Structure of Cesàro function spaces *

by Sergei V. Astashkin a and Lech Maligranda b

^a Department of Mathematics and Mechanics, Samara State University, Acad. Pavlova 1, 443011 Samara, Russia

Communicated by Prof. H.W. Broer

ABSTRACT

The structure of the Cesàro function spaces Ces_p on both [0,1] and $[0,\infty)$ for 1 is investigated. We find their dual spaces, which equivalent norms have different description on <math>[0,1] and $[0,\infty)$. The spaces Ces_p for $1 are not reflexive but strictly convex. They are not isomorphic to any <math>L^q$ space with $1 \leqslant q \leqslant \infty$. They have "near zero" complemented subspaces isomorphic to l^p and "in the middle" contain an asymptotically isometric copy of l^1 and also a copy of $L^1[0,1]$. They do not have Dunford–Pettis property but they do have the weak Banach–Saks property. Cesàro function spaces on [0,1] and $[0,\infty)$ are isomorphic for 1 . Moreover, we give characterizations in terms of <math>p and q when $\operatorname{Ces}_p[0,1]$ contains an isomorphic copy of l^q .

^b Department of Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden

MSC: 46E30, 46B20, 46B42

Key words and phrases: Cesàro sequence spaces, Cesàro function spaces, Köthe dual, Associated space, Dual space, L^p spaces, Copies of l^p , Weak Banach–Saks property, Dunford–Pettis property, Rademacher functions, Type, Cotype, Isomorphism, Subspaces, Complemented subspaces

^{*} S.V. Astashkin was partially supported by the Ministry of Education and Science of the Russian Federation grant 3341. L. Maligranda was partially supported by the Swedish Research Council (VR) grant 621-2008-5058.

E-mails: astashkn@ssu.samara.ru (S.V. Astashkin), lech@sm.luth.se (L. Maligranda).

Let $1 \le p \le \infty$. The *Cesàro sequence space* ces_p is defined as the set of all real sequences $x = \{x_k\}$ such that

$$||x||_{c(p)} = \left[\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |x_k|\right)^p\right]^{1/p} < \infty \text{ when } 1 \le p < \infty$$

and

$$||x||_{c(\infty)} = \sup_{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^{n} |x_k| < \infty$$
 when $p = \infty$.

The Cesàro function spaces $\operatorname{Ces}_p = \operatorname{Ces}_p(I)$ are the classes of Lebesgue measurable real functions f on I = [0, 1] or $I = [0, \infty)$ such that

$$||f||_{C(p)} = \left[\int_{I} \left(\frac{1}{x} \int_{0}^{x} |f(t)| dt \right)^{p} dx \right]^{1/p} < \infty \quad \text{for } 1 \leqslant p < \infty$$

and

$$||f||_{C(\infty)} = \sup_{x \in I, x > 0} \frac{1}{x} \int_{0}^{x} |f(t)| dt < \infty \text{ for } p = \infty.$$

The Cesàro sequence spaces \cos_p and \cos_∞ appeared in 1968 in connection with the problem of the Dutch Mathematical Society to find their duals. Some investigations of \cos_p were done by Shiue [50] in 1970. Then Leibowitz [36] and Jagers [26] proved that $\cos_1 = \{0\}$, \cos_p are separable reflexive Banach spaces for $1 and the <math>l^p$ spaces are continuously and strictly embedded into \cos_p for $1 . More precisely, <math>\|x\|_{c(p)} \le p' \|x\|_p$ for all $x \in l^p$ with $p' = \frac{p}{p-1}$ when 1 and <math>p' = 1 when $p = \infty$. Moreover, if $1 , then <math>\cos_p \subset \cos_q$ with continuous strict embedding. Bennett [8] proved that \cos_p for $1 are not isomorphic to any <math>l^q$ space with $1 \le q \le \infty$ (see also [45] for another proof).

Several geometric properties of the Cesàro sequence spaces \cos_p were studied in the last years by many mathematicians (see e.g. [10–16,34]). Some more results on \cos_p can be found in two books [8,39].

In 1999–2000 it was proved by Cui and Hudzik [11], Cui, Hudzik and Li [14] and Cui, Meng and Płuciennik [16] that the Cesàro sequence spaces \cos_p for $1 have the fixed point property (cf. also [10, Part 9]). Maligranda, Petrot and Suantai [45] proved that the Cesàro sequence spaces <math>\cos_p$ for $1 are not uniformly non-square, that is, there are sequences <math>\{x_n\}$ and $\{y_n\}$ on the unit sphere such that $\lim_{n\to\infty} \min(\|x_n+y_n\|_{c(p)}, \|x_n-y_n\|_{c(p)}) = 2$. They even proved that these spaces are not B-convex.

The Cesàro function spaces $\operatorname{Ces}_p[0,\infty)$ for $1 \le p \le \infty$ were considered by Shiue [51], Hassard and Hussein [25] and Sy, Zhang and Lee [54]. The space $\operatorname{Ces}_{\infty}[0,1]$

appeared already in 1948 and it is known as the Korenblyum, Krein and Levin space K (see [31] and [59]).

Recently, we proved in the paper [4] that, in contrast to Cesàro sequence spaces, the Cesàro function spaces $\operatorname{Ces}_p(I)$ on both I=[0,1] and $I=[0,\infty)$ for $1 are not reflexive and they do not have the fixed point property. In other paper [5] we investigated Rademacher sums in <math>\operatorname{Ces}_p[0,1]$ for $1 \le p \le \infty$. The description is different for $1 \le p < \infty$ and $p = \infty$.

We recall some notions and definitions which we will need later on. By $L^0 = L^0(I)$ we denote the set of all equivalence classes of real-valued Lebesgue measurable functions defined on I = [0,1] or $I = [0,\infty)$. A normed function lattice or normed ideal space $X = (X, \|\cdot\|)$ (on I) is understood to be a normed space in $L^0(I)$, which satisfies the so-called ideal property: if $|f| \le |g|$ a.e. on I and $g \in X$, then $f \in X$ and $\|f\| \le \|g\|$. If, in addition, X is a complete space, then we say that X is a Banach function lattice or a Banach ideal space (on I). Sometimes we write $\|\cdot\|_X$ to be sure in which space the norm is taken.

For two normed ideal spaces X and Y on I the symbol $X \hookrightarrow Y$ means that $X \subset Y$ and the imbedding is continuous, and the symbol $X \stackrel{C}{\hookrightarrow} Y$ means that $X \hookrightarrow Y$ with the inequality $\|x\|_Y \leqslant C\|x\|_X$ for all $x \in X$. Moreover, notation $X \simeq Y$ means that these two spaces are isomorphic.

For a normed ideal space $X=(X,\|\cdot\|)$ on I and $1 \le p < \infty$ the p-convexification $X^{(p)}$ of X is the space of all $f \in L^0(I)$ such that $|f|^p \in X$ with the norm

$$||f||_{X^{(p)}} := |||f||^p ||_X^{1/p}.$$

 $X^{(p)}$ is also a normed ideal space on I.

For a normed ideal space $X = (X, \|\cdot\|)$ on I the Köthe dual (or associated space) X' is the space of all $f \in L^0(I)$ such that the associate norm

$$||f||' := \sup_{g \in X, ||g||_X \le 1} \int_I |f(x)g(x)| \, dx$$

is finite. The Köthe dual $X' = (X', \|\cdot\|')$ is a Banach ideal space. Moreover, $X \subset X''$ with $\|f\| \leqslant \|f\|''$ for all $f \in X$ and we have equality X = X'' with $\|f\| = \|f\|''$ if and only if the norm in X has the *Fatou property*, that is, if $0 \leqslant f_n \nearrow f$ a.e. on I and $\sup_{n \in \mathbb{N}} \|f_n\| < \infty$, then $f \in X$ and $\|f_n\| \nearrow \|f\|$.

For a normed ideal space $X = (X, \| \cdot \|)$ on I with the Köthe dual X' we have the following Hölder type inequality: if $f \in X$ and $g \in X'$, then fg is integrable and

$$\int_{I} |f(x)g(x)| \, dx \le \|f\|_{X} \|g\|_{X'}.$$

A function f in a normed ideal space X on I is said to have *absolutely continuous norm* in X if, for any decreasing sequence of Lebesgue measurable sets $A_n \subset I$ with

empty intersection, we have that $||f\chi_{A_n}|| \to 0$ as $n \to \infty$. The set of all functions in X with absolutely continuous norm is denoted by X_a . If $X_a = X$, then the space X itself is said to have *absolutely continuous norm*. For a normed ideal space X with absolutely continuous norm, the Köthe dual X' and the dual space X^* coincide. Moreover, a Banach ideal space X is reflexive if and only if both X and its associate space X' have absolutely continuous norms.

For general properties of normed and Banach ideal spaces we refer to the books Krein, Petunin and Semenov [32], Kantorovich and Akilov [28], Bennett and Sharpley [9], Lindenstrauss and Tzafriri [38] and Maligranda [43].

The paper is organized as follows: In Section 1 some necessary definitions and notation are collected. In Section 2 some simple results on Cesàro function spaces are presented. In particular, we can see that the Cesàro function spaces $\operatorname{Ces}_p(I)$ are not reflexive but strictly convex for all 1 .

Sections 3 and 4 contain results on the dual and Köthe dual of Cesàro function spaces. There is a big difference between the cases on $[0, \infty)$ and on [0, 1], as we can see from Theorems 2 and 3. This was also the reason why we put these investigations into two parts. Important in our investigations were earlier results on the Köthe dual $(\cos_p)'$ and remark on the Köthe dual $(\operatorname{Ces}_p[0,\infty))'$ due to Bennett [8]. This remark was recently proved, even for more general spaces, by Kerman, Milman and Sinnamon [30]. Luxemburg and Zaanen [42] gave a description of the Köthe dual $(\operatorname{Ces}_{\infty}[0,1])'$.

Section 5 deals with the *p*-concavity and cotype of Cesàro sequence spaces \cos_p and Cesàro function spaces $\operatorname{Ces}_p(I)$. It is shown, in Theorem 4, that they are *p*-concave for $1 with constant one and, thus, they have cotype <math>\max(p, 2)$.

In Section 6 it is proved, in Theorem 6, that the Cesàro function spaces $\operatorname{Ces}_p(I)$ contain an order isomorphic and complemented copy of l^p . Therefore, they do not have the Dunford–Pettis property. This result and cotype property imply that $\operatorname{Ces}_p(I)$ are not isomorphic to any $L^q(I)$ space for $1 \leq q \leq \infty$ (Theorem 7).

The authors proved in [4] that "in the middle" Cesàro function spaces $\operatorname{Ces}_p(I)$ contain an asymptotically isometric copy of l^1 and consequently they are not reflexive and do not have the fixed point property. This is a big difference with Cesàro sequence spaces ces_p , which for 1 are reflexive and which have the fixed point property.

Section 7 contains the proof that the Cesàro function spaces $\operatorname{Ces}_p[0,1]$ for $1 \le p < \infty$ have the weak Banach–Saks property. Important role in the proof will be played by the description of the dual space given in Section 4.

In Section 8 we present a construction showing that the Cesàro function spaces $\operatorname{Ces}_p[0,\infty)$ and $\operatorname{Ces}_p[0,1]$ for $1 are isomorphic. The isomorphisms are different in the cases <math>1 and <math>p = \infty$.

In Section 9 it is proved that $\operatorname{Ces}_p[0,1]$ contains an isomorphic copy of l^q if and only if $q \in [1,2]$ for the case $1 \le p \le 2$ and in the case when p > 2 this can happen when either $q \in [1,2]$ or q = p. This result is, in fact, different from the one for $L^p[0,1]$ space.

The Cesàro function spaces $\operatorname{Ces}_p[0,\infty)$ for $1 \le p \le \infty$ were considered by Shiue [51], Hassard and Hussein [25] and Sy, Zhang and Lee [54]. The space $\operatorname{Ces}_{\infty}[0,1]$ appeared in 1948 and it is known as the Korenblyum, Krein and Levin space K (see [31] and [59, p. 26 and 61]).

We collect some known or clear properties of $\operatorname{Ces}_p(I)$ for both I = [0, 1] and $I = [0, \infty)$ in one place.

Theorem 1.

- (a) If $1 , then <math>\operatorname{Ces}_p(I)$ are Banach spaces, $\operatorname{Ces}_1[0, 1] = L_w^1$ with the weight $w(t) = \ln \frac{1}{t}$, $t \in (0, 1]$ and $\operatorname{Ces}_1[0, \infty) = \{0\}$.
- (b) The spaces $\operatorname{Ces}_p(I)$ are separable for $1 and <math>\operatorname{Ces}_\infty(I)$ is non-separable.
- (c) If $1 , then <math>L^p(I) \stackrel{p'}{\hookrightarrow} \operatorname{Ces}_p(I)$, where $p' = \frac{p}{p-1}$ and the embedding is strict.
- (d) If $1 , then <math>\operatorname{Ces}_p[0,1]_{|[0,a]} \hookrightarrow L^1[0,a]$ for any $a \in (0,1)$ but not for a = 1 and $\operatorname{Ces}_p[0,\infty)_{|[0,a]} \hookrightarrow L^1[0,a]$ for any $0 < a < \infty$ but not for $a = \infty$, that is, $\operatorname{Ces}_p[0,\infty) \not\subset L^1[0,\infty)$. Moreover, $\operatorname{Ces}_\infty[0,1] \stackrel{!}{\hookrightarrow} L^1[0,1]$.
- (e) If $1 , then <math>\operatorname{Ces}_q[0, 1] \xrightarrow{1} \operatorname{Ces}_p[0, 1]$ and the embedding is strict.
- (f) The spaces $Ces_p(I)$ are not rearrangement invariant.
- (g) The spaces $Ces_p(I)$ are not reflexive.
- (h) The spaces $\operatorname{Ces}_p(I)$ for $1 are strictly convex, that is, if <math>||f||_{C(p)} = ||g||_{C(p)} = 1$ and $f \neq g$, then $||\frac{f+g}{2}||_{C(p)} < 1$.

Proof. (a), (b) Shiue [51] and Hassard and Hussein [25] proved that $\operatorname{Ces}_p(I)$ are separable Banach spaces for $1 and non-separable ones for <math>p = \infty$. We only show here that $\operatorname{Ces}_1[0,1]$ is a weighted $L^1_w[0,1]$ space with the weight $w(t) = \ln \frac{1}{t}$ for $0 < t \le 1$ and $\operatorname{Ces}_1[0,\infty) = \{0\}$. In fact,

(1)
$$\int_{0}^{1} \left(\frac{1}{x} \int_{0}^{x} |f(t)| dt \right) dx = \int_{0}^{1} \left(\int_{t}^{1} \frac{1}{x} dx \right) |f(t)| dt = \int_{0}^{1} |f(t)| \ln \frac{1}{t} dt.$$

Moreover, if $f \in L^0[0, \infty)$ and |f(x)| > 0 for $x \in A$ with $0 < m(A) < \infty$, then there exists sufficiently large a > 0 such that $\delta = \int_0^a |f(t)| dt > 0$. Therefore, for b > a, it yields that

$$\int_{0}^{b} \left(\frac{1}{x} \int_{0}^{x} |f(t)| dt\right) dx \ge \int_{a}^{b} \left(\frac{1}{x} \int_{0}^{x} |f(t)| dt\right) dx$$
$$\ge \int_{a}^{b} \left(\frac{1}{x} \int_{0}^{a} |f(t)| dt\right) dx$$

$$=\delta \ln \frac{b}{a} \to \infty$$
 as $b \to \infty$.

Thus $f \notin \text{Ces}_1[0, \infty)$.

(c) Considering the Hardy operator $Hf(x) = \frac{1}{x} \int_0^x f(t) dt$ and using the Hardy inequality (cf. [24, Theorem 327] and [33, Theorem 2]) we obtain that

$$||f||_{C(p)} = ||H(|f|)||_p \le p'||f||_p$$

for all $f \in L^p(I)$, which means that the $L^p(I) \stackrel{p'}{\hookrightarrow} \operatorname{Ces}_p(I)$ for 1 .

The embeddings are strict. For example, $f = \sum_{n=1}^{\infty} \frac{1}{n^{1/p}} \chi_{[n^2-1,n^2)} \in \text{Ces}_p(I) \setminus L^p(I)$ for $I = [0, \infty)$ and 1 .

(d) If 0 < a < 1 and supp $f \subset [0, a]$, then

$$||f||_{C(p)} \ge \left(\int_{a}^{1} \left(\frac{1}{x} \int_{0}^{x} |f(t)| dt\right)^{p} dx\right)^{1/p}$$

$$\ge \left(\int_{a}^{1} \left(\frac{1}{x} \int_{0}^{a} |f(t)| dt\right)^{p} dx\right)^{1/p} = \int_{0}^{a} |f(t)| dt \left(\frac{1 - a^{1 - p}}{p - 1}\right)^{1/p}.$$

For a=1 this is not the case. In fact, consider function $f(x)=\frac{1}{1-x}$ for $x \in [0,1)$. Then $\frac{1}{x} \int_0^x f(t) dt = \frac{1}{x} \ln \frac{1}{1-x}$ and

$$||f||_{C(p)}^{p} = \int_{0}^{1} \left(\frac{1}{x} \ln \frac{1}{1-x}\right)^{p} dx = \int_{1}^{\infty} \left(\frac{t \ln t}{t-1}\right)^{p} \frac{dt}{t^{2}}$$

$$\leq c + \int_{2}^{\infty} \frac{(2 \ln t)^{p}}{t^{2}} dt < \infty$$

and, hence, $f \in \text{Ces}_p[0, 1]$ for any $1 \leq p < \infty$ but clearly, $f \notin L^1[0, 1]$.

In the case of $\operatorname{Ces}_p[0, \infty)$ we will have for $0 < a < \infty$ with supp $f \subset [0, a]$ and $p \in (1, \infty)$,

$$||f||_{C(p)} \ge \left(\int_{a}^{\infty} \left(\frac{1}{x} \int_{0}^{x} |f(t)| dt \right)^{p} dx \right)^{1/p}$$

$$\ge \left(\int_{a}^{\infty} \left(\frac{1}{x} \int_{0}^{a} |f(t)| dt \right)^{p} dx \right)^{1/p} = \int_{0}^{a} |f(t)| dt \frac{1}{(p-1)a^{1-1/p}}.$$

For the function $f(x) = \frac{1}{x} \chi_{[1,\infty)}(x), x \in (0,\infty)$ we have $\frac{1}{x} \int_0^x f(t) dt = \frac{1}{x} \ln x \ (x \ge 1)$ and

$$||f||_{C(p)}^p = \int_1^\infty \left(\frac{\ln x}{x}\right)^p dx < \infty.$$

Thus, $f \in \text{Ces}_p[0, \infty)$ for any $1 , but clearly <math>f \notin L^1[0, \infty)$.

(e) If $1 , then <math>L^q[0, 1] \stackrel{1}{\hookrightarrow} L^p[0, 1]$ and the embedding is strict, and, thus,

$$||f||_{C(p)} = ||H(|f|)||_p \le ||H(|f|)||_q = ||f||_{C(q)}$$

for all $f \in \operatorname{Ces}_q[0, 1]$, that is, $\operatorname{Ces}_q[0, 1] \stackrel{1}{\hookrightarrow} \operatorname{Ces}_p[0, 1]$ and the embedding is strict since for positive decreasing functions the norms of Ces_p and L^p are equivalent. The last statement follows from the fact that for a positive decreasing function f on I we have $f(x) \leq \frac{1}{x} \int_0^x f(t) \, dt$ for $x \in I$ and so

$$||f||_p \le ||Hf||_p = ||f||_{C(p)} \le p'||f||_p$$
 for any $0 \le f \in L^p(I)$.

- (f) Consider $f(x) = \frac{1}{1-x}$ for $x \in [0,1)$. Then, as it was shown in (d), $f \in \operatorname{Ces}_p[0,1]$ for any $1 \le p < \infty$. However, its non-increasing rearrangement $f^*(t) = t^{-1}$ $(0 < x \le 1)$ does not belong to $\operatorname{Ces}_p[0,1]$ for any $1 \le p \le \infty$ and therefore the space $\operatorname{Ces}_p[0,1]$ is not rearrangement invariant for $1 \le p < \infty$. In the case when $p = \infty$ we can take the function $g(x) = \frac{1}{\sqrt{1-x}}, x \in [0,1)$ for which $\frac{1}{x} \int_0^x g(t) \, dt = \frac{2}{x} (1 \sqrt{1-x}) = \frac{2}{1+\sqrt{1-x}}$ and so $\|g\|_{C(\infty)} = 2$ and for its rearrangement $g^*(t) = t^{-1/2}, t \in (0,1)$ we have $\|g^*\|_{C(\infty)} = \sup_{t \in (0,1)} 2t^{-1/2} = \infty$, that is, $g^* \notin \operatorname{Ces}_\infty[0,1]$ and the space $\operatorname{Ces}_\infty[0,1]$ is not rearrangement invariant. Similarly, we can consider the case when $I = [0,\infty)$.
- (g) If $1 , then <math>\operatorname{Ces}_p(I)$ contains a copy of $L^1(I)$ (cf. [4], Lemma 1 for I = [0, 1] and Theorem 2 for $I = [0, \infty)$) and therefore, in particular, these spaces cannot be reflexive. Of course, $\operatorname{Ces}_1[0, 1] = L^1(\ln 1/t)$ is not reflexive and the space $\operatorname{Ces}_\infty(I)$ does not have absolutely continuous norm and therefore is also not reflexive.
- (h) Assume that $||f||_{C(p)} = ||g||_{C(p)} = 1$ and $||f+g||_{C(p)} = 2$; then $||H(|f|)||_{L^p} = ||H(|g|)||_{L^p} = 1$ and

$$\begin{split} 2 &= \|f + g\|_{C(p)} = \|H(|f + g|)\|_{L^p} \\ &\leq \|H(|f|) + H(|g|)\|_{L^p} \leq \|H(|f|)\|_{L^p} + \|H(|g|)\|_{L^p} \\ &= \|f\|_{C(p)} + \|g\|_{C(p)} = 2. \end{split}$$

Thus $||H(|f|) + H(|g|)||_{L^p} = 2$ and by the strict convexity of $L^p(I)$ for 1 and the above estimates we obtain that <math>H(|f|)(x) = H(|g|)(x) for almost all x in I. Therefore, |f(x)| = |g(x)| for almost all $x \in I$. We want to show that this implies that f(x) = g(x) for almost all $x \in I$. Assume on the contrary that $f \neq g$ on I, that

is, there exists a set $A \subset I$ of positive measure m(A) > 0 such that $f(x) \neq g(x)$ for all $x \in A$. Then f(x) = -g(x) and |f(x)| > 0 for $x \in A$. Moreover, if $B = \{x \in I: m([0, x] \cap (I \setminus A)) < x\}$, then m(B) > 0 and

$$\int_{0}^{x} \left| \frac{f(t) + g(t)}{2} \right| dt = \int_{[0,x] \cap (I \setminus A)} |f(t)| dt < \int_{0}^{x} |f(t)| dt$$

for all $x \in B$. Therefore,

$$1 = \left\| \frac{f+g}{2} \right\|_{C(p)}^{p} = \int_{I} \left(\frac{1}{x} \int_{0}^{x} \left| \frac{f(t) + g(t)}{2} \right| dt \right)^{p} dx$$
$$< \int_{I} \left(\frac{1}{x} \int_{0}^{x} |f(t)| dt \right)^{p} dx = \|f\|_{C(p)}^{p} = 1,$$

which is a contradiction and the proof is complete. \Box

3. THE DUAL SPACES OF THE CESÀRO FUNCTION SPACES $Ces_D[0,\infty)$

We describe the dual and Köthe dual spaces of $\operatorname{Ces}_p(I)$ for $1 in the case <math>I = [0, \infty)$. The description appeared as remark in Bennett [8] paper but it was proved recently, even for more general spaces, by Kerman, Milman and Sinnamon [30, Theorem D] and they used in the proof some of Sinnamon results [53, Theorem 2.1] and [52, Proposition 2.1 and Lemma 3.2].

We present here another proof following the Bennett's idea for Cesàro sequence spaces together with factorization theorems which are of independent interest. Since the case I = [0, 1] is essentially different it will be considered in the next section.

Theorem 2. Let $I = [0, \infty)$. If 1 , then

(2)
$$(\operatorname{Ces}_p)^* = (\operatorname{Ces}_p)' = D(p'), \quad p' = \frac{p}{p-1},$$

with $||f||_{C(p)'} \le p' ||f||_{D(p')} \le 8p' ||f||_{C(p)'}$, where the norm in D(p') is given by formula

(3)
$$||f||_{D(p')} = ||\tilde{f}||_{L^{p'}}$$
 with $\tilde{f}(x) = \operatorname{ess sup}_{t \in [x, \infty)} |f(t)|$.

We need the definition of the G(p) space for $1 \le p < \infty$, which is the *p*-convexification of $\text{Ces}_{\infty}[0,\infty)$, that is, its norm is given by the functional

$$||f||_{G(p)} = ||f|^p ||_{C(\infty)}^{1/p} = \sup_{x>0} \left(\frac{1}{x} \int_{0}^{x} |f(t)|^p dt\right)^{1/p}.$$

Proposition 1. *If* 1 , then

(4)
$$\operatorname{Ces}_p = L^p \cdot G(p'),$$

that is, $f \in \text{Ces}_p$ if and only if f = gh with $g \in L^p$, $h \in G(p')$ and

(5)
$$||f||_{C(p)} \approx \inf ||g||_p ||h||_{G(p')}$$

where infimum is taken over all factorizations f = gh with $g \in L^p$, $h \in G(p')$.

Proof. "Imbedding \hookrightarrow ". For $f \in \text{Ces}_p$, $f \not\equiv 0$ let

$$k(x) = \int_{x}^{\infty} u^{-p} \left(\int_{0}^{u} |f(t)| dt \right)^{p-1} du, \quad x > 0.$$

Then k(x) > 0, k is decreasing and by the Hölder–Rogers inequality

$$k(x) = \int_{x}^{\infty} u^{-1} \left(\frac{1}{u} \int_{0}^{u} |f(t)| dt\right)^{p-1} du$$

$$\leq \left(\int_{x}^{\infty} u^{-p} du\right)^{1/p} \left(\int_{x}^{\infty} \left(\frac{1}{u} \int_{0}^{u} |f(t)| dt\right)^{p} du\right)^{1/p'}$$

$$= \frac{1}{(p-1)^{1/p} x^{1-1/p}} ||f||_{C(p)}^{p-1}.$$

We consider the factorization $f = g \cdot h$, where

$$g(x) = (|f(x)|k(x))^{1/p} \operatorname{sgn} f(x)$$
 and $h(x) = |f(x)|^{1/p'} k(x)^{-1/p}$.

Then

$$||g||_{p}^{p} = \int_{0}^{\infty} |f(x)| \int_{x}^{\infty} u^{-p} \left(\int_{0}^{u} |f(t)| dt \right)^{p-1} du dx$$

$$= \int_{0}^{\infty} u^{-p} \left(\int_{0}^{u} |f(t)| dt \right)^{p-1} \int_{0}^{u} |f(x)| dx du = ||f||_{C(p)}^{p}$$

and, by the Hölder-Rogers inequality,

$$\left(\int_{0}^{x} |h(t)|^{p'} dt\right)^{p} = \left(\int_{0}^{x} |f(t)|^{1/p'} |f(t)|^{1/p} k(t)^{-p'/p} dt\right)^{p}$$

$$\leq \left(\int_{0}^{x} |f(t)| dt\right)^{p-1} \left(\int_{0}^{x} |f(t)| k(t)^{-p'} dt\right).$$

Hence, by the above and using the fact that k is decreasing, it yields that

$$\int_{x}^{\infty} \left(s^{-1} \int_{0}^{x} |h(t)|^{p'} dt \right)^{p} ds$$

$$\leq \int_{x}^{\infty} s^{-p} \left[\left(\int_{0}^{x} |f(t)| dt \right)^{p-1} \int_{0}^{x} |f(t)| k(t)^{-p'} dt \right] ds$$

$$= k(x) \int_{0}^{x} |f(t)| k(t)^{-p'} dt$$

$$\leq \int_{0}^{x} |f(t)| k(t)^{1-p'} dt = \int_{0}^{x} |h(t)|^{p'} dt$$

or, equivalently,

$$\int\limits_{x}^{\infty}s^{-p}\,ds\Biggl(\int\limits_{0}^{x}|h(t)|^{p'}\,dt\Biggr)^{p-1}\leqslant1,$$

which means that

$$\left(\int_{0}^{x} |h(t)|^{p'} dt\right)^{p-1} \le (p-1)x^{p-1}$$

and, hence,

$$\sup_{x>0} \frac{1}{x} \int_{0}^{x} |h(t)|^{p'} dt \leqslant (p-1)^{1/(p-1)}$$

or $||h||_{G(p')} \leq (p-1)^{1/p}$. We have proved that

$$\operatorname{Ces}_p \subset L^p \cdot G(p')$$

and

$$\inf\{\|g\|_{L^p}\|h\|_{G(p')}:\ f=g\cdot h\}\leqslant (p-1)^{1/p}\|f\|_{C(p)}.$$

"Imbedding \leftarrow ". Let $f = g \cdot h$ with $g \in L^p$ and $h \in G(p')$. Then

$$\int_{0}^{x} |h(t)|^{p'} dt \leq ||h||_{G(p')}^{p'} \int_{0}^{x} dt$$

and then, for any positive decreasing function w on $(0, \infty)$, we have by [32, property 18^0 , p. 72] that

$$\int_{0}^{x} |h(t)|^{p'} w(t) dt \le \|h\|_{G(p')}^{p'} \int_{0}^{x} w(t) dt.$$

By the Hölder-Rogers inequality we find that

$$\begin{split} \left(\int_{0}^{x} |f(t)| \, dt\right)^{p} &= \left(\int_{0}^{x} |g(t)| w(t)^{-1/p'} |h(t)| w(t)^{1/p'} \, dt\right)^{p} \\ &\leq \int_{0}^{x} |g(t)|^{p} w(t)^{1-p} \, dt \left(\int_{0}^{x} |h(t)|^{p'} w(t) \, dt\right)^{p-1} \\ &\leq \int_{0}^{x} |g(t)|^{p} w(t)^{1-p} \, dt \|h\|_{G(p')}^{p} \left(\int_{0}^{x} w(t) \, dt\right)^{p-1} \end{split}$$

and, thus,

$$\begin{split} & \int\limits_{0}^{\infty} \left(\frac{1}{x} \int\limits_{0}^{x} |f(t)| \, dt \right)^{p} dx \\ & \leq \int\limits_{0}^{\infty} x^{-p} \left(\int\limits_{0}^{x} |g(t)|^{p} w(t)^{1-p} \, dt \right) \left(\int\limits_{0}^{x} w(t) \, dt \right)^{p-1} dx \|h\|_{G(p')}^{p}. \end{split}$$

Taking in the last estimate $w(t) = t^{-1/p}$ we obtain that

$$\begin{split} \|f\|_{C(p)}^{p} &\leqslant \int_{0}^{\infty} x^{-p} \left(\int_{0}^{x} |g(t)|^{p} t^{1-1/p} dt \right) \left(\frac{x^{1-1/p}}{1-1/p} \right)^{p-1} dx \|h\|_{G(p')}^{p} \\ &= \left(p' \right)^{p-1} \int_{0}^{\infty} \left(\int_{0}^{x} |g(t)|^{p} t^{1-1/p} dt \right) x^{1/p-2} dx \|h\|_{G(p')}^{p} \\ &= \left(p' \right)^{p-1} \int_{0}^{\infty} \left(\int_{t}^{\infty} x^{1/p-2} dx \right) |g(t)|^{p} t^{1-1/p} dt \|h\|_{G(p')}^{p} \\ &= \left(p' \right)^{p} \int_{0}^{\infty} |g(t)|^{p} dt \|h\|_{G(p')}^{p} = \left(p' \right)^{p} \|g\|_{p}^{p} \|h\|_{G(p')}^{p} \end{split}$$

or

$$||f||_{C(p)} \leq p'||g||_p ||h||_{G(p')},$$

that is, $L^p \cdot G(p') \subset \operatorname{Ces}_p$ and

$$||f||_{C(p)} \leq p' \inf\{||g||_p ||h||_{G(p')}: f = gh\}.$$

Putting these facts together we have that $\operatorname{Ces}_p \overset{(p-1)^{1/p}}{\hookrightarrow} L^p \cdot G(p') \overset{p'}{\hookrightarrow} \operatorname{Ces}_p$ and the proof of Proposition 1 is complete. \square

Proposition 2. *If* $1 \le p < \infty$, then

$$D(p) \cdot G(p) = L^p$$

and

$$||f||_{L^p} = \inf\{||g||_{D(p)} ||h||_{G(p)}: f = gh, g \in D(p), h \in G(p)\}.$$

Moreover, G(1)' = D(1) with equality of the norms.

Proof. It suffices to prove the statement for p = 1 because the general result follows by p-convexification. Suppose that f = gh with $g \in D(1), h \in G(1)$. Then

$$||f||_{L^1} = \int\limits_0^\infty |g(t)h(t)| dt \leqslant \int\limits_0^\infty \tilde{g}(t)|h(t)| dt.$$

Moreover, from the definition of the norm in G(1) it follows that

$$\int_{0}^{t} |h(s)| ds \leq ||h||_{G(1)} t = ||h||_{G(1)} \int_{0}^{t} \chi_{[0,\infty)}(s) ds, \quad t > 0.$$

Therefore, since \tilde{g} decreases it follows by [32, property 18⁰, p. 72], we find that

$$||f||_{L^1} \le ||h||_{G(1)} \int_0^\infty \tilde{g}(t) dt = ||h||_{G(1)} ||g||_{D(1)}.$$

Hence, $D(1) \cdot G(1) \subset L^1$ and

$$\|f\|_{L^1}\leqslant \inf\{\|g\|_{D(1)}\|h\|_{G(1)}\colon\, f=gh,\,g\in D(1),\,h\in G(1)\}.$$

This also means that $G(1) \subset D(1)'$ and $||h||_{D(1)'} \leq ||h||_{G(1)}$. We show that we have in fact even equality. If $f \in D(1)'$, then

$$\frac{1}{x} \int_{0}^{x} |f(t)| dt = \frac{1}{x} \int_{0}^{1} \chi_{[0,x]}(t) |f(t)| dt$$

$$\leq \frac{1}{x} ||\chi_{[0,x]}||_{D(1)} ||f||_{D(1)'} = ||f||_{D(1)'},$$

for all x > 0, i.e., $f \in G(1)$ and so $D(1)' \subset G(1)$ with $||f||_{G(1)} \le ||f||_{D(1)'}$. Of course, G(1)' = D(1)'' = D(1) since the norm of D(1) has the Fatou property. Finally, if $f \in L^1$, then, by the Lozanovskiĭ factorization theorem ([40, Theorem 6, p. 429]; cf. also [43, p. 185]), we can find $g \in D(1)$ and $h \in D(1)' = G(1)$ such that $f = g \cdot h$ and

$$||g||_{D(1)}||h||_{G(1)} = ||f||_{L^1}.$$

This ends the proof of Proposition 2. \Box

Remark 1. In particular, Proposition 2 shows that $(\operatorname{Ces}_{\infty}[0,\infty))' = G(1)' = D(1)$. Thus, for the Cesàro function space on $[0,\infty)$ we get the result analogous to the Luxemburg–Zaanen theorem (cf. [42]): $(\operatorname{Ces}_{\infty}[0,1])' = \tilde{L}^1[0,1]$, where $\|f\|_{\tilde{L}^1} = \|\tilde{f}\|_{L^1[0,1]}$ with $\tilde{f}(x) = \operatorname{ess\,sup}_{t \in [x,1]} |f(t)|$.

Remark 2. For a positive weight function w and $1 \le p < \infty$ let us define the weighted spaces D(w,p) and G(w,p) by the norms $\|f\|_{D(w,p)} = (\int_0^\infty \tilde{f}(x)^p \times w(x) dx)^{1/p}$, where $\tilde{f}(x) = \operatorname{ess\,sup}_{t \in [x,\infty)} |f(t)|$, and $\|f\|_{G(w,p)} = \sup_{x>0} (\frac{1}{W(x)} \times \int_0^x |f(t)|^p dt)^{1/p}$, $W(x) = \int_0^x w(t) dt$, respectively. Proposition 2 is valid for weighted spaces: If $1 \le p < \infty$, then $D(w,p) \cdot G(w,p) = L^p$ and $\|f\|_{L^p} = \inf\{\|g\|_{D(w,p)} \times \|h\|_{G(w,p)}$: $f = gh, g \in D(w,p), h \in G(w,p)\}$.

Proposition 3. Let $1 . If <math>g \in (\operatorname{Ces}_p)'$, then $\tilde{g}(x) = \operatorname{ess\,sup}_{t \in [x,\infty)} |g(t)| \in (\operatorname{Ces}_p)'$ and

$$\|\tilde{g}\|_{C(p)'} \leq 8\|g\|_{C(p)'}$$
.

Proof. Let $f \in \text{Ces}_p$, $f \ge 0$. Then $\int_0^x f(t) dt \to 0$ if $x \to 0^+$. Consider two cases:

(a) If $\int_0^\infty f(s) ds = \infty$, then we select a two-sided sequence $\{a_k\}_{k \in \mathbb{Z}}$ such that $0 \le a_k < a_{k+1}, a_k \to \infty$ when $k \to \infty$ and

(6)
$$\int_{a_{k-1}}^{a_k} f(s) ds = 2^k, \quad k \in \mathbb{Z}.$$

(b) If $A = \int_0^\infty f(s) ds < \infty$, we find a one-sided sequence $\{a_k\}_{k \leq 0}$ such that $0 \leq a_k < a_{k+1}, a_0 = \infty$ and

(7)
$$\int_{a_{k-1}}^{a_k} f(s) \, ds = 2^{k-1} A, \quad k \le 0.$$

By J let us denote either \mathbb{Z} or $\{k \in \mathbb{Z}: k \leq 0\}$ depending on which of the cases (a) or (b) we have, and let

$$\mathcal{P} = \left\{ k \in J \colon \text{ there is a set } A_k \subset [a_{k-1}, a_k) \text{ such that } m(A_k) > 0 \right.$$
 and $|g(s)| \geqslant \frac{1}{2} \tilde{g}(a_{k-1}) \text{ for all } s \in A_k \right\}.$

Note that $\mathcal{P} \neq \emptyset$. In fact, let $k \in J$ be arbitrary and let i be the first "time" such that $i \geqslant k$ and

$$m\left\{s \in (a_{i-1},a_i] \colon |g(s)| \geqslant \frac{1}{2}\tilde{g}(a_{k-1})\right\} > 0.$$

Since $\tilde{g}(a_{i-1}) = \tilde{g}(a_{k-1})$, then $i \in \mathcal{P}$.

Let $\mathcal{P} = \{k_i\}_{i=1}^m$, where $k_i < k_j \ (i < j)$ and l may be $-\infty$. Moreover, it is easily seen that either $m = \infty$ and $k_i \to \infty$ when $i \to \infty$ (in the case (a)) or $k_m = 0$ and $t_{k_m} = \infty$ (in the case (b)).

Define the function

$$\bar{f}(t) = \sum_{i=l}^{m} \int_{\Delta_i} f(s) \, ds \frac{1}{m(A_{k_i})} \chi_{A_{k_i}}(t),$$

where $\Delta_i = (a_{k_i-1}, a_{k_i}]$, and estimate its norm in Ces_p.

Let $\bar{a} = \lim_{i \to -\infty} a_{k_i}$ if $l = -\infty$ and $\bar{a} = a_{k_l}$ if l is finite. If $\bar{a} > 0$, then $\bar{f}(t) = 0$ for all $t \in [0, \bar{a})$. Therefore

(8)
$$\int_{0}^{x} \bar{f}(t) dt = 0 \quad (0 < x \le \bar{a}).$$

Suppose $x > \bar{a}$. Then either (1^o) $t \in \Delta_i$ for some i or (2^o) there is i < m such that $t \in (a_{k_i}, a_{k_{i+1}-1}]$. In the first case, by (6) or (7) it yields that

$$\int_{0}^{x} \bar{f}(t) dt = \sum_{j=l}^{i-1} \int_{\Delta_{j}} f(s) ds \frac{1}{m(A_{k_{j}})} m(A_{k_{j}}) + \frac{m(A_{k_{i}} \cap (a_{k_{i}-1}, t])}{m(A_{k_{i}})} \int_{\Delta_{i}} f(s) ds$$

$$\leq \int_{0}^{a_{k_{i}}} f(s) ds \leq 2 \int_{0}^{x} f(s) ds.$$

Analogously, in the second case we have that

$$\int_{0}^{x} \bar{f}(t) dt \leqslant \int_{0}^{a_{k_i}} f(s) ds \leqslant \int_{0}^{x} f(s) ds.$$

The last inequalities and equality (8) show that

(9)
$$\|\bar{f}\|_{C(p)} \le 2\|f\|_{C(p)}$$
.

Moreover, for any i running from l to m we find that

(10)
$$\int_{\Delta_{i}} \bar{f}(t)|g(t)|dt = \int_{A_{k_{i}}} \bar{f}(t)|g(t)|dt \geqslant \frac{1}{2}\tilde{g}(a_{k_{i}-1})\int_{A_{k_{i}}} \bar{f}(t)dt$$
$$= \frac{1}{2}\tilde{g}(a_{k_{i}-1})\int_{\Delta_{i}} f(t)dt.$$

Since \tilde{g} decreases, then (10) implies, in particular, that

(11)
$$\int_{\Delta_i} \bar{f}(t)|g(t)|dt \geqslant \frac{1}{2} \int_{\Delta_i} f(t)\tilde{g}(t)dt.$$

Note that, by definition of the set \mathcal{P} , it yields that $\tilde{g}(t) \leq \tilde{g}(a_{k_i-1})$ a.e. on the interval $(a_{k_{i-1}}, a_{k_i-1}]$ if i > l and on the interval $(0, a_{k_l-1}]$ if l is finite. Moreover, taking into account (6) or (7) once again, we have that

$$\int_{a_{k_{i-1}}}^{a_{k_{i}-1}} f(s) ds \leqslant \int_{\Delta_{i}} f(s) ds \quad \text{if } i > l$$

and

$$\int_{0}^{a_{k_{l}-1}} f(s) ds \leqslant \int_{\Delta_{l}} f(s) ds \quad \text{if } l \text{ is finite.}$$

Therefore, by (10), it follows that

$$\int_{\Delta_{i}} \bar{f}(t)|g(t)|dt \geqslant \frac{1}{2}\tilde{g}(a_{k_{i}-1})\int_{\Delta_{i}} f(t)dt \geqslant \frac{1}{2}\tilde{g}(a_{k_{i}-1})\int_{a_{k_{i}-1}}^{a_{k_{i}-1}} f(t)dt$$

$$\geqslant \frac{1}{2}\int_{a_{k_{i}-1}}^{a_{k_{i}-1}} \tilde{g}(t)f(t)dt,$$

where $a_{l-1} = 0$ if l is finite.

Since f = 0 a.e. on the interval $(0, \bar{a}]$, when $l = -\infty$ and $\bar{a} = \lim_{i \to -\infty} a_{k_i} > 0$, then, by summing the last inequalities and inequality (11) over all i, we get that

$$2\int\limits_{0}^{\infty}\bar{f}(t)|g(t)|\,dt\geqslant2\sum\limits_{i=l}^{m}\int\limits_{\Delta_{i}}\bar{f}(t)|g(t)|\,dt\geqslant\frac{1}{2}\int\limits_{0}^{\infty}\tilde{g}(t)f(t)\,dt,$$

whence,

$$\int_{0}^{\infty} \tilde{g}(t) f(t) dt \leq 4 \int_{0}^{\infty} \bar{f}(t) |g(t)| dt.$$

Combining the last inequality with (9), we obtain that

$$\begin{split} \|\tilde{g}\|_{C(p)'} &= \sup \left\{ \int_{0}^{\infty} \tilde{g}(t) f(t) dt \colon \|f\|_{C(p)} \leqslant 1 \right\} \\ &\leqslant 4 \sup \left\{ \int_{0}^{\infty} \bar{f}(t) |g(t)| dt \colon \|f\|_{C(p)} \leqslant 1 \right\} \\ &\leqslant 4 \sup \left\{ \int_{0}^{\infty} \bar{f}(t) |g(t)| dt \colon \|\bar{f}\|_{C(p)} \leqslant 2 \right\} = 8 \|g\|_{C(p)'} \end{split}$$

and the proof is complete. \Box

Proof of Theorem 2. Firstly, we show that $D(p') \stackrel{1}{\hookrightarrow} (L^p \cdot G(p'))'$. In fact, let $f \in D(p')$ and $g \in L^p \cdot G(p')$, then $g = h \cdot k$ with $h \in L^p$ and $k \in G(p')$. By the Hölder–Rogers inequality and the imbedding $D(p') \cdot G(p') \stackrel{1}{\hookrightarrow} L^{p'}$ proved in Proposition 2 we obtain that

$$||fg||_{L^1} = ||fhk||_{L^1} \le ||h||_{L^p} ||fk||_{L^{p'}} \le ||h||_{L^p} ||k||_{G(p')} ||f||_{D(p')},$$

from which it follows that $D(p') \subset (L^p \cdot G(p'))'$ and $||f||_{(L^p \cdot G(p'))'} \leq ||f||_{D(p')}$. Since, by Proposition 1 we have equality $\operatorname{Ces}_p = L^p \cdot G(p')$, it follows that

$$D(p') \stackrel{p'}{\hookrightarrow} (\operatorname{Ces}_p)'.$$

To prove the converse, take $f \in (\operatorname{Ces}_p)'$. Since $\tilde{f} \geqslant |f|$ and D(p') is a Banach lattice, then by Proposition 3, we may (and will) assume that f is a non-negative decreasing function on $(0, \infty)$, i.e., $f = \tilde{f}$. Then, by the Hardy inequality, we find that

$$||f||_{D(p')} = ||f||_{L^{p'}} = \sup \left\{ \int_{0}^{\infty} |f(x)g(x)| \, dx \colon ||g||_{L^{p}} \leqslant 1 \right\}$$

$$\leqslant p' \sup \left\{ \int_{0}^{\infty} |f(x)g(x)| \, dx \colon ||g||_{C(p)} \leqslant 1 \right\} = p' ||f||_{(\operatorname{Ces}_{p})'}.$$

Therefore, $f \in D(p')$ and $(\operatorname{Ces}_p)' \stackrel{8p'}{\hookrightarrow} D(p')$. \square

We describe the dual and Köthe dual of $\operatorname{Ces}_p(I)$ for 1 in the case <math>I = [0, 1]. Surprisingly this will have a different description than in the case $I = [0, \infty)$. For $p = \infty$ the space $\operatorname{Ces}_{\infty}[0, 1]$ introduced by Korenblyum, Kreĭn and Levin [31] we denote by K and its separable part by K_0 .

As we already mentioned the Köthe dual space K' was found by Luxemburg and Zaanen [42]: $K' = \tilde{L}^1$ with equality of norms, where

$$||f||_{\tilde{L}^1} = ||\tilde{f}||_{L^1}$$
, with $\tilde{f}(x) = \text{ess} \sup_{t \in [x,1]} |f(t)|$.

Earlier the dual space of K_0 was found by Tandori [56]: $(K_0)^* = \tilde{L}^1$ with equality of norms.

We will find the Köthe dual space $(\operatorname{Ces}_p[0,1])'$ for 1 . Consider, for <math>1 , a Banach ideal space <math>U(p) on I = [0,1] which norm is given by the formula

(12)
$$||f||_{U(p)} = \left\| \frac{1}{1 - x^{1/(p-1)}} \tilde{f}(x) \right\|_{L^p} = \left[\int_0^1 \left(\frac{\tilde{f}(x)}{1 - x^{1/(p-1)}} \right)^p dx \right]^{1/p},$$

where $\tilde{f}(x) = \operatorname{ess\,sup}_{t \in [x,1]} |f(t)|$.

Remark 3. Since $\min(1, p-1) \leqslant \frac{1-x}{1-x^{1/(p-1)}} \leqslant \max(1, p-1)$ for all $x \in (0, 1)$, then the norm (12) in U(p) is equivalent to the norm

$$||f||_{U(p)}^{0} = \left[\int_{0}^{1} \left(\frac{\tilde{f}(x)}{1-x}\right)^{p} dx\right]^{1/p}.$$

Theorem 3. If 1 , then

(13)
$$(\operatorname{Ces}_p)^* = (\operatorname{Ces}_p)' = U(p'), \quad p' = \frac{p}{p-1},$$

with equivalent norms.

Before the proof of this theorem we prove some auxiliary results of independent interest. First, for 1 we define the Banach ideal space <math>V(p) on I = [0, 1] generated by the functional

(14)
$$||f||_{V(p)} = \sup_{0 < x \le 1} \left[\frac{(1 - x^{1/(p-1)})^{p-1}}{x} \int_{0}^{x} |f(t)|^{p} dt \right]^{1/p}.$$

Proposition 4. If 1 , then

(15)
$$\operatorname{Ces}_p \subset L^p \cdot V(p'), \quad p' = \frac{p}{p-1},$$

that is, if $f \in \text{Ces}_p$, then f = gh with $g \in L^p$, $h \in V(p')$ and

(16)
$$\inf\{\|g\|_p\|h\|_{V(p')}: f = g \cdot h, g \in L^p, h \in V(p')\} \leqslant (p-1)^{1/p}\|f\|_{C(p)}.$$

Proof. The proof is analogous to the proof of Proposition 1 (for the case $I = [0, \infty)$) but we put details to see how the weight $w(x) = (1 - x^{p-1})^{1/(p-1)}$ appeared in the definition of the space V(p'). For $f \in \text{Ces}_p$, $f \neq 0$, define

$$k(x) = \int_{x}^{1} u^{-p} \left(\int_{0}^{u} |f(t)| dt \right)^{p-1} du, \quad x \in [0, 1].$$

Then k(x) > 0, k is decreasing and, by the Hölder–Rogers inequality, we find that

$$k(x) = \int_{x}^{1} u^{-1} \left(\frac{1}{u} \int_{0}^{u} |f(t)| dt\right)^{p-1} du$$

$$\leq \left(\int_{x}^{1} u^{-p} du\right)^{1/p} \left(\int_{x}^{1} \left(\frac{1}{u} \int_{0}^{u} |f(t)| dt\right)^{p} du\right)^{1/p'}$$

$$\leq \frac{1}{(p-1)^{1/p}} \left(\frac{1-x^{p-1}}{x^{p-1}}\right)^{1/p} ||f||_{C(p)}^{p-1}.$$

Let

$$g(x) = (|f(x)|k(x))^{1/p} \operatorname{sgn} f(x)$$
 and $h(x) = |f(x)|^{1/p'} k(x)^{-1/p}, \quad 0 < x < 1.$

Then $f = g \cdot h$ and

$$||g||_{p}^{p} = \int_{0}^{1} |f(x)| \int_{x}^{1} u^{-p} \left(\int_{0}^{u} |f(t)| dt \right)^{p-1} du dx$$

$$= \int_{0}^{1} u^{-p} \left(\int_{0}^{u} |f(t)| dt \right)^{p-1} \int_{0}^{u} |f(x)| dx du = ||f||_{C(p)}^{p},$$

and, by the Hölder–Rogers inequality,

$$\left(\int_{0}^{x} |h(t)|^{p'} dt\right)^{p} = \left(\int_{0}^{x} |f(t)|^{1/p'} |f(t)|^{1/p} k(t)^{-p'/p} dt\right)^{p}$$

$$\leq \left(\int_{0}^{x} |f(t)| dt\right)^{p-1} \left(\int_{0}^{x} |f(t)| k(t)^{-p'} dt\right).$$

Hence, by the above and using the fact that k is decreasing, we obtain that

$$\int_{x}^{1} \left(s^{-1} \int_{0}^{x} |h(t)|^{p'} dt \right)^{p} ds$$

$$\leq \int_{x}^{1} s^{-p} \left[\left(\int_{0}^{x} |f(t)| dt \right)^{p-1} \int_{0}^{x} |f(t)| k(t)^{-p'} dt \right] ds$$

$$\leq \int_{x}^{1} s^{-p} \left[\left(\int_{0}^{s} |f(t)| dt \right)^{p-1} \int_{0}^{x} |f(t)| k(t)^{-p'} dt \right] ds$$

$$= k(x) \int_{0}^{x} |f(t)| k(t)^{-p'} dt$$

$$\leq \int_{0}^{x} |f(t)| k(t)^{1-p'} dt = \int_{0}^{x} |h(t)|^{p'} dt$$

or, equivalently,

$$\int_{x}^{1} s^{-p} ds \left(\int_{0}^{x} |h(t)|^{p'} dt \right)^{p-1} \le 1,$$

which means that

$$\left(\int_{0}^{x} |h(t)|^{p'} dt\right)^{p-1} \leqslant (p-1) \frac{x^{p-1}}{1 - x^{p-1}}$$

and, thus,

$$\sup_{x>0} \frac{(1-x^{p-1})^{1/(p-1)}}{x} \int_{0}^{x} |h(t)|^{p'} dt \le (p-1)^{1/(p-1)}$$

or $||h||_{V(p')} \leq (p-1)^{1/p}$. Summing up we have proved that $\operatorname{Ces}_p \subset L^p \cdot V(p')$ and

$$\inf\{\|g\|_{L^p}\|h\|_{V(p')}\colon f=g\cdot h\}\leqslant (p-1)^{1/p}\|f\|_{C(p)}.$$

Remark 4. In the above imbedding we cannot take instead of the space V(p'), where the weight $w(x) = (1-x^{p-1})^{1/(p-1)}$ appeared, the corresponding space without this weight, that is, the p'-convexification $K^{(p')}$ of K. This space is too small since if the imbedding $\operatorname{Ces}_p[0,1] \subset L^p \cdot K^{(p')}$ would be valid, then since $L^p \cdot K^{(p')} \subset L^p \cdot L^{p'} \subset L^1[0,1]$ we will have a contradiction because $\operatorname{Ces}_p[0,1]$ is not embedded into $L^1[0,1]$ (cf. Theorem 1(d)) and the problem is "near 1", therefore this weight w is really needed in the imbedding (15).

Proposition 5. If 1 , then

(a)
$$U(p) \cdot V(p) \subset L^p$$
 with

$$||f||_{L^p} \le \inf\{||g||_{U(p)} ||h||_{V(p)}: f = g \cdot h, g \in U(p), h \in V(p)\}.$$

(b)
$$U(p) \subset (V(p) \cdot L^{p'})'$$
 and $||f||_{(V(p) \cdot L^{p'})'} \leq ||f||_{U(p)}$ for all $f \in U(p)$.

Proof. (a) Let $f = g \cdot h, g \in U(p), h \in V(p)$. Since $|g| \leq \tilde{g}$ it follows that

(17)
$$||f||_{L^p}^p \leqslant \int_0^1 \tilde{g}(t)^p |h(t)|^p dt.$$

On the other hand, by the definition of the norm in V(p) and using the equality

$$\frac{d}{dx}\left(\frac{x}{(1-x^{1/(p-1)})^{p-1}}\right) = \frac{1}{(1-x^{1/(p-1)})^p},$$

we obtain that

$$\int_{0}^{x} |h(t)|^{p} dt \leq \|h\|_{V(p)}^{p} \frac{x}{(1 - x^{1/(p-1)})^{p-1}}$$

$$= \|h\|_{V(p)}^{p} \int_{0}^{x} \frac{1}{(1 - t^{1/(p-1)})^{p}} dt$$

for all $x \in (0, 1]$. Since \tilde{g}^p decreases, then, by [32, property 18⁰, p. 72], the last inequality implies that

$$\int_{0}^{1} \tilde{g}(t)^{p} |h(t)|^{p} dt \leq ||h||_{V(p)}^{p} \int_{0}^{1} \left(\frac{\tilde{g}(t)}{1 - t^{1/(p-1)}} \right)^{p} dt.$$

Therefore, by (17), $f \in L^p$ and

$$||f||_{L^p} \leq ||g||_{U(p)} \cdot ||h||_{V(p)},$$

and the proof of (a) is complete.

(b) For any $f \in U(p)$ and $g \in V(p) \cdot L^{p'}$ we have $g = h \cdot k$ with $h \in V(p), k \in L^{p'}$ and, by the Hölder–Rogers inequality and Proposition 5(a), we obtain that

$$\int_{0}^{1} |fg| dx = \int_{0}^{1} |fhk| dx \le \left(\int_{0}^{1} |fh|^{p} dx \right)^{1/p} \left(\int_{0}^{1} |k|^{p'} dx \right)^{1/p'}$$

$$\le ||f||_{U(p)} ||h||_{V(p)} ||k||_{L^{p'}} = ||h||_{V(p)} ||k||_{L^{p'}} ||f||_{U(p)}$$

or $f \in (V(p) \cdot L^{p'})'$ and $||f||_{(V(p) \cdot L^{p'})'} \leq ||f||_{U(p)}$. The proof of (b) is complete. \square

Proposition 6. Let $1 \le p < \infty$. If $g \in (\operatorname{Ces}_p)'$, then $\tilde{g}(x) = \operatorname{ess\,sup}_{t \in [x,1]} |g(t)| \in (\operatorname{Ces}_p)'$ and

$$\|\tilde{g}\|_{C(p)'} \leq 8\|g\|_{C(p)'}$$
.

Proof. When p=1, then the assertion is obvious since $\operatorname{Ces}_1 = L^1(\ln 1/t)$ and $(\operatorname{Ces}_1)' = L^\infty(\ln^{-1} 1/t)$. Let p>1 and $f \in \operatorname{Ces}_p$, $f \geqslant 0$. Consider two cases: (a) If $\int_0^1 f(s) \, ds = \infty$, then we select a two-sided sequence $\{a_k\}_{k \in \mathbb{Z}}$ such that $0 \leqslant a_k < a_{k+1}, a_k \to 1$ when $k \to \infty$ and

(18)
$$\int_{a_{k-1}}^{a_k} f(s) ds = 2^k, \quad k \in \mathbb{Z}.$$

(b) If $A = \int_0^1 f(s) ds < \infty$, then we can find an one-sided sequence $\{a_k\}_{k \le 0}$ such that $0 \le a_k < a_{k+1}, a_0 = 1$ and

(19)
$$\int_{a_{k-1}}^{a_k} f(s) \, ds = 2^{k-1} A, \quad k \le 0.$$

The remaining part of the proof is completely analogous to the proof of Proposition 3 so we omit the details. \Box

Proof of Theorem 3. "Imbedding \supset ". If $f \in U(p')$, then, by Proposition 5(b) and Proposition 4, we obtain that

$$U(p') \subset (V(p') \cdot L^p)' \subset (\text{Ces}_p)'$$
 and $||f||_{C(p)'} \leqslant (p-1)^{1/p} ||f||_{U(p')}$.

"Imbedding \subset ". Let $f \in (\operatorname{Ces}_p)'$. Since $\tilde{f} \geqslant |f|$ and U(p') is a Banach lattice, then by Proposition 6 we may (and we will) assume that f is a non-negative decreasing function on (0,1], i.e., $f = \tilde{f}$. Define the weight

$$w(x) = \chi_{[0,1/2]}(x) + (1-x)\chi_{[1/2,1]}(x), \quad 0 < x \le 1.$$

Since $1 - x \le w(x) \le 2(1 - x)$ for $x \in (0, 1]$, then according to Remark 3 it is enough to prove that for some constant $A_p > 0$ we have that

(20)
$$\left\| \frac{f}{w} \right\|_{L^{p'}} = \left[\int_{0}^{1} \left(\frac{f(x)}{w(x)} \right)^{p'} dx \right]^{1/p} \leqslant A_{p} \|f\|_{C(p)'}$$

since

$$\begin{split} \|f\|_{U(p')} &= \left\| \frac{1}{1 - x^{1/(p'-1)}} f(x) \right\|_{L^{p'}} \leqslant \max (1, p'-1) \left\| \frac{1}{1 - x} f(x) \right\|_{L^{p'}} \\ &\leqslant 2 \max (1, p'-1) \|f/w\|_{L^{p'}}. \end{split}$$

We now prove that if $h \in L^p$, $h \ge 0$, then $h/w \in \operatorname{Ces}_p$ and

(21)
$$||h/w||_{C(p)} \leq (p'+2p)||h||_{L^p}$$
.

To prove this we first show that the operator S_w defined by

$$S_w h(x) = \int_0^x \frac{h(t)}{w(t)} dt \quad (0 < x \le 1)$$

is bounded in $L^p[0,1]$ for $1 \le p < \infty$. In fact, for $0 < x \le 1/2$ we have that

$$S_w h(x) = \int_0^x h(t) dt = \int_{1-x}^1 h(1-t) dt \le \int_{1-x}^1 \frac{h(1-t)}{t} dt$$

and for $1/2 \leqslant x \leqslant 1$

$$S_w h(x) = \int_0^{1/2} h(t) dt + \int_{1/2}^x \frac{h(t)}{1-t} dt$$
$$= \int_{1/2}^1 h(1-t) dt + \int_{1-x}^{1/2} \frac{h(1-t)}{t} dt \leqslant \int_{1-x}^1 \frac{h(1-t)}{t} dt.$$

Thus,

$$S_w h(x) \leq H'(\bar{h})(1-x)$$
 for $0 < x < 1$,

where $\bar{h}(t) = h(1-t)$ and H' is the associated Hardy operator, i.e., $H'h(x) = \int_x^1 \frac{h(t)}{t} dt$. It is well known that H' is bounded in $L^p[0, 1]$ for $1 \le p < \infty$ (cf. [32], pp. 138–139) and, thus,

$$||S_w h||_{L^p} \le ||H'(\bar{h})||_{L^p} \le ||H'|| ||\bar{h}||_{L^p} = ||H'|| ||h||_{L^p}.$$

Since

$$\frac{1}{x}S_w h(x) = \frac{1}{x} \int_0^x \frac{h(t)}{w(t)} dt \leqslant \frac{1}{x} \int_0^x h(t) dt \chi_{[0,\frac{1}{2}]}(x) + 2S_w h(x) \chi_{[\frac{1}{2},1]}(x)$$

it follows that

$$||h/w||_{C(p)} = \left\| \frac{1}{x} S_w h(x) \right\|_{L^p} \le ||Hh||_{L^p} + 2||S_w h||_{L^p}$$
$$\le p' ||h||_{L^p} + 2p ||h||_{L^p} = (p' + 2p) ||h||_{L^p}$$

and the estimate (21) is proved. Moreover, by using this fact we obtain that

$$\left\| \frac{f}{w} \right\|_{L^{p'}} = \sup \left\{ \int_{0}^{1} \frac{f(t)}{w(t)} h(t) dt \colon h \geqslant 0, \|h\|_{L^{p}} \leqslant 1 \right\}$$

$$\leqslant \sup \left\{ \int_{0}^{1} \frac{f(t)}{w(t)} h(t) dt \colon h \geqslant 0, \left\| \frac{h}{w} \right\|_{C(p)} \leqslant p' + 2p \right\}$$

$$\leqslant (p' + 2p) \|f\|_{C(p)'}$$

and also the estimate (20) is proved, which shows that $(\operatorname{Ces}_p)' \subset U(p')$ and for every $f \in (\operatorname{Ces}_p)'$

$$||f||_{U(p')} \le 16 \max(1, p'-1)(p'+2p)||f||_{C(p)'},$$

and the proof is complete. \Box

Remark 5. Let $1 . The <math>L^p$ spaces have the property that the restriction of $L^p[0,\infty)$ to [0,1] gives the space $L^p[0,1]$. The situation is different for Cesàro function spaces. In fact, if $f \in \operatorname{Ces}_p[0,\infty)$ and supp $f \subset [0,1]$, then

$$\begin{split} \|f\|_{\mathrm{Ces}_{p}[0,\infty)}^{p} &= \int_{0}^{\infty} \left(\frac{1}{x} \int_{0}^{x} |f(t)| \, dt\right)^{p} dx \\ &= \int_{0}^{1} \left(\frac{1}{x} \int_{0}^{x} |f(t)| \, dt\right)^{p} dx + \int_{1}^{\infty} \left(\frac{1}{x} \int_{0}^{1} |f(t)| \, dt\right)^{p} dx \\ &= \|f\|_{\mathrm{Ces}_{p}[0,1)}^{p} + \frac{1}{p-1} \|f\|_{L^{1}[0,1]}^{p}, \end{split}$$

which means that

$$\operatorname{Ces}_p[0,\infty)|_{[0,1]} = \operatorname{Ces}_p[0,1] \cap L^1[0,1].$$

Therefore,

$$(\operatorname{Ces}_p[0,1] \cap L^1[0,1])' = (\operatorname{Ces}_p[0,\infty))'|_{[0,1]} = D(p')|_{[0,1]}$$

or

$$U(p') + L^{\infty}[0, 1] = D(p')|_{[0,1]}.$$

The last equality can be easily verified. For example, for $f \in D(p')|_{[0,1]}$ we can take as a decomposition f = g + h, $g \in U(p')$, $h \in L^{\infty}[0,1]$ the functions

$$g(x) = (1 - x) f(x)$$
 and $h(x) = x f(x)$, $x \in [0, 1]$.

Then f = g + h and $\tilde{g}(x) = \operatorname{ess\,sup}_{t \in [x,1]} (1-t) |f(t)| \leq (1-x) \tilde{f}(x)$, which shows

that $g \in U(p')$ since $f \in D(p')$. Moreover,

$$||h||_{\infty} = \operatorname{ess \ sup}_{x \in [0,1]} x |f(x)| \leqslant \operatorname{ess \ sup}_{x \in [0,1]} x \tilde{f}(x)$$

$$\leqslant ||\tilde{f}||_{L^{1}} \leqslant ||\tilde{f}||_{L^{p'}} = ||f||_{D(p')},$$

so that $h \in L^{\infty}[0, 1]$.

5. ON $\it p$ -CONCAVITY, TYPE AND COTYPE OF CESÀRO SEQUENCE AND FUNCTION SPACES

A Banach lattice *X* is said to be *p-convex* $(1 \le p < \infty)$ with constant $K \ge 1$, respectively *q-concave* $(1 \le q < \infty)$ with constant $L \ge 1$ if

$$\left\| \left(\sum_{k=1}^{n} |x_k|^p \right)^{1/p} \right\| \leqslant K \left(\sum_{k=1}^{n} \|x_k\|^p \right)^{1/p},$$

respectively

$$\left(\sum_{k=1}^{n} \|x_k\|^q\right)^{1/q} \leqslant L \left\| \left(\sum_{k=1}^{n} |x_k|^q\right)^{1/q} \right\|,$$

for every choice of vectors x_1, x_2, \ldots, x_n in X.

Of course, every Banach lattice is 1-convex with constant 1. In particular, \cos_p and $\operatorname{Ces}_p(I)$ are 1-convex with constant 1. The spaces $L^p(I)$ are p-convex and p-concave with constant 1.

If the above estimates hold for pairwise disjoint elements $\{x_k\}_{k=1}^n$ in X, that is,

$$\left\| \sum_{k=1}^{n} x_k \right\| \leqslant K \left(\sum_{k=1}^{n} \|x_k\|^p \right)^{1/p},$$

respectively

$$\left(\sum_{k=1}^{n} \|x_k\|^q\right)^{1/q} \leqslant L \left\|\sum_{k=1}^{n} x_k\right\|,\,$$

then we say that X satisfies an *upper p-estimate* with constant K and a *lower q-estimate* with constant L, respectively. It is obvious that a p-convex (q-concave) Banach lattice satisfies upper p-estimate (lower q-estimate).

Let $r_n:[0,1] \to \mathbb{R}, n \in \mathbb{N}$, be the Rademacher functions, that is, $r_n(t) = \operatorname{sign}(\sin 2^n \pi t)$. A Banach space X has $type \ 1 \le p \le 2$ if there is a constant K > 0 such that, for any choice of finitely many vectors x_1, \ldots, x_n from X,

$$\int_{0}^{1} \left\| \sum_{k=1}^{n} r_{k}(t) x_{k} \right\| dt \leqslant K \left(\sum_{k=1}^{n} \|x_{k}\|^{p} \right)^{1/p}.$$

A Banach space X has *cotype* $q \ge 2$ if there is a constant K > 0 such that, for any choice of finitely many vectors x_1, \ldots, x_n from X,

$$\left(\sum_{k=1}^{n} \|x_k\|^q\right)^{1/q} \leqslant K \int_{0}^{1} \left\|\sum_{k=1}^{n} r_k(t) x_k\right\| dt.$$

In order to complete this definition for $q = \infty$ the left-hand side should be replaced by $\max_{1 \le k \le n} \|x_k\|$.

We say that the space *X* has *trivial type* or *trivial cotype*, if it does not have any type bigger than one or any finite cotype, respectively.

More information and connections among the above notions may be found in [17] and [38].

Theorem 4. If $1 , then <math>\operatorname{Ces}_p(I)$ are p-concave with constant 1, that is,

(22)
$$\left(\sum_{k=1}^{n} \|f_k\|_{C(p)}^p \right)^{1/p} \leqslant \left\| \left(\sum_{k=1}^{n} |f_k|^p \right)^{1/p} \right\|_{C(p)},$$

for all $f_1, f_2, \ldots, f_n \in \operatorname{Ces}_p(I)$.

Proof. Inequality (22) taken to the power p means that

$$\sum_{k=1}^{n} \int_{I} \left(\frac{1}{x} \int_{0}^{x} |f_{k}(t)| dt \right)^{p} dx \leq \int_{I} \left[\frac{1}{x} \int_{0}^{x} \left(\sum_{k=1}^{n} |f_{k}(t)|^{p} \right)^{1/p} dt \right]^{p} dx.$$

If we show that

$$\sum_{k=1}^{n} \left(\frac{1}{x} \int_{0}^{x} |f_{k}(t)| dt \right)^{p} \leq \left[\frac{1}{x} \int_{0}^{x} \left(\sum_{k=1}^{n} |f_{k}(t)|^{p} \right)^{1/p} dt \right]^{p}$$

for every $x \in I$, then we are done. The last estimate can also be written as

$$\left[\sum_{k=1}^{n} \left(\int_{0}^{x} |f_{k}(t)| dt \right)^{p} \right]^{1/p} \leq \int_{0}^{x} \left(\sum_{k=1}^{n} |f_{k}(t)|^{p} \right)^{1/p} dt,$$

which is the *p*-concavity of $L^1[0, x]$ for every $x \in I$.

It is clear that $L^1(J)$, $J = J_x = [0, x]$ is 1-convex with constant 1 and it is well known that then $L^1(J)$ is p-concave with constant 1 (cf. [38, Proposition 1.d.5] or [44, Theorem 4.3]). We can also prove this fact directly as in [44, Theorem 4.3]: by the Hölder–Rogers inequality for $t \in J$ it yields that

$$\sum_{k=1}^{n} |f_k(t)| |a_k| \leqslant \left(\sum_{k=1}^{n} |f_k(t)|^p\right)^{1/p} |\{a_k\}|_{p'}$$

and, by integrating over J,

$$\int_{J} \sum_{k=1}^{n} |f_{k}(t)| |a_{k}| dt \leq \|\{a_{k}\}\|_{p'} \int_{I} \left(\sum_{k=1}^{n} |f_{k}(t)|^{p} \right)^{1/p} dt$$

$$= \|\{a_{k}\}\|_{p'} \left\| \left(\sum_{k=1}^{n} |f_{k}|^{p} \right)^{1/p} \right\|_{L^{1}(J)}.$$

Taking the supremum over all $\{a_k\}$ such that $\|\{a_k\}\|_{p'} \le 1$ we obtain, by the Landau theorem,

$$\begin{split} \sup & \left\{ \int_{J} \sum_{k=1}^{n} |f_{k}(t)| |a_{k}| \, dt \colon \|\{a_{k}\}\|_{p'} \leqslant 1 \right\} \\ &= \sup \left\{ \sum_{k=1}^{n} |a_{k}| \int_{J} |f_{k}(t)| \, dt \colon \|\{a_{k}\}\|_{p'} \leqslant 1 \right\} \\ &= \left\| \left\{ \int_{J} |f_{k}(t)| \, dt \right\} \right\|_{p} = \left[\sum_{k=1}^{n} \left(\int_{J} |f_{k}(t)| \, dt \right)^{p} \right]^{1/p} \\ &= \left(\sum_{k=1}^{n} \|f_{k}\|_{L^{1}(J)}^{p} \right)^{1/p} . \end{split}$$

Thus,

$$\left(\sum_{k=1}^{n} \|f_k\|_{L^1(J)}^p\right)^{1/p} \leqslant \left\| \left(\sum_{k=1}^{n} |f_k|^p\right)^{1/p} \right\|_{L^1(J)},$$

and putting these facts together we obtain the estimate (22). \Box

Theorem 5. If $1 , then the space <math>\operatorname{Ces}_p(I)$ has trivial type and cotype $\max(p, 2)$. The space $\operatorname{Ces}_{\infty}(I)$ has trivial type and trivial cotype.

Proof. Let $1 . The space <math>\operatorname{Ces}_p(I)$ contains a copy of $L^1(I)$ (cf. [4], Lemma 1 for I = [0, 1] and Theorem 2 for $I = [0, \infty)$) which implies that $\operatorname{Ces}_p(I)$ has trivial type.

On the other hand, since, by Theorem 4 the space $Ces_p(I)$ is p-concave, then by a well-known theorem (cf. Lindenstrauss and Tzafiri [38, p. 100]) it has cotype max(p, 2). The fact that this space has no smaller cotype follows, for example, from Theorem 6 showing that $Ces_p(I)$ contains an isomorphic copy of l^p and the fact that the space l^p has cotype max(p, 2) and this value is the best possible (cf. [38, p. 73] or [44, pp. 91–94]).

For $p = \infty$ the space $Ces_{\infty}(I)$ has no absolutely continuous norm and, by the Lozanovskiĭ theorem (see [40, Theorem 5, p. 65]; cf. also [28, Theorem 4 in X.4]

and [59, Theorem 4.1]), it contains an isomorphic copy of l^{∞} , therefore it has trivial type and trivial cotype. The proof is complete. \Box

Remark 6. Similarly as in Theorem 4 we can prove that the Cesàro sequence spaces \cos_p are p-concave with constant 1 since l^1 is p-concave with constant 1. Moreover, similarly as in Theorem 5 we can obtain that the Cesàro sequence spaces \cos_p have trivial type and cotype $\max(p,2)$ for $1 . Also <math>\cos_\infty$ has trivial type and trivial cotype.

6. COPIES OF l^p SPACES IN THE CESÀRO FUNCTION SPACES Ces_p

The Cesàro function space $\operatorname{Ces}_p(I)$ contains a copy of $L^1(I)$ and as we will see in the next theorem also complemented copies of l^p .

Theorem 6. If $1 , then <math>\operatorname{Ces}_p(I)$ contains an order isomorphic and complemented copy of l^p .

Proof. Let I = [0, 1]. We shall construct a sequence $\{f_n\}_{n=1}^{\infty} \subset \operatorname{Ces}_p[0, 1]$ with disjoint supports which spans an isomorphic copy of l^p in $\operatorname{Ces}_p[0, 1]$ and the closed linear span $[f_n]_{\operatorname{Ces}_p}$ is complemented in $\operatorname{Ces}_p[0, 1]$. Let us denote

$$f_n = \chi_{[2^{-n-1}, 2^{-n}]}$$
 and $F_n(t) = \frac{1}{t} \int_0^t f_n(s) \, ds$, $n = 1, 2, \dots$

Since

$$F_n(t) = \begin{cases} 0, & \text{if } 0 < t \le 2^{-n-1}, \\ 1 - \frac{1}{2^{n+1}t}, & \text{if } 2^{-n-1} \le t \le 2^{-n}, \\ \frac{1}{2^{n+1}t}, & \text{if } t \ge 2^{-n}, \end{cases}$$

it follows that

$$\|f_n\|_{C(p)}^p = \|F_n\|_{L^p}^p = \int_{2^{-n-1}}^{2^{-n}} \left(1 - \frac{1}{2^{n+1}t}\right)^p dt + 2^{-(n+1)p} \frac{2^{n(p-1)} - 1}{p-1}.$$

Note that the first term in the above sum is not bigger than 2^{-p-n-1} and the second one satisfies the inequalities

$$\frac{1-2^{-p+1}}{p-1}2^{-p-n} \leqslant 2^{-(n+1)p} \frac{2^{n(p-1)}-1}{p-1} \leqslant \frac{2^{-p-n}}{p-1}.$$

Therefore,

(23)
$$||f_n||_{C(p)} \approx ||f_n||_{L^p} \approx 2^{-n/p}$$

with constants which depend only on p. If

$$\bar{f}_n = \frac{f_n}{\|f_n\|_{C(p)}}, \quad n = 1, 2, \dots,$$

then

$$1 = \|\bar{f}_n\|_{C(p)} \approx \|\bar{f}_n\|_{L^p}, \quad n \in \mathbb{N}.$$

Let us denote

$$x(t) = \sum_{n=1}^{\infty} \alpha_n \bar{f}_n, \quad \alpha_n \in \mathbb{R}.$$

Since \bar{f}_n are disjoint functions we may assume that $\alpha_n \ge 0$. By Theorem 1(c) (the Hardy inequality) and the above equivalence

$$\|x\|_{C(p)} \leqslant \frac{p}{p-1} \|x\|_{L^p} = \frac{p}{p-1} \left(\sum_{n=1}^{\infty} \alpha_n^p \|\bar{f}_n\|_{L^p}^p \right)^{1/p} \leqslant C_p \left(\sum_{n=1}^{\infty} \alpha_n^p \right)^{1/p}.$$

On the other hand, by Theorem 4, for any $n \in \mathbb{N}$,

$$\left\| \sum_{k=1}^{n} \alpha_{k} \bar{f_{k}} \right\|_{C(p)} \geqslant \left(\sum_{k=1}^{n} \|\alpha_{k} \bar{f_{k}}\|_{C(p)}^{p} \right)^{1/p} = \left(\sum_{k=1}^{n} \alpha_{k}^{p} \right)^{1/p}$$

and passing to the limit as $n \to \infty$ we arrive at the inequality

$$||x||_{C(p)} \geqslant \left(\sum_{k=1}^{\infty} \alpha_k^p\right)^{1/p} \approx ||x||_{L^p},$$

which together with estimation from above gives us that

$$(24) [\bar{f}_n]_{\operatorname{Ces}_p} \simeq [\bar{f}_n]_{L^p} \simeq l^p.$$

Next, we prove that $[\bar{f}_n]_{\text{Ces}_p}$ is complemented in Ces_p for $1 . Let <math>x \in \text{Ces}_p$, $x \ge 0$ and $\text{supp}\, x \subset [2^{-n-1}, 2^{-n}], n \in \mathbb{N}$. Then

$$\frac{1}{t} \int_{0}^{t} x(s) \, ds = \frac{1}{t} \int_{2^{-n-1}}^{t} x(s) \, ds \, \chi_{[2^{-n-1}, 2^{-n}]}(t) + \frac{1}{t} \|x\|_{L^{1}} \chi_{[2^{-n}, 1]}(t)$$

and

$$||x||_{C(p)}^{p} = \int_{2^{-n-1}}^{2^{-n}} \left(\frac{1}{t} \int_{2^{-n-1}}^{t} x(s) \, ds\right)^{p} dt + ||x||_{L^{1}}^{p} \int_{2^{-n}}^{1} t^{-p} \, dt.$$

The first term in the last sum is not bigger than

$$||x||_{L^{1}}^{p} \int_{2-n-1}^{2^{-n}} t^{-p} dt = \frac{2^{p-1}-1}{p-1} 2^{n(p-1)} ||x||_{L^{1}},$$

and the second one is equal to

$$||x||_{L^1}^p \frac{2^{n(p-1)}-1}{p-1}.$$

Therefore,

(25)
$$||x||_{C(p)} \approx ||x||_{L^1} 2^{n(1-1/p)}, \quad n = 1, 2, ...,$$

with constants which depend only on p. We consider the orthogonal projector

(26)
$$Tx(t) := \sum_{k=1}^{\infty} 2^{k+1} \int_{2^{-k-1}}^{2^{-k}} x(s) \, ds \chi_{[2^{-k-1}, 2^{-k}]}(t)$$

and prove that it is bounded in Ces_p .

For arbitrary $x \in \text{Ces}_p$, $x \ge 0$ we set $x_k = x \chi_{12^{-k-1} 2^{-k_1}}$ (k = 1, 2, ...). Since

$$Tx_k = ||x_k||_{L^1} 2^{k+1} \chi_{[2^{-k-1}, 2^{-k}]},$$

then (23) and (25) imply that

$$||Tx_k||_{C(p)} = ||x_k||_{L^1} 2^{k+1} ||f_k||_{C(p)} \le B ||x_k||_{L^1} 2^{k+1} 2^{-k/p} \le C ||x_k||_{C(p)}.$$

Therefore, by (24) and Theorem 4, we have that

$$||Tx||_{C(p)} \leqslant C' \left(\sum_{k=1}^{\infty} ||Tx_k||_{C(p)}^p \right)^{1/p} \leqslant C' C \left(\sum_{k=1}^{\infty} ||x_k||_{C(p)}^p \right)^{1/p}$$

$$\leqslant C' C \left\| \sum_{k=1}^{\infty} x_k \right\|_{C(p)} = C' C ||x||_{C(p)},$$

and the proof of the boundedness of T in Ces_p is complete. Since the image of T coincides with $[x_n]_{\operatorname{Ces}_p}$, then Theorem 6 is proved. \square

The above theorem shows that the Cesàro function spaces $\operatorname{Ces}_p[0,1]$ behave "near zero" similar to the l^p spaces. The authors proved in [4] that "in the middle" Cesàro function spaces $\operatorname{Ces}_p(I)$ contain an asymptotically isometric copy of l^1 , that is, there exist a sequence $\{\varepsilon_n\} \subset (0,1), \varepsilon_n \to 0$ as $n \to \infty$ and a sequence of functions $\{f_n\} \subset \operatorname{Ces}_p[0,1]$ such that, for arbitrary $\{\alpha_n\} \in l^1$, we have that

(27)
$$\sum_{n=1}^{\infty} (1 - \varepsilon_n) |\alpha_n| \leqslant \left\| \sum_{n=1}^{\infty} \alpha_n f_n \right\|_{C(p)} \leqslant \sum_{n=1}^{\infty} |\alpha_n|.$$

Consequently, these spaces are not reflexive and do not have the fixed point property. This is a big difference with the Cesàro sequence spaces \cos_p , which for 1 are reflexive and have the fixed point property.

Let us recall that a Banach space X has the Dunford-Pettis property if $x_n \to 0$ weakly in X and $f_n \to 0$ weakly in the dual space X^* imply $f_n(x_n) \to 0$. The classical examples of Banach spaces with the Dunford-Pettis property are the AL-spaces and AM-spaces. It is clear that if X^* has the Dunford-Pettis property, then X has itself this property (cf. [2, pp. 334–336]). Of course, the Cesàro sequence spaces \cos_p , 1 , as reflexive spaces do not have the Dunford-Pettis property.

Corollary 1. *If* $1 , then <math>Ces_p(I)$ do not have the Dunford–Pettis property.

Proof. By Theorem 6, $\operatorname{Ces}_p(I)$ contains a complemented copy of l^p and l^p do not have the Dunford–Pettis property. On the other hand, it is easy to show that, if a Banach space has the Dunford–Pettis property, then its complemented subspace has also the Dunford–Pettis property (cf. Wnuk [58, Lemma 1(i)] or [23, Proposition 11.37]). Thus, $\operatorname{Ces}_p(I)$ do not have the Dunford–Pettis property. \square

As it was mentioned before the Cesàro sequence spaces \cos_p are not isomorphic to the l^q space for any $1 \leqslant q \leqslant \infty$. An analogous theorem is true for Cesàro function spaces.

Theorem 7. If $1 , then <math>\operatorname{Ces}_p(I)$ are not isomorphic to any $L^q(I)$ space for any $1 \le q \le \infty$.

Proof. If $1 < q < \infty$, then $\operatorname{Ces}_p(I)$ has trivial type but $L^q(I)$ has type $\min(q,2) > 1$ and therefore they cannot be isomorphic. The space $\operatorname{Ces}_p(I)$ for $1 is not isomorphic to <math>L^1(I)$ since $L^1(I)$ has the Dunford–Pettis property but $\operatorname{Ces}_p(I)$, as we have seen in Corollary 1, do not have the Dunford–Pettis property. Also $\operatorname{Ces}_p(I)$ for $1 is not isomorphic to <math>L^\infty(I)$ since the first space is separable and the second one is non-separable.

It only remains to show that $\operatorname{Ces}_{\infty}(I)$ is not isomorphic to $L^{\infty}(I)$. Since, by Pełczyński theorem $L^{\infty}(I)$ is isomorphic to ℓ^{∞} (cf. Albiac and Kalton [1, Theorem 4.3.10]), therefore it is enough to show that $\operatorname{Ces}_{\infty}(I)$ is not isomorphic to ℓ^{∞} .

We show this for $K = \mathrm{Ces}_{\infty}[0,1]$ since for the case of $\mathrm{Ces}_{\infty}(0,\infty)$ the proof is similar. For fixed $a \in (0,1)$ define a continuous projection $P: K \to K$ by $Pf = f\chi_{[a,1]}$. Then

$$\int_{a}^{1} |Pf(t)| dt \leqslant \int_{0}^{1} |Pf(t)| dt \leqslant ||Pf||_{K} = \sup_{0 < x \leqslant 1} \frac{1}{x} \int_{0}^{x} |f(t)\chi_{[a,1]}(t)| dt$$

$$= \sup_{a \leqslant x \leqslant 1} \frac{1}{x} \int_{a}^{x} |f(t)\chi_{[a,1]}(t)| dt \leqslant \frac{1}{a} \int_{a}^{1} |Pf(t)| dt.$$

Hence, P(K) is isomorphic to $L^1[a, 1]$, i.e., K contains a complemented copy of a separable space while no separable subspace of ℓ^{∞} is complemented in ℓ^{∞} because ℓ^{∞} is prime, that is, every infinite dimensional complemented subspace of ℓ^{∞} is isomorphic to ℓ^{∞} (see Lindenstrauss and Tzafriri [37, Theorem 2.a.7], or Albiac and Kalton [1, Theorem 5.6.5]). Therefore, K and ℓ^{∞} are not isomorphic. \square

7. ON THE WEAK BANACH-SAKS PROPERTY OF THE CESÀRO FUNCTION SPACES

Let us recall that a Banach space X is said to have the *weak Banach–Saks property* if every weakly null sequence in X, say (x_n) , contains a subsequence (x_{n_k}) whose first arithmetical means converge strongly to zero, that is,

$$\lim_{m\to\infty}\frac{1}{m}\left\|\sum_{k=1}^m x_{n_k}\right\|=0.$$

It is known that uniformly convex spaces, c_0 , l^1 and L^1 have the weak Banach–Saks property, whereas C[0,1] and l^{∞} do not have. We should mention that the result on L^1 space, proved by Szlenk [55] in 1965, was a very important breakthrough in studying of the weak Banach–Saks property.

In 1982, Rakov [48, Theorem 1] proved that a Banach space with non-trivial type (or equivalently *B*-convex) has the weak Banach–Saks property (cf. also [57, Theorem 1]). Recently Dodds, Semenov and Sukochev [19] investigated the weak Banach–Saks property of rearrangement invariant spaces and Astashkin and Sukochev [6] have got a complete description of Marcinkiewicz spaces with the latter property.

The spaces $\operatorname{Ces}_p[0,1]$ for $1 \le p < \infty$ are neither *B*-convex (they have trivial type) nor rearrangement invariant. Nevertheless, we will prove that Ces_p for all $1 \le p < \infty$ have the weak Banach–Saks property.

Theorem 8. If $1 \le p < \infty$, then the Cesàro function space $\operatorname{Ces}_p[0, 1]$ has the weak Banach–Saks property.

We begin with some auxiliary notation and results.

If I = [a, b] and J = [c, d] are two closed intervals, then we write I < J if $b \le c$. Let $\{I_n\}_{n=1}^{\infty}$ be a sequence of closed intervals $I_n = [a_n, b_n] \subset [0, 1]$. Then $I_n \to 0$ means that $I_1 > I_2 > \cdots$ and $b_n \to 0^+$. Analogously, $I_n \to 1$ means that $I_1 < I_2 < \cdots$ and $a_n \to 1^-$. Moreover, in what follows supp $f = \{t: f(t) \neq 0\}$.

Lemma 1 (Weakly null sequences in $\operatorname{Ces}_p[0,1], 1). Let <math>\{x_n\}_{n=1}^{\infty} \subset \operatorname{Ces}_p$. Then $x_n \stackrel{w}{\to} 0$ in Ces_p if and only if

- (a) there exists a constant M > 0 such that $||x_n||_{C(p)} \leq M$ for all n = 1, 2, ..., and
- (b) for every set $A \subset [0,1]$ such that $A \subset [h,1-h]$ for some $h \in (0,\frac{1}{2})$ we have $\int_A x_n(t) dt \to 0$ as $n \to \infty$.

Proof. It is enough to check that the set of all functions of the form

(28)
$$a(t) = \sum_{k=1}^{n} a_k \chi_{A_k}(t),$$

where $n \in \mathbb{N}$, $a_k \in \mathbb{R}$ and $A_k \subset [0, 1]$ are pairwise disjoint sets such that $A_k \subset [h, 1-h]$ for some $h \in (0, \frac{1}{2})$, is dense in the space $U(p') = (\operatorname{Ces}_p)^* = (\operatorname{Ces}_p)', p' = \frac{p}{p-1}$, with the norm

$$||y||_{U(p')} = \left(\int_{0}^{1} \left(\frac{\tilde{y}(t)}{1-t}\right)^{p'} dt\right)^{1/p'}, \quad \tilde{y}(t) = \operatorname{ess sup}_{s \in [t,1]} |y(s)|.$$

Let $y \in U(p')$ and $\varepsilon > 0$. Note that $\tilde{y}(1^-) = \lim_{t \to 1^-} \tilde{y}(t) = 0$. In fact, if $\tilde{y}(t) \ge c > 0$ (0 < t < 1), then since p' > 1 we have that $\|y\|_{U(p')}^{p'} \ge c \int_0^1 \frac{1}{(1-t)^{p'}} dt = \infty$. Therefore, we may choose $\delta \in (0,1)$ and $h \in (0,\delta)$ so that

(29)
$$\max\left(\int_{0}^{\delta} \left(\frac{\tilde{y}(t)}{1-t}\right)^{p'} dt, \int_{1-\delta}^{1} \left(\frac{\tilde{y}(t)}{1-t}\right)^{p'} dt\right) \leqslant \varepsilon^{p'}$$

and

(30)
$$\tilde{y}(1-h) \leqslant \varepsilon \cdot \left(\frac{p'-1}{\delta^{1-p'}-1}\right)^{1/p'}.$$

Since $y \in U(p')$, then $\tilde{y}(t)$ is finite for every $t \in (0, 1)$ which implies that y(t) is a bounded measurable function on the interval [h, 1-h]. Therefore, there exists a function a(t) of the form (28) such that supp $a \subset [h, 1-h]$ and

(31)
$$\|(y-a)\chi_{[h,1-h]}\|_{L^{\infty}} \leqslant \varepsilon \cdot \left(\frac{p'-1}{h^{1-p'}-1}\right)^{1/p'}.$$

By the triangle inequality we have that

(32)
$$||y - a||_{U(p')}$$

$$\leq ||y\chi_{[0,h]}||_{U(p')} + ||(y - a)\chi_{[h,1-h]}||_{U(p')} + ||y\chi_{[1-h,1]}||_{U(p')},$$

and let us estimate each of the three terms separately. At first, since $0 < h < \delta$, then, by (29),

(33)
$$\|y\chi_{[0,h]}\|_{U(p')}^{p'} \leqslant \int_{0}^{\delta} \left(\frac{\tilde{y}(t)}{1-t}\right)^{p'} dt \leqslant \varepsilon^{p'}.$$

Next, (31) implies

(34)
$$\|(y-a)\chi_{[h,1-h]}\|_{U(p')}^{p'} \leqslant \int_{0}^{1-h} \frac{dt}{(1-t)^{p'}} \cdot \varepsilon^{p'} \cdot \left(\frac{p'-1}{h^{1-p'}-1}\right) = \varepsilon^{p'}.$$

Finally, (30) and (29) imply that

Thus, by (32)–(35), we have that $||y - a||_{U(p')} \le 4^{1/p'} \varepsilon$, and the proof is complete. \square

Corollary 2. Let $\{I_n\}_{n=1}^{\infty}$ be a sequence of intervals from [0,1] such that either $I_n \to 0$ or $I_n \to 1$. Then, for every $p \in (1,\infty)$, we have $\frac{\chi I_n}{\|\chi_{I_n}\|_{C(p)}} \stackrel{w}{\to} 0$ in $\operatorname{Ces}_p[0,1]$.

Following Kadec and Pełczyński [27] (see also [46] and [47]) we will use the following notation: Let X be a Banach function lattice on [0, 1]. For every $x \in X$ and $\alpha \in (0, 1]$ we set

$$\eta(x,\alpha) = \sup_{A \subset [0,1], m(A) = \alpha} \|x \chi_A\|_X.$$

Moreover, if $K \subset X$, then

$$\eta(K,\alpha) = \sup_{x \in K} \eta(x,\alpha), \, \eta(K,0^+) = \lim_{\alpha \to 0^+} \eta(K,\alpha).$$

Lemma 2. If a Banach function lattice X on [0,1] satisfies a lower p-estimate $(1 \le p < \infty)$ with constant one, then for any disjointly supported $x, y \in X$ and $\alpha > 0, \beta > 0$ we have that

$$\eta(x + y, \alpha + \beta)^p \geqslant \eta(x, \alpha)^p + \eta(y, \beta)^p$$
.

Proof. For any $\varepsilon > 0$ choose the sets A and B from [0, 1] such that $A \subset \operatorname{supp} x$, $B \subset \operatorname{supp} y$, $m(A) \leq \alpha$, $m(B) \leq \beta$, and

$$\|x\chi_A\|_X^p \geqslant \eta(x,\alpha)^p - \varepsilon, \qquad \|y\chi_B\|_X^p \geqslant \eta(y,\beta)^p - \varepsilon.$$

Since $m(A \cup B) \le \alpha + \beta$ and X satisfies a lower p-estimate with constant one it follows that

$$\eta(x+y,\alpha+\beta) \geqslant \|(x+y)\chi_{A\cup B}\|_{X} = \|x\chi_{A} + y\chi_{B}\|_{X}$$
$$\geqslant \left(\|x\chi_{A}\|_{X}^{p} + \|y\chi_{B}\|_{X}^{p}\right)^{1/p}$$
$$\geqslant \left(\eta(x,\alpha)^{p} + \eta(y,\beta)^{p} - 2\varepsilon\right)^{1/p},$$

and the proof of the lemma follows by letting $\varepsilon \to 0^+$. \Box

Let X be a Banach function lattice on [0,1] and a set $K \subset X$. We say that K consists of elements having *equicontinuous norms* in X if

$$\lim_{A \subset [0,1], m(A) \to 0} \sup_{x \in K} \|x \chi_A\|_X = 0.$$

An important tool in the proof of Theorem 8 will be the following assertion:

Proposition 7 (Subsequence splitting property). Let $1 , <math>\{x_n\}_{n=1}^{\infty} \subset \operatorname{Ces}_p[0, 1]$, $\|x_n\|_{C(p)} = 1$ and $x_n \stackrel{w}{\to} 0$ in $\operatorname{Ces}_p[0, 1]$. Then there exists a subsequence $\{x_n'\} \subset \{x_n\}$ such that

$$x'_n = y_n + z_n, \quad n = 1, 2, \dots,$$

where $\{y_n\}_{n=1}^{\infty}$ consists of elements having equicontinuous norms in Ces_p and $\operatorname{supp} z_n \subset I'_n \cup I''_n$ with $\{I'_n, I''_n\}_{n=1}^{\infty}$ being a sequence of pairwise disjoint intervals from [0, 1] such that $I'_n \to 0$, $I''_n \to 1$. Moreover, $y_n \stackrel{w}{\to} 0$, $z_n \stackrel{w}{\to} 0$ in Ces_p .

Proof. We set $\eta_0 = \eta(\{x_n\}, 0^+)$. If $\eta_0 = 0$, then the sequence $\{x_n\}$ consists of elements with equicontinuous norms in Ces_p and we have nothing to prove. Therefore, assume that $\eta_0 > 0$. By the definition of η_0 , there exists a sequence of sets $A_n \subset [0, 1]$, $m(A_n) = \alpha_n \to 0$ and a subsequence of $\{x_n\}$ (which will be denoted also by $\{x_n\}$) such that for all $n \in \mathbb{N}$

(36)
$$||x_n \chi_{A_n}||_{C(p)} \geqslant \eta_0 - \frac{1}{n}.$$

Let us denote

(37)
$$u_n = x_n \chi_{A_n}$$
 and $v_n = x_n - u_n$.

Since $Ces_p[0, 1]$ is p-concave with constant one, then, by Lemma 2, it yields that

$$\eta(v_n,\alpha)^p \leqslant \eta(x_n,\alpha+\alpha_n)^p - \eta(u_n,\alpha_n)^p \leqslant \eta(x_n,\alpha+\alpha_n)^p - \left(\eta_0 - \frac{1}{n}\right)^p.$$

Hence, for $0 < \alpha \le 1/2$ we have that

$$\lim \sup_{n \to \infty} \eta(v_n, \alpha)^p \leqslant \eta(\{x_n\}, 2\alpha)^p - \eta_0^p.$$

Since Ces_p is a separable space the last inequality implies that

(38)
$$\eta(\{v_n\}, 0^+) = 0,$$

that is, $\{v_n\}$ consists of elements with equicontinuous norms in Ces_p . According to Lemma 1, for every $h \in (0, \frac{1}{2})$,

(39)
$$x_n \chi_{[h,1-h]} \xrightarrow{w} 0$$
 in Ces_p .

Therefore, since $\operatorname{Ces}_p[0,1]_{|[h,1-h]} = L^1[h,1-h]$ with equivalent norms (see [4, Lemma 1]) we have that $x_n \chi_{[h,1-h]} \stackrel{w}{\to} 0$ in L^1 . Moreover, since $\eta(\{v_n\},0^+)=0$ it follows that

$$\eta_{L^1}(\{v_n\chi_{[h,1-h]}\},0^+)=0$$

(where η_{L^1} is calculated in the space L^1) and

$$||v_n\chi_{[h,1-h]}||_{L^1} \leq C||v_n\chi_{[h,1-h]}||_{C(p)} \leq C.$$

Thus, by the classical Dunford–Pettis criterion (see, for example, [22, Theorem 4.21.2] or [1, Theorem 5.2.9]), the sequence $\{v_n\chi_{[h,1-h]}\}_{n=1}^{\infty}$ is a relatively weakly compact subset of L^1 and, hence, simultaneously in Ces_p . Therefore, there is a subsequence $\{v_{n_k}\}\subset \{v_n\}$ such that $v_{n_k}\chi_{[h,1-h]}\stackrel{w}{\to} v$, where $v\in\operatorname{Ces}_p$. By combining the last mentioned facts with (39) and with the equality $x_n=u_n+v_n$, we get that $u_{n_k}\chi_{[h,1-h]}\stackrel{w}{\to} -v$ in Ces_p , and, hence, in L^1 . Taking into account the definition of u_n (see (36) and (37)) and using again the Dunford–Pettis criterion we conclude that for every $h\in(0,1/2)$ there exists a subsequence $\{u_{n_k}\}\subset\{u_n\}$ (depending on h) such that

$$||u_{n_k}\chi_{[h,1-h]}||_{C(p)} \to 0$$
 as $k \to \infty$.

Since Ces_p is a separable space, then by a standard procedure, we may choose a subsequence of $\{u_{n_k}\}$ (denote it again by $\{u_{n_k}\}$) and pairwise disjoint intervals $\{I'_k, I''_k\}_{k \in \mathbb{N}}, I'_k \to 0, I''_k \to 1$ such that

(40)
$$||u_{n_k}\chi_{[0,1]\setminus (I'_k\cup I''_k)}||_{C(p)}\to 0 \text{ as } k\to\infty.$$

Setting $x'_k = y_k + z_k$, with

$$y_k = v_{n_k} + u_{n_k} \chi_{[0,1] \setminus (I'_k \cup I''_k)}, \qquad z_k = u_{n_k} \chi_{I'_k \cup I''_k},$$

we see that, by (38) and (40), this representation satisfies all conditions. In particular, according to Lemma 1, we have that $z_k \stackrel{w}{\to} 0$ and $y_k \stackrel{w}{\to} 0$. The proof is complete. \Box

Now, we may proceed with the proof of Theorem 8.

Proof of Theorem 8. Since $\operatorname{Ces}_1[0,1] = L^1(\ln 1/t)$ (with equality of norms) and $L^1(\ln 1/t)$ is isometric to L^1 , then in the case p=1 the result follows from the Szlenk theorem [55]. Therefore, we will consider the case when $1 . Taking into account Proposition 7 it is enough to prove the following: if <math>\{x_n\} \subset \operatorname{Ces}_p, x_n \xrightarrow{w} 0$ and either

- (a) $\{x_n\}$ consists of elements with equicontinuous norms
- or
- (b) supp $x_n \subset I_n$, where $I_n \to 1$

or

(c) supp $x_n \subset I_n$, where $I_n \to 0$,

then there is a subsequence $\{x'_n\} \subset \{x_n\}$ such that

(41)
$$\frac{1}{m} \left\| \sum_{k=1}^{m} x_k' \right\|_{C(p)} \to 0 \quad \text{as } m \to \infty.$$

Case (a). We will use the following remark from Szlenk paper [55, Remark 1]: a sequence $\{x_n\} \subset X, x_n \stackrel{w}{\to} 0$ in X (X is a Banach space) contains a subsequence $\{x_n'\}$ such that $\frac{1}{m} \|\sum_{k=1}^m x_k'\|_X \to 0$ as $m \to \infty$ if and only if it contains a subsequence $\{x_{n_k}\}$ such that

(42)
$$\lim_{m \to \infty} \sup_{k_1 < \dots < k_m} \left\| \frac{1}{m} \sum_{i=1}^m x_{n_{k_i}} \right\|_X = 0.$$

Let $\{x_n\} \subset \operatorname{Ces}_p, x_n \stackrel{w}{\to} 0$ and $\varepsilon > 0$. At first, setting

$$A_{n,m} = \{t \in [0,1]: |x_n(t)| \ge m\}, m, n = 1, 2, \dots,$$

we prove that

(43)
$$\lim_{m \to \infty} \sup_{n \in \mathbb{N}} m(A_{n,m}) = 0.$$

We may assume that $||x_n||_{C(p)} = 1 (n = 1, 2, ...)$. Therefore,

$$1 = \|x_n\|_{C(p)} \ge \|x_n\|_{C(1)} = \|x_n\|_{L^1(\ln 1/t)} = \int_0^1 |x_n(t)| \ln \frac{1}{t} dt$$

$$\ge \int_{A_{n,m}} |x_n(t)| \ln \frac{1}{t} dt \ge m \int_{A_{n,m}} \ln \frac{1}{t} dt,$$

i.e.,

(44)
$$\int_{A_{n,m}} \ln \frac{1}{t} dt \leqslant \frac{1}{m} \quad \text{for all } n, m \in \mathbb{N}.$$

Assume that (43) does not hold, that is, there exists a $\delta > 0$ such that for every $m \in \mathbb{N}$ there is $n_m \in \mathbb{N}$ such that $m(A_{n_m,m}) > \delta$. Clearly, we may assume that $n_m \to \infty$ as $m \to \infty$. Since

$$m\left(A_{n_m,m}\cap\left[0,1-\frac{\delta}{2}\right]\right)>\frac{\delta}{2},$$

then we have that, for any $m \in \mathbb{N}$,

$$\int_{A_{n_m,m}} \ln \frac{1}{t} dt \geqslant \int_{A_{n_m,m} \cap [0,1-\frac{\delta}{2}]} \ln \frac{1}{t} dt$$

$$\geqslant \ln \frac{2}{2-\delta} m \left(A_{n_m,m} \cap \left[0, 1 - \frac{\delta}{2} \right] \right) > \frac{\delta}{2} \ln \frac{2}{2-\delta}.$$

The last inequality contradicts (44) and, therefore, (43) is proved.

We recall that $\{x_n\}$ consists of functions having equicontinuous norms. Hence, by (43), for some m_0 and all $n \in \mathbb{N}$,

(45)
$$||x_n \chi_{A_{n,m_0}}||_{C(p)} < \frac{\varepsilon}{3}.$$

Denote $y_n = x_n \chi_{A_{n,m_0}}(n = 1, 2, ...)$. Then $|x_n(t) - y_n(t)| \le m_0$ for $t \in [0, 1]$, so that, in particular, $x_n - y_n \in L^p$ and $||x_n - y_n||_{L^p} \le m_0$. Since L^p is a reflexive space for $1 and since <math>L^p$ has the Banach–Saks property (cf. [7, Chapter XII, Theorem 2]), we may choose an increasing sequence of natural numbers $\{n_k\}_{k=1}^{\infty}$ such that $x_{n_k} - y_{n_k} \stackrel{w}{\to} v$ in L^p , where $v \in L^p$, and (see (42))

(46)
$$\lim_{m \to \infty} \sup_{k_1 < \dots < k_m} \left\| \frac{1}{m} \sum_{i=1}^m (x_{n_{k_i}} - y_{n_{k_i}}) - v \right\|_{L^p} = 0.$$

Using the imbedding $L^p \subset \operatorname{Ces}_p$ (see Theorem 1(c)) we obtain that $x_{n_k} - y_{n_k} \stackrel{w}{\to} v$ in Ces_p . Therefore, since $x_{n_k} \stackrel{w}{\to} 0$ in Ces_p , we get that $y_{n_k} \stackrel{w}{\to} -v$ in Ces_p . Moreover, from (45) it follows that $\|y_{n_k}\|_{C(p)} < \frac{\varepsilon}{3}$ so that $\|v\|_{C(p)} \leqslant \frac{\varepsilon}{3}$. At last, by Theorem 1(c) and (46), for large enough $m \in \mathbb{N}$,

$$\begin{split} \sup_{k_1 < \dots < k_m} \left\| \frac{1}{m} \sum_{i=1}^m (x_{n_{k_i}} - y_{n_{k_i}}) - v \right\|_{C(p)} \\ \leqslant p' \sup_{k_1 < \dots < k_m} \left\| \frac{1}{m} \sum_{i=1}^m (x_{n_{k_i}} - y_{n_{k_i}}) - v \right\|_{L^p} \leqslant \frac{\varepsilon}{3}. \end{split}$$

The last inequalities give us that

$$\begin{split} \sup_{k_1 < \dots < k_m} \left\| \frac{1}{m} \sum_{i=1}^m x_{n_{k_i}} \right\|_{C(p)} \\ \leqslant \sup_{k_1 < \dots < k_m} \left(\left\| \frac{1}{m} \sum_{i=1}^m (x_{n_{k_i}} - y_{n_{k_i}}) - v \right\|_{C(p)} \right. \\ \left. + \frac{1}{m} \left\| \sum_{i=1}^m y_{n_{k_i}} \right\|_{C(p)} + \|v\|_{C(p)} \right) \leqslant \varepsilon, \end{split}$$

if m is large enough. Thus, $\{x_{n_k}\}$ satisfies condition (42) and in this case everything is proved.

Case (b). Let $\{x_n\} \subset \operatorname{Ces}_p, x_n \stackrel{w}{\to} 0$, $\operatorname{supp} x_n \subset I_n = [a_n, b_n] (n = 1, 2, ...), <math>I_1 < I_2 < \cdots$ and $a_n \to 1^-$. We may suppose that $x_n \ge 0$, $||x_n||_{C(p)} = 1$ and $a_1 \ge 1/2$.

Since p > 1, it is enough to show that $\{x_n\}$ contains a subsequence (for simplicity, it will be denoted also by $\{x_n\}$) such that

$$(47) \qquad \left\| \sum_{k=1}^{n} x_k \right\|_{C(p)} \leqslant C n^{1/p},$$

where C > 0 is independent of $n \in \mathbb{N}$. We will choose x_n inductively. Suppose that $m \ge 2$ and $x_1, x_2, \ldots, x_{m-1}$ are already chosen. Then $a_1 < b_1 \le \cdots \le a_{m-1} < b_{m-1} < 1$ are fixed and, since $a_n \to 1^-$, we may take a_m so that

$$(48) 1 - a_m \le (1 - b_{m-1}) \cdot 2^{-p}.$$

Then for x_m we take the function corresponding to the interval $I_m = [a_m, b_m]$ (that is, supp $x_m \subset I_m$). Let's check that inequality (47) holds. For all $n \in \mathbb{N}$ and $t \in (0, 1]$ we have that

$$\frac{1}{t} \int_{0}^{t} \left| \sum_{k=1}^{n} x_{k}(s) \right| ds = \frac{1}{t} \sum_{m=1}^{n} \left(\sum_{i=1}^{m-1} \int_{a_{i}}^{b_{i}} x_{i}(s) ds + \int_{a_{m}}^{t} x_{m}(s) ds \right) \chi_{[a_{m},b_{m}]}(t)$$

$$+ \frac{1}{t} \sum_{m=1}^{n} \sum_{i=1}^{m} \int_{a_{i}}^{b_{i}} x_{i}(s) ds \chi_{[b_{m},a_{m+1}]}(t)$$

$$= S_{1}(t) + S_{2}(t) + S_{3}(t),$$

where $a_{n+1} = 1$ and

$$S_{1}(t) = \frac{1}{t} \sum_{m=2}^{n} \sum_{i=1}^{m-1} \int_{a_{i}}^{b_{i}} x_{i}(s) ds \chi_{[a_{m},b_{m}]}(t),$$

$$S_{2}(t) = \frac{1}{t} \sum_{m=1}^{n} \sum_{i=1}^{m} \int_{a_{i}}^{b_{i}} x_{i}(s) ds \chi_{[b_{m},a_{m+1}]}(t),$$

$$S_{3}(t) = \frac{1}{t} \sum_{m=1}^{n} \int_{a_{m}}^{t} x_{m}(s) ds \chi_{[a_{m},b_{m}]}(t).$$

Since, by Theorem 3, $(\operatorname{Ces}_p[0,1])^* = (\operatorname{Ces}_p[0,1])' = U(p')$ it follows that, for all $i \in \mathbb{N}$,

$$\int_{a_i}^{b_i} x_i(s) \, ds \leqslant A \|x_i\|_{C(p)} \cdot \|\chi_{[a_i,b_i]}\|_{U(p')} = A \left(\int_0^{b_i} \frac{dt}{(1-t)^{p'}} \right)^{1/p'}$$

$$= A(p-1)^{1/p'} \left[\frac{1}{(1-b_i)^{p'-1}} - 1 \right]^{1/p'} \leqslant \frac{B}{(1-b_i)^{1/p}},$$

where B > 0 depends only on p. Moreover, by (48), for every i = 1, 2, ..., m - 1,

$$\left(\frac{1-a_m}{1-b_i}\right)^{1/p} \leqslant \prod_{j=i}^{m-1} \left(\frac{1-a_{j+1}}{1-b_j}\right)^{1/p} \leqslant 2^{i-m}.$$

Therefore,

$$||S_1||_p^p = \sum_{m=2}^n \left(\sum_{i=1}^{m-1} \int_{a_i}^{b_i} x_i(s) \, ds\right) \int_{a_m}^p \frac{dt}{t^p}$$

$$\leq B^p \sum_{m=2}^n \left(\sum_{i=1}^{m-1} (1 - b_i)^{-1/p}\right)^p \frac{b_m^{p-1} - a_m^{p-1}}{(p-1)a_m^{p-1}b_m^{p-1}}$$

$$\leq C_1^p \sum_{m=2}^n \left(\sum_{i=1}^{m-1} (1 - b_i)^{-1/p}\right)^p (1 - a_m)$$

$$\leq C_1^p \sum_{m=2}^n \left(\sum_{i=1}^{m-1} 2^{i-m}\right)^p \leq C_1^p n,$$

so that $||S_1||_p \leqslant C_1 n^{1/p}$, where $C_1 > 0$ depends only on p. Similarly,

$$||S_{2}||_{p}^{p} \leq B^{p} \sum_{m=1}^{n} \left(\sum_{i=1}^{m} (1-b_{i})^{-1/p} \right)^{p} \frac{a_{m+1}^{p-1} - b_{m}^{p-1}}{(p-1)a_{m+1}^{p-1}b_{m}^{p-1}}$$

$$\leq C_{2}^{p} \sum_{m=1}^{n} \left(\sum_{i=1}^{m} \left(\frac{1-b_{m}}{1-b_{i}} \right)^{1/p} \right)^{p}$$

$$\leq C_{2}^{p} \sum_{m=1}^{n} \left(1 + \sum_{i=1}^{m-1} 2^{i-m} \right)^{p} \leq (2C_{2})^{p} n,$$

which implies that $||S_2||_p \le 2C_2n^{1/p}$, where $C_2 > 0$ depends only on p. Finally, it is easy to see that

$$||S_3||_p \leqslant \left(\sum_{m=1}^n ||x_m||_{C(p)}^p\right)^{1/p} = n^{1/p}.$$

Thus, combining the estimates of S_1 , S_2 and S_3 we get

$$\left\| \sum_{k=1}^{n} x_k \right\|_{C(p)} \leqslant \sum_{k=1}^{3} \|S_k\|_p \leqslant (1 + C_1 + 2C_2) \cdot n^{1/p},$$

where $C := 1 + C_1 + 2C_2$ is independent of $n \in \mathbb{N}$, that is, inequality (47) is proved.

Case (c). Let $\{x_n\} \subset \operatorname{Ces}_p, x_n \stackrel{w}{\to} 0$, $\operatorname{supp} x_n \subset I_n = [a_n, b_n] \ (n = 1, 2, ...), \ I_1 > I_2 > \cdots$ and $b_n \to 0^+$. Again we may assume that $x_n \ge 0$, $\|x_n\|_{C(p)} = 1$ and $b_1 \le 1/2$. As in the case (b) it is enough to prove inequality (47) for some subsequence of $\{x_n\}$ (it will be denoted also by $\{x_n\}$), which will be chosen inductively.

Suppose that $m \ge 2$ and the functions $x_1, x_2, ..., x_{m-1}$ are chosen. Then $b_1 > a_1 \ge \cdots \ge b_{m-1} > a_{m-1} > 0$ are fixed and, since $b_n \to 0^+$, we may take b_m so that

$$(49) b_m \leqslant 2^{-p'} a_{m-1}.$$

Let us show that the corresponding subsequence $\{x_n\}$ satisfies inequality (47). For any $n \in \mathbb{N}$ and $t \in (0, 1]$ we have that

$$\begin{split} &\frac{1}{t} \int_{0}^{t} \left| \sum_{k=1}^{n} x_{k}(s) \right| ds \\ &= \frac{1}{t} \sum_{j=1}^{n} \left(\sum_{i=n-j+2}^{n} \int_{a_{i}}^{b_{i}} x_{i}(s) ds + \int_{a_{n-j+1}}^{t} x_{n-j+1}(s) ds \right) \chi_{[a_{n-j+1}, b_{n-j+1}]}(t) \\ &+ \frac{1}{t} \sum_{j=1}^{n} \sum_{i=n-j+1}^{n} \int_{a_{i}}^{b_{i}} x_{i}(s) ds \chi_{[b_{n-j+1}, a_{n-j}]}(t) \\ &= T_{1}(t) + T_{2}(t) + T_{3}(t), \end{split}$$

where $a_0 = 1$ and

$$T_1(t) = \frac{1}{t} \sum_{j=2}^n \sum_{i=n-j+2}^n \int_{a_i}^{b_i} x_i(s) ds \chi_{[a_{n-j+1},b_{n-j+1}]}(t),$$

$$T_2(t) = \frac{1}{t} \sum_{j=1}^n \sum_{i=n-j+1}^n \int_{a_i}^{b_i} x_i(s) ds \chi_{[b_{n-j+1},a_{n-j}]}(t),$$

$$T_3(t) = \frac{1}{t} \sum_{j=1}^n \int_{a_{n-j+1}}^t x_{n-j+1}(s) ds \chi_{[a_{n-j+1},b_{n-j+1}]}(t).$$

Using again the duality result, as in the proof of (b), we find that

$$\int_{a_{i}}^{b_{i}} x_{i}(s) ds \leq A \|x_{i}\|_{C(p)} \cdot \|\chi_{[a_{i},b_{i}]}\|_{U(p')}$$

$$= A(p-1)^{1/p'} \left[\frac{1 - (1 - b_{i})^{p'-1}}{(1 - b_{i})^{p'-1}} \right]^{1/p'}$$

$$\leq B' b_{i}^{1/p'} \quad (i = 1, 2, ...),$$

where B' > 0 depends only on p. Since, by (49), for any k < i

$$\left(\frac{b_i}{a_k}\right)^{1/p'} \leqslant \prod_{m=k}^i \left(\frac{b_m}{a_{m-1}}\right)^{1/p'} \leqslant 2^{k-i-1},$$

then

$$||T_1||_p^p = \sum_{j=2}^n \left(\sum_{i=n-j+2}^n \int_{a_i}^{b_i} x_i(s) \, ds\right)^p \int_{a_{n-j+1}}^{b_{n-j+1}} \frac{dt}{t^p}$$

$$\leq \left(B'\right)^p \sum_{j=2}^n \left(\sum_{i=n-j+2}^n b_i^{1/p'}\right)^p \frac{b_{n-j+1}^{p-1} - a_{n-j+1}^{p-1}}{(p-1)a_{n-j+1}^{p-1}b_{n-j+1}^{p-1}}$$

$$\leq B_1^p \sum_{j=2}^n \left(\sum_{i=n-j+2}^n b_i^{1/p'}\right)^p a_{n-j+1}^{1-p}$$

$$\leq B_1^p \sum_{j=2}^n \left(\sum_{i=n-j+2}^n 2^{n-i-j+1}\right)^p \leq B_1 n,$$

so that $||T_1||_p \le B_1 n^{1/p}$, where $B_1 > 0$ depends only on p. Similarly,

$$||T_{2}||_{p}^{p} \leqslant (B')^{p} \sum_{j=1}^{n} \left(\sum_{i=n-j+1}^{n} b_{i}^{1/p'} \right)^{p} \frac{a_{n-j}^{p-1} - b_{n-j+1}^{p-1}}{(p-1)a_{n-j}^{p-1}b_{n-j+1}^{p-1}}$$

$$\leqslant B_{2}^{p} \sum_{j=1}^{n} \left(\sum_{i=n-j+1}^{n} \left(\frac{b_{i}}{b_{n-j+1}} \right)^{1/p'} \right)^{p}$$

$$\leqslant B_{2}^{p} \sum_{j=1}^{n} \left(1 + \sum_{i=n-j+2}^{n} 2^{n-i-j+1} \right)^{p} \leqslant (2B_{2})^{p} n.$$

Hence, $||T_2||_p \le 2B_2n^{1/p}$, where $B_2 > 0$ depends only on p. Moreover, it is clear that

$$||T_3||_p \leqslant \left(\sum_{j=1}^n ||x_j||_{C(p)}^p\right)^{1/p} = n^{1/p}.$$

Thus, combining the estimates of T_1 , T_2 and T_3 we get that

$$\left\| \sum_{k=1}^{n} x_k \right\|_{C(p)} \leqslant \sum_{k=1}^{3} \|T_k\|_p \leqslant (1 + B_1 + 2B_2) \cdot n^{1/p},$$

where $B := 1 + B_1 + 2B_2$ is independent of $n \in \mathbb{N}$. Since all cases (a)–(c) are examined, the theorem is proved. \square

8. THE CESÀRO FUNCTION SPACES $\mathrm{Ces}_p[0,\infty)$ AND $\mathrm{Ces}_p[0,1]$ ARE ISOMORPHIC FOR 1

The main result in this Section is a construction of an isomorphism between the Cesàro function spaces $\operatorname{Ces}_p[0,\infty)$ and $\operatorname{Ces}_p[0,1]$ for 1 .

Theorem 9. If $1 , then the Cesàro function spaces <math>\operatorname{Ces}_p[0,1]$ and $\operatorname{Ces}_p[0,\infty)$ are isomorphic.

Proof. The proof will go in two parts. Let $1 . Sy, Zhang and Lee proved in [54] that the norm in <math>Ces_p[0, \infty)$ is equivalent to the functional

(50)
$$||f||_0 = \left[\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^n s_k(f)\right)^p + \sum_{m=1}^{\infty} \left(m \sum_{k=m}^{\infty} t_k(f)\right)^p m^{-2}\right]^{1/p},$$

where

$$s_k(f) = \int_{k}^{k+1} |f(s)| ds$$
 and $t_k(f) = \int_{\frac{1}{k+1}}^{\frac{1}{k}} |f(s)| ds$, $k = 1, 2, ...$

Let's prove the analogous assertion for the space $\operatorname{Ces}_p[0,1]$. At first, if $\frac{1}{m+1} \leqslant x \leqslant \frac{1}{m}, m = 1, 2, \ldots$, then

$$\frac{m+1}{2} \int_{0}^{1/(m+1)} |f| \leqslant \frac{1}{x} \int_{0}^{x} |f| \leqslant (m+1) \int_{0}^{x} |f| \leqslant 2m \int_{0}^{1/m} |f|.$$

Therefore,

$$2^{-p} \sum_{m=1}^{\infty} \left((m+1) \int_{0}^{1/(m+1)} |f| \right)^{p} \left(\frac{1}{m} - \frac{1}{m+1} \right)$$

$$\leq \sum_{m=1}^{\infty} \int_{1/(m+1)}^{1/m} \left(\frac{1}{x} \int_{0}^{x} |f| \right)^{p} dx$$

$$= \int_{0}^{1} \left(\frac{1}{x} \int_{0}^{x} |f| \right)^{p} dx$$

and

$$\int_{0}^{1/2} \left(\frac{1}{x} \int_{0}^{x} |f|\right)^{p} dx = \sum_{m=2}^{\infty} \int_{1/(m+1)}^{1/m} \left(\frac{1}{x} \int_{0}^{x} |f|\right)^{p} dx$$

$$\leq 2^{p} \sum_{m=2}^{\infty} \left(m \int_{0}^{1/m} |f|\right)^{p} \left(\frac{1}{m} - \frac{1}{m+1}\right).$$

The first of these inequalities implies that

$$2^{-p} \sum_{m=2}^{\infty} \left(m \int_{0}^{1/m} |f| \right)^{p} \left(\frac{1}{m} - \frac{1}{m+1} \right)$$

$$= 2^{-p} \sum_{m=1}^{\infty} \left((m+1) \int_{0}^{1/(m+1)} |f| \right)^{p} \left(\frac{1}{m+1} - \frac{1}{m+2} \right)$$

$$\leq \int_{0}^{1} \left(\frac{1}{x} \int_{0}^{x} |f| \right)^{p} dx = \|f\|_{C(p)}^{p},$$

and the second one yields that

(51)
$$2^{-p} \int_{0}^{1/2} \left(\frac{1}{x} \int_{0}^{x} |f|\right)^{p} dx \leq \sum_{m=2}^{\infty} \left(m \int_{0}^{1/m} |f|\right)^{p} \left(\frac{1}{m} - \frac{1}{m+1}\right) \leq 2^{p} \|f\|_{C(p)}^{p}.$$

Denote

$$\alpha_n = \frac{1}{2} (2 - n^{1-p}), \quad n = 1, 2, \dots$$

It is easy to check that $\frac{1}{2} = \alpha_1 \leqslant \alpha_n < \alpha_{n+1} \leqslant 2\alpha_n, n = 1, 2, ...,$ and $\alpha_n \to 1$ as $n \to \infty$. Thus, if $\alpha_n \leqslant x \leqslant \alpha_{n+1}$, then

$$\frac{1}{2\alpha_n} \int_0^{\alpha_n} |f| \leqslant \frac{1}{\alpha_{n+1}} \int_0^{\alpha_n} |f| \leqslant \frac{1}{x} \int_0^x |f|$$

$$\leqslant \frac{1}{\alpha_n} \int_0^{\alpha_{n+1}} |f| \leqslant \frac{2}{\alpha_{n+1}} \int_0^{\alpha_{n+1}} |f|,$$

which implies that

$$(52) 2^{-p} \sum_{n=1}^{\infty} \left(\frac{1}{\alpha_n} \int_0^{\alpha_n} |f|\right)^p (\alpha_{n+1} - \alpha_n)$$

$$\leq \sum_{n=1}^{\infty} \int_{\alpha_n}^{\alpha_{n+1}} \left(\frac{1}{x} \int_0^x |f|\right)^p dx$$

$$= \int_{1/2}^1 \left(\frac{1}{x} \int_0^x |f|\right)^p dx$$

and

(53)
$$\int_{1/2}^{1} \left(\frac{1}{x} \int_{0}^{x} |f|\right)^{p} dx = \sum_{n=1}^{\infty} \int_{\alpha_{n}}^{\alpha_{n+1}} \left(\frac{1}{x} \int_{0}^{x} |f|\right)^{p} dx$$
$$\leq 2^{p} \sum_{n=1}^{\infty} \left(\frac{1}{\alpha_{n+1}} \int_{0}^{\alpha_{n+1}} |f|\right)^{p} (\alpha_{n+1} - \alpha_{n}).$$

Moreover, since

$$\alpha_{n+1} - \alpha_n = \frac{1}{2} \left(\frac{1}{n^{p-1}} - \frac{1}{(n+1)^{p-1}} \right) = \frac{p-1}{2} \int_{n}^{n+1} \frac{1}{t^p} dt$$

and $\frac{1}{n^p} \geqslant \int_n^{n+1} \frac{1}{t^p} dt \geqslant \frac{1}{(n+1)^p} \geqslant \frac{1}{(2n)^p} = 2^{-p} \frac{1}{n^p}$, it follows that

(54)
$$\frac{p-1}{2p+1np} \leqslant \alpha_{n+1} - \alpha_n \leqslant \frac{p-1}{2np}, \quad n = 1, 2, \dots,$$

and we conclude that

$$\alpha_{n+1} - \alpha_n \leqslant \frac{p-1}{2n^p} \leqslant 4^p \frac{p-1}{2^{p+1}(n+1)^p}$$

 $\leqslant 4^p (\alpha_{n+2} - \alpha_{n+1}), \quad n = 1, 2, \dots$

Therefore,

$$\sum_{n=1}^{\infty} \left(\frac{1}{\alpha_n} \int_0^{\alpha_n} |f| \right)^p (\alpha_{n+1} - \alpha_n)$$

$$= \left(\frac{1}{\alpha_1} \int_0^{\alpha_1} |f| \right)^p (\alpha_2 - \alpha_1) + \sum_{n=1}^{\infty} \left(\frac{1}{\alpha_{n+1}} \int_0^{\alpha_{n+1}} |f| \right)^p (\alpha_{n+2} - \alpha_{n+1})$$

$$\geqslant 4^{-p} \sum_{n=1}^{\infty} \left(\frac{1}{\alpha_{n+1}} \int_0^{\alpha_{n+1}} |f| \right)^p (\alpha_{n+1} - \alpha_n).$$

By combining the last inequality with (52) we obtain that

(55)
$$\sum_{n=1}^{\infty} \left(\frac{1}{\alpha_{n+1}} \int_{0}^{\alpha_{n+1}} |f| \right)^{p} (\alpha_{n+1} - \alpha_n) \leq 8^{p} \int_{1/2}^{1} \left(\frac{1}{x} \int_{0}^{x} |f| \right)^{p} dx.$$

From (51), (53) and (55) it follows that

$$||f||_{C(p)}^{p} \leq 2^{p} \sum_{m=2}^{\infty} \left(m \int_{0}^{1/m} |f| \right)^{p} \left(\frac{1}{m} - \frac{1}{m+1} \right) + 2^{p} \sum_{n=1}^{\infty} \left(\frac{1}{\alpha_{n+1}} \int_{0}^{\alpha_{n+1}} |f| \right)^{p} (\alpha_{n+1} - \alpha_{n})$$

and

$$\sum_{m=2}^{\infty} \left(m \int_{0}^{1/m} |f| \right)^{p} \left(\frac{1}{m} - \frac{1}{m+1} \right) + \sum_{n=1}^{\infty} \left(\frac{1}{\alpha_{n+1}} \int_{0}^{\alpha_{n+1}} |f| \right)^{p} (\alpha_{n+1} - \alpha_{n})$$

$$\leq 2^{p} \int_{0}^{1} \left(\frac{1}{x} \int_{0}^{x} |f| \right)^{p} dx + 8^{p} \int_{1/2}^{1} \left(\frac{1}{x} \int_{0}^{x} |f| \right)^{p} dx$$

$$\leq 2^{p} (4^{p} + 1) \|f\|_{C(p)}^{p}.$$

Thus, taking into account (54), we obtain that

(56)
$$||f||_{C(p)} \approx \left[\sum_{n=1}^{\infty} \left(\frac{1}{n\alpha_{n+1}} \int_{0}^{\alpha_{n+1}} |f(t)| dt \right)^{p} + \sum_{m=2}^{\infty} \left(m \int_{0}^{1/m} |f(t)| dt \right)^{p} m^{-2} \right]^{1/p}.$$

Note that

$$\int_{0}^{1/m} |f(t)| dt = \sum_{k=m}^{\infty} t_{k}(f),$$
where $t_{k}(f) = \int_{1/(k+1)}^{1/k} |f(t)| dt$,

and

$$\int_{0}^{\alpha_{n+1}} |f(t)| dt = \int_{0}^{1/2} |f(t)| dt + \sum_{k=1}^{n} b_k(f),$$
where $b_k(f) = \int_{\alpha_k}^{\alpha_{k+1}} |f(t)| dt$.

Since $\alpha_n \ge \frac{1}{2}$ (n = 1, 2, ...) it follows that the first sum in (56) does not exceed

$$2^{p} \sum_{n=1}^{\infty} \left(\int_{0}^{1/2} |f(t)| dt + \sum_{k=1}^{n} b_{k}(f) \right)^{p} n^{-p}$$

$$\leq 2^{2p} \left[\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} b_{k}(f) \right)^{p} + \left(\int_{0}^{1/2} |f(t)| dt \right)^{p} \sum_{n=1}^{\infty} n^{-p} \right].$$

Because p > 1 and the second sum on the right-hand side of (56) contains $(\int_0^{1/2} |f(t)| dt)^p$, then

(57)
$$||f||_{C(p)} \approx \left[\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} b_k(f) \right)^p + \sum_{m=2}^{\infty} \left(m \sum_{k=m}^{\infty} t_k(f) \right)^p m^{-2} \right]^{1/p}.$$

Denote by k_n and l_m one-to-one affine mappings such that

$$k_n: [n, n+1] \to [\alpha_n, \alpha_{n+1}],$$

 $l_m: \left[\frac{1}{m+1}, \frac{1}{m}\right] \to \left[\frac{1}{m+2}, \frac{1}{m+1}\right]$ $(n, m = 1, 2, ...)$

and define the linear operator T for $f \in \text{Ces}_p[0, 1]$ by

$$Tf(x) = \sum_{n=1}^{\infty} (\alpha_{n+1} - \alpha_n) f(k_n(x)) \chi_{[n,n+1]}(x) + \sum_{m=1}^{\infty} f(l_m(x)) \chi_{[\frac{1}{m+1},\frac{1}{m}]}(x).$$

Since

$$\int_{n}^{n+1} \left| f\left(k_{n}(x)\right) \right| dx = \frac{1}{\alpha_{n+1} - \alpha_{n}} \int_{\alpha_{n}}^{\alpha_{n+1}} \left| f\left(t\right) \right| dt$$

and

$$\int_{1/(m+1)}^{1/m} |f(l_m(x))| dx = \frac{m+2}{m} \int_{1/(m+2)}^{1/(m+1)} |f(t)| dt$$

for n, m = 1, 2, ..., then the equivalences (50) and (57) show that

$$\begin{split} \|Tf\|_{C_p[0,\infty)} &\approx \|Tf\|_0 \\ &= \left[\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^n s_k(Tf)\right)^p + \sum_{m=1}^{\infty} \left(m \sum_{k=m}^{\infty} t_k(Tf)\right)^p m^{-2}\right]^{1/p} \end{split}$$

$$\approx \left[\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} b_k(f) \right)^p + \sum_{m=2}^{\infty} \left(m \sum_{k=m}^{\infty} t_k(f) \right)^p m^{-2} \right]^{1/p}$$

$$\approx \|f\|_{C_p[0,1]}.$$

Therefore, $T : \operatorname{Ces}_p[0, 1] \to \operatorname{Ces}_p[0, \infty)$ is an isomorphism and the proof for 1 is complete.

If $p = \infty$ the construction of isomorphism will be different and the proof is even working for the *p*-convexifications, that is, if $1 \le p < \infty$, then the spaces $\mathrm{Ces}_{\infty}^{(p)}[0,1]$ and $\mathrm{Ces}_{\infty}^{(p)}[0,\infty)$ are isomorphic. In particular, $\mathrm{Ces}_{\infty}[0,1]$ and $\mathrm{Ces}_{\infty}[0,\infty)$ are isomorphic.

It is easy to check that

(58)
$$||f||_{C(\infty)^{(p)}[0,\infty)} \approx \sup_{k \in \mathbb{Z}} \left(2^{-k+1} \int_{\{2^{k-1} < t \leq 2^k\}} |f(t)|^p dt \right)^{1/p}$$

and

(59)
$$||f||_{C(\infty)^{(p)}[0,1]} \approx \sup_{k=0,-1,-2,\dots} \left(2^{-k+1} \int_{\{2^{k-1} < t \le 2^k\}} |f(t)|^p dt \right)^{1/p}.$$

Moreover, for every $k \in \mathbb{Z}$,

(60)
$$2^{-k+1} \int_{2^{k-1}}^{2^k} |f(t)|^p dt = \int_{0}^{1} |f(2^{k-1}(t+1))|^p dt.$$

Define the linear transforms

$$T_1: \operatorname{Ces}_{\infty}[0, \infty) \to l^{\infty} \left(\sum_{k=-\infty}^{\infty} \oplus L^p[0, 1] \right), \quad T_1 f = \left(f \left(2^{k-1} (t+1) \right)_{k \in \mathbb{Z}} \right)$$

and

$$T_2: \operatorname{Ces}_{\infty}[0, 1] \to l^{\infty} \left(\sum_{k=0}^{-\infty} \oplus L^p[0, 1] \right), \quad T_2 f = \left(f \left(2^{k-1} (t+1) \right)_{k=0}^{-\infty} \right).$$

Formulas (58)–(60) show that T_1 and T_2 are isomorphisms. It is obvious that the spaces $l^{\infty}(\sum_{k=-\infty}^{\infty} \oplus L^p[0,1])$ and $l^{\infty}(\sum_{k=0}^{-\infty} \oplus L^p[0,1])$ are isomorphic. Therefore, the spaces $\operatorname{Ces}_{(p)}^{(p)}[0,\infty)$ and $\operatorname{Ces}_{(p)}^{(p)}[0,1]$ are isomorphic. \square

Problem 1. Is the Cesàro function space $Ces_{\infty}(I)$ isomorphic with the Cesàro sequence space ces_{∞} ?

In Theorem 6 we proved that $\operatorname{Ces}_p[0,1]$ contains an isomorphic copy of l^p . Now we try to investigate when this is true for the spaces l^q .

Theorem 10.

- (a) If $1 \le p \le 2$, then the space l^q is embedded isomorphically into $\operatorname{Ces}_p[0,1]$ if and only if $q \in [1,2]$.
- (b) If $2 , then the space <math>l^q$ is embedded isomorphically into $\operatorname{Ces}_p[0, 1]$ if and only if either $q \in [1, 2]$ or q = p.

Proof. Firstly, $\operatorname{Ces}_p[0,1]$ contains a copy of $L^1[0,1]$ (cf. [4, Lemma 1]) and in turn l^q is embedded into $L^1[0,1]$ if $1 \le q \le 2$ (cf. [1, Theorem 6.4.18]). Moreover, by Theorem $6, l^p$ is embedded into $\operatorname{Ces}_p[0,1]$ for every $p \in [1,\infty)$ so we have to prove only the necessity.

In the case when $1 \le p \le 2$ necessity is obvious as a consequence of the fact that $\operatorname{Ces}_p[0, 1]$ has cotype 2.

If p > 2 noting that $\operatorname{Ces}_p[0, 1] \subset \operatorname{Ces}_1[0, 1] = L^1(\ln 1/t)$ we consider two cases:

- (a) Assume that the norms of the spaces $\operatorname{Ces}_p[0,1]$ and $L^1(\ln 1/t)$ are equivalent on a subspace $X \subset \operatorname{Ces}_p[0,1]$ which is isomorphic to l^q . In other words, X is a subspace of $L^1(\ln 1/t)$. Since the last space has cotype 2, then $q \leq 2$.
- (b) The norms of the spaces $\operatorname{Ces}_p[0,1]$ and $L^1(\ln 1/t)$ are not equivalent on $X \approx l^q$. Then there is a sequence $\{x_n\} \subset X$ such that $\|x_n\|_{C(p)} = 1$ and $\|x_n\|_{L^1(\ln 1/t)} \to 0$. In particular, $x_n \to 0$ weakly in $L^1(\ln 1/t)$, i.e.,

$$\int_{0}^{1} x_n(t)y(t) dt \to 0 \quad \text{for every } y \in L^{\infty}(\ln^{-1} 1/t).$$

Denote $\mathcal{F}:=\bigcup_{0<\delta<1}L^{\infty}[0,\delta]$. Obviously, it yields that $\mathcal{F}\subset L^{\infty}(\ln^{-1}1/t)$ and \mathcal{F} is dense in $(\operatorname{Ces}_p[0,1])'=U(p')$ (see Theorem 3). Therefore, $\|x_n\|_{C(p)}=1$ and $x_n\to 0$ weakly in $\operatorname{Ces}_p[0,1]$. By a known result (cf. [37, Proposition 1.a.12]) there exists a subsequence $\{x_n'\}\subset\{x_n\}$ which is equivalent to a seminormalized block basis of the canonical basis of l^q and, consequently, is equivalent to the canonical basis of l^q itself (see [1, Lemma 2.1.1 and Remark 2.1.2]). Moreover, $\|x_n'\|_{C(p)}=1$ and $x_n'\to 0$ in the Lebesgue measure m. Next, since $\operatorname{Ces}_p[0,1]$ is separable for $1\leqslant p<\infty$, then applying the Kadec–Pełczyński procedure we may find a subsequence $\{x_n''\}\subset\{x_n'\}$ and a sequence of disjoint sets $A_n\subset[0,1]$ such that $\|x_n''-x_n''\chi_{A_n}\|_{C(p)}\to 0$. Using a standard argument we can select a subsequence $\{x_n''\}\subset\{x_n''\}$, which is equivalent to the sequence of disjoint functions $z_k:=x_{n_k}''\chi_{A_{n_k}}$. Note that $\{x_{n_k}''\}$ and $\{z_k\}$ as well are equivalent to the canonical basis of l^q . To show that either $q\in[1,2]$ or q=p we consider separately two cases:

(1) firstly, assume that there is $h \in (0, \frac{1}{2})$ such that $\sup z_k \subset [h, 1-h]$ for all $k = 1, 2, \ldots$ Since $\operatorname{Ces}_p[h, 1-h] \simeq L^1[h, 1-h]$ (cf. [4, Lemma 1]), then l^q will be embedded into $L^1[h, 1-h] \simeq L^1[0, 1]$, so that $q \in [1, 2]$.

(2) otherwise, there is a subsequence $\{z'_k\} \subset \{z_k\}$ such that $\operatorname{supp} z_k \subset I_k$ for some intervals I_k satisfying either $I_k \to 0$ or $I_k \to 1$. Then, using the same arguments as in the proof of Theorem 8, we may select a subsequence $\{z''_k\} \subset \{z'_k\}$ such that

$$\left\| \sum_{k=1}^m z_k'' \right\|_{C(p)} \leqslant C m^{1/p},$$

where the constant C > 0 does not depend on $m = 1, 2, \ldots$ Since $[z_k''] \simeq l^q$, then we have $q \ge p$. On the other hand, $q \le p$ because $\operatorname{Ces}_p[0, 1]$ has cotype p, thus q = p and the proof is complete. \square

Let us remind that $L^p[0,1]$ contains an isomorphic copy of l^q if and only if $q \in [p,2]$ for the case $1 \le p \le 2$ and in the case when p > 2 this can be when either q = p or q = 2. We can see then the difference between $L^p[0,1]$ and $\operatorname{Ces}_p[0,1]$ spaces. In particular, if $1 , then <math>\operatorname{Ces}_p[0,1]$ contains an isomorphic copy of l^1 but not $L^p[0,1]$.

ACKNOWLEDGEMENT

We would like to thank referee for some useful corrections in this paper.

REFERENCES

- [1] Albiac F., Kalton N.J. Topics in Banach Space Theory, Graduate Texts in Mathematics, vol. 233, Springer-Verlag, New York, 2006.
- [2] Aliprantis C.D., Burkinshaw O. Positive Operators, Academic Press, Orlando, 1985.
- [3] Alspach D.E. A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981) 423-424.
- [4] Astashkin S.V., Maligranda L. Cesàro function spaces fail the fixed point property, Proc. Amer. Math. Soc. 136 (12) (2008) 4289–4294.
- [5] Astashkin S.V., Maligranda L. Rademacher functions in Cesàro type spaces, Studia Math., to appear.
- [6] Astashkin S.V., Sukochev F.A. Banach–Saks property in Marcinkiewicz spaces, J. Math. Anal. Appl. 336 (2) (2007) 1231–1258.
- [7] Banach S. Théorie des Opérations Linéaires, Monografie Matematyczne, vol. 1, PWN, Warsaw, 1932, Reprinted in: S. Banach, Oeuvres, Vol. II, PWN, Warszawa, 1979, 13–219; English transl.: Theory of Linear Operations, North-Holland Math. Library, vol. 38, North-Holland, Amsterdam, 1987.
- [8] Bennett G. Factorizing the Classical Inequalities, Mem. Amer. Math. Soc., vol. 120, American Mathematical Society, Providence, RI, 1996.
- [9] Bennett C., Sharpley R. Interpolation of Operators, Academic Press, Boston, MA, 1988.
- [10] Chen S., Cui Y., Hudzik H., Sims B. Geometric properties related to fixed point theory in some Banach function lattices, in: Handbook on Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 339–389.
- [11] Cui Y., Hudzik H. Some geometric properties related to fixed point theory in Cesàro sequence spaces, Collect. Math. 50 (1999) 277–288.
- [12] Cui Y., Hudzik H. On the Banach–Saks and weak Banach–Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged) 65 (1999) 179–187.
- [13] Cui Y., Hudzik H. Packing constant for Cesàro sequence spaces, Nonlinear Anal. 47 (2001) 2695–2702.

- [14] Cui Y., Hudzik H., Li Y. On the García–Falset coefficient in some Banach sequence spaces, in: Function Spaces, Proc. of the 5th International Conf. in Poznań (Aug. 28–Sept. 3, 1998), Marcel Dekker, New York, 2000, pp. 141–148.
- [15] Cui Y., Jie L., Płuciennik R. Local uniform nonsquareness in Cesàro sequence spaces, Commentat. Math. Prace Mat. 37 (1997) 47–58.
- [16] Cui Y., Meng C., Płuciennik R. Banach–Saks property and property (β) in Cesàro sequence spaces, Southeast Asian Bull. Math. 24 (2000) 201–210.
- [17] Diestel J., Jarchow H., Tonge A. Absolutely Summing Operators, Cambridge Univ. Press, Cambridge, 1995.
- [18] Dilworth S., Girardi M., Hagler J. Dual Banach spaces which contain an isometric copy of L₁, Bull. Polish Acad. Sci. Math. 48 (1) (2000) 1–12.
- [19] Dodds P.G., Semenov E.M., Sukochev F.A. The Banach–Saks property in rearrangement invariant spaces, Studia Math. **162** (3) (2004) 263–294.
- [20] Dowling P.N., Lennard C.J. Every nonreflexive subspace of $L_1[0, 1]$ fails the fixed point property, Proc. Amer. Math. Soc. 125 (2) (1997) 443–446.
- [21] Dowling P.N., Lennard C.J., Turett B. Renormings of l^1 and c_0 and fixed point properties, in: Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 269–297.
- [22] Edwards R.E. Functional Analysis. Theory and Applications, Holt Rinehart and Winston, New York, 1965.
- [23] Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V. Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Math, vol. 8, Springer-Verlag, New York, 2001
- [24] Hardy G.H., Littlewood J.E., Pólya G. Inequalities, Cambridge Univ. Press, Cambridge, 1952.
- [25] Hassard B.D., Hussein D.A. On Cesàro function spaces, Tamkang J. Math. 4 (1973) 19-25.
- [26] Jagers A.A. A note on Cesàro sequence spaces, Nieuw Arch. Wiskund. (3) 22 (1974) 113–124.
- [27] Kadec M.I., Pełczyński A. Bases, lacunary sequences and complemented subspaces in the spaces L_p, Studia Math. 21 (1962) 161–176.
- [28] Kantorovich L.V., Akilov G.P. Functional Analysis, Nauka, Moscow, 1977. English transl.: Pergamon Press, Oxford, 1982.
- [29] Kashin B.S., Saakyan A.A. Orthogonal Series, Nauka, Moscow, 1984. English transl.: American Mathematical Society, Providence, RI, 1989.
- [30] Kerman R., Milman M., Sinnamon G. On the Brudnyĭ–Krugljak duality theory of spaces formed by the K-method of interpolation, Rev. Mat. Complut. 20 (2) (2007) 367–389.
- [31] Korenblyum B.I., Kreĭn S.G., Levin B.Ya. On certain nonlinear questions of the theory of singular integrals, Doklady Akad. Nauk SSSR (N.S.) **62** (1948) 17–20 (in Russian).
- [32] Krein S.G., Petunin Yu.I., Semenov E.M. Interpolation of Linear Operators, Nauka, Moscow, 1978. English transl.: American Mathematical Society, Providence, RI, 1982.
- [33] Kufner A., Maligranda L., Persson L.-E. The Hardy Inequality. About Its History and Some Related Results, Vydavatelski Servis Publishing House, Pilzen, 2007.
- [34] Lee P.Y. Cesàro sequence spaces, Math. Chronicle, New Zealand 13 (1984) 29–45.
- [35] Lee P.Y. Cesàro sequence spaces, Manuscript, Singapore, 1999, pp. 1–17.
- [36] Leibowitz G.M. A note on the Cesàro sequence spaces, Tamkang J. Math. 2 (1971) 151–157.
- [37] Lindenstrauss J., Tzafriri L. Classical Banach Spaces, I. Sequence Spaces, Springer-Verlag, Berlin, 1977.
- [38] Lindenstrauss J., Tzafriri L. Classical Banach Spaces, II. Function Spaces, Springer-Verlag, Berlin, 1979.
- [39] Liu Y.Q., Wu B.E., Lee P.Y. Method of Sequence Spaces, Guangdong of Science and Technology Press, 1996 (in Chinese).
- [40] Lozanovskiĭ G.Ja. Isomorphic Banach lattices, Sibirsk. Mat. Zh. 10 (1969) 93–98. English transl.: Siberian Math. J. 10 (1) (1969) 64–68.
- [41] Lozanovskiĭ G.Ja. Certain Banach lattices, Sibirsk. Mat. Zh. 10 (1969) 584–599. English transl.: Siberian Math. J. 10 (3) (1969) 419–431.
- [42] Luxemburg W.A.J., Zaanen A.C. Some examples of normed Köthe spaces, Math. Ann. 162 (1965/1966) 337–350.

- [43] Maligranda L. Orlicz Spaces and Interpolation, Seminars in Math., vol. 5, Univ. of Campinas, Campinas, SP, Brazil, 1989.
- [44] Maligranda L. Type, cotype and convexity properties of quasi-Banach spaces, in: M. Kato, L. Maligranda (Eds.), Banach and Function Spaces, Proc. of the Internat. Symp. on Banach and Function Spaces (Oct. 2–4, 2003, Kitakyushu-Japan), Yokohama Publishers, 2004, pp. 83–120.
- [45] Maligranda L., Petrot N., Suantai S. On the James constant and B-convexity of Cesàro and Cesàro–Orlicz sequence spaces, J. Math. Anal. Appl. 326 (1) (2007) 312–331.
- [46] Novikov S.Ya., Semenov E.M., Tokarev E.V. The structure of subspaces of the space $\Lambda_p(\mu)$, Dokl. Akad. Nauk SSSR **247** (1979) 552–554. English transl.: Sov. Math. Dokl. **20** (1979) 760–761.
- [47] Novikov S.Ya., Semenov E.M., Tokarev E.V. On the structure of subspaces of the spaces $\Lambda_p(\mu)$, Teor. Funkts., Funkts. Anal. Prilozh. **42** (1984) 91–97. English transl.: Ser. 2, Amer. Math. Soc. **136** (1987) 121–127.
- [48] Rakov S.A. The Banach–Saks exponent of some Banach spaces of sequences, Mat. Zametki **32** (5) (1982) 613–625. English transl.: Math. Notes **32** (5, 6) (1982) 791–797.
- [49] Sawyer E. Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (2) (1990) 145–158.
- [50] Shiue J.S. Cesàro sequence spaces, Tamkang J. Math. 1 (1970) 19–25.
- [51] Shiue J.S. A note on Cesàro function space, Tamkang J. Math. 1 (1970) 91–95.
- [52] Sinnamon G. The level function in rearrangement invariant spaces, Publ. Mat. **45** (1) (2001) 175–198.
- [53] Sinnamon G. Transferring monotonicity in weighted norm inequalities, Collect. Math. 54 (2) (2003) 181–216.
- [54] Sy P.W., Zhang W.Y., Lee P.Y. The dual of Cesàro function spaces, Glas. Mat. Ser. III 22 (1) (1987) 103–112.
- [55] Szlenk W. Sur les suites faiblement convergentes dans l'espace L, Studia Math. **25** (1965) 337–341.
- [56] Tandori K. Über einen speziellen Banachschen Raum, Publ. Math. Debrecen 3 (1954) 263–268, (1955).
- [57] Tokarev E.V. The Banach–Saks property in Banach lattices, Sibirsk. Mat. Zh. **24** (1) (1983) 187–189 (in Russian).
- [58] Wnuk W. $-l^{(p_n)}$ spaces with the Dunford–Pettis property, Comment. Math. Prace Mat. **30** (2) (1991) 483–489.
- [59] Wnuk W. Banach Lattices with Order Continuous Norms, Polish Scientific Publishers PWN, Warszawa, 1999.

(Received August 2009)