain that $x_{n_{k}}-y_{n_{k}} \xrightarrow{w} v$ in $\operatorname{Ces}_{p}$. Therefore, since $x_{n_{k}} \xrightarrow{w} 0$ in $\operatorname{Ces}_{p}$, we get that $y_{n_{k}} \xrightarrow{w}-v$ in $\operatorname{Ces}_{p}$. Moreover, from (45) it follows that $\left\|y_{n_{k}}\right\|_{C(p)}<\frac{\varepsilon}{3}$ so that $\|v\|_{C(p)} \leqslant \frac{\varepsilon}{3}$. At last, by Theorem 1(c) and (46), for large enough $m \in \mathbb{N}$,

$$
\begin{aligned}
& \sup _{k_{1}<\cdots<k_{m}}\left\|\frac{1}{m} \sum_{i=1}^{m}\left(x_{n_{k_{i}}}-y_{n_{k_{i}}}\right)-v\right\|_{C(p)} \\
& \quad \leqslant p^{\prime} \sup _{k_{1}<\cdots<k_{m}}\left\|\frac{1}{m} \sum_{i=1}^{m}\left(x_{n_{k_{i}}}-y_{n_{k_{i}}}\right)-v\right\|_{L^{p}} \leqslant \frac{\varepsilon}{3} .
\end{aligned}
$$

The last inequalities give us that

$$
\begin{aligned}
& \sup _{k_{1}<\cdots<k_{m}}\left\|\frac{1}{m} \sum_{i=1}^{m} x_{n_{k_{i}}}\right\|_{C(p)} \\
& \leqslant \sup _{k_{1}<\cdots<k_{m}}\left(\left\|\frac{1}{m} \sum_{i=1}^{m}\left(x_{n_{k_{i}}}-y_{n_{k_{i}}}\right)-v\right\|_{C(p)}\right. \\
& \left.\quad+\frac{1}{m}\left\|\sum_{i=1}^{m} y_{n_{k_{i}}}\right\|_{C(p)}+\|v\|_{C(p)}\right) \leqslant \varepsilon,
\end{aligned}
$$

if $m$ is large enough. Thus, $\left\{x_{n_{k}}\right\}$ satisfies condition (42) and in this case everything is proved.

Case (b). Let $\left\{x_{n}\right\} \subset \operatorname{Ces}_{p}, x_{n} \xrightarrow{w} 0, \operatorname{supp} x_{n} \subset I_{n}=\left[a_{n}, b_{n}\right](n=1,2, \ldots), I_{1}<$ $I_{2}<\cdots$ and $a_{n} \rightarrow 1^{-}$. We may suppose that $x_{n} \geqslant 0,\left\|x_{n}\right\|_{C(p)}=1$ and $a_{1} \geqslant 1 / 2$.

Since $p>1$, it is enough to show that $\left\{x_{n}\right\}$ contains a subsequence (for simplicity, it will be denoted also by $\left\{x_{n}\right\}$ ) such that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} x_{k}\right\|_{C(p)} \leqslant C n^{1 / p}, \tag{47}
\end{equation*}
$$

where $C>0$ is independent of $n \in \mathbb{N}$. We will choose $x_{n}$ inductively. Suppose that $m \geqslant 2$ and $x_{1}, x_{2}, \ldots, x_{m-1}$ are already chosen. Then $a_{1}<b_{1} \leqslant \cdots \leqslant a_{m-1}<$ $b_{m-1}<1$ are fixed and, since $a_{n} \rightarrow 1^{-}$, we may take $a_{m}$ so that

$$
\begin{equation*}
1-a_{m} \leqslant\left(1-b_{m-1}\right) \cdot 2^{-p} \tag{48}
\end{equation*}
$$

Then for $x_{m}$ we take the function corresponding to the interval $I_{m}=\left[a_{m}, b_{m}\right]$ (that is, supp $x_{m} \subset I_{m}$ ). Let's check that inequality (47) holds. For all $n \in \mathbb{N}$ and $t \in(0,1]$ we have that

$$
\begin{aligned}
\frac{1}{t} \int_{0}^{t}\left|\sum_{k=1}^{n} x_{k}(s)\right| d s= & \frac{1}{t} \sum_{m=1}^{n}\left(\sum_{i=1}^{m-1} \int_{a_{i}}^{b_{i}} x_{i}(s) d s+\int_{a_{m}}^{t} x_{m}(s) d s\right) \chi_{\left[a_{m}, b_{m}\right]}(t) \\
& +\frac{1}{t} \sum_{m=1}^{n} \sum_{i=1}^{m} \int_{a_{i}}^{b_{i}} x_{i}(s) d s \chi_{\left[b_{m}, a_{m+1}\right]}(t) \\
= & S_{1}(t)+S_{2}(t)+S_{3}(t),
\end{aligned}
$$

where $a_{n+1}=1$ and

$$
\begin{aligned}
& S_{1}(t)=\frac{1}{t} \sum_{m=2}^{n} \sum_{i=1}^{m-1} \int_{a_{i}}^{b_{i}} x_{i}(s) d s \chi_{\left[a_{m}, b_{m}\right]}(t), \\
& S_{2}(t)=\frac{1}{t} \sum_{m=1}^{n} \sum_{i=1}^{m} \int_{a_{i}}^{b_{i}} x_{i}(s) d s \chi_{\left[b_{m}, a_{m+1}\right]}(t), \\
& S_{3}(t)=\frac{1}{t} \sum_{m=1}^{n} \int_{a_{m}}^{t} x_{m}(s) d s \chi_{\left[a_{m}, b_{m}\right]}(t) .
\end{aligned}
$$

Since, by Theorem 3, $\left(\operatorname{Ces}_{p}[0,1]\right)^{*}=\left(\operatorname{Ces}_{p}[0,1]\right)^{\prime}=U\left(p^{\prime}\right)$ it follows that, for all $i \in \mathbb{N}$,

$$
\begin{aligned}
\int_{a_{i}}^{b_{i}} x_{i}(s) d s & \leqslant A\left\|x_{i}\right\|_{C(p)} \cdot\left\|\chi_{\left[a_{i}, b_{i}\right]}\right\|_{U\left(p^{\prime}\right)}=A\left(\int_{0}^{b_{i}} \frac{d t}{(1-t)^{p^{\prime}}}\right)^{1 / p^{\prime}} \\
& =A(p-1)^{1 / p^{\prime}}\left[\frac{1}{\left(1-b_{i}\right)^{p^{\prime}-1}}-1\right]^{1 / p^{\prime}} \leqslant \frac{B}{\left(1-b_{i}\right)^{1 / p}},
\end{aligned}
$$

where $B>0$ depends only on $p$. Moreover, by (48), for every $i=1,2, \ldots, m-1$,

$$
\left(\frac{1-a_{m}}{1-b_{i}}\right)^{1 / p} \leqslant \prod_{j=i}^{m-1}\left(\frac{1-a_{j+1}}{1-b_{j}}\right)^{1 / p} \leqslant 2^{i-m}
$$

Therefore,

$$
\begin{aligned}
\left\|S_{1}\right\|_{p}^{p} & =\sum_{m=2}^{n}\left(\sum_{i=1}^{m-1} \int_{a_{i}}^{b_{i}} x_{i}(s) d s\right)^{p} \int_{a_{m}}^{b_{m}} \frac{d t}{t^{p}} \\
& \leqslant B^{p} \sum_{m=2}^{n}\left(\sum_{i=1}^{m-1}\left(1-b_{i}\right)^{-1 / p}\right)^{p} \frac{b_{m}^{p-1}-a_{m}^{p-1}}{(p-1) a_{m}^{p-1} b_{m}^{p-1}} \\
& \leqslant C_{1}^{p} \sum_{m=2}^{n}\left(\sum_{i=1}^{m-1}\left(1-b_{i}\right)^{-1 / p}\right)^{p}\left(1-a_{m}\right) \\
& \leqslant C_{1}^{p} \sum_{m=2}^{n}\left(\sum_{i=1}^{m-1} 2^{i-m}\right)^{p} \leqslant C_{1}^{p} n
\end{aligned}
$$

so that $\left\|S_{1}\right\|_{p} \leqslant C_{1} n^{1 / p}$, where $C_{1}>0$ depends only on $p$. Similarly,

$$
\begin{aligned}
\left\|S_{2}\right\|_{p}^{p} & \leqslant B^{p} \sum_{m=1}^{n}\left(\sum_{i=1}^{m}\left(1-b_{i}\right)^{-1 / p}\right)^{p} \frac{a_{m+1}^{p-1}-b_{m}^{p-1}}{(p-1) a_{m+1}^{p-1} b_{m}^{p-1}} \\
& \leqslant C_{2}^{p} \sum_{m=1}^{n}\left(\sum_{i=1}^{m}\left(\frac{1-b_{m}}{1-b_{i}}\right)^{1 / p}\right)^{p} \\
& \leqslant C_{2}^{p} \sum_{m=1}^{n}\left(1+\sum_{i=1}^{m-1} 2^{i-m}\right)^{p} \leqslant\left(2 C_{2}\right)^{p} n
\end{aligned}
$$

which implies that $\left\|S_{2}\right\|_{p} \leqslant 2 C_{2} n^{1 / p}$, where $C_{2}>0$ depends only on $p$. Finally, it is easy to see that

$$
\left\|S_{3}\right\|_{p} \leqslant\left(\sum_{m=1}^{n}\left\|x_{m}\right\|_{C(p)}^{p}\right)^{1 / p}=n^{1 / p}
$$

Thus, combining the estimates of $S_{1}, S_{2}$ and $S_{3}$ we get

$$
\left\|\sum_{k=1}^{n} x_{k}\right\|_{C(p)} \leqslant \sum_{k=1}^{3}\left\|S_{k}\right\|_{p} \leqslant\left(1+C_{1}+2 C_{2}\right) \cdot n^{1 / p}
$$

where $C:=1+C_{1}+2 C_{2}$ is independent of $n \in \mathbb{N}$, that is, inequality (47) is proved.
Case (c). Let $\left\{x_{n}\right\} \subset \operatorname{Ces}_{p}, x_{n} \xrightarrow{w} 0, \operatorname{supp} x_{n} \subset I_{n}=\left[a_{n}, b_{n}\right](n=1,2, \ldots), I_{1}>$ $I_{2}>\cdots$ and $b_{n} \rightarrow 0^{+}$. Again we may assume that $x_{n} \geqslant 0,\left\|x_{n}\right\|_{C(p)}=1$ and $b_{1} \leqslant$ $1 / 2$. As in the case (b) it is enough to prove inequality (47) for some subsequence of $\left\{x_{n}\right\}$ (it will be denoted also by $\left\{x_{n}\right\}$ ), which will be chosen inductively.

Suppose that $m \geqslant 2$ and the functions $x_{1}, x_{2}, \ldots, x_{m-1}$ are chosen. Then $b_{1}>$ $a_{1} \geqslant \cdots \geqslant b_{m-1}>a_{m-1}>0$ are fixed and, since $b_{n} \rightarrow 0^{+}$, we may take $b_{m}$ so that

$$
\begin{equation*}
b_{m} \leqslant 2^{-p^{\prime}} a_{m-1} \tag{49}
\end{equation*}
$$

Let us show that the corresponding subsequence $\left\{x_{n}\right\}$ satisfies inequality (47). For any $n \in \mathbb{N}$ and $t \in(0,1]$ we have that

$$
\begin{aligned}
& \frac{1}{t} \int_{0}^{t}\left|\sum_{k=1}^{n} x_{k}(s)\right| d s \\
& \quad=\frac{1}{t} \sum_{j=1}^{n}\left(\sum_{i=n-j+2}^{n} \int_{a_{i}}^{b_{i}} x_{i}(s) d s+\int_{a_{n-j+1}}^{t} x_{n-j+1}(s) d s\right) \chi_{\left[a_{n-j+1}, b_{n-j+1]}\right]}(t) \\
& \quad+\frac{1}{t} \sum_{j=1}^{n} \sum_{i=n-j+1}^{n} \int_{a_{i}}^{b_{i}} x_{i}(s) d s \chi_{\left[b_{n-j+1}, a_{n-j}\right]}(t) \\
& \quad=T_{1}(t)+T_{2}(t)+T_{3}(t)
\end{aligned}
$$

where $a_{0}=1$ and

$$
\begin{aligned}
& \left.T_{1}(t)=\frac{1}{t} \sum_{j=2}^{n} \sum_{i=n-j+2}^{n} \int_{a_{i}}^{b_{i}} x_{i}(s)\right] d s \chi_{\left[a_{n-j+1}, b_{n-j+1}\right]}(t), \\
& T_{2}(t)=\frac{1}{t} \sum_{j=1}^{n} \sum_{i=n-j+1}^{n} \int_{a_{i}}^{b_{i}} x_{i}(s) d s \chi_{\left[b_{n-j+1}, a_{n-j}\right]}(t), \\
& T_{3}(t)=\frac{1}{t} \sum_{j=1}^{n} \int_{a_{n-j+1}}^{t} x_{n-j+1}(s) d s \chi_{\left[a_{n-j+1}, b_{n-j+1}\right]}(t) .
\end{aligned}
$$

Using again the duality result, as in the proof of (b), we find that

$$
\begin{aligned}
\int_{a_{i}}^{b_{i}} x_{i}(s) d s & \leqslant A\left\|x_{i}\right\|_{C(p)} \cdot\left\|\chi_{\left[a_{i}, b_{i}\right]}\right\|_{U\left(p^{\prime}\right)} \\
& =A(p-1)^{1 / p^{\prime}}\left[\frac{1-\left(1-b_{i}\right)^{p^{\prime}-1}}{\left(1-b_{i}\right)^{p^{\prime}-1}}\right]^{1 / p^{\prime}} \\
& \leqslant B^{\prime} b_{i}^{1 / p^{\prime}} \quad(i=1,2, \ldots)
\end{aligned}
$$

where $B^{\prime}>0$ depends only on $p$. Since, by (49), for any $k<i$

$$
\left(\frac{b_{i}}{a_{k}}\right)^{1 / p^{\prime}} \leqslant \prod_{m=k}^{i}\left(\frac{b_{m}}{a_{m-1}}\right)^{1 / p^{\prime}} \leqslant 2^{k-i-1}
$$

then

$$
\begin{aligned}
\left\|T_{1}\right\|_{p}^{p} & =\sum_{j=2}^{n}\left(\sum_{i=n-j+2}^{n} \int_{a_{i}}^{b_{i}} x_{i}(s) d s\right)^{p} \int_{a_{n-j+1}}^{b_{n-j+1}} \frac{d t}{t^{p}} \\
& \leqslant\left(B^{\prime}\right)^{p} \sum_{j=2}^{n}\left(\sum_{i=n-j+2}^{n} b_{i}^{1 / p^{\prime}}\right)^{p} \frac{b_{n-j+1}^{p-1}-a_{n-j+1}^{p-1}}{(p-1) a_{n-j+1}^{p-1} b_{n-j+1}^{p-1}} \\
& \leqslant B_{1}^{p} \sum_{j=2}^{n}\left(\sum_{i=n-j+2}^{n} b_{i}^{1 / p^{\prime}}\right)^{p} a_{n-j+1}^{1-p} \\
& \leqslant B_{1}^{p} \sum_{j=2}^{n}\left(\sum_{i=n-j+2}^{n} 2^{n-i-j+1}\right)^{p} \leqslant B_{1} n
\end{aligned}
$$

so that $\left\|T_{1}\right\|_{p} \leqslant B_{1} n^{1 / p}$, where $B_{1}>0$ depends only on $p$. Similarly,

$$
\begin{aligned}
\left\|T_{2}\right\|_{p}^{p} & \leqslant\left(B^{\prime}\right)^{p} \sum_{j=1}^{n}\left(\sum_{i=n-j+1}^{n} b_{i}^{1 / p^{\prime}}\right)^{p} \frac{a_{n-j}^{p-1}-b_{n-j+1}^{p-1}}{(p-1) a_{n-j}^{p-1} b_{n-j+1}^{p-1}} \\
& \leqslant B_{2}^{p} \sum_{j=1}^{n}\left(\sum_{i=n-j+1}^{n}\left(\frac{b_{i}}{b_{n-j+1}}\right)^{1 / p^{\prime}}\right)^{p} \\
& \leqslant B_{2}^{p} \sum_{j=1}^{n}\left(1+\sum_{i=n-j+2}^{n} 2^{n-i-j+1}\right)^{p} \leqslant\left(2 B_{2}\right)^{p} n .
\end{aligned}
$$

Hence, $\left\|T_{2}\right\|_{p} \leqslant 2 B_{2} n^{1 / p}$, where $B_{2}>0$ depends only on $p$. Moreover, it is clear that

$$
\left\|T_{3}\right\|_{p} \leqslant\left(\sum_{j=1}^{n}\left\|x_{j}\right\|_{C(p)}^{p}\right)^{1 / p}=n^{1 / p}
$$

Thus, combining the estimates of $T_{1}, T_{2}$ and $T_{3}$ we get that

$$
\left\|\sum_{k=1}^{n} x_{k}\right\|_{C(p)} \leqslant \sum_{k=1}^{3}\left\|T_{k}\right\|_{p} \leqslant\left(1+B_{1}+2 B_{2}\right) \cdot n^{1 / p}
$$

where $B:=1+B_{1}+2 B_{2}$ is independent of $n \in \mathbb{N}$. Since all cases (a)-(c) are examined, the theorem is proved.
8. THE CESÀRO FUNCTION SPACES $\operatorname{Ces}_{p}[0, \infty)$ AND $\operatorname{Ces}_{p}[0,1]$ ARE ISOMORPHIC FOR
$1<p \leqslant \infty$

The main result in this Section is a construction of an isomorphism between the Cesàro function spaces $\operatorname{Ces}_{p}[0, \infty)$ and $\operatorname{Ces}_{p}[0,1]$ for $1<p \leqslant \infty$.

Theorem 9. If $1<p \leqslant \infty$, then the Cesàro function spaces $\operatorname{Ces}_{p}[0,1]$ and $\mathrm{Ces}_{p}[0, \infty)$ are isomorphic.

Proof. The proof will go in two parts. Let $1<p<\infty$. Sy, Zhang and Lee proved in [54] that the norm in $\operatorname{Ces}_{p}[0, \infty)$ is equivalent to the functional

$$
\begin{equation*}
\|f\|_{0}=\left[\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} s_{k}(f)\right)^{p}+\sum_{m=1}^{\infty}\left(m \sum_{k=m}^{\infty} t_{k}(f)\right)^{p} m^{-2}\right]^{1 / p}, \tag{50}
\end{equation*}
$$

where

$$
s_{k}(f)=\int_{k}^{k+1}|f(s)| d s \quad \text { and } \quad t_{k}(f)=\int_{\frac{1}{k+1}}^{\frac{1}{k}}|f(s)| d s, \quad k=1,2, \ldots
$$

Let's prove the analogous assertion for the space $\operatorname{Ces}_{p}[0,1]$. At first, if $\frac{1}{m+1} \leqslant x \leqslant$ $\frac{1}{m}, m=1,2, \ldots$, then

$$
\frac{m+1}{2} \int_{0}^{1 /(m+1)}|f| \leqslant \frac{1}{x} \int_{0}^{x}|f| \leqslant(m+1) \int_{0}^{x}|f| \leqslant 2 m \int_{0}^{1 / m}|f| .
$$

Therefore,

$$
\begin{aligned}
& 2^{-p} \sum_{m=1}^{\infty}\left((m+1) \int_{0}^{1 /(m+1)}|f|\right)^{p}\left(\frac{1}{m}-\frac{1}{m+1}\right) \\
& \quad \leqslant \sum_{m=1}^{\infty} \int_{1 /(m+1)}^{1 / m}\left(\frac{1}{x} \int_{0}^{x}|f|\right)^{p} d x \\
& \quad=\int_{0}^{1}\left(\frac{1}{x} \int_{0}^{x}|f|\right)^{p} d x
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{1 / 2}\left(\frac{1}{x} \int_{0}^{x}|f|\right)^{p} d x & =\sum_{m=2}^{\infty} \int_{1 /(m+1)}^{1 / m}\left(\frac{1}{x} \int_{0}^{x}|f|\right)^{p} d x \\
& \leqslant 2^{p} \sum_{m=2}^{\infty}\left(m \int_{0}^{1 / m}|f|\right)^{p}\left(\frac{1}{m}-\frac{1}{m+1}\right)
\end{aligned}
$$

The first of these inequalities implies that

$$
\begin{aligned}
& 2^{-p} \sum_{m=2}^{\infty}\left(m \int_{0}^{1 / m}|f|\right)^{p}\left(\frac{1}{m}-\frac{1}{m+1}\right) \\
& \quad=2^{-p} \sum_{m=1}^{\infty}\left((m+1) \int_{0}^{1 /(m+1)}|f|\right)^{p}\left(\frac{1}{m+1}-\frac{1}{m+2}\right) \\
& \quad \leqslant \int_{0}^{1}\left(\frac{1}{x} \int_{0}^{x}|f|\right)^{p} d x=\|f\|_{C(p)}^{p},
\end{aligned}
$$

and the second one yields that

$$
\begin{equation*}
2^{-p} \int_{0}^{1 / 2}\left(\frac{1}{x} \int_{0}^{x}|f|\right)^{p} d x \leqslant \sum_{m=2}^{\infty}\left(m \int_{0}^{1 / m}|f|\right)^{p}\left(\frac{1}{m}-\frac{1}{m+1}\right) \leqslant 2^{p}\|f\|_{C(p)}^{p} \tag{51}
\end{equation*}
$$

Denote

$$
\alpha_{n}=\frac{1}{2}\left(2-n^{1-p}\right), \quad n=1,2, \ldots
$$

It is easy to check that $\frac{1}{2}=\alpha_{1} \leqslant \alpha_{n}<\alpha_{n+1} \leqslant 2 \alpha_{n}, n=1,2, \ldots$, and $\alpha_{n} \rightarrow 1$ as $n \rightarrow \infty$. Thus, if $\alpha_{n} \leqslant x \leqslant \alpha_{n+1}$, then

$$
\begin{aligned}
\frac{1}{2 \alpha_{n}} \int_{0}^{\alpha_{n}}|f| & \leqslant \frac{1}{\alpha_{n+1}} \int_{0}^{\alpha_{n}}|f| \leqslant \frac{1}{x} \int_{0}^{x}|f| \\
& \leqslant \frac{1}{\alpha_{n}} \int_{0}^{\alpha_{n+1}}|f| \leqslant \frac{2}{\alpha_{n+1}} \int_{0}^{\alpha_{n+1}}|f|,
\end{aligned}
$$

which implies that

$$
\begin{align*}
& 2^{-p} \sum_{n=1}^{\infty}\left(\frac{1}{\alpha_{n}} \int_{0}^{\alpha_{n}}|f|\right)^{p}\left(\alpha_{n+1}-\alpha_{n}\right)  \tag{52}\\
& \quad \leqslant \sum_{n=1}^{\infty} \int_{\alpha_{n}}^{\alpha_{n+1}}\left(\frac{1}{x} \int_{0}^{x}|f|\right)^{p} d x \\
& \quad=\int_{1 / 2}^{1}\left(\frac{1}{x} \int_{0}^{x}|f|\right)^{p} d x
\end{align*}
$$

and

$$
\begin{align*}
\int_{1 / 2}^{1}\left(\frac{1}{x} \int_{0}^{x}|f|\right)^{p} d x & =\sum_{n=1}^{\infty} \int_{\alpha_{n}}^{\alpha_{n+1}}\left(\frac{1}{x} \int_{0}^{x}|f|\right)^{p} d x  \tag{53}\\
& \leqslant 2^{p} \sum_{n=1}^{\infty}\left(\frac{1}{\alpha_{n+1}} \int_{0}^{\alpha_{n+1}}|f|\right)^{p}\left(\alpha_{n+1}-\alpha_{n}\right)
\end{align*}
$$

Moreover, since

$$
\alpha_{n+1}-\alpha_{n}=\frac{1}{2}\left(\frac{1}{n^{p-1}}-\frac{1}{(n+1)^{p-1}}\right)=\frac{p-1}{2} \int_{n}^{n+1} \frac{1}{t^{p}} d t
$$

and $\frac{1}{n^{p}} \geqslant \int_{n}^{n+1} \frac{1}{t^{p}} d t \geqslant \frac{1}{(n+1)^{p}} \geqslant \frac{1}{(2 n)^{p}}=2^{-p} \frac{1}{n^{p}}$, it follows that

$$
\begin{equation*}
\frac{p-1}{2^{p+1} n^{p}} \leqslant \alpha_{n+1}-\alpha_{n} \leqslant \frac{p-1}{2 n^{p}}, \quad n=1,2, \ldots \tag{54}
\end{equation*}
$$

and we conclude that

$$
\begin{aligned}
\alpha_{n+1}-\alpha_{n} \leqslant \frac{p-1}{2 n^{p}} & \leqslant 4^{p} \frac{p-1}{2^{p+1}(n+1)^{p}} \\
& \leqslant 4^{p}\left(\alpha_{n+2}-\alpha_{n+1}\right), \quad n=1,2, \ldots .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(\frac{1}{\alpha_{n}} \int_{0}^{\alpha_{n}}|f|\right)^{p}\left(\alpha_{n+1}-\alpha_{n}\right) \\
& \quad=\left(\frac{1}{\alpha_{1}} \int_{0}^{\alpha_{1}}|f|\right)^{p}\left(\alpha_{2}-\alpha_{1}\right)+\sum_{n=1}^{\infty}\left(\frac{1}{\alpha_{n+1}} \int_{0}^{\alpha_{n+1}}|f|\right)^{p}\left(\alpha_{n+2}-\alpha_{n+1}\right) \\
& \quad \geqslant 4^{-p} \sum_{n=1}^{\infty}\left(\frac{1}{\alpha_{n+1}} \int_{0}^{\alpha_{n+1}}|f|\right)^{p}\left(\alpha_{n+1}-\alpha_{n}\right)
\end{aligned}
$$

By combining the last inequality with (52) we obtain that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{1}{\alpha_{n+1}} \int_{0}^{\alpha_{n+1}}|f|\right)^{p}\left(\alpha_{n+1}-\alpha_{n}\right) \leqslant 8^{p} \int_{1 / 2}^{1}\left(\frac{1}{x} \int_{0}^{x}|f|\right)^{p} d x \tag{55}
\end{equation*}
$$

From (51), (53) and (55) it follows that

$$
\begin{aligned}
\|f\|_{C(p)}^{p} \leqslant & 2^{p} \sum_{m=2}^{\infty}\left(m \int_{0}^{1 / m}|f|\right)^{p}\left(\frac{1}{m}-\frac{1}{m+1}\right) \\
& +2^{p} \sum_{n=1}^{\infty}\left(\frac{1}{\alpha_{n+1}} \int_{0}^{\alpha_{n+1}}|f|\right)^{p}\left(\alpha_{n+1}-\alpha_{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{m=2}^{\infty}\left(m \int_{0}^{1 / m}|f|\right)^{p}\left(\frac{1}{m}-\frac{1}{m+1}\right)+\sum_{n=1}^{\infty}\left(\frac{1}{\alpha_{n+1}} \int_{0}^{\alpha_{n+1}}|f|\right)^{p}\left(\alpha_{n+1}-\alpha_{n}\right) \\
& \quad \leqslant 2^{p} \int_{0}^{1}\left(\frac{1}{x} \int_{0}^{x}|f|\right)^{p} d x+8^{p} \int_{1 / 2}^{1}\left(\frac{1}{x} \int_{0}^{x}|f|\right)^{p} d x \\
& \quad \leqslant 2^{p}\left(4^{p}+1\right)\|f\|_{C(p)}^{p}
\end{aligned}
$$

Thus, taking into account (54), we obtain that

$$
\begin{aligned}
\|f\|_{C(p)} \approx & {\left[\sum_{n=1}^{\infty}\left(\frac{1}{n \alpha_{n+1}} \int_{0}^{\alpha_{n+1}}|f(t)| d t\right)^{p}\right.} \\
& \left.+\sum_{m=2}^{\infty}\left(m \int_{0}^{1 / m}|f(t)| d t\right)^{p} m^{-2}\right]^{1 / p} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\int_{0}^{1 / m}|f(t)| d t & =\sum_{k=m}^{\infty} t_{k}(f) \\
\text { where } t_{k}(f) & =\int_{1 /(k+1)}^{1 / k}|f(t)| d t
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{\alpha_{n+1}}|f(t)| d t & =\int_{0}^{1 / 2}|f(t)| d t+\sum_{k=1}^{n} b_{k}(f) \\
\text { where } b_{k}(f) & =\int_{\alpha_{k}}^{\alpha_{k+1}}|f(t)| d t
\end{aligned}
$$

Since $\alpha_{n} \geqslant \frac{1}{2}(n=1,2, \ldots)$ it follows that the first sum in (56) does not exceed

$$
\begin{aligned}
& 2^{p} \sum_{n=1}^{\infty}\left(\int_{0}^{1 / 2}|f(t)| d t+\sum_{k=1}^{n} b_{k}(f)\right)^{p} n^{-p} \\
& \quad \leqslant 2^{2 p}\left[\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} b_{k}(f)\right)^{p}+\left(\int_{0}^{1 / 2}|f(t)| d t\right)^{p} \sum_{n=1}^{\infty} n^{-p}\right]
\end{aligned}
$$

Because $p>1$ and the second sum on the right-hand side of (56) contains $\left(\int_{0}^{1 / 2}|f(t)| d t\right)^{p}$, then

$$
\begin{equation*}
\|f\|_{C(p)} \approx\left[\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} b_{k}(f)\right)^{p}+\sum_{m=2}^{\infty}\left(m \sum_{k=m}^{\infty} t_{k}(f)\right)^{p} m^{-2}\right]^{1 / p} \tag{57}
\end{equation*}
$$

Denote by $k_{n}$ and $l_{m}$ one-to-one affine mappings such that

$$
\begin{aligned}
& k_{n}:[n, n+1] \rightarrow\left[\alpha_{n}, \alpha_{n+1}\right], \\
& l_{m}:\left[\frac{1}{m+1}, \frac{1}{m}\right] \rightarrow\left[\frac{1}{m+2}, \frac{1}{m+1}\right] \quad(n, m=1,2, \ldots)
\end{aligned}
$$

and define the linear operator $T$ for $f \in \operatorname{Ces}_{p}[0,1]$ by

$$
\begin{aligned}
T f(x)= & \sum_{n=1}^{\infty}\left(\alpha_{n+1}-\alpha_{n}\right) f\left(k_{n}(x)\right) \chi_{[n, n+1]}(x) \\
& +\sum_{m=1}^{\infty} f\left(l_{m}(x)\right) \chi_{\left[\frac{1}{m+1}, \frac{1}{m}\right]}(x) .
\end{aligned}
$$

Since

$$
\int_{n}^{n+1}\left|f\left(k_{n}(x)\right)\right| d x=\frac{1}{\alpha_{n+1}-\alpha_{n}} \int_{\alpha_{n}}^{\alpha_{n+1}}|f(t)| d t
$$

and

$$
\int_{1 /(m+1)}^{1 / m}\left|f\left(l_{m}(x)\right)\right| d x=\frac{m+2}{m} \int_{1 /(m+2)}^{1 /(m+1)}|f(t)| d t
$$

for $n, m=1,2, \ldots$, then the equivalences (50) and (57) show that

$$
\begin{aligned}
\|T f\|_{C_{p}[0, \infty)} & \approx\|T f\|_{0} \\
& =\left[\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} s_{k}(T f)\right)^{p}+\sum_{m=1}^{\infty}\left(m \sum_{k=m}^{\infty} t_{k}(T f)\right)^{p} m^{-2}\right]^{1 / p}
\end{aligned}
$$

$$
\begin{aligned}
& \approx\left[\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} b_{k}(f)\right)^{p}+\sum_{m=2}^{\infty}\left(m \sum_{k=m}^{\infty} t_{k}(f)\right)^{p} m^{-2}\right]^{1 / p} \\
& \approx\|f\|_{C_{p}[0,1]}
\end{aligned}
$$

Therefore, $T: \operatorname{Ces}_{p}[0,1] \rightarrow \operatorname{Ces}_{p}[0, \infty)$ is an isomorphism and the proof for $1<$ $p<\infty$ is complete.

If $p=\infty$ the construction of isomorphism will be different and the proof is even working for the $p$-convexifications, that is, if $1 \leqslant p<\infty$, then the spaces $\operatorname{Ces}_{\infty}^{(p)}[0,1]$ and $\operatorname{Ces}_{\infty}^{(p)}[0, \infty)$ are isomorphic. In particular, $\operatorname{Ces}_{\infty}[0,1]$ and $\operatorname{Ces}_{\infty}[0, \infty)$ are isomorphic.

It is easy to check that

$$
\begin{equation*}
\|f\|_{C(\infty))^{(p)}[0, \infty)} \approx \sup _{k \in \mathbb{Z}}\left(2^{-k+1} \int_{\left\{2^{k-1}<t \leqslant 2^{k}\right\}}|f(t)|^{p} d t\right)^{1 / p} \tag{58}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f\|_{C(\infty))^{(p)}[0,1]} \approx \sup _{k=0,-1,-2, \ldots}\left(2^{-k+1} \int_{\left\{2^{k-1}<t \leqslant 2^{k}\right\}}|f(t)|^{p} d t\right)^{1 / p} \tag{59}
\end{equation*}
$$

Moreover, for every $k \in \mathbb{Z}$,

$$
\begin{equation*}
2^{-k+1} \int_{2^{k-1}}^{2^{k}}|f(t)|^{p} d t=\int_{0}^{1}\left|f\left(2^{k-1}(t+1)\right)\right|^{p} d t \tag{60}
\end{equation*}
$$

Define the linear transforms

$$
T_{1}: \operatorname{Ces}_{\infty}[0, \infty) \rightarrow l^{\infty}\left(\sum_{k=-\infty}^{\infty} \oplus L^{p}[0,1]\right), \quad T_{1} f=\left(f\left(2^{k-1}(t+1)\right)_{k \in \mathbb{Z}}\right)
$$

and

$$
T_{2}: \operatorname{Ces}_{\infty}[0,1] \rightarrow l^{\infty}\left(\sum_{k=0}^{-\infty} \oplus L^{p}[0,1]\right), \quad T_{2} f=\left(f\left(2^{k-1}(t+1)\right)_{k=0}^{-\infty}\right)
$$

Formulas (58)-(60) show that $T_{1}$ and $T_{2}$ are isomorphisms. It is obvious that the spaces $l^{\infty}\left(\sum_{k=-\infty}^{\infty} \oplus L^{p}[0,1]\right)$ and $l^{\infty}\left(\sum_{k=0}^{-\infty} \oplus L^{p}[0,1]\right)$ are isomorphic. Therefore, the spaces $\operatorname{Ces}_{\infty}^{(p)}[0, \infty)$ and $\operatorname{Ces}_{\infty}^{(p)}[0,1]$ are isomorphic.

Problem 1. Is the Cesàro function space $\operatorname{Ces}_{\infty}(I)$ isomorphic with the Cesàro sequence space $\operatorname{ces}_{\infty}$ ?

In Theorem 6 we proved that $\operatorname{Ces}_{p}[0,1]$ contains an isomorphic copy of $l^{p}$. Now we try to investigate when this is true for the spaces $l^{q}$.

## Theorem 10.

(a) If $1 \leqslant p \leqslant 2$, then the space $l^{q}$ is embedded isomorphically into $\operatorname{Ces}_{p}[0,1]$ if and only if $q \in[1,2]$.
(b) If $2<p<\infty$, then the space $l^{q}$ is embedded isomorphically into $\operatorname{Ces}_{p}[0,1]$ if and only if either $q \in[1,2]$ or $q=p$.

Proof. Firstly, $\operatorname{Ces}_{p}[0,1]$ contains a copy of $L^{1}[0,1]$ (cf. [4, Lemma 1]) and in turn $l^{q}$ is embedded into $L^{1}[0,1]$ if $1 \leqslant q \leqslant 2$ (cf. [1, Theorem 6.4.18]). Moreover, by Theorem $6, l^{p}$ is embedded into $\operatorname{Ces}_{p}[0,1]$ for every $p \in[1, \infty)$ so we have to prove only the necessity.

In the case when $1 \leqslant p \leqslant 2$ necessity is obvious as a consequence of the fact that $\operatorname{Ces}_{p}[0,1]$ has cotype 2.

If $p>2$ noting that $\operatorname{Ces}_{p}[0,1] \subset \operatorname{Ces}_{1}[0,1]=L^{1}(\ln 1 / t)$ we consider two cases:
(a) Assume that the norms of the spaces $\operatorname{Ces}_{p}[0,1]$ and $L^{1}(\ln 1 / t)$ are equivalent on a subspace $X \subset \operatorname{Ces}_{p}[0,1]$ which is isomorphic to $l^{q}$. In other words, $X$ is a subspace of $L^{1}(\ln 1 / t)$. Since the last space has cotype 2 , then $q \leqslant 2$.
(b) The norms of the spaces $\operatorname{Ces}_{p}[0,1]$ and $L^{1}(\ln 1 / t)$ are not equivalent on $X \approx$ $l^{q}$. Then there is a sequence $\left\{x_{n}\right\} \subset X$ such that $\left\|x_{n}\right\|_{C(p)}=1$ and $\left\|x_{n}\right\|_{L^{1}(\ln 1 / t)} \rightarrow 0$. In particular, $x_{n} \rightarrow 0$ weakly in $L^{1}(\ln 1 / t)$, i.e.,

$$
\int_{0}^{1} x_{n}(t) y(t) d t \rightarrow 0 \quad \text { for every } y \in L^{\infty}\left(\ln ^{-1} 1 / t\right)
$$

Denote $\mathcal{F}:=\bigcup_{0<\delta<1} L^{\infty}[0, \delta]$. Obviously, it yields that $\mathcal{F} \subset L^{\infty}\left(\ln ^{-1} 1 / t\right)$ and $\mathcal{F}$ is dense in $\left(\operatorname{Ces}_{p}[0,1]\right)^{\prime}=U\left(p^{\prime}\right)$ (see Theorem 3). Therefore, $\left\|x_{n}\right\|_{C(p)}=1$ and $x_{n} \rightarrow$ 0 weakly in $\operatorname{Ces}_{p}[0,1]$. By a known result (cf. [37, Proposition 1.a.12]) there exists a subsequence $\left\{x_{n}^{\prime}\right\} \subset\left\{x_{n}\right\}$ which is equivalent to a seminormalized block basis of the canonical basis of $l^{q}$ and, consequently, is equivalent to the canonical basis of $l^{q}$ itself (see [1, Lemma 2.1.1 and Remark 2.1.2]). Moreover, $\left\|x_{n}^{\prime}\right\|_{C(p)}=1$ and $x_{n}^{\prime} \rightarrow 0$ in the Lebesgue measure $m$. Next, since $\operatorname{Ces}_{p}[0,1]$ is separable for $1 \leqslant p<\infty$, then applying the Kadec-Pełczyński procedure we may find a subsequence $\left\{x_{n}^{\prime \prime}\right\} \subset\left\{x_{n}^{\prime}\right\}$ and a sequence of disjoint sets $A_{n} \subset[0,1]$ such that $\left\|x_{n}^{\prime \prime}-x_{n}^{\prime \prime} \chi_{A_{n}}\right\|_{C(p)} \rightarrow 0$. Using a standard argument we can select a subsequence $\left\{x_{n_{k}}^{\prime \prime}\right\} \subset\left\{x_{n}^{\prime \prime}\right\}$, which is equivalent to the sequence of disjoint functions $z_{k}:=x_{n_{k}}^{\prime \prime} \chi_{A_{n_{k}}}$. Note that $\left\{x_{n_{k}}^{\prime \prime}\right\}$ and $\left\{z_{k}\right\}$ as well are equivalent to the canonical basis of $l^{q}$. To show that either $q \in[1,2]$ or $q=p$ we consider separately two cases:
(1) firstly, assume that there is $h \in\left(0, \frac{1}{2}\right)$ such that $\operatorname{supp} z_{k} \subset[h, 1-h]$ for all $k=1,2, \ldots$. Since $\operatorname{Ces}_{p}[h, 1-h] \simeq L^{1}[h, 1-h]$ (cf. [4, Lemma 1]), then $l^{q}$ will be embedded into $L^{1}[h, 1-h] \simeq L^{1}[0,1]$, so that $q \in[1,2]$.
(2) otherwise, there is a subsequence $\left\{z_{k}^{\prime}\right\} \subset\left\{z_{k}\right\}$ such that $\operatorname{supp} z_{k} \subset I_{k}$ for some intervals $I_{k}$ satisfying either $I_{k} \rightarrow 0$ or $I_{k} \rightarrow 1$. Then, using the same arguments as in the proof of Theorem 8 , we may select a subsequence $\left\{z_{k}^{\prime \prime}\right\} \subset\left\{z_{k}^{\prime}\right\}$ such that

$$
\left\|\sum_{k=1}^{m} z_{k}^{\prime \prime}\right\|_{C(p)} \leqslant C m^{1 / p}
$$

where the constant $C>0$ does not depend on $m=1,2, \ldots$ Since $\left[z_{k}^{\prime \prime}\right] \simeq l^{q}$, then we have $q \geqslant p$. On the other hand, $q \leqslant p$ because $\operatorname{Ces}_{p}[0,1]$ has cotype $p$, thus $q=p$ and the proof is complete.

Let us remind that $L^{p}[0,1]$ contains an isomorphic copy of $l^{q}$ if and only if $q \in[p, 2]$ for the case $1 \leqslant p \leqslant 2$ and in the case when $p>2$ this can be when either $q=p$ or $q=2$. We can see then the difference between $L^{p}[0,1]$ and $\operatorname{Ces}_{p}[0,1]$ spaces. In particular, if $1<p<\infty$, then $\operatorname{Ces}_{p}[0,1]$ contains an isomorphic copy of $l^{1}$ but not $L^{p}[0,1]$.

## ACKNOWLEDGEMENT

We would like to thank referee for some useful corrections in this paper.

## REFERENCES

[1] Albiac F., Kalton N.J. - Topics in Banach Space Theory, Graduate Texts in Mathematics, vol. 233, Springer-Verlag, New York, 2006.
[2] Aliprantis C.D., Burkinshaw O. - Positive Operators, Academic Press, Orlando, 1985.
[3] Alspach D.E. - A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981) 423-424.
[4] Astashkin S.V., Maligranda L. - Cesàro function spaces fail the fixed point property, Proc. Amer. Math. Soc. 136 (12) (2008) 4289-4294.
[5] Astashkin S.V., Maligranda L. - Rademacher functions in Cesàro type spaces, Studia Math., to appear.
[6] Astashkin S.V., Sukochev F.A. - Banach-Saks property in Marcinkiewicz spaces, J. Math. Anal. Appl. 336 (2) (2007) 1231-1258.
[7] Banach S. - Théorie des Opérations Linéaires, Monografie Matematyczne, vol. 1, PWN, Warsaw, 1932, Reprinted in: S. Banach, Oeuvres, Vol. II, PWN, Warszawa, 1979, 13-219; English transl.: Theory of Linear Operations, North-Holland Math. Library, vol. 38, North-Holland, Amsterdam, 1987.
[8] Bennett G. - Factorizing the Classical Inequalities, Mem. Amer. Math. Soc., vol. 120, American Mathematical Society, Providence, RI, 1996.
[9] Bennett C., Sharpley R. - Interpolation of Operators, Academic Press, Boston, MA, 1988.
[10] Chen S., Cui Y., Hudzik H., Sims B. - Geometric properties related to fixed point theory in some Banach function lattices, in: Handbook on Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 339-389.
[11] Cui Y., Hudzik H. - Some geometric properties related to fixed point theory in Cesàro sequence spaces, Collect. Math. 50 (1999) 277-288.
[12] Cui Y., Hudzik H. - On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged) 65 (1999) 179-187.
[13] Cui Y., Hudzik H. - Packing constant for Cesàro sequence spaces, Nonlinear Anal. 47 (2001) 2695-2702.
[14] Cui Y., Hudzik H., Li Y. - On the García-Falset coefficient in some Banach sequence spaces, in: Function Spaces, Proc. of the 5th International Conf. in Poznań (Aug. 28-Sept. 3, 1998), Marcel Dekker, New York, 2000, pp. 141-148.
[15] Cui Y., Jie L., Płuciennik R. - Local uniform nonsquareness in Cesàro sequence spaces, Commentat. Math. Prace Mat. 37 (1997) 47-58.
[16] Cui Y., Meng C., Płuciennik R. - Banach-Saks property and property ( $\beta$ ) in Cesàro sequence spaces, Southeast Asian Bull. Math. 24 (2000) 201-210.
[17] Diestel J., Jarchow H., Tonge A. - Absolutely Summing Operators, Cambridge Univ. Press, Cambridge, 1995.
[18] Dilworth S., Girardi M., Hagler J. - Dual Banach spaces which contain an isometric copy of $L_{1}$, Bull. Polish Acad. Sci. Math. 48 (1) (2000) 1-12.
[19] Dodds P.G., Semenov E.M., Sukochev F.A. - The Banach-Saks property in rearrangement invariant spaces, Studia Math. 162 (3) (2004) 263-294.
[20] Dowling P.N., Lennard C.J. - Every nonreflexive subspace of $L_{1}[0,1]$ fails the fixed point property, Proc. Amer. Math. Soc. 125 (2) (1997) 443-446.
[21] Dowling P.N., Lennard C.J., Turett B. - Renormings of $l^{1}$ and $c_{0}$ and fixed point properties, in: Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 269-297.
[22] Edwards R.E. - Functional Analysis. Theory and Applications, Holt Rinehart and Winston, New York, 1965.
[23] Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V. - Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Math, vol. 8, Springer-Verlag, New York, 2001.
[24] Hardy G.H., Littlewood J.E., Pólya G. - Inequalities, Cambridge Univ. Press, Cambridge, 1952.
[25] Hassard B.D., Hussein D.A. - On Cesàro function spaces, Tamkang J. Math. 4 (1973) 19-25.
[26] Jagers A.A. - A note on Cesàro sequence spaces, Nieuw Arch. Wiskund. (3) 22 (1974) 113-124.
[27] Kadec M.I., Pełczyński A. - Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$, Studia Math. 21 (1962) 161-176.
[28] Kantorovich L.V., Akilov G.P. - Functional Analysis, Nauka, Moscow, 1977. English transl.: Pergamon Press, Oxford, 1982.
[29] Kashin B.S., Saakyan A.A. - Orthogonal Series, Nauka, Moscow, 1984. English transl.: American Mathematical Society, Providence, RI, 1989.
[30] Kerman R., Milman M., Sinnamon G. - On the Brudnyı̆-Krugljak duality theory of spaces formed by the $K$-method of interpolation, Rev. Mat. Complut. 20 (2) (2007) 367-389.
[31] Korenblyum B.I., Kreĭn S.G., Levin B.Ya. - On certain nonlinear questions of the theory of singular integrals, Doklady Akad. Nauk SSSR (N.S.) 62 (1948) 17-20 (in Russian).
[32] Krein S.G., Petunin Yu.I., Semenov E.M. - Interpolation of Linear Operators, Nauka, Moscow, 1978. English transl.: American Mathematical Society, Providence, RI, 1982.
[33] Kufner A., Maligranda L., Persson L.-E. - The Hardy Inequality. About Its History and Some Related Results, Vydavatelski Servis Publishing House, Pilzen, 2007.
[34] Lee P.Y. - Cesàro sequence spaces, Math. Chronicle, New Zealand 13 (1984) 29-45.
[35] Lee P.Y. - Cesàro sequence spaces, Manuscript, Singapore, 1999, pp. 1-17.
[36] Leibowitz G.M. - A note on the Cesàro sequence spaces, Tamkang J. Math. 2 (1971) 151-157.
[37] Lindenstrauss J., Tzafriri L. - Classical Banach Spaces, I. Sequence Spaces, Springer-Verlag, Berlin, 1977.
[38] Lindenstrauss J., Tzafriri L. - Classical Banach Spaces, II. Function Spaces, Springer-Verlag, Berlin, 1979.
[39] Liu Y.Q., Wu B.E., Lee P.Y. - Method of Sequence Spaces, Guangdong of Science and Technology Press, 1996 (in Chinese).
[40] Lozanovskiĭ G.Ja. - Isomorphic Banach lattices, Sibirsk. Mat. Zh. 10 (1969) 93-98. English transl.: Siberian Math. J. 10 (1) (1969) 64-68.
[41] Lozanovskiĭ G.Ja. - Certain Banach lattices, Sibirsk. Mat. Zh. 10 (1969) 584-599. English transl.: Siberian Math. J. 10 (3) (1969) 419-431.
[42] Luxemburg W.A.J., Zaanen A.C. - Some examples of normed Köthe spaces, Math. Ann. 162 (1965/1966) 337-350.
[43] Maligranda L. - Orlicz Spaces and Interpolation, Seminars in Math., vol. 5, Univ. of Campinas, Campinas, SP, Brazil, 1989.
[44] Maligranda L. - Type, cotype and convexity properties of quasi-Banach spaces, in: M. Kato, L. Maligranda (Eds.), Banach and Function Spaces, Proc. of the Internat. Symp. on Banach and Function Spaces (Oct. 2-4, 2003, Kitakyushu-Japan), Yokohama Publishers, 2004, pp. 83-120.
[45] Maligranda L., Petrot N., Suantai S. - On the James constant and $B$-convexity of Cesàro and Cesàro-Orlicz sequence spaces, J. Math. Anal. Appl. 326 (1) (2007) 312-331.
[46] Novikov S.Ya., Semenov E.M., Tokarev E.V. - The structure of subspaces of the space $\Lambda_{p}(\mu)$, Dokl. Akad. Nauk SSSR 247 (1979) 552-554. English transl.: Sov. Math. Dokl. 20 (1979) 760-761.
[47] Novikov S.Ya., Semenov E.M., Tokarev E.V. - On the structure of subspaces of the spaces $\Lambda_{p}(\mu)$, Teor. Funkts., Funkts. Anal. Prilozh. 42 (1984) 91-97. English transl.: Ser. 2, Amer. Math. Soc. 136 (1987) 121-127.
[48] Rakov S.A. - The Banach-Saks exponent of some Banach spaces of sequences, Mat. Zametki 32 (5) (1982) 613-625. English transl.: Math. Notes $32(5,6)$ (1982) 791-797.
[49] Sawyer E. - Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (2) (1990) 145-158.
[50] Shiue J.S. - Cesàro sequence spaces, Tamkang J. Math. 1 (1970) 19-25.
[51] Shiue J.S. - A note on Cesàro function space, Tamkang J. Math. 1 (1970) 91-95.
[52] Sinnamon G. - The level function in rearrangement invariant spaces, Publ. Mat. 45 (1) (2001) 175-198.
[53] Sinnamon G. - Transferring monotonicity in weighted norm inequalities, Collect. Math. 54 (2) (2003) 181-216.
[54] Sy P.W., Zhang W.Y., Lee P.Y. - The dual of Cesàro function spaces, Glas. Mat. Ser. III 22 (1) (1987) 103-112.
[55] Szlenk W. - Sur les suites faiblement convergentes dans l'espace $L$, Studia Math. 25 (1965) 337341.
[56] Tandori K. - Über einen speziellen Banachschen Raum, Publ. Math. Debrecen 3 (1954) 263-268, (1955).
[57] Tokarev E.V. - The Banach-Saks property in Banach lattices, Sibirsk. Mat. Zh. 24 (1) (1983) 187-189 (in Russian).
[58] Wnuk W. $-l^{\left(p_{n}\right)}$ spaces with the Dunford-Pettis property, Comment. Math. Prace Mat. 30 (2) (1991) 483-489.
[59] Wnuk W. - Banach Lattices with Order Continuous Norms, Polish Scientific Publishers PWN, Warszawa, 1999.
(Received August 2009)


[^0]:    MSC: 46E30, 46B20, 46B42
    Key words and phrases: Cesàro sequence spaces, Cesàro function spaces, Köthe dual, Associated space, Dual space, $L^{p}$ spaces, Copies of $l^{p}$, Weak Banach-Saks property, Dunford-Pettis property, Rademacher functions, Type, Cotype, Isomorphism, Subspaces, Complemented subspaces
    ${ }^{4}$ S.V. Astashkin was partially supported by the Ministry of Education and Science of the Russian Federation grant 3341. L. Maligranda was partially supported by the Swedish Research Council (VR) grant 621-2008-5058.

    E-mails: astashkn@ ssu.samara.ru (S.V. Astashkin), lech@ sm.luth.se (L. Maligranda).

