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Interpolation of Cesàro sequence and function spaces

by

Sergey V. Astashkin (Samara) and Lech Maligranda (Luleå)

Abstract. The interpolation properties of Cesàro sequence and function spaces are
investigated. It is shown that Cesp(I) is an interpolation space between Cesp0(I) and
Cesp1(I) for 1 < p0 < p1 ≤ ∞ and 1/p = (1 − θ)/p0 + θ/p1 with 0 < θ < 1, where
I = [0,∞) or [0, 1]. The same result is true for Cesàro sequence spaces. On the other
hand, Cesp[0, 1] is not an interpolation space between Ces1[0, 1] and Ces∞[0, 1].

1. Introduction and preliminaries. The structure of Cesàro sequence
and function spaces was investigated by several authors (see, for example,
[Be], [MPS], [A], [AM] and references therein). Here we are interested in
interpolation properties of these spaces. The main purpose is to give inter-
polation theorems for the Cesàro sequence spaces cesp and Cesàro function
spaces Cesp(I) on I = [0,∞) and I = [0, 1]. In the case of I = [0,∞)
some interpolation results for Cesàro function spaces are contained implic-
itly in [MS]. Moreover, using the so-called K+-method of interpolation it
was proved in [CFM] that the Cesàro sequence space cesp is an interpolation
space with respect to the couple (l1, l1(2

−k)).
Our main aim is to give a rather complete description of Cesàro spaces

as interpolation spaces with respect to appropriate couples of weighted L1-
spaces as well as Cesàro spaces. For example, if either I = [0,∞) or [0, 1]
and 1 < p0 < p1 ≤ ∞ with 1/p = (1− θ)/p0 + θ/p1 for 0 < θ < 1, then

(1.1) (Cesp0(I),Cesp1(I))θ,p = Cesp(I) and (cesp0 , cesp1)θ,p = cesp,

where (·, ·)θ,p denotes the K-method of interpolation.
We have a completely different situation in a more interesting and non-

trivial case when I = [0, 1] and p0 = 1, p1 =∞. It turns out that Cesp[0, 1]
is not an interpolation space between Ces1[0, 1] and Ces∞[0, 1], whereas
(Ces1[0, 1],Ces∞[0, 1])θ,p for 1 < p <∞ is a weighted Cesàro function space.
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Let us collect some necessary definitions and notations related to the
interpolation theory of operators as well as Cesàro, Copson and down spaces.

For two normed spaces X and Y the symbol X
C
↪→ Y means that the

imbedding X ⊂ Y is continuous with norm not greater than C, i.e., ‖x‖Y ≤
C‖x‖X for all x ∈ X, and X ↪→ Y means that X

C
↪→ Y for some C > 0.

Moreover, X = Y means that X ↪→ Y and Y ↪→ X, that is, the spaces are
the same and the norms are equivalent. If f and g are real functions, then
f ≈ g means that c−1g ≤ f ≤ cg for some c ≥ 1.

For a Banach couple X̄ = (X0, X1) of two compatible Banach spaces X0

and X1 consider the Banach spaces X0∩X1 and X0 +X1 with their natural
norms

‖f‖X0∩X1 = max(‖f‖X0 , ‖f‖X1) for f ∈ X0 ∩X1,

and for f ∈ X0 +X1,

‖f‖X0+X1 = inf{‖f0‖X0 ,+‖f1‖X1 : f = f0 + f1, f0 ∈ X0, f1 ∈ X1}.
For more careful definitions of a Banach couple, intermediate and in-

terpolation spaces with some results introduced briefly below, see [BK, pp.
91–173, 289–314, 338–359] and [BS, pp. 95–116].

A Banach space X is called an intermediate space between X0 and X1 if
X0 ∩X1 ↪→ X ↪→ X0 +X1. Such a space X is called an interpolation space
between X0 and X1 (and we write X ∈ Int(X0, X1)) if, for any bounded
linear operator T : X0 + X1 → X0 + X1 whose restriction T|Xi : Xi → Xi

is bounded for i = 0, 1, the restriction T|X : X → X is also bounded and
‖T‖X→X ≤ C max{‖T‖X0→X0 , ‖T‖X1→X1} for some C ≥ 1. If C = 1, then
X is called an exact interpolation space between X0 and X1.

An interpolation method or interpolation functor F is a construction (a
rule) which assigns to every Banach couple X̄ = (X0, X1) an interpolation
space F(X̄) between X0 and X1. The interpolation functor F is called exact
if the space F(X̄) is an exact interpolation space for every Banach couple
X̄. One of the most important interpolation methods is the K-method, also
known as the real Lions–Peetre interpolation method. For a Banach couple
X̄ = (X0, X1) the Peetre K-functional of an element f ∈ X0 +X1 is defined
for t > 0 by

K(t, f ;X0, X1) = inf{‖f0‖X0 + t‖f1‖X1 : f = f0 + f1, f0 ∈ X0, f1 ∈ X1}.
Then the spaces of the K-method of interpolation are

(X0, X1)θ,p =

{
f ∈ X0 +X1 :

‖f‖θ,p =

(∞�
0

[t−θK(t, f ;X0, X1)]
p dt

t

)1/p

<∞
}
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if 0 < θ < 1 and 1 ≤ p <∞, and

(X0, X1)θ,∞ =
{
f ∈ X0 +X1 : ‖f‖θ,∞ = sup

t>0
K(t, f ;X0, X1)/t

θ <∞
}

if 0 ≤ θ ≤ 1. Very useful in calculations is the so-called reiteration formula
showing the stability of the K-method of interpolation. If 1 ≤ p0, p1, p ≤ ∞,
0 < θ0, θ1, θ < 1 and θ0 6= θ1, then with equivalent norms

(1.2)
(
(X0, X1)θ0,p0 , (X0, X1)θ1,p1

)
θ,p

= (X0, X1)η,p,

where η = (1 − θ)θ0 + θθ1 (see [BS, Theorem 2.4, p. 311], [BL, Theorems
3.5.3], [BK, Theorem 3.8.10]) and [Tr, Theorem 1.10.2]).

The space (X0, X1)
K
Φ of the general K-method of interpolation, where Φ is

a parameter of the K-method, i.e., a Banach function space on ((0,∞), dt/t)
containing the function t 7→ min{1, t}, is the Banach space of all f ∈ X0+X1

such that K(·, f ;X0, X1) ∈ Φ with the norm ‖f‖KΦ = ‖K(·, f ;X0, X1)‖Φ.
The space (X0, X1)

K
Φ is an exact interpolation space between X0 and X1.

In particular, if Lp = Lp(Ω,µ), where (Ω,µ) is a complete σ-finite mea-
sure space, then for any f ∈ L1 + L∞ we have

(1.3) K(t, f ;L1, L∞) =

t�

0

f∗(s) ds.

Here and below, f∗ denotes the non-increasing rearrangement of |f | defined
by f∗(s) = inf{λ > 0 : µ({x ∈ Ω : |f(x)| > λ}) ≤ s} (see [BK, Proposition
3.1.1], [KPS, pp. 78–79], [BS, Theorem 6.2, pp. 74–75]). Moreover, for two
non-negative weight functions w0, w1 and for f ∈ L1(w0) + L1(w1) we have

(1.4) K(t, f ;L1(w0), L1(w1)) = ‖min(w0, tw1)f‖L1

(see [BK, Proposition 3.1.17] and [Ov, p. 391]).
If the inequality K(t, g;X0, X1) ≤ K(t, f ;X0, X1) (t > 0) with f ∈ X

and g ∈ X0 + X1 implies that g ∈ X and ‖g‖X ≤ C‖f‖X for any X ∈
Int(X0, X1) and some C ≥ 1 independent of X, f and g, then (X0, X1) is
called a K-monotone or Calderón–Mityagin couple. For every K-monotone
couple (X0, X1) the spaces (X0, X1)

K
Φ of the general K-method are the only

interpolation spaces between X0 and X1 (see [BK]).
Now, we recall the definitions of Cesàro spaces. The Cesàro sequence

spaces cesp are the sets of real sequences x = {xk} such that

‖x‖ces(p) =

[ ∞∑
n=1

(
1

n

n∑
k=1

|xk|
)p]1/p

<∞ for 1 ≤ p <∞,

and

‖x‖ces(∞) = sup
n∈N

1

n

n∑
k=1

|xk| <∞ for p =∞.
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The Cesàro function spaces Cesp = Cesp(I) are the classes of Lebesgue
measurable real functions f on I = [0, 1] or I = [0,∞) such that

‖f‖Ces(p) =

[ �
I

(
1

x

x�

0

|f(t)| dt
)p

dx

]1/p
<∞ for 1 ≤ p <∞,

and

‖f‖Ces(∞) = sup
0<x∈I

1

x

x�

0

|f(t)| dt <∞ for p =∞.

Cesàro spaces are Banach lattices which are not symmetric except when
they are trivial, namely, ces1 = {0}, Ces1[0,∞) = {0}. By a symmetric
space we mean a Banach lattice X on I with the additional property: if
g∗(t) = f∗(t) for all t > 0, f ∈ X and g ∈ L0(I) (the set of all classes of
Lebesgue measurable real functions on I), then g ∈ X and ‖g‖X = ‖f‖X (cf.

[BS], [KPS]). Moreover, lp
p′

↪→ cesp, Lp(I)
p′

↪→ Cesp(I) for 1 < p ≤ ∞ (in what

follows 1/p + 1/p′ = 1), and if 1 < p < q < ∞, then cesp
1
↪→ cesq

1
↪→ ces∞.

Also for I = [0, 1] and 1 < p < q < ∞ we have L∞
1
↪→ Ces∞

1
↪→ Cesq

1
↪→

Cesp
1
↪→ Ces1 = L1(ln(1/t)) and Ces∞

1
↪→ L1.

Let 1 ≤ p < ∞. The Copson sequence spaces copp are the sets of real
sequences x = {xk} such that

‖x‖cop(p) =

[ ∞∑
n=1

( ∞∑
k=n

|xk|
k

)p]1/p
<∞,

and the Copson function spaces Copp = Copp(I) are the classes of Lebesgue
measurable real functions f on I = [0,∞) or I = [0, 1] such that

‖f‖Cop(p) =

[∞�
0

(∞�
x

|f(t)|
t

dt

)p
dx

]1/p
<∞ for I = [0,∞),

and

‖f‖Cop(p) =

[ 1�

0

( 1�

x

|f(t)|
t

dt

)p
dx

]1/p
<∞ for I = [0, 1].

Sometimes we will use the Cesàro operators

Cdx(n) =
1

n

n∑
k=1

|xk|, Cf(x) =
1

x

x�

0

|f(t)| dt

and the Copson operators

C∗dx(n) =
∞∑
k=n

|xk|
k
, C∗f(x) =

�

(x,∞)∩I

|f(t)|
t

dt
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related to appropriate spaces. Then cesp (resp. copp) consists of all real
sequences x = {xk} such that Cdx ∈ lp (resp. C∗dx ∈ lp), and Cesp(I)
(resp. Copp(I)) consists of all classes of Lebesgue measurable real functions
f on I such that Cf ∈ Lp(I) (resp. C∗f ∈ Lp(I)) with natural norms.
By the Copson inequalities (cf. [HLP, Theorems 328 and 331], [Be, p. 25]
and [KMP, p. 159]), valid for 1 ≤ p < ∞, we have ‖C∗dx‖lp ≤ p‖x‖lp for

x ∈ lp and ‖C∗f‖Lp(I) ≤ p‖f‖Lp(I) for f ∈ Lp(I). Therefore, lp
p
↪→ copp and

Lp
p
↪→ Copp.
We can define similarly the spaces cop∞ and Cop∞ but it is easy to see

that cop∞ = l1(1/k) and Cop∞ = L1(1/t). Moreover, for I = [0, 1] we have
Lp

p
↪→ Copp

1
↪→ Cop1 = L1.

We will also consider more general Cesàro spaces CesE(I), where E is a
Banach function space on I with the natural norm ‖f‖Ces(E) = ‖Cf‖E .

For a Banach function space E on I = [0,∞) the down space E↓ is the
collection of all f ∈ L0 such that

‖f‖E↓ = sup
�

I

|f(t)|g(t) dt <∞,

where the supremum is taken over all non-negative, non-increasing Lebesgue
measurable functions g from the Köthe dual E′ of E such that ‖g‖E′ ≤ 1.
Let us recall that the Köthe dual of a Banach function space E is defined as

E′ =
{
f ∈ L0 : ‖f‖E′ = sup

‖g‖E≤1

�

I

|f(t)g(t)| dt <∞
}
.

It is routine to check that the space E↓ has the Fatou property, that is, if
0 ≤ fn increases to f a.e. on I and supn∈N ‖fn‖E↓ < ∞, then f ∈ E↓ and
‖fn‖E↓ increases to ‖f‖E↓ . Moreover, E′′

1
↪→ E↓, where E′′ is the second

Köthe dual of E. Recall also that a Banach function space E has the Fatou
property if and only if E = E′′ with equality of norms.

Sinnamon [Si01, Theorem 3.1] proved that if E is a symmetric space
on I = [0,∞), then ‖f‖E↓ ≈ ‖Cf‖E if and only if the Cesàro operator
C : E → E is bounded. In particular, then E↓ = CesE . Moreover, (L1)

↓ = L1

since

‖f‖
L↓1

= sup
0≤g

	∞
0 |f(t)|g(t) dt

‖g‖L∞
≥ sup

0≤g↓

	∞
0 |f(t)|g(t) dt

‖g‖L∞
≥

	∞
0 |f(t)| dt
‖1‖L∞

= ‖f‖L1

(cf. [MS, p. 194]).
The paper is organized as follows. In Section 2 we prove that the Cesàro

and Copson sequence and function spaces on [0,∞) are interpolation spaces
obtained by the K-method from weighted L1-spaces. At the same time, in
the case of I = [0, 1], only the Copson spaces can be described as interpola-
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tion spaces with respect to the analogous couple of weighted L1-spaces (see
Theorem 1(iii)). In particular, we obtain a new description of the interpola-
tion spaces (L1, L1(1/t))1−1/p,p in the off-diagonal case both for I = [0,∞)
and I = [0, 1].

In Section 3 it is shown that the Cesàro function spaces Cesp[0,∞),
1 < p < ∞, can be obtained by the K-method of interpolation also from
the couple (L1[0,∞),Ces∞[0,∞)). Hence, applying the reiteration theorem,
we conclude that Cesp[0,∞) is an interpolation space with respect to the
couple (Cesp0 [0,∞),Cesp1 [0,∞)) for arbitrary 1 < p0 < p1 ≤ ∞ and 1/p =
(1− θ)/p0 + θ/p1 with 0 < θ < 1.

In Section 4 interpolation of Cesàro function spaces on [0, 1] is investi-
gated. We prove that for 1 < p <∞,

(L1(1− t)[0, 1],Ces∞[0, 1])θ,p = Cesp[0, 1] with θ = 1− 1/p.

As a consequence of this result and the reiteration equality (1.2), we infer

(1.5) (Cesp0 [0, 1],Cesp1 [0, 1])θ,p = Cesp[0, 1]

for all 1 < p0 < p1 ≤ ∞ and 1/p = (1− θ)/p0 + θ/p1 with 0 < θ < 1.
We are also interested in description of interpolation spaces between

Ces1[0, 1] and Ces∞[0, 1]. In Section 5, in Theorem 3, we find an equiva-
lent expression for the K-functional with respect to this couple and then in
Section 6 we prove that the real interpolation spaces

(Ces1[0, 1],Ces∞[0, 1])1−1/p,p

for 1 < p < ∞ can be identified with the weighted Cesàro function spaces
Cesp(ln(e/t))[0, 1].

Finally, in Section 7, we show in Theorem 6 that Cesp[0, 1] for 1 < p <∞
are not interpolation spaces between Ces1[0, 1] and Ces∞[0, 1].

2. Cesàro and Copson spaces as interpolation spaces with re-
spect to weighted L1-spaces. We start with the main result in this part.

Theorem 2.1.

(i) If 1 < p <∞, then

(l1, l1(1/k))1−1/p,p = cesp = copp.

(ii) If I = [0,∞) and 1 < p <∞, then

(L1, L1(1/t))1−1/p,p = Cesp = Copp.

(iii) If I = [0, 1] and 1 < p ≤ ∞, then

(L1, L1(1/t))1−1/p,p = Copp.

Moreover, Copp
p′

↪→ Cesp and the reverse imbedding does not hold.
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Proof. (i) If f ∈ l1 + l1(1/k), then K(t, x; l1, l1(1/k)) = t
∑∞

k=1 |xk|/k for
0 < t ≤ 1, and

K(t, x; l1, l1(1/k)) =
∞∑
k=1

|xk|min(1, t/k) =

[t]∑
k=1

|xk|+ t
∞∑

k=[t]+1

|xk|
k
.

for t ≥ 1. Therefore, for n ≤ t < n+ 1 (n ≥ 1), we have

K(t, x; l1, l1(1/k))

t
≤ 1

n

n∑
k=1

|xk|+
∞∑

k=n+1

|xk|
k

= Cdx(n) + C∗dx(n+ 1).

Since

CdC
∗
dx(n) =

1

n

n∑
m=1

( ∞∑
k=m

|xk|
k

)

=
1

n

[ n∑
k=1

( k∑
m=1

|xk|
k

)
+

∞∑
k=n+1

( n∑
m=1

|xk|
k

)]

=
1

n

n∑
k=1

|xk|+
∞∑

k=n+1

|xk|
k

= Cdx(n) + C∗dx(n+ 1),

it follows that, for n ≤ t < n+ 1 (n ≥ 1),

K(t, x; l1, l1(1/k))

t
≤ CdC∗dx(n).

Using the classical Hardy inequality (cf. [HLP, Theorem 326] or [KMP, The-
orem 1]), we obtain

‖x‖1−1/p,p =

(∞�
0

(
K(t, x; l1, l1(1/k))

t

)p
dt

)1/p

=

[
C∗dx(1)p +

∞∑
n=1

n+1�

n

(
K(t, x)

t

)p
dt

]1/p
≤
[
C∗dx(1)p +

∞∑
n=1

(CdC
∗
dx(n))p

]1/p
≤ C∗dx(1) + ‖CdC∗dx‖lp ≤ C∗dx(1) + p′‖C∗dx‖lp
≤ (p′ + 1)‖C∗dx‖lp = (p′ + 1)‖x‖cop(p).

This means that copp ↪→ (l1, l1(1/k))1−1/p,p. On the other hand, for n ≤ t <
n+ 1 (n ≥ 1), we have

K(t, x; l1, l1(1/k))

t
≥

∞∑
k=n+1

|xk|
k

= C∗dx(n+ 1)
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and

‖x‖1−1/p,p =

(∞�
0

(
K(t, x; l1, l1(1/k))

t

)p
dt

)1/p

≥
(
C∗dx(1)p +

∞∑
n=1

C∗dx(n+ 1)p
)1/p

= ‖C∗dx‖lp = ‖x‖cop(p),

which gives the reverse imbedding (l1, l1(1/k))1−1/p,p
1
↪→ copp. The equality

cesp = copp, 1 < p <∞, was proved by Bennett (cf. [Be, Theorems 4.5 and
6.6]).

(ii) For f ∈ L1 + L1(1/s) = L1(min(1, 1/s)) we have

K(t, f ;L1, L1(1/s)) =

∞�

0

|f(s)|min(1, t/s) ds

=

t�

0

|f(s)| ds+ t

∞�

t

|f(s)|
s

ds.

Thus,
K(t, f ;L1, L1(1/s))

t
= Cf(t) + C∗f(t), t > 0,

and therefore

(2.1)

‖f‖1−1/p,p =

(∞�
0

(
K(t, f ;L1, L1(1/s))

t

)p
dt

)1/p

= ‖Cf + C∗f‖Lp(0,∞).

Since, by the Fubini theorem,

C∗Cf(t) =

∞�

t

(
1

u2

u�

0

|f(s)| ds
)
du

=

t�

0

(∞�
t

1

u2
du

)
|f(s)| ds+

∞�

t

(∞�
s

1

u2
du

)
|f(s)| ds

=
1

t

t�

0

|f(s)| ds+

∞�

t

|f(s)|
s

ds = Cf(t) + C∗f(t),

from the Copson inequality (cf. [HLP, Theorem 328]) it follows that

‖f‖Ces(p) = ‖Cf‖Lp(0,∞) ≤ ‖Cf + C∗f‖Lp(0,∞)

= ‖C∗Cf‖Lp(0,∞) ≤ p‖Cf‖Lp(0,∞) = p‖f‖Ces(p).

Combining this with (2.1), we obtain ‖f‖1−1/p,p ≈ ‖f‖Ces(p).



Interpolation of Cesàro sequence and function spaces 47

On the other hand, since

CC∗f(t) =
1

t

t�

0

(∞�
u

|f(s)|
s

ds

)
du

=
1

t

t�

0

( s�
0

du
) |f(s)|

s
ds+

1

t

∞�

t

( t�
0

du
) |f(s)|

s
ds

=
1

t

t�

0

|f(s)| ds+

∞�

t

|f(s)|
s

ds = Cf(t) + C∗f(t),

by the Hardy inequality,

‖f‖Cop(p) = ‖C∗f‖Lp(0,∞) ≤ ‖Cf + C∗f‖Lp(0,∞)

= ‖CC∗f‖Lp(0,∞) ≤ p′‖C∗f‖Lp(0,∞) = p′‖f‖Cop(p),

and, applying (2.1) once more, we conclude that ‖f‖1−1/p,p ≈ ‖f‖Cop(p).
(iii) For I = [0, 1] and f ∈ L1+L1(1/s) = L1 we haveK(t, f ;L1, L1(1/s))

= ‖f‖1 if t ≥ 1, and

K(t, f ;L1, L1(1/s)) =

t�

0

|f(s)| ds+ t

1�

t

|f(s)|
s

ds = tCf(t) + tC∗f(t)

if 0 < t ≤ 1. Therefore, for 1 < p <∞,

‖f‖1−1/p,p =
( 1�

0

[Cf(t) + C∗f(t)]p dt+

∞�

1

t−p‖f‖p1 dt
)1/p

=

(
‖Cf + C∗f‖pp +

1

p− 1
‖f‖p1

)1/p

.

Firstly, the last expression is not smaller than ‖C∗f‖p = ‖f‖Cop(p). On the
other hand, since again CC∗f(t) = Cf(t)+C∗f(t), by the Hardy inequality,
it follows that

‖f‖1−1/p,p =

(
‖CC∗f‖pp +

1

p− 1
‖f‖p1

)1/p

≤ ‖CC∗f‖p + (p− 1)−1/p‖f‖1

≤ p′‖C∗f‖p + (p− 1)−1/p‖f‖Cop(p) = (p′ + (p− 1)−1/p)‖f‖Cop(p).

Thus, (L1, L1(1/t))1−1/p,p = Copp with equivalent norms for 1 < p < ∞.
For p =∞ we have (L1, L1(1/t))1,∞ = L1(1/t) = Cop∞[0, 1].

The imbedding Copp
p′

↪→ Cesp for 1 < p ≤ ∞ follows from the inequality

‖f‖Ces(p) = ‖Cf‖p ≤ ‖Cf + C∗f‖p = ‖CC∗f‖p ≤ p′‖C∗f‖p = p′‖f‖Cop(p).

Moreover, Cesp[0, 1] ∩ L1[0, 1]
p+1
↪→ Copp[0, 1] for 1 ≤ p <∞. In fact, observe

that in the case of I = [0, 1] the composition operator C∗C has an additional
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term. More precisely,

C∗Cf(t) = Cf(t) + C∗f(t)−
1�

0

|f(s)| ds.

Therefore,

‖f‖Cop(p) = ‖C∗f‖p ≤ ‖Cf + C∗f‖p

= ‖C∗Cf +

1�

0

|f(s)| ds‖p ≤ ‖C∗Cf‖p + ‖f‖1

≤ p‖Cf‖p + ‖f‖1 ≤ (p+ 1) max(‖f‖Ces(p), ‖f‖1).
Finally, let us show that Cesp X↪→ Copp by comparing norms of the func-

tions fh(t) = 1√
1−tχ[h,1)(t), 0 < h < 1, in these spaces. We have

C∗(fh)(t) =



1�

h

1

s
√

1− s
ds if 0 < t ≤ h,

1�

t

1

s
√

1− s
ds if h ≤ t ≤ 1,

and

‖fh‖pCop(p) = ‖C∗(fh)‖pp ≥
h�

0

( 1�

h

1

s
√

1− s
ds

)p
dt = h

( 1�

h

1

s
√

1− s
ds

)p

≥ h
( 1�

h

1√
1− s

ds

)p
= 2ph(1− h)p/2.

Also,

C(fh)(t) =

{
0 if 0 < t ≤ h,
(2/t)(

√
1− h−

√
1− t) if h ≤ t ≤ 1,

and

‖fh‖pCes(p) = ‖C(fh)‖pp = 2p
1�

h

(√
1− h−

√
1− t

t

)p
dt

≤ 2p
1�

h

(1− h)p/2

tp
dt = 2p(1− h)p/2

1− hp−1

(p− 1)hp−1
.

Thus,
‖fh‖pCop(p)

‖fh‖pCes(p)

≥ 2ph(1− h)p/2(p− 1)hp−1

2p(1− h)p/2(1− hp−1)
= (p−1)

hp

1− hp−1
→∞ as h→ 1+,

and the proof is complete.
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Remark 2.2. Alternatively, the space cesp for 1 < p < ∞ can be
obtained as an interpolation space with respect to (l1, l1(2

−n)) by the so-
called K+-method, a version of the standard K-method, precisely, cesp =

(l1, l1(2
−n))K

+

lp(1/n)
(cf. [CFM, proof of Theorem 6.4]).

Remark 2.3. The results in Theorem 2.1 give a description of the real
interpolation spaces (L1, L1(1/t))1−1/p,p in the off-diagonal case. Before it
was only known that they are intersections of weighted L1(w)-spaces with
the weights w from certain sets (cf. [Gi, Theorem 4.1], [MP, Theorem 2]) or
some block spaces (cf. [AKMNP, Lemma 3.1]).

The following corollary follows directly from Theorem 2.1, the reiteration
formula (1.2) and the equalities Cop∞[0, 1] = L1(1/t) and Cop1[0, 1] = L1.

Corollary 2.4. If 1 < p0 < p1 <∞ and 1/p = (1− θ)/p0 + θ/p1 with
0 < θ < 1, then

(2.2) (cesp0 , cesp1)θ,p = cesp, (Cesp0 [0,∞),Cesp1 [0,∞))θ,p = Cesp[0,∞).

If 1 ≤ p0 < p1 ≤ ∞ and 1/p = (1− θ)/p0 + θ/p1 with 0 < θ < 1, then

(2.3) (Copp0 [0, 1],Copp1 [0, 1])θ,p = Copp[0, 1].

Remark 2.5. A different proof of the second equality in (2.2) was given
by Sinnamon [Si91, Corollary 2].

3. Cesàro spaces on [0,∞) as interpolation spaces with respect
to (L1,Ces∞). All the spaces considered in this part are on the interval
I = [0,∞). By [MS, p. 194] we have D∞ := (L∞)↓ = Ces∞ isometrically. On
the other hand, for a Banach lattice F with the Fatou property we have F ∈
Int(L1, D

∞) = Int(L1,Ces∞) if and only if F = E↓ with equality of norms
for some E ∈ Int(L1, L∞) (see [MS, Theorem 6.4]). Then, in particular,
L↓p ∈ Int(L1,Ces∞). Since the operator C is bounded in Lp for 1 < p ≤ ∞,
by [Si01, Theorem 3.1] it follows that

‖f‖
L↓p

=
∥∥|f |∥∥

L↓p
≈ ‖Cf‖Lp = ‖f‖Ces(p).

Thus, for any 1 < p <∞ we have Cesp ∈ Int(L1,Ces∞) and Cesp = L↓p.
Moreover, by using Theorem 6.4 from [MS], it is easy to prove the fol-

lowing more precise and general assertion.

Proposition 3.1. Let E,F ∈ Int(L1, L∞) and Φ be an interpolation
Banach lattice with respect to the couple (L∞, L∞(1/u)) on (0,∞). Then

(3.1) (E↓, F ↓)KΦ = [(E,F )KΦ ]↓.

In particular, if 1 < p <∞, then

(3.2) (L1,Ces∞)1−1/p,p = Cesp.
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Proof. Firstly, since the Banach couple (L1, L∞) is K-monotone [KPS,
Theorem 2.4.3], by the assumption and the Brudny̆ı–Krugljak theorem (cf.
[BK, Theorem 4.4.5]), E = (L1, L∞)KΦ0

and F = (L1, L∞)KΦ1
with some inter-

polation Banach lattices Φ0 and Φ1 with respect to the couple (L∞, L∞(1/u))
on (0,∞). Applying the reiteration theorem for the general K-method (see
[BK, Theorem 3.3.11]), we obtain

(E,F )KΦ = ((L1, L∞)KΦ0
, (L1, L∞)KΦ1

)KΦ = (L1, L∞)KΨ ,

where Ψ = (Φ0, Φ1)
K
Φ . Moreover, from the proof of Theorem 6.4 in [MS] and

the equality L↓1 = L1 (see Section 1) it follows that

E↓ = [(L1, L∞)KΦ0
]↓ = (L1, D

∞)KΦ0
, F ↓ = [(L1, L∞)KΦ1

]↓ = (L1, D
∞)KΦ1

and
[(E,F )KΦ ]↓ = [(L1, L∞)KΨ ]↓ = (L1, D

∞)KΨ .

Therefore, using the reiteration theorem once again, we obtain

(E↓, F ↓)KΦ = ((L1, D
∞)KΦ0

, (L1, D
∞)KΦ1

)KΦ = (L1, D
∞)KΨ = [(E,F )KΦ ]↓.

and equality (3.1) is proved. In particular, from (3.1) and the well-known
identification formula (L1, L∞)1−1/p,p = Lp [BL, Theorem 5.2.1] it follows
that

(L1,Ces∞)1−1/p,p = (L↓1, L
↓
∞)1−1/p,p = L↓p = Cesp,

and equality (3.2) is also proved.

For a given symmetric space E on I = [0,∞) the Cesàro function space
CesE is defined by the norm ‖f‖Ces(E) = ‖Cf‖E . If the operator C is
bounded in E, then, by [Si01, Theorem 3.1], CesE = E↓. Therefore, ap-
plying Proposition 3.1, we obtain

Corollary 3.2. Let the operator C be bounded in symmetric spaces E
and F on [0,∞) and let Φ be an interpolation Banach lattice with respect to
the couple (L∞, L∞(1/u)) on (0,∞). Then

(CesE ,CesF )KΦ = Ces(E,F )KΦ
.

In particular, for any 1 < p0 < p1 ≤ ∞,

(3.3) (Cesp0 ,Cesp1)θ,p = Cesp, where 0 < θ < 1 and
1

p
=

1− θ
p0

+
θ

p1
.

Remark 3.3. If 1 < p <∞, then the restriction of the space Cesp[0,∞)
to the interval [0, 1] coincides with Cesp[0, 1]∩L1[0, 1] (cf. [AM, Remark 5]).
Therefore, if we “restrict” (3.3) to [0, 1] we obtain only

(Cesp0 [0, 1] ∩ L1[0, 1],Cesp1 [0, 1] ∩ L1[0, 1])θ,p = Cesp[0, 1] ∩ L1[0, 1],

where 1 < p0 < p1 <∞ and 1/p = (1− θ)/p0 + θ/p1.
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4. Cesàro spaces on [0, 1] as interpolation spaces with respect to
(L1(1− t),Ces∞). In contrast to the case of [0,∞), Cesp[0, 1] for 1 ≤ p <∞
is not even an intermediate space between L1[0, 1] and Ces∞[0, 1]. In fact,
Ces∞[0, 1] ↪→ L1[0, 1], but it is easy to show that Cesp[0, 1] 6⊂ L1[0, 1] for
every 1 ≤ p <∞.

On the other hand, from the inequality 1 − u ≤ ln(1/u) (0 < u ≤ 1)
it follows that Cesp[0, 1], 1 ≤ p < ∞, is an intermediate space between
L1(1− t)[0, 1] and Ces∞[0, 1], because

Ces∞[0, 1]
1
↪→ Cesp[0, 1]

1
↪→ Ces1[0, 1] = L1(ln(1/t))[0, 1]

1
↪→ L1(1− t)[0, 1].

Theorem 4.1. If 1 < p <∞, then

(4.1) (Ces1[0, 1],Ces∞[0, 1])1−1/p,p
1
↪→ Cesp[0, 1]

and

(4.2) (L1(1− t)[0, 1],Ces∞[0, 1])1−1/p,p = Cesp[0, 1].

Proof. All function spaces in this proof are considered on I = [0, 1] unless
indicated otherwise.

First, for any f ∈ Ces1 and all 0 < t ≤ 1 we have

(4.3) K(t, f) := K(t, f ; Ces1,Ces∞) ≥
t�

0

(Cf)∗(s) ds.

In fact, we can assume that f ≥ 0. If f = g + h, g ≥ 0, h ≥ 0, g ∈ Ces1,
h ∈ Ces∞, then Cf = Cg + Ch, and therefore, by (1.3),

‖g‖Ces(1) + t‖h‖Ces(∞) = ‖Cg‖L1 + t‖Ch‖L∞
≥ inf{‖y‖L1 + t‖z‖L∞ : Cf = y + z, y ∈ L1, z ∈ L∞}

= K(t, Cf ;L1, L∞) =

t�

0

(Cf)∗(s) ds.

Taking the infimum over all suitable g and h we get (4.3).
Next, by the definition of real interpolation spaces, we obtain

‖f‖p1−1/p,p ≥
1�

0

[t1/p−1K(t, f)]p
dt

t
=

1�

0

t−pK(t, f)p dt

≥
1�

0

t−p
[ t�
0

(Cf)∗(s) ds
]p
dt ≥ ‖Cf‖pLp[0,1] = ‖f‖pCes(p),

and the proof of (4.1) is complete.
Before proceeding with the proof of (4.2) we introduce the following no-

tation: for a Banach function space E on I = [0,∞) or [0, 1] and any set
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A ⊂ I, by E|A we denote the subspace of E which consists of all functions
f such that supp f ⊂ A. Let also Xp := (L1(1− t),Ces∞)1−1/p,p. Since

‖f‖Xp ≈ ‖fχ[0,1/2]‖Xp + ‖fχ[1/2,1]‖Xp ,

to prove (4.2) it is sufficient to check that

‖fχ[0,1/2]‖Xp ≈ ‖fχ[0,1/2]‖Ces(p),(4.4)

‖fχ[1/2,1]‖Xp ≈ ‖fχ[1/2,1]‖Ces(p).(4.5)

Firstly, since L1(1− t)|[0,1/2] = L1[0,∞)|[0,1/2] and

Ces∞|[0,1/2] = Ces∞[0,∞)|[0,1/2],

by Proposition 3.1 (see (3.2)) we obtain

(4.6)
‖fχ[0,1/2]‖Xp ≈ ‖fχ[0,1/2]‖(L1[0,∞),Ces∞[0,∞))1−1/p,p

≈ ‖fχ[0,1/2]‖Cesp[0,∞).

Note that

(4.7) Cesp[0,∞)|[0,1/2] = Cesp[0, 1]|[0,1/2]
with equivalence of norms. In fact, by [AM, Remark 5], Cesp[0,∞)|[0,1] =
Cesp ∩ L1. If supp g ⊂ [0, 1/2], then

‖g‖L1 =

1/2�

0

|g(s)| ds ≤ 21/p
( 1�

1/2

(
1

t

t�

0

|g(s)| ds
)p

dt

)1/p

≤ 21/p‖g‖Ces(p).

Combining this with the previous equality, we obtain (4.7). Clearly, (4.4) is
an immediate consequence of (4.7) and (4.6).

Now, we prove (4.5). Since (L1(1 − s)|[1/2,1],Ces∞|[1/2,1]) is a comple-
mented subcouple of (L1(1 − s),Ces∞), the well-known result of Baouendi
and Goulaouic [BG, Theorem 1], valid for all interpolation methods (see also
[Tr, Theorem 1.17.1]), yields

‖fχ[1/2,1]‖Xp ≈ ‖fχ[1/2,1]‖Yp ,

where Yp := (L1(1−s)|[1/2,1],Ces∞|[1/2,1])1−1/p,p. To prove (4.5) it is sufficient
to show that

(4.8) Yp = Cesp|[1/2,1].

On the one hand, since 1 − u ≤ ln(1/u) ≤ 2(1 − u) for all 1/2 ≤ u ≤ 1
and Ces1 = L1(ln(1/s)), we have Ces1|[1/2,1] = L1(1− s)|[1/2,1], and, by the
imbedding (4.1), we obtain

Yp = (Ces1|[1/2,1],Ces∞|[1/2,1])1−1/p,p ⊂ Cesp|[1/2,1].

To prove the opposite imbedding we note, firstly, that for any function h
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with supph ⊂ [1/2, 1] we have

‖h‖Ces(∞) = sup
1/2≤x≤1

1

x

x�

1/2

|h(s)| ds,

whence

‖h‖L1 =

1�

1/2

|h(s)| ds ≤ ‖h‖Ces(∞) ≤ 2

1�

1/2

|h(s)| ds = 2‖h‖L1 .

Therefore, using the formula for the K-functional with respect to a couple
of weighted L1-spaces (see (1.4)), we obtain

(4.9) G(t, h) ≤ K(t, h;L1(1− s)|[1/2,1],Ces∞|[1/2,1]) ≤ 2G(t, h),

where

G(t, h) = K(t, h;L1(1− s)|[1/2,1], L1|[1/2,1]) =

1�

1/2

min(1− s, t)|h(s)| ds.

Furthermore, let h ∈ L1|[1/2,1]. Then

Ch(s) =
1

s

s�

1/2

|h(u)| du ≥
s�

1/2

|h(u)| du,

whence

(Ch)∗(s) ≥
1−s�

1/2

|h(u)| du, 0 < s ≤ 1.

Therefore, for all 0 ≤ t ≤ 1, we obtain
t�

0

(Ch)∗(s) ds ≥
t�

0

( 1−s�

1/2

|h(u)| du
)
ds

=

1−t�

1/2

( t�
0

|h(u)| ds
)
du+

1�

1−t

( 1−u�

0

|h(u)| ds
)
du

= t

1−t�

1/2

|h(u)| du+

1�

1−t
(1− u)|h(u)| du = G(t, h).

From this inequality and the definition of G(t, h) it follows that
min(1,t)�

0

(Ch)∗(s) ds ≥ G(t, h)

for all t > 0. Hence, by (4.9) and the classical Hardy inequality, for every
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h ∈ Cesp with supph ⊂ [1/2, 1] we have

‖h‖Yp =
(∞�

0

t−pK(t, h;L1(1− s)|[1/2,1],Ces∞|[1/2,1])p dt
)1/p

≤ 2
(∞�

0

t−pG(t, h)p dt
)1/p

≤ 2
(∞�

0

t−p
(min(1,t)�

0

(Ch)∗(s) ds
)p
dt

)1/p

≤ 2
( 1�

0

t−p
( t�

0

(Ch)∗(s) ds
)p
dt
)1/p

+ 2
(∞�

1

t−p
( 1�

0

(Ch)∗(s) ds
)p
dt
)1/p

≤ 2

[
p

p− 1
‖Ch‖Lp[0,1] +

1

(p− 1)1/p
‖Ch‖L1[0,1]

]
≤ 4p

p− 1
‖h‖Cesp[0,1].

Thus, Cesp|[1/2,1] ⊂ Yp, (4.8) holds, and the proof is complete.

The following result is an immediate consequence of (4.2) and the reiter-
ation equality (1.2).

Corollary 4.2. If 1 < p0 < p1 ≤ ∞ and 1/p = (1− θ)/p0 + θ/p1 with
0 < θ < 1, then

(Cesp0 [0, 1],Cesp1 [0, 1])θ,p = Cesp[0, 1].

Remark 4.3. An inspection of the proof of Theorem 4.1 shows that

(Ces1|[1/2,1],Ces∞|[1/2,1])1−1/p,p = Cesp|[1/2,1]
for every 1 < p <∞ with equivalence of norms.

Remark 4.4. Comparison of formulas from Remark 3.3 and Corollary
4.2 shows that the real method (·, ·)θ,p “well” interpolates the intersection of
Cesàro spaces on [0, 1] with L1[0, 1] or, more precisely,

(Cesp0 [0, 1] ∩ L1[0, 1],Cesp1 [0, 1] ∩ L1[0, 1])θ,p

= (Cesp0 [0, 1],Cesp1 [0, 1])θ,p ∩ L1[0, 1]

for all 1 < p0 < p1 ≤ ∞, 0 < θ < 1 and 1/p = (1− θ)/p0 + θ/p1.

Remark 4.5. We will see further that the imbedding (4.1) is strict for
every 1 < p < ∞ and, even more, Cesp[0, 1] is not an interpolation space
between Ces1[0, 1] and Ces∞[0, 1]. Thus, the weighted L1-space L1(1−t)[0, 1]
is in a sense the “proper” end of the scale of Cesàro spaces Cesp[0, 1], 1 <
p ≤ ∞.
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5. The K-functional for (Ces1[0, 1],Ces∞[0, 1]). In this section we will
find an equivalent expression for the K-functional

K(t, f) = K(t, f ; Ces1,Ces∞) = K(t, f ; Ces1[0, 1],Ces∞[0, 1]).

We start with a lemma giving its lower estimate. Let us introduce two func-
tions defined on (0, 1] by

(5.1) τ1(t) = t/ln(e/t) and τ2(t) = e−t for 0 < t ≤ 1.

It is easy to see that there exists a unique t0 ∈ (0, 1) such that τ1(t0) = τ2(t0)
and τ1(t) < τ2(t) if and only if 0 < t < t0.

Lemma 5.1 (lower estimates). Let f ∈ Ces1[0, 1], f ≥ 0 and 0 < t ≤ 1.

(i) If f0 = fχ[0,τ1(t)]∪[τ2(t),1], then

(5.2) K(t, f) ≥ 1
4‖f0‖Ces(1).

(ii) If f1 = fχ[τ1(t),τ2(t)], then

(5.3) K(t, f) ≥ 1

e2
t‖f1‖Ces(∞).

Proof. (i) Firstly, let us prove that

(5.4) K(t, f) ≥ 1
3‖fχ[0,τ1(t)]‖Ces(1) for all 0 < t ≤ 1.

Let f ∈ Ces1, f = g + h, where g ∈ Ces1, h ∈ Ces∞. We may assume that
f ≥ 0 and 0 ≤ g ≤ f , 0 ≤ h ≤ f . Then

(5.5) 3(‖g‖Ces(1) + t‖h‖Ces(∞)) ≥ ‖g‖Ces(1) + 3t‖h‖Ces(∞)

≥ ‖(f − h)χ[0,τ1(t)]‖Ces(1) + 3t‖hχ[0,τ1(t)]‖Ces(∞)

= ‖fχ[0,τ1(t)]‖Ces(1) − ‖hχ[0,τ1(t)]‖Ces(1) + 3t‖hχ[0,τ1(t)]‖Ces(∞).

Let us show that for any v ∈ Ces∞, v ≥ 0, with supp v ⊂ [0, τ1(t)] we have

(5.6) ‖v‖Ces(1) ≤ 3t‖v‖Ces(∞).

In fact, by the assumption on the support of v and the Fubini theorem,

‖v‖Ces(1) =

τ1(t)�

0

(
1

s

s�

0

v(u) du

)
ds+

1�

τ1(t)

(
1

s

τ1(t)�

0

v(u) du

)
ds

=

τ1(t)�

0

(
1

s

s�

0

v(u) du

)
ds+

τ1(t)�

0

( 1�

τ1(t)

1

s
ds

)
v(u) du

=

τ1(t)�

0

(
1

s

s�

0

v(u) du

)
ds+

τ1(t)�

0

v(u) du ln
1

τ1(t)
.
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Since τ1(t) ≤ t it follows that
τ1(t)�

0

(
1

s

s�

0

v(u) du

)
ds ≤ τ1(t) sup

0<s≤τ1(t)

1

s

s�

0

v(u) du ≤ t‖v‖Ces(∞).

Moreover,
τ1(t)�

0

v(u) du ln
1

τ1(t)
≤ τ1(t) ln

1

τ1(t)
sup

0<s≤τ1(t)

1

s

s�

0

v(u) du

=
ln 1

t + ln ln e
t

ln e
t

t‖v‖Ces(∞) ≤ 2t‖v‖Ces(∞),

and (5.6) follows. Combining this estimate for v = hχ[0,τ1(t)] with (5.5) we
conclude that

3(‖g‖Ces(1) + t‖h‖Ces(∞)) ≥ ‖fχ[0,τ1(t)]‖Ces(1).

Taking the infimum over all decompositions f = g + h, g ∈ Ces1, h ∈ Ces∞
with 0 ≤ g ≤ f , 0 ≤ h ≤ f we obtain (5.4).

Next, since Ces1 = L1(ln(1/s)) and Ces∞
1
↪→ L1, we have

K(t, f ;L1(ln(1/s)), L1) = K(t, f ; Ces1, L1) ≤ K(t, f).

Therefore, applying the well-known equality

K(t, f ;L1(ln(1/s)), L1) =

1�

0

min(ln(1/s), t)|f(s)| ds

and the elementary inequality
1�

0

min(ln(1/s), t)|f(s)| ds ≥
1�

e−t

ln(1/s)|f(s)| ds = ‖fχ[τ2(t),1]‖Ces(1),

we obtain
K(t, f) ≥ ‖fχ[τ2(t),1]‖Ces(1).

Inequality (5.2) is an immediate consequence of the last inequality and (5.4).
The proof of (i) is complete.

(ii) Since (5.3) is obvious for t ∈ [t0, 1], it can be assumed that 0 < t < t0.
Let again f ∈ Ces1, f = g + h, where g ∈ Ces1, h ∈ Ces∞ and 0 ≤ g ≤ f ,
0 ≤ h ≤ f . Then for any c ∈ (0, 1) we have

(5.7) ‖g‖Ces(1) + t‖h‖Ces(∞)

≥ ‖gχ[τ1(t),τ2(t)]‖Ces(1) + ct‖(f − g)χ[τ1(t),τ2(t)]‖Ces(∞)

≥ ‖gχ[τ1(t),τ2(t)]‖Ces(1) − ct‖gχ[τ1(t),τ2(t)]‖Ces(∞) + ct‖fχ[τ1(t),τ2(t)]‖Ces(∞).
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We want to show that for every positive function w ∈ Ces1 with suppw ⊂
[τ1(t), τ2(t)],

(5.8)
1

e2
t‖w‖Ces(∞) ≤ ‖w‖Ces(1) for any 0 < t < t0.

Since

‖w‖Ces(1) =

1�

0

1

s

[ s�

τ1(t)

w(u) du · χ[τ1(t),τ2(t)](s) +

τ2(t)�

τ1(t)

w(u) duχ[τ2(t),1](s)
]
ds

=

τ2(t)�

τ1(t)

(
1

s

s�

τ1(t)

w(u) du

)
ds+

τ2(t)�

τ1(t)

w(u) du

1�

τ2(t)

ds

s

=

τ2(t)�

τ1(t)

( τ2(t)�

u

ds

s

)
w(u) du+

τ2(t)�

τ1(t)

w(u) du ln
1

τ2(t)

=

τ2(t)�

τ1(t)

w(u) ln
τ2(t)

u
du+ t

τ2(t)�

τ1(t)

w(u) du,

to prove (5.8) it suffices to show that for all t ∈ (0, t0) and s ∈ [τ1(t), τ2(t)]
we have

(5.9)
1

e2
t

s�

τ1(t)

w(u) du ≤ s
[ τ2(t)�
τ1(t)

w(u) ln
τ2(t)

u
du+ t

τ2(t)�

τ1(t)

w(u) du

]
.

We consider the cases when s ∈ [τ1(t), τ2(t)/e] and s ∈ (τ2(t)/e, τ2(t)] sepa-
rately. Define a unique t1 ∈ (0, t0) such that τ1(t1) = τ2(t1)/e and note that
the interval [τ1(t), τ2(t)/e] is non-empty only if 0 < t ≤ t1. Let

ϕ(s) := s ln
τ2(t)

s
for s ∈ [τ1(t), τ2(t)/e].

Since

ϕ′(s) = ln
τ2(t)

s
− 1 = ln

τ2(t)

es
≥ 0 for all s ∈ [τ1(t), τ2(t)/e],

it follows that ϕ increases. Therefore, ϕ(s)≥ϕ(τ1(t)) for all s∈ [τ1(t), τ2(t)/e]
and so

s

τ2(t)�

τ1(t)

w(u) ln
τ2(t)

u
du ≥ s ln

τ2(t)

s

s�

τ1(t)

w(u) du(5.10)

≥ τ1(t) ln
τ2(t)

τ1(t)

s�

τ1(t)

w(u) du.
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We show that

(5.11) τ1(t) ln
τ2(t)

τ1(t)
≥ 1

e2
t for all 0 < t ≤ t1.

The function

ψ(t) =
τ1(t)

t
ln
τ2(t)

τ1(t)
=

ln
ln e

t
t − t

ln e
t

for t ∈ (0, t1]

is differentiable and its derivative is

ψ′(t) = −
[
(t+ 1)

(
1 + ln

e

t

)
+ ln τ1(t)

]/[
t

(
ln
e

t

)2]
.

It is not hard to check that ψ is increasing on (0, t2) and decreasing on (t2, t1]
with t2 ∈ (0, t1). Hence, by the definition of t1, for all t ∈ (0, t1] we have

ψ(t) ≥ min[ψ(0+), ψ(t1)] = min

(
1, ln−1

e

t1

)
= ln−1

e

t1
= t−11 e−1−t1 ≥ e−2.

Thus, we obtain (5.11). Combining it with (5.10), we obtain (5.9) in the case
when 0 < t ≤ t1 and s ∈ [τ1(t), τ2(t)/e].

In the second case, when s ∈ (τ2(t)/e, τ2(t)], we have s ≥ e−1−t ≥ e−2

and so

t

s�

τ1(t)

w(u) du ≤ e2ts
τ2(t)�

τ1(t)

w(u) du.

Hence, (5.9) holds again, and so (5.8) is proved. Combining (5.8) and (5.7)
with c = e−2, we obtain

‖g‖Ces(1) + t‖h‖Ces(∞) ≥
1

e2
t‖f1‖Ces(∞) for all 0 < t < t0.

Taking the infimum over all decompositions f = g + h, g ∈ Ces1, h ∈ Ces∞
with 0 ≤ g ≤ f , 0 ≤ h ≤ f we come to (5.3), and the proof of (ii) is
complete.

Theorem 5.2. For every f ∈ Ces1[0, 1] we have

1

2e2
[
‖fχ[0,τ1(t)]∪[τ2(t),1]‖Ces(1) + t‖fχ[τ1(t),τ2(t)]‖Ces(∞)

]
≤ K(t, f ; Ces1,Ces∞)

≤ ‖fχ[0,τ1(t)]∪[τ2(t),1]‖Ces(1) + t‖fχ[τ1(t),τ2(t)]‖Ces(∞)

for all 0 < t < 1, and K(t, f ; Ces1,Ces∞) = ‖f‖Ces(1) for all t ≥ 1.

Proof. The first inequality is a consequence of Lemma 5.1 and the def-
inition of the K-functional. The equality K(t, f ; Ces1,Ces∞) = ‖f‖Ces(1)

(t ≥ 1) follows from the imbedding Ces∞
1
↪→ Ces1.

If a positive function f ∈ Ces1[0, 1] is decreasing, then the description of
the K-functional can be simplified.
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Theorem 5.3. If f ∈ Ces1[0, 1], f ≥ 0 and f is decreasing, then

(5.12) 1
3‖fχ[0,τ1(t)]‖Ces(1) ≤ K(t, f ; Ces1,Ces∞) ≤ ‖fχ[0,τ1(t)]‖Ces(1)

for all 0 < t < 1, and K(t, f ; Ces1,Ces∞) = ‖f‖Ces(1) for all t ≥ 1.

Proof. Taking into account the proof of Lemma 5.1(i) (see (5.4)) it suf-
fices to prove the right-hand inequality in (5.12).

Let f0 := [f−f(τ1(t))]χ[0,τ1(t)] and f1 := f−f0. Since f ≥ 0 is decreasing,
we have ‖f1‖Ces(∞) = f(τ1(t)). Therefore, by the Fubini theorem,

‖f0‖Ces(1) + t‖f1‖Ces(∞)

=

1�

0

1

s

s�

0

[
f(u)− f(τ1(t))

]
χ[0,τ1(t)](u) du ds+ tf(τ1(t))

=

1�

0

1

s

s�

0

f(u)χ[0,τ1(t)](u) du ds− f(τ1(t))

τ1(t)�

0

ln
1

u
du+ tf(τ1(t))

= ‖fχ[0,τ1(t)]‖Ces(1) − f(τ1(t))τ1(t)

[
1 + ln

1

τ1(t)

]
+ tf(τ1(t))

= ‖fχ[0,τ1(t)]‖Ces(1) + tf(τ1(t))

[
1−

1 + ln(ln e
t/t)

ln e
t

]
= ‖fχ[0,τ1(t)]‖Ces(1) −

tf(τ1(t)) ln(ln e
t )

ln e
t

≤ ‖fχ[0,τ1(t)]‖Ces(1),

whence
K(t, f ; Ces1,Ces∞) ≤ ‖fχ[0,τ1(t)]‖Ces(1),

and the desired result is proved.

6. Identification of the real interpolation spaces (Ces1[0, 1],
Ces∞[0, 1])1−1/p,p for 1 < p < ∞. Let us define the weighted Cesàro func-
tion space Cesp(ln(e/t))[0, 1] to consist of all Lebesgue measurable functions
f on [0, 1] such that

‖f‖Ces(p,ln) :=

( 1�

0

(
1

x

x�

0

|f(t)| dt
)p

ln
e

x
dx

)1/p

<∞.

Clearly, Cesp(ln(e/t))[0, 1]
1
↪→ Cesp[0, 1] for every 1 < p < ∞, and this

imbedding is strict.

Theorem 6.1. For 1 < p <∞,

(6.1) (Ces1[0, 1],Ces∞[0, 1])1−1/p,p = Cesp

(
ln
e

t

)
[0, 1].
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Proof. Denote Xp = (Ces1,Ces∞)1−1/p,p, 1 < p <∞. Using Theorem 5.2
on the K-functional for the couple (Ces1,Ces∞) on [0, 1], we have

‖f‖Xp ≤
[ t0�

0

t−p‖fχ[0,τ1(t)]‖
p
Ces(1) dt

]1/p
+
[ t0�

0

t−p‖fχ[τ2(t),1]‖
p
Ces(1) dt

]1/p
+
[ t0�

0

t−p(t‖fχ[τ1(t),τ2(t)]‖Ces(∞))
p dt
]1/p

+
[∞�
t0

t−p‖f‖pCes(1) dt
]1/p

= I1 + I2 + I3 + I4,

where

I1 =
[ t0�

0

t−p
( τ1(t)�

0

Cf(s) ds+

1�

τ1(t)

C(fχ[0,τ1(t)])(s) ds
)p
dt
]1/p

≤
[ t0�

0

t−p
( τ1(t)�

0

Cf(s) ds
)p
dt
]1/p

+
[ t0�

0

t−p
( 1�

τ1(t)

C(fχ[0,τ1(t)])(s) ds
)p
dt
]1/p

= I11 + I12.

First of all, we estimate all five integrals from above. Since τ ′1(t) =
(ln(e/t)+1)/(ln(e/t))2 and so 1/ln(e/t) ≤ τ ′1(t) ≤ 2/ln(e/t) for all 0 < t ≤ 1,
we get

Ip11 ≤
t0�

0

t−p
(

ln
e

t

)p−1( τ1(t)�
0

Cf(s) ds
)p
dt

≤
t0�

0

τ1(t)
−p
( τ1(t)�

0

Cf(s) ds
)p
dτ1(t).

Putting u = τ1(t) and using the classical Hardy inequality, we obtain

I11 ≤
[ τ1(t0)�

0

(
1

u

u�

0

Cf(s) ds

)p
du

]1/p
≤ ‖C2f‖Lp[0,1]

≤ p′‖Cf‖Lp[0,1] = p′‖f‖Ces(p) ≤ p′‖f‖Ces(p,ln).

Next, by the estimate ln(1/τ1(t)) ≤ 2 ln(e/t), 0 < t ≤ 1, we get

Ip12 =

t0�

0

t−p
( 1�

τ1(t)

(
1

s

τ1(t)�

0

|f(u)| du
)
ds

)p
dt

=

t0�

0

t−p
( τ1(t)�

0

|f(u)| du
)p

lnp
1

τ1(t)
dt

≤ 2p
t0�

0

τ1(t)
−p
( τ1(t)�

0

|f(u)| du
)p
dt.
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The substitution t = τ−11 (s) and the inequalities

(6.2) (τ−11 )′(s) =
1

τ ′1(τ
−1
1 (s))

≤ ln
e

τ−11 (s)
≤ ln

e

s

show that

I12 ≤ 2

[ τ1(t0)�

0

(
1

s

s�

0

|f(u)| du
)p

ln
e

s
ds

]1/p
≤ 2

[ 1�

0

(Cf(s))p ln
e

s
ds

]1/p
= 2‖f‖Ces(p,ln).

From the equality Ces1[0, 1] = L1(ln(1/u)) and the inequalities ln(1/u) ≤
e(1− u) (1/e ≤ u ≤ 1) and τ2(t) = e−t ≥ 1− t (0 < t ≤ 1) it follows that

Ip2 =

t0�

0

t−p‖fχ[τ2(t),1]‖
p
Ces(1) dt =

t0�

0

t−p
( 1�

τ2(t)

|f(u)| ln 1

u
du

)p
dt

≤ ep
t0�

0

t−p
( 1�

τ2(t)

|f(u)|(1− u) du
)p
dt

≤ ep
t0�

0

t−p
( 1�

1−t
|f(u)|(1− u) du

)p
dt.

Arguing in the same way as in the second part of the proof of Theorem 4.1,
for g = fχ[e−1,1] and 0 < s ≤ 1 we have

Cg(s) =
1

s

s�

e−1

|f(u)| du ≥
s�

e−1

|f(u)| du,

whence (Cg)∗(s) ≥
	1−s
e−1 |f(u)| du and

t�

0

(Cg)∗(s) ds ≥
t�

0

( 1−s�

e−1

|f(u)| du
)
ds

=

1−t�

e−1

( t�
0

|f(u)| ds
)
du+

1�

1−t

( 1−u�

0

|f(u)| ds
)
du ≥

1�

1−t
|f(u)|(1− u) du.

Therefore, again by the Hardy inequality,

I2 ≤ e
[ t0�

0

t−p
( t�

0

(Cg)∗(s) ds
)p
dt
]1/p
≤ e‖C[(Cg)∗]‖Lp[0,1]

≤ ep′‖(Cg)∗‖Lp[0,1] = ep′‖Cg‖Lp[0,1] = ep′‖fχ[e−1,1]‖Ces(p)

≤ ep′‖f‖Ces(p) ≤ ep′‖f‖Ces(p,ln).
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For the third integral, we have

I3 =
[ t0�

0

‖fχ[τ1(t),τ2(t)]‖
p
Ces(∞) dt

]1/p
≤
[ t0�

0

sup
τ1(t)<s≤1/2

(
1

s

s�

0

|f(u)χ[τ1(t),τ2(t)](u)| du
)p

dt

]1/p
+

[ t0�
0

sup
1/2<s≤τ2(t)

(
1

s

s�

0

|f(u)χ[τ1(t),τ2(t)](u)| du
)p

dt

]1/p
=

[ t0�
0

sup
τ1(t)<s≤1/2

(
1

s

s�

τ1(t)

|f(u)| du
)p

dt

]1/p

+

[ t0�
0

sup
1/2<s≤τ2(t)

(
1

s

s�

τ1(t)

|f(u)| du
)p

dt

]1/p
= I31 + I32.

If τ1(t) < s ≤ 1/2, then 2s ≤ 1 and

2s�

τ1(t)

(
1

v

v�

0

|f(u)| du
)
dv

=

τ1(t)�

0

( 2s�

τ1(t)

1

v
dv

)
|f(u)| du+

2s�

τ1(t)

( 2s�

u

1

v
dv

)
|f(u)| du

=

τ1(t)�

0

|f(u)| du ln
2s

τ1(t)
+

2s�

τ1(t)

|f(u)| ln 2s

u
du

≥ 2s− τ1(t)
2s

2s�

τ1(t)

|f(u)| ln 2s

u
du ≥ ln 2

2s− τ1(t)
2s

s�

τ1(t)

|f(u)| du.

Thus,

sup
τ1(t)<s≤1/2

1

s

s�

τ1(t)

|f(u)| du ≤ 2

ln 2
sup

τ1(t)<s≤1/2

1

2s− τ1(t)

2s�

τ1(t)

Cf(v) dv

≤ 2

ln 2
MCf(τ1(t)),

where M is the maximal Hardy–Littlewood operator on [0, 1]. The above
estimates show that

I31 ≤
2

ln 2

( t0�
0

MCf(τ1(t))
p dt
)1/p

.
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Using once again the substitution t = τ−11 (s) and (6.2), we obtain

I31 ≤
2

ln 2

[ τ1(t0)�

0

[MCf(s)]p ln
e

s
ds

]1/p
≤ 2

ln 2
‖MCf‖Lp(ln(e/s)).

We will show in the next lemma that the maximal operator M is bounded
in Lp(ln(e/s))[0, 1] for 1 < p < ∞, which implies that for some constant
Bp ≥ 1, which depends only on p, we have

I31 ≤
2Bp
ln 2
‖Cf‖Lp(ln(e/s)) =

2Bp
ln 2
‖f‖Ces(p,ln).

The second part of I3 is estimated in the following way:

Ip32 =

t0�

0

sup
1/2<s≤τ2(t)

(
1

s

s�

τ1(t)

|f(u)| du
)p

dt ≤ 2p
t0�

0

( τ2(t)�
τ1(t)

|f(u)| du
)p
dt

≤ 2p
t0�

0

(
1

τ2(t)

τ2(t)�

0

|f(u)| du
)p

dt,

and, changing variable s = τ2(t) = e−t, we obtain

I32 ≤ 2

[ 1�

e−t0

(
1

s

s�

0

|f(u)| du
)pds

s

]1/p
≤ 2et0/p

( 1�

0

Cf(s)p ds
)1/p

≤ 2e‖f‖Ces(p) ≤ 2e‖f‖Ces(p,ln).

Since t0 > 1/2, for the last integral we have

I4 =
1

(p− 1)1/pt
1−1/p
0

‖f‖Ces(1) ≤
2

p− 1
‖f‖Ces(1) ≤

2

p− 1
‖f‖Ces(p,ln).

Finally, summing up the above estimates, we get ‖f‖Xp ≤ Cp‖f‖Ces(p,ln),
where Cp depends only on p. Thus, the imbedding Ces(p, ln) ↪→ Xp is
proved.

Now, we proceed with estimations from below. Firstly, by (5.4),

(6.3) ‖f‖pXp ≥ 3−p
t0�

0

t−p‖fχ[0,τ1(t)]‖
p
Ces(1) dt = 3−pIp1 ≥ 3−pIp12.

It is not hard to check that ln 1
τ1(t)

= ln ln(e/t)
t ≥ e−1 ln e

t for t ∈ (0, t0].

Therefore,

Ip12 =

t0�

0

t−p
( τ1(t)�

0

|f(u)| du
)p

lnp
1

τ1(t)
dt ≥ e−p

t0�

0

τ1(t)
−p
( τ1(t)�

0

|f(u)| du
)p
dt.

Since τ ′1(s) ≤ 2/ln(e/s), τ−11 (s) ≤ s ln(e/s) and ln ln(e/s) ≤ e−1 ln(e/s)
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(0 < s ≤ 1), we have

(τ−11 )′(s) =
1

τ ′1(τ
−1
1 (s))

≥ 1

2
ln

e

τ−11 (s)
≥ 1

2
ln

e

s ln(e/s)

=
1

2

(
ln
e

s
− ln ln

e

s

)
≥ 1

2

(
1− 1

e

)
ln
e

s
.

Hence, after the substitution t = τ−11 (s), we obtain

Ip12 ≥ e
−p 1

2

(
1− 1

e

) τ1(t0)�

0

(
1

s

s�

0

|f(u)| du
)p

ln
e

s
ds

≥ 1

4
e−p

τ1(t0)�

0

Cf(s)p ln
e

s
ds,

and so, taking into account (6.3), we get

‖f‖pXp ≥ 4−1(3e)−p
τ1(t0)�

0

Cf(s)p ln
e

s
ds.

On the other hand, by the definition of t0,
1�

τ1(t0)

Cf(s)p ln
e

s
ds ≤ ln

e

τ1(t0)

1�

τ1(t0)

Cf(s)p ds ≤ (1 + t0)‖f‖pCes(p)

≤ 2‖f‖pCes(p) ≤ 2‖f‖pXp ,
where the last inequality follows from (4.1). Hence,

‖f‖Xp ≥ 8−1/p(3e)−1
( 1�

0

Cf(s)p ln
e

s
ds
)1/p

≥ 1

72
‖f‖Ces(p,ln),

and the imbedding Xp ↪→ Ces(p, ln) is proved. Thus, the proof of Theorem
6.1 will be finished if we prove the lemma below.

Lemma 6.2. If 1 < p < ∞, then the maximal Hardy–Littlewood op-
erator M on [0, 1] is bounded in the weighted space Lp(ln(e/x))[0, 1] =
Lp([0, 1], ln(e/x)dx).

Proof. Muckenhoupt [Mu, Theorem 2] proved that the maximal operator
M on [0, 1] is bounded in Lp([0, 1], w(x)dx) if and only if the weight w(x)
satisfies the so-called Ap-condition on [0, 1], that is,

sup
(a,b)⊂[0,1]

(
1

b− a

b�

a

w(x) dx

)(
1

b− a

b�

a

w(x)−1/(p−1) dx

)p−1
<∞.

Therefore, it is enough to show that for all intervals (a, b) ⊂ [0, 1] we have

(6.4)
b�

a

ln
e

x
dx

( b�

a

(
ln
e

x

)−1/(p−1)
dx

)p−1
≤ 2(b− a)p.
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Note that for t ∈ (0, b),
b�

t

ln
e

x
dx = b ln

e

b
− t ln

e

t
+ b− t

and
b�

t

(
ln
e

x

)−α
dx = b

(
ln
e

b

)−α
− t
(

ln
e

t

)−α
− α

b�

t

(
ln
e

x

)−α−1
dx

≤ b
(

ln
e

b

)−α
− t
(

ln
e

t

)−α
,

where α > 0. Since the functions

ϕ1(t) =
b ln(e/b)− t ln(e/t) + b− t

b− t
and

ϕ2(t) =
b(ln(e/b))−α − t(ln(e/t))−α

b− t
are both decreasing on (0, b) for every 0< b≤ 1 it follows that max0<t<b ϕ1(t)
= ϕ1(0

+) = ln(e2/b) and max0<t<b ϕ2(t) = ϕ2(0
+) = ln−α(e/b). Therefore,

setting α = 1/(p− 1), for all 0 ≤ a < b ≤ 1 we have

1

(b− a)p

b�

a

ln
e

x
dx

[ b�
a

(
ln
e

x

)−1/(p−1)
dx

]p−1
≤ ln

e2

b

[(
ln

(
e

b

))−1/(p−1)]p−1
=

ln(e2/b)

ln(e/b)
≤ 2,

and (6.4) is proved.

7. Cesp[0, 1], 1 < p < ∞, is not an interpolation space between
Ces1[0, 1] and Ces∞[0, 1]. We start with two lemmas (it is instructive to
compare the first with (4.1)).

Lemma 7.1. If 1 < p <∞, then
(7.1) Cesp[0, 1] X↪→ (Ces1[0, 1],Ces∞[0, 1])1−1/p,∞.

Proof. Let us consider the family of characteristic functions fs = χ[0,s],
0 < s < 1. As we know (cf. Theorem 5.3),

K(t, fs; Ces1,Ces∞) ≥ 1
3‖fsχ[0,τ1(t)]‖Ces(1) for all t > 0.

Since
‖fsχ[0,τ1(t)]‖Ces(1) = ‖χ[0,min(s,τ1(t))]‖Ces(1) = ‖χ[0,min(s,τ1(t))]‖L1(ln(1/s))

=

min(s,τ1(t))�

0

ln
1

s
ds = min(s, τ1(t))

[
ln

1

min(s, τ1(t))
+ 1

]
,
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it follows that for all t such that τ1(t) ≤ s we have ‖fsχ[0,τ1(t)]‖Ces(1) ≥
τ1(t) ln(1/τ1(t)). Therefore, using the inequality τ−11 (s) ≤ s ln(e/s) once
again, for 0 < s < e−1 we obtain
‖fs‖(Ces1,Ces∞)1−1/p,∞ = sup

t>0
t1/p−1K(t, fs; Ces1,Ces∞)

≥ 1

3
sup

t>0, τ1(t)≤s
t1/p−1τ1(t) ln

1

τ1(t)

≥ 1

3
(τ−11 (s))1/p−1s ln

1

s
≥ 1

6

(
s ln

e

s

)1/p−1
s ln

1

s

≥ 1

6
s1/p

(
ln
e

s

)1/p

.

On the other hand,

‖fs‖Cesp =

[ s�
0

(
1

u

u�

0

χ[0,s](v) dv

)p
du+

1�

s

(
1

u

u�

0

χ[0,s](v) dv

)p
du

]1/p
=
(
s+ sp

1�

s

u−p du
)1/p

=

(
s+

sp

p− 1
(s1−p − 1)

)1/p

=

(
p

p− 1
s− 1

p− 1
sp
)1/p

≤ (p′)1/ps1/p.

Therefore, for 0 < s < e−1,
‖fs‖(Ces1,Ces∞)1−1/p,∞

‖fs‖Cesp

≥
1
6s

1/p(ln e
s)

1/p

(p′)1/p s1/p
≥ 1

6p′

(
ln
e

s

)1/p

,

whence

sup
0<s<1

‖fs‖(Ces1,Ces∞)1−1/p,∞

‖fs‖Cesp

=∞,

which shows that (7.1) holds.

Recall that the characteristic function ϕ(s, t) of an exact interpolation
functor F is defined by the equality F(sR, tR) = ϕ(s, t)R for all s, t > 0.
By the Aronszajn–Gagliardo theorem (see [BL, Theorem 2.5.1] or [BK, The-
orem 2.3.15]), for every Banach couple (X0, X1) and every Banach space
X ∈ Int(X0, X1) there is an exact interpolation functor F such that
F(X0, X1) = X.

Lemma 7.2. Let 1 < p < ∞. Suppose that Cesp[0, 1] ∈ Int(Ces1[0, 1],
Ces∞[0, 1]) and F is an exact interpolation functor such that
(7.2) F(Ces1[0, 1],Ces∞[0, 1]) = Cesp[0, 1].

Then the characteristic function ϕ(1, t) of F is equivalent to t1/p for 0 < t
≤ 1.
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Proof. To simplify notation set Vp := Cesp|[1/2,1] (1 ≤ p ≤ ∞), that is,
Vp is the subspace of Cesp[0, 1] which consists of all functions f such that
supp f ⊂ [1/2, 1]. Since (V1, V∞) is a complemented subcouple of (Ces1[0, 1],
Ces∞[0, 1]), by (7.2) and the equality in Remark 4.3, we obtain
(7.3) F(V1, V∞) = Vp = (V1, V∞)1−1/p,p.

Consider the sequence of functions gk(t) = χ[1−2−k,1−2−k−1](t), k = 1, 2, . . . ,
and the linear projection

Pf(t) =
∞∑
k=1

2k+1
1−2−k−1�

1−2−k
f(s) ds · gk(t), f ∈ V∞.

We have

‖Pf‖V∞ ≤ 2‖Pf‖L1|[1/2,1] ≤ 2

∞∑
k=1

2k+1
1−2−k−1�

1−2−k
|f(s)| ds · 2−k−1

= 2‖f‖L1|[1/2,1] ≤ 2‖f‖V∞ ,
and, since 1− u ≤ ln(1/u) ≤ 2(1− u) for 1/2 ≤ u ≤ 1,

‖Pf‖V1 ≤
∞∑
k=1

2k+1
1−2−k−1�

1−2−k
|f(s)| ds ·

1−2−k−1�

1−2−k
ln

1

t
dt

≤
∞∑
k=1

2k+2
1−2−k−1�

1−2−k
|f(s)| ds ·

1−2−k−1�

1−2−k
(1− t) dt

≤
∞∑
k=1

2k+2 · 2−2k−1 ·
1−2−k−1�

1−2−k
|f(s)| ds ≤ 4

∞∑
k=1

1−2−k−1�

1−2−k
|f(s)|(1− s) ds

≤ 4
∞∑
k=1

1−2−k−1�

1−2−k
|f(s)| ln 1

s
ds = 4‖f‖L1(ln(1/s)) = 4‖f‖V1 .

Therefore, P is a bounded linear projection from V∞ onto ImP|V∞ and
from V1 onto ImP|V1 . At the same time, it is easy to see that the sequence
{2k+1gk}∞k=1 is equivalent in V∞ (resp. in V1) to the standard basis in l1 (resp.
in l1(2−k)). Hence, (l1, l1(2

−k)) is a complemented subcouple of (V1, V∞) and
therefore, by (6.3) and by the Baouendi–Goulaouic result [BG, Theorem 1]
(see also [Tr, Theorem 1.17.1]),

F(l1, l1(2
−k)) = (l1, l1(2

−k))1−1/p,p.

In particular, from the last relation it follows that
F(R, 2−kR) = (R, 2−kR)1−1/p,p = 2−k/pR

uniformly in k ∈ N. Since the characteristic function of any exact inter-
polation functor is quasi-concave [BK, Proposition 2.3.10], this implies the
result.
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Theorem 7.3. For any 1 < p < ∞, Cesp[0, 1] is not an interpolation
space between Ces1[0, 1] and Ces∞[0, 1].

Proof. Assume that Cesp[0, 1] is an interpolation space between Ces1[0, 1]
and Ces∞[0, 1]. Then there is an exact interpolation functor F such that (7.2)
holds. By Lemma 7.2, the characteristic function ϕ(1, t) of F is equivalent
to t1/p for 0 < t ≤ 1. Therefore, for any Banach couple (X0, X1) we have
(7.4) F(X0, X1) ⊂ (X0, X1)ψ,∞,

where (X0, X1)ψ,∞ is the real interpolation space consisting of all x ∈ X0+X1

such that supt>0
ψ(t)
t K(t, x;X0, X1) < ∞ and ψ(t) = min(1, t1/p) [BK,

Proposition 3.8.6]. Since Ces∞[0, 1]
1
↪→ Ces1[0, 1], applying (7.4) to the couple

(Ces1[0, 1],Ces∞[0, 1]) we obtain
(7.5) F(Ces1[0, 1],Ces∞[0, 1]) ⊂ (Ces1[0, 1],Ces∞[0, 1])1−1/p,∞,

whence Cesp[0, 1] ⊂ (Ces1[0, 1],Ces∞[0, 1])1−1/p,∞. But in view of Lemma
7.1 the last imbedding does not hold, and the proof is complete.
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