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Abstract

We show that the multiplicator space .#(X) of an rearrangement invariant (r.i.) space X on
[0, 1] and the nice part No(X) of X, that is, the set of all ae X for which the subspaces generated
by sequences of dilations and translations of @ are uniformly complemented, coincide when the
space X is separable. In the general case, the nice part is larger than the multiplicator space.
Several examples of descriptions of .#(X) and Ny(X) for concrete X are presented.
© 2002 Elsevier Inc. All rights reserved.
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0. Introduction

For rearrangement invariant (r.i.) function space X on I = [0, 1], we will consider
the multiplicator space .#(X) and the nice part No(X) of the space X. The space
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A (X) is connected with the tensor product of two functions x(s)y(¢), s, €10, 1], and
No(X) is the space given by uniformly bounded sequence in X of projections into
Q. generated by the dilations and translations of the non-zero, decreasing function
aeX on dyadic intervals L&) in I,k=1,2,...,2", n=0,1,2,... . These
functions are given by

{a(2"t —k+1) if reflgL k),

anﬁk(t) =

0 elsewhere.

The spaces .#(X) and Ny(X) coincide when X is a separable space but in the non-
separable case the nice part can be larger than the multiplicator space. Such a
description is helpful in the proofs of properties of Nyp(X) and it motivates us to
investigate more the multiplicator space . (X). We will describe .#(X) for concrete
r.i. spaces X as Lorentz, Orlicz and Marcinkiewicz spaces. Suitable results on Ny(X),
especially when X is a Marcinkiewicz space M, are given.

The paper is organized as follows. In Section 1 we collect some necessary
definitions and notations.

Section 2 contains results on the multiplicator space .#(X) of a r.i. space X on
[0, 1]. At first we collect its properties. After that the multiplicator space .#(X) is
described for concrete spaces like Lorentz 4,, spaces, Orlicz Ly spaces and
Marcinkiewicz M, spaces. The main result here is Theorem 1 which gives necessary
and sufficient condition for the tensor product operator to be bounded between
Marcinkiewicz spaces M.

In Section 3, we consider a subspace No(X) of X generated by dilations and
translations in r.i. space on [0, 1] of a decreasing function from X. The main result of
the paper is Theorem 2 showing that the multiplicator space .#(X) is a subset of the
nice part No(X) of X and that they are equal when a space X is separable. In the
general case, the nice part is larger than the multiplicator space (cf. Example 2). Here
we apply results on multiplicators from Section 2 to the description of Ny(X).
Special attention is taken about Ny(X) when X is a Marcinkiewicz space M,, (see
Corollary 5 and Theorem 3). Stability properties of the class .47y with respect to the
complex and real interpolation methods are presented. There is also given, in
Theorem 7, a characterization of L,-spaces among the r.i. spaces on [0, 1], which is
saying that r.i. space X on [0, 1] coincides with L,[0, 1] for some 1 <p < oo if and only
if X and its associated space X’ belong to the class .A.

Finally, in Section 4 we show that, in general, you cannot compare the results on
the interval [0, 1] with the results on [0, co) and vice versa.

1. Definitions and notations

We first recall some basic definitions. A Banach function space X on I = [0, 1] is
said to be a rearrangement invariant (r.i.) space provided x*(r)<y*(¢) for every
te[0,1] and yeX imply xeX and ||x||y <||y||y, Where x* denotes the decreasing
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rearrangement of |x|. Always we have imbeddings L. [0, 1] X = L;[0,1]. By X° we
will denote the closure of L. [0,1] in X.

An r.i. space X with a norm || - ||, has the Fatou property if for any increasing
positive sequence (x,) in X with sup, ||x,||y <o we have that sup,x,eX and
|[sup, xullxy = sup, [[xn|[y-

We will assume that the r.i. space X is either separable or it has the Fatou
property. Then, as follows from the Calderén—Mityagin theorem [BS,KPS],
the space X is an interpolation space with respect to L; and L., i.e., if a linear
operator 7T is bounded in L; and L., then T is bounded in X and
||T||X—>X<Cmax(||T||Ll—>L,a ||T||L,L—>Lx) for some C>1.

If y, denotes the characteristic function of a measurable set 4 in I, then clearly
%41y depends only on m(A4). The function ¢ (¢) = ||y 4||y, where m(4) = ¢, tel,is
called the fundamental function of X.

For s>0, the dilation operator o, given by a,x(¢) = x(¢/s)y;(t/s),tel is well
defined in every r.i. space X and ||o|[y_, y <max(l,s). The classical Boyd indices of
X are defined by (cf. [BS,KPS,LT])

. Inflog|ly x
50 Ins ﬁX—slings Ins

In general, 0 <oy <y <1. Itis easy to see that ¢y (¢)<||o;||y_ y for any >0, where

Q)X([) = SUPp<s<1,0<st<1 (fof(—((it))

The associated space X’ to X is the space of all (classes of) measurable functions
x(¢) such that fol |x(£)y(¢)|dt < oo for every ye X endowed with the norm

1
wa=mm{l|wmwnmwnu<@.

For every r.i. space X the embedding X = X” is isometric. If an r.i. space X is
separable, then X’ = X*,

Let us recall some classical examples of r.i. spaces. Denote by & the set of
increasing concave functions ¢(¢) on [0,1] with ¢(0) = ¢(0) = 0. Each function
@ €% generates the Lorentz space A, endowed with the norm

1
Ill,, = [ x 0 do(0)
and the Marcinkiewicz space M, endowed with the norm

1 -
X = sup — [ Xx*(s)ds.
|| HMW 0<121 @(Z)/O ( )

If @ is a positive convex function on [0, co) with ¢(0) = 0, then the Orlicz space
Ly = Lp[0,1] (cf. [KR,MB89)) consists of all measurable functions x(z) on [0, 1] for
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which the functional ||x|[,, is finite, where

X1, :inf{z>o;1¢(§)<1} with Ip(x) = /1 &(|x(1)]) dt.
A 0

An Orlicz space Ly is separable if and only if the function @ satisfies the A4,-condition
(i.e. (2u) < CP(u) for every u=>uy and some constants uy>0 and C>0).

The Lorentz space L,,, 1<p<oo,1<q< o0, is the space generated by the
functionals (quasi-norms)

L an M .
Il = ([ 1P ) i g<ee

and

= sup '7x*(1).
0<t<1

1]

p, 0

For 1<p< oo and ¢ e% the Lorentz space A, , is the space generated by the norm

Il = ([ P aol0)

We will use the Calderon—Lozanovskii construction (see [C,M89]). Let (Xo, X;) be a
pair of r.i. spaces on [0, 1] and p e (p € % means that p(s, 1) = sp(t/s) for s> 0 with
an increasing, concave function p on [0, o0 ) such that p(0) = 0 and p(0,7) = 0). By
p(Xo, X1) we mean the space of all measurable functions x(¢) on [0, 1] for which

1/p

x(O)l<2p(lxo(0)], [xi (1)) a.e. on [0, 1]

for some x; € X; with ||x;[|y. <1, i = 0,1, and with the infimum of these / as the norm
|Ix||,- In the case of the power function py(s, ) = s' 1" with 0<0<1, py(Xo, X1)
is the Calderon construction X(}“’X f’ (see [C,LT,M89]). The particular case
XVP(L )77 = X for 1<p< oo is known as the p-convexification of X defined

as X?) = {x is measurable on I : |x[”e X} with the norm ||x||ye = ||\x|p||;(/p (see
[LT,M89)).

For other general properties of lattices of measurable functions and r.i. spaces we
refer to books [BS,KPS,LT].

2. Multiplicator space of an r.i. space
Let X = X(I) be an r.i. space on I =[0,1]. Then the corresponding r.i. space

X(I x1I)onIXxI is the space of measurable functions x(s,#) on I x I such that
x®(1)e X (I) with the norm ||x||y(s.c;y = [[x®|[ (s, where x® denotes the decreasing
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rearrangement of |x| with respect to the Lebesgue measure m, on I x I. For two
measurable functions x = x(s),y = y(¢) on I = [0, 1] we define the bilinear operator
of the tensor product ® by

(x®y)(s, 1) = x(s)y(t), s,tel.

Definition 1. The multiplicator space .4 (X) of an r.i. space X on I = [0, 1] is the set
of all measurable functions x = x(s) such that x®ye X(I x I) for arbitrary ye X
with the norm

X1y = sup{lx @[l xrxr : IV x <1} (1)

The multiplicator space .#(X) is an r.i. space on [0, 1] because for the product
measure we have

1
my({(s,t)el x I:|x(s)y(t)|>4A}) :/0 m({sel:|x(s)y(t)|>A}) dt.

Let us collect some properties of .#(X). First note that for any measurable set
A in I the functions x4, ® x and g,,(4)x are equimeasurable, i.e., their distributions are
equal

dy,@x(2) =ma({(s; )€ X I 14(s)|x(1)| > 23)
:m({lel: |O-m(A)x<t)| >l}) = dUm(A)X(j')

for all 7>0. In particular, [[x]| .y, > |1x®70 /0y (Dlly = [Ixl[x/0x(1) gives the
imbedding

AM(X)e X and ||x|ly <@x (DXl 4x) for xe.z(X). (2)

Moreover, .#(X) = X if and only if the operator ® : X x X — X (I x I) is bounded.
In particular, .#(L,,) =Ly, for 1<p<oco and 1<qg<p since from the O’Neil
theorem (see [O, Theorem 7.4]) the tensor product ® : L, , x Ly, — L, ,(I x I) is
bounded.

From the equality (), ®X[0.u])® () = Xjo.u)(t) We obtain that if X =.#(X), then
fundamental function ¢, is submultiplicative on [0, 1], i.e., there exists a constant
¢>0 such that @y (st) <coy(s)py(¢) for all s,1€]0, 1].

Some other properties of the multiplicator space .#(X) (cf. [A97] for the
proofs):

@ @.ux)() =llodlyoxs ol wx)swxy =llodlxox  for  0<z<1  and
-1

||O-1/ZHX—>X<HO-I

and B x) <Py

wx)».ax)Sllodly Ly for £>1. In particular, o (x) = ox
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(b) We have imbeddings Ay c.#(X)cL,, where Y(t) = ||os||y_y, 0<t<1,
p=1/axy and the constants of imbeddings are independent of X. In
particular,
(b)) M(X)= L if and only if ay = 0.
(b2) If the operator ® : X x X —» X (I x I) is bounded, then X< L;/,,.

(c) If X is an interpolation space between L, and L, ., for some 1<p< oo, then
M(X) = L,. In particular, .#(L,,) = L, for l<p< oo and p<g< 0.

Note that the operation .#(X) is not monotone, i.e., if X, ¥ are r.i. spaces on [0, 1]
such that X < Y then, in general, it is not true that .#(X) = .#(Y). Namely, consider
the r.i. space X on [0, 1] constructed by Shimogaki [S]. This space has Boyd lower
index ay =0 with ¢, (¢) = ¢'/?> and L= X. On the other hand, .#(L,) = L, but
M(X) = L, by (by).

Proposition 1. We have M (M (X)) = M (X) with equal norms.

Proof. It is enough to show the imbedding .#(X)c . # (4 (X)). Let xe .#(X) with
the norm |[x{| 4 y)<C. Then

x@ullyry <Cllullyq) VueX.

In particular, for u = (y®z)® with fixed ye.#(X) and any ze X with 1zl <1 we
have

K@ 1®2)® 1 <CN @) llyry = CUY @=Ly
Since
m({(s. 1) el x I:|x(s) (y®2)® (1) > 2})
=/01m<{ze1: x(5)(®2)® ()] > A1) ds

1
:/0 ma({(t,0) €1 x I : |x(s)p()=()| > 1}) ds
=ms({(s,t,0) el x I x I:|x(s)y(t)z(a)|>1})

1
:/0 my({(s, 1) €l x I:|x(s)y(t)z(a)]| >2}) do

= | mtrer: 160 =(0]> 1)

=m({(t.o0) el x I (x®)® (1)z(2)| > 1})
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for any A>0 it follows that
® _ ®
x®(r®:z) HX(1><[) =|[|(x®y) ®Z||X(Ix1)'
Taking the supremum over all ze X with ||z[[y,) <1 we obtain

1x@) Ly =sup{ll(x®3)® @zl x(rury : l1zllxy <1}
:Sup{Hx@(y@Z)@HX(IxI) : ||ZHX(1)<1}

< Csup{|ly®z|lxrsry < zllxy <13 = ClYlLux)-
This means that xe #(.#(X)) and its norm is <C. O

Note that if X = .#(Y) for some r.i. space Y, then X = .#(X). Indeed, #(X) =
MAMY)=M(Y)=X.

For concrete r.i. spaces, like Lorentz, Orlicz and Marcinkiewicz, we have the
following results about multiplicator space. From the above discussion we have that
if l<p<oo and 1<¢< o0, then

=/%(Lp,q) = Lp,min(ﬁﬂ)' (3)

Proposition 2 (cf. Astashkin [A97] for p =1). Let ¢ €% and 1 <p< co. Then
() Apo =l (App)=Apg.
(i) A(Ap,) = Ay if and only if ¢ is submultiplicative on [0, 1].

(i) 1f ¢ (1) = lim, o+ 220, then ./(4y0) = Ap 5.

The proof follows from [A97] (cf. also [Mi76,Mi78]), property (b) and the fact that
M (X)) = (X)), where X?) is the p-convexification of X .

Proposition 3. For the Orlicz space Ly = Lg[0, 1] we have the following:
(i) If ¢ 4y, then M (Lyp) = Lo, .
() 11 ®ed,, then L= Ml(Ly) < Ly, where ®(u) = sup,s | d;(%)’ u=1.
(il) If @€y, then M (Leo) = Lo if and only if @ is a submultiplicative function for
large u, i.e., ®(uv) < CP(u)P(v) for some positive C,uy and all u, v = uy.

Proof. (i) It follows from property (b;) and the fact that Boyd index oy, = 0.
(ii) The imbedding Ls<.#(Lg) follows from Ando theorem [A, Theorem 6] on
boundedness of tensor product between Orlicz spaces. In fact, if x(s)eLs and
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y(t)€ Ly, then I5(x/A) + Is(y/1) < oo for some A>1, and so
D(272|x(s) (1)) < [1+ B(|x(s)|/D][@(1) + D(ly(1)|/2)],
from which
Ip(272x @) <[1+ 13(x/D)[@(1) + Lo (v/2)] < o0

that is, x®yeLg(I x I). Therefore, Ly =.#(Lg). The second imbedding follows
from (2).

(ii1) It follows directly from (ii) and it was also proved in [A,A82,Mi81,0]. O

The situation is different in the case of Marcinkiewicz spaces.

Theorem 1. Let @ €%. The following statements are equivalent:

() M(M,) =M,.

(ii) The tensor product @ : M, x M,— M, (I x I) is bounded.
(i) ¢'® ¢’ eM,.
(iv) There exists a constant C>0 such that the inequality

5= o (o(3) 0[5 <o} 5 )

is valid for any u;€(0,1], i =1,2,...,n and every neN.

—
~
=

Proof. The equivalence (i) <> (ii) is true for any r.i. space, in particular also for the
Marcinkiewicz space M,,.

Implication (ii) = (iii) follows from the fact that ¢'e M.

(iii) = (iv): Given an integer n and a sequence uy,us, ..., u, €[0, 1], consider the
set

A= U<._1’> (0,u:)<[0,1] x [0, 1].

Then

/A (¢! @) dimy< Cop(ma(4)),

where m; is the Lebesque measure on [0, 1] x [0, 1]. Since

[ e aa=3 ow(o(;) - (7))
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and

25

S |—

i=1

it follows that estimate (4) holds.
(iv) = (ii): Assume that (4) is valid. It is sufficient to prove that the inequality

x®ylly, <C

holds for x,ye M,, ||x|

m, = |Vlly, = and x = x*, y = y*. Given x = x*e M,, with
|IxI[y, = 1 and &> 0 there exists a strictly decreasing function z = z*e M,, such that
|lzIl3, <1+ ¢ and z=x. Therefore, we can assume in addition that x and y are
strictly decreasing and continuous on (0, 1]. We must prove the inequality

/A x(0)y(s) dt ds< Cmy(A;)
for any set
A, ={(t,5)€]0,1] x [0,1] : x(t)y(s) =1}, 1>0.

Given 1>0, there exists a continuous decreasing function g(¢) = g.(z) such that
Ac =A{(1,5) 1 g(s) =1}

Put
" i i—1i
el (54
and
" i—1 i—1
o.=Uloa(5)] < (53]
Then

P,cA.<Q,.

The continuity of the function g implies that

lim u(Q\Py) = lim ) %(g <l; 1) - g(%))

i=1

. i—1 i
< lim max (g —gl-))=0.
n—->owo 1<ign n n
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The function x(#)y(s) belongs to Li(m;). Hence

nlin;l) o, x(O)y(s)dtds =0
and
/A () dras = fim [ x(0y(0)dr s
- lim Z: /0 K (i) dt /1 V(s) ds
<t 3 o(o()) ([ s0- [ o)
in 3-(o(03) o (o(5))) [0
Since
o(oz) -2 (s(5)) 0
and

it follows that
/AI x(t)y(s) drds< lim ; (qo (g (i)) - <g (H,; 1)))@ (2)
~tin 2 o(oG)) (oG) -+ (57)
Denoting ¢ (%) — u; and applying (4) we get

/AI xX(t)y(s) dr ds< lim ,X:: §0(“i)<§0 (;) - @(i; 1>)

1 n
< C lim (p(n > u,.> = C lim @(my(P,)) = Cmy(A,),
i=1

n— o0 n— oo

and the proof is complete. [J
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Observe that we have even proved that the tensor multiplicator norm in the space
M, is equal

sup o o) (o) — o(51)
O<u;<l,i=12,...n.neN (P(% 2?21 u;)

The concavity of ¢ implies that the supremum is attained on the set of decreasing
sequences 1 >u; >uy >+ >u, >0.

Remark 1. Theorem 1 can be formulated in a more general form. Let ¢, ¢,, p;€%.
Then the tensor product ® : M, x M, — M, (I x I)is bounded if and only if there
exists a constant C >0 such that the inequality

iz”; @1 (u;) (<Pz (i) -0, (in 1)) < Cojs (% Ii; u,~> (5)

is true for every integer n and every u;€[0,1],i = 1,2, ...,n.
Condition (5) can be also written in the integral form

/ 1 (1)) g1 di < oy (/ () )

for all functions u(¢) on [0, 1] such that 0<u(f)<1. The last integral condition is
satisfied when for example

1
s !
- Hdr<C
| oi()ernar<cons
for all s in [0, 1]. A similar assumption appeared in papers [Mi76,Mi78].
We will find a condition on ¢ €% under which estimate (4) will be true.

Lemma 1. Let ¢pe% and ¢(t)<Kqo(£*) for some positive number K and for every
t€[0,1]. Then

S o) o) s mn(( 1)

for every integer n and every u;€[0,1],i=1,2,...,n.

Proof. The concavity of ¢ implies that we can suppose the monotonicity
1Zu1>2uy>=--- 2u, =0. Denote

1
s = Z E Ui.
i=1
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There exists a natural number m, 1 <m<n, such that u,, <./s and u; > /s for i<m.
Since
n m

ns = Z U= Z u;=m/s
=1

i=1

it yields that m<n./s and

i: o (u;) <<p<£) @(i:l 1)) < so(l)lzm;((p(%) @(i:l 1)) = qo(l)qo(%)

If i>m, then ¢(u;) <¢(s) and so

iil ‘P(“i)<(ﬂ <%) - §0<i; 1>> <o(s) i’z:;rl <<P <£) - <P<l; 1)) <op(D)o(s).

Hence

n

> o) (o(2) - o(51)) <+ Dothoe) = k + 1><p<1><p<% > ) 0

i=1 i=1

Immediately from Theorem 1 and Lemma 1 we have the following assertion.

Corollary 1. Let €% and ¢(t) <Ko (1*) for some positive number K and for every
t€[0,1]. Then

M(My) = M,

Let us note that the power function ¢(¢r) =¢* with 0<a<1 does not satisfy
inequality (4) but there are functions ¢ €% which satisfy the estimate ¢(¢) <Ko(#?)
for some positive number K and for every ¢€ [0, 1]. This estimate gives, of course, the
supermultiplicativity of ¢ on [0, 1].

Example 1. For each 4> 0 there exists ¢ = a(4)€(0, 1) such that the function

0 if 1=0,
@, () =< In*1 if 0<r<a(’),
linear if tefa(l), 1],

belongs to %. Clearly, ¢,(t)<2"¢,(¢*) for every te[0,a(2)]. Consequently, ¢,
satisfies the conditions of Lemma 1.
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Remark 2. There exists a function ¢ €% such that the tensor product acts from
M, x M, into M, and ¢ does not satisfy the condition ¢(r)<Ke(s*) for some
positive number K and for every #€]0, 1]. It is enough to take ¢(f) = ¢* ln*ﬁ‘—; for
O<a<l1, p>1and a>e*/(1-2),

We finish this part with the imbeddings of Calderén—Lozanovskii construction on
multiplicator spaces.

Proposition 4. Ler Xy, X| be r.i. spaces on [0,1]. Then

O u(X0) " u (X)) <ot (XX,
(i) If pe is a supermultiplicative function on [0, ), ie., there exists a constant
¢>0 such that p(st)=cp(s)p(t) for all s,t€[0, ), then

p(A (Xo), M (Xy)) =4 (p(Xo, X))

Proof. (i) Observe first that Y<—.#(X) if and only if the operator ® : Y x
X — X (I x 1) is bounded.

Since ® : .4 (X;) x X;— X;(I x I), i =0,1, is bounded with the norm <1 and the
Calder6n construction is an interpolation method for positive bilinear operators
(cf. [C)]) it follows that

Q@ .l (Xo)' Tt (X1)" x X)XV Xo(I x 1)V x (1 x 1) = X} 7OX0(I % 1)
is bounded with the norm < 1. Therefore, . (Xo)'*.2/(x1)" = (X}~ Xx7) .
(i1) When p is a supermultiplicative function the Calderén—Lozanovskii construc-

tion is an interpolation method for positive bilinear operators (see [As97,M]
Theorem 2]) and the proof of the imbedding is similar as in (i). O

Note that the inclusions in Proposition 4 can be strict. For the spaces Xy = L,
X, =L, with 1<g<p< oo we have

%(XO)PO%(XI)O = %(Lp,q)170%(l‘p7w)() = L[];,;HL;? = Lp,rv

4

where 1/r=(1—-0)/q+ 0/p and
%(XO]_(.)XIQ) = %(L[]);ZGLﬁ:D) = %(Lp.,s) = Lp,min(p,x)a

where 1/s=(1—-10)/q. The strict imbedding L,,SL,min(ps gives then the
corresponding example.

3. Subspaces generated by dilations and translations in r.i. spaces

Given an r.i. space X on I = [0, 1] let us denote by

Vo(X) ={aeX :a#0, a=d*}.
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For a fixed function ae Vy(X) and dyadic intervals 4, = [%, Zﬁ)7 k=1,2,...,2"
n=20,1,2, ..., let us consider the dilations and translations of a function a
a2t —k+1) if tedyp,
an k(1) =
0 elsewhere.

Then supp a,x < 4, and
m({t€dni: |ani(t)|>2}) =27"m({tel : |a(t)|>A}) for all 1>0.

For aeVy(X) and n=0,1,2,... we denote by Q,, the linear span [{an‘k}i”:l]
generated by functions a,; in X.

Definition 2. For an r.i. function space X on [0, 1] the nice part No(X) of X is defined
by

No(X) = {aeVy(X): there exists a sequence of projections {P,},”, on X such that

ImP, = Qa,n and SUpP;—o,1 ||Pn||XaX< 0o }

yees

We say that X is a nice space (or shortly X € A7) if a* belongs to Ny(X) for every a
from X.

We are using here similar notions as in the paper [HS99]. They were consid-
ering r.i. space X = X|[0,00) on [0,00), the corresponding set V(X)=
{aeX :a#0,suppac]0,1),a = a*} and the set N(X) of all ae V(X) such that Q,
is a complemented subspace of X = X0, c0), where Q, is the linear closed span
generated by the sequence (ax )., with

ar(t)y=a(t—k+1) for telk —1,k) and a;(¢) = 0 elsewhere.

If N(X) = X, then they write that X e A" (or say that X is a nice space).
We are putting “‘sub-zero” notions, that is, Vy(X) and Ny(X), so that we have
difference between of our case of r.i. spaces on [0, 1] and their case [0, c0).

Theorem 2. Let X be an r.i. space on [0, 1] and let X° denote the closure of L, [0, 1] in
X. Then we have embeddings

(i) #(X)<=No(X),
(i) No(XO)c.#(X).

Before the proof of this theorem we will need some auxiliary results.
Let ae Vo(X) and f'e Vo(X’) be such that

/ Falt) di=1. (6)
0
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Define the sequence of natural projections (averaging operators)

Pux(t) = Prayx(0) /fnk ©)ds)ank (D), n=0,1,2,.. . ()
rl/(

Lemma 2. The sequence of norms {||Pnas||x_ x }neo IS @ non-decreasing sequence.

Proof. For x = x(¢) with supp xc 4, we define

Ruix(t) = (2;"2_,11), Sn,kx(z)x<zz§>.

Then
supp R i X< Appi12k—1, SUPP SpiX < Apg1 ok
and
m({t€ Appr okt : [Rugx(1)| > 1) = m({t€ Ay an : [Supx (1) > 23)
—Lm({tel: |x(0)] > 1})

for all A>0. Therefore,

/ R, xx(1) dt:/ Suxx(1) dz:%/ x(1) dt.
Apt12k-1 Ant12k Ank

Moreover,
Rouic(fnsexa,, ) () = fart k1 Rugc (X4, ) (),
Suge Fn kX4, ) () = Fui1 28 (X4, ) (2)

and
m({t€dnirj: anirj(0)>2}) =im({ted,;: an;>1})

forall A>0and any i =1,2,...,2", j=1,2,...,2"1
Denote P, = P,,s. The last equality and the equality of integrals give that the
function P,x(¢) is equimeasurable with the function

on

Ppiy(t) = Z (2'1+1/A Sni126-1(8) Ruse (X704, ) (5) ds> Ay pk—1(1)
n+1,2k—1

k=1

+ Z <2 | hna @S, )6 >ds>an+lzk<>

/x+l 2k
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where
2”
Y(0) =D Rk (5, )(0) + S (x2,, ) (0]
=1
From the above we can see that y is equimeasurable with x and so

1Puxlly = [[Pusiyllx I Pusall Iy = [[Pusr[] 1IX[]

that is, ||Py||<||Pur1]|. O

Lemma 3. Let X be a separable r.i. space. If ae Ny(X), then there exists a function
S ENo(X') such that (6) is fulfilled and for the sequence of projections {P, .z} defined
by (7) we have

sup ||Pn,a,f||X—>X<OO'
n=0,1,2,...

Proof. Since X is a separable space and ae Ny(X) it follows that there are functions
gnk€X'(k=1,2,...,2",n=0,1,2,...) such that

1 1
/ gnic(S)ank(s)ds =1 and / Gni(8)an;(s) ds =0, j#k,
0 0

and for the projections
o 1
T,x(1) = Z (/ In i (5)x(s) ds) ani (1)
k=1 0

N Tully o y < oo. Let {r;}:_, be the first » Rademacher functions on

the segment [0, 1]. Since X is an r.i. space it follows that for every ue [0, 1] the norms
of the operators

2V7 2/1
Thux(t) = Z ri(u) Z ri(u) (/ Gnic(8)x(s) ds) an (1)
k=1 i=1 Ani
are the same as the norms of 7. Let us consider the operators
1 2"
S,x(1) = / T (t) du =" / Gni (8)x(5) ds | a1 ().
0 k=1 An g
Then

ISull< sup || Tull = ITH]| < C.
uel0,1]
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Therefore, we can assume that
Supp gnk A, and g, is decreasing on 4.

Moreover, we shift supports of the functions g,x(k=1,2,...,2") to the segment
[0,27"] and consider the averages

2”
Gy(t) =2"" Z T_(k—1)2-Gnik (1),
=

where 1,9(1) = g(t — s).
Then the shifts 4,z () = 27"7(4_1)2» G, () generate operators

277
U =Y (2" /A e (5)x(s) ds> ani (1)
k=1 nk

and we can show that ||U,||,_ y <C.
Since k(1) = (Fn), (1), where F,(1) = 27"G,(27"t) for 0<t<1, it follows that

I 2
/ Fy(t)alt) dt = / Go(an (1) dt
0 0

2“ 2-n

=27" Z/ T*(k*1)2’“gn.k(1)an71(l) dt
k=10
2”

=27 Z / Gk (D)an () dt = 1.
k=1 Ak

Let us show that there exists a subsequence {F, ()} of F,(f) which converges at
every te (0, 1].
Lemma 2 gives that the norm of the one-dimensional operator

1
L,x(t) = (/ F,(s)x(s) ds) a(t)
0
does not exceed ||U,||y_, y, and consequently also not C. Therefore,
C
Flly <5 8
H n||X ||a||)( ( )

By the definition of F,, we have F(r) = F,(¢) and

- /0 ' Ey(s)als) ds>Fy(1) /O als) ds
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or

—1

t
F,(n) < (/ a(s) ds) for all re(0,1].
0
Applying Helly selection theorem (see [IN]) we can choose subsequences

{E1}D{Fn$1}D{Fn_’2}D D{Fn.’m}:)

that converge on the intervals

1 1 1
=10, 151, |— 1, ...
{2’ }7 {37 ]’ ,{mJ’»l, ]7 )

respectively. Then the diagonal sequence f,(¢) = F,,(f) converges at every t€ (0, 1] to
a function f'(z) = f*(¢). Using estimate (8) we obtain

C
/fn 0 di<fillellazo L < llazos

Since X is a separable r.i. space it follows that ||ay g ||y —0 as s—07. Therefore, the
equalities f* =f, and a* = a imply that {f,a} is an equi-integrable sequence of
functions on [0, 1]. Hence (see [E, Theorem 1.21], or [HM, Theorem 6, Chapter V])

/lf(t)a(t) dt = lim 1fn(z)a(t) dt=1.
0 =90 Jo

Let meN be fixed. By the estimate ||U,||y_, y <C, the definition of f,, and Lemma 2

we have
2/77
Z (2"" / (f”)m.k([)x([) dt) Am ke
k=1 Ak

for all nzm and all xeX.

Suppose that x(?) is a non-negative and non-increasing function on every interval
Amgk=1,2,...,2™. As above, from (8) it follows that {(f,),, (X%, }mei 18 an equi-
integrable sequence on 4,, . Hence

< Cllxlly ©)
X

lim (fﬂ)m k dl / (f m, k
mk mk

n— oo A

and for all such functions x(¢) estimate (9) implies

2m
<2m / ﬁn k dl) Am
A

<[] x-
X
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Since X is an r.i. space we can prove that the above estimate holds for all xe X. The
proof is complete. [

Proof of Theorem 2. (i) At first by the result in [A97, Theorem 1.14], we have that
ae /(X) if and only if there exists a constant C>0 such that

on
§ C}’l,kXA,,‘k
k=1

<C
X

(10)

2}1
§ Cn kQn k
k=1

X

forall ¢,,eRand k=1,2,...,2", n=0,1,2, ... .
Suppose that ae Vo(X)n.#(X), that is, estimate (10) holds. If e(¢) = 1, then the
operators

271
P,ox(1) :Z(zn/A x(s) ds)xA”_k(t) n=1,2,...) (11)
1 nk

k=
are bounded projections in every r.i. space X and ||Py.||y_, y <1 (see [KPS, Theorem

4.3)).
Define operators Ry, : Qe = Im P, — O, as follows:

2" 2"
Rn,u E Cnk X, | = E Cnkcln -
k=1 k=1

By the assumption ae.#Z(X) or equivalently by estimate (10) we have
[Ruallg,, - x < C. Therefore, for the operators

1
Pn,a =T Rn,aPn,e~
llall L,

We have
-1
||P’7-,“||X—>X<C|‘a”Ll7 n:1,2,... .

It is easy to check that P, , are projections and Im P, , = Q,,. Therefore, ae Ny(X).
(i) If X = L., then .#(X) = No(X°) = L.
If X#L,, then X° is a separable r.i. space. In this case, by Lemma 3, for any
ae Ny(X?) there exists a function f'e V5((X°)") such that (6) is fulfilled and for the
projections P, ., defined as in (7) we have

C= sup |[[Prasllyopp<co. O
2,...

n=0,1,2,
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If x is a function of the form x(s) = Zi:] Cnk¥a,,(s), then

o
Poasx = |If1lL, D okt
k=1

Therefore,
2]1

§ Cn kQn k
k=1

and we obtain (10) for X°.

If X = X, that is, X is a separable r.i. space, then the theorem is proved. If X is a
non-separable r.i. space, then X is an isometric subspace of X = X”. By using the
Fatou property, we can extend the above inequality to the whole space X and obtain
(10), which gives that ae .#(X). The proof of Theorem 2 is complete. [

on

E : Cnfe Xl Ay i
k=1

<Cllfllz,

)

X0 X0

Immediately from Theorem 2 and the properties of the multiplicator space we
obtain the following corollaries.

Corollary 2. If' X is a separable r.i. space, then M (X) = Ny(X).

Corollary 3. If 1<p<ow, 1<q<w0, then No(L,,) =L,, for 1<q<p and
No(Lyy) = No(Lgyw) =L, for p<g< .

Corollary 4. Let Xy and X, be separable r.i. spaces. If Xy, X1€Ny, then
XX e .

Corollaries 3 and 4 show that the class of nice spaces ./ is stable with respect to
the complex method of interpolation but it is not stable with respect to the real
interpolation method.

Corollary 5. If €% and ¢(t) <K@(t?) for some positive number K and for every
t€0,1], then No(M,) = M.

By @ €%y we mean ¢ €% such that lim,_, o+ ﬁ =0.

Theorem 3. Let @ €%).

@ 1f
hlzrif)?p %2;)):2 (12)
then

Lo, =No(My) =Ly, U(M,\M)). (13)
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(i) 1f

then
No(M,) = Lo, U (M,\My).

Proof. (i) By Theorem 2 the left part of (13) is valid for any r.i. space. Assumption
(12) implies
(1)

1
limsup —==—-, 0O<s<l
t—0t (/)(ZS) S

and so

. o(1)
>s lim su =
||O_KY||M€0—>M¢ ,‘)Oer (/)(SZ)

for every 0 <s< 1. This means that oy, = 0.
Let xe No(M,) mMg. By using Corollary 2 and property (b;) we get

xeNo(M)) = M(M) = L.

This proves the right part of (13).
(i) We must only prove the inclusion

M,\M)) = No(M,).

Let ae M,\My, [lally, = 1 and y(1) = [y a*(s) ds. It is well known that

1 t
dist(a, M°) = lim sup —— / a*(s) ds.
(a, M) P o), (5)

t—0*

Therefore,

(1)

y = limsup —=>0

t—0*F (P(Z)
and there exists a sequence {#,,} tending to 0 such that

fim Y(m) _

m— oo (p(lm)
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Since

lim =1
m— oo 2"(p(%)

for every natural n, it follows that
Y(tm) . @ (tm)

Y(tm) .
= lim sup lim _
2”(/)(3_2) m— o0 (p(lm) m— oo 2n(/)(g_1’;)

[|@n k[l g, = lim sup
m-— o0

for every 1<k<2", n=1,2,... .

Consider the subspaces H,  =closed span [{a,};.,]. These subspaces are closed
subspaces of M, and a,x¢ H, . Thus, by the Hahn—Banach theorem, there are
bux€(M,)* such that buklp,, =0, bux(ani) =1 and [[bul| :msl Then the
operators

on

P,x = Z by g (X)an
k=1

are projections from M, onto Q,,. Moreover, P, are uniformly bounded since

2}’1
57 1l g,
k=1

Therefore, ae No(M,,). The proof is complete. [

1
=~ |IxIl,.

M, l

1
1Pl <

Example 2. There exists a non-separable r.i. space X such that .#(X)#Ny(X).

Take X = M, with ¢(z) = tIn¢ on (0, 1]. Since oy, = 0 it follows that .#(M,,) =
L. The function a(f) = In¢ for 1€ (0, 1] as unbounded is not in .#(X) but it is in
M(p\Mg and by Theorem 3(ii) it shows that ae Ny(X). Therefore, No(X)#.#(X).

Corollary 6. If pe%y and lim sup%zf)):L then ¢'€No(M,) and consequently
t—0*

No(M,,) is neither a linear space nor a lattice.
Problem 1. For 1 <p< oo describe No(Ly o ).
Note that .# (L, .) = L, and No(L) ) = #(L) ) = L,.

Theorem 4. Let X be an r.i. space X on [0, 1]. The following conditions are equivalent:

() ® : X x X>X(I xI) is bounded.
(i) #(X)=X.
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(111) XGJVQ, ie., N()(X) =X.
(iv) There exists a constant C>0 such that

on on

Z Cnkln ko Z Cn,kXAnYA.
k=1 k=1

for all ae X and all ¢, eR, k=1,2,...,2", n=0,1,2, ... .

< Cllally
X

X

269

Proof. Implication (i) = (ii) follows by definition (ii) = (iii) from Theorem 2 and
(iv) = (i) by the result in [A97, Theorem 1.14]. Therefore, it only remains to prove

that (ii1) implies (iv).

First, assume additionally that X is separable. If X € /", then, similarly as in the
proof of Theorem 2, for any aeX there exist C;>0 and feVy(X’) such that

folf(t)a(t) dt =1 and

on
§ Cnkln k
k=1

-
<Gllfll,
X

on
: : cnkaAn.k
k=1

X

Let us introduce a new norm on X defined by

"

X

2’[
D k=1 Cnklnk

217
Zkzl Cnke XA,

|lall, = sup

cereR, k=1,2,...,2", n=0,1,2, ...

Then ||a||y <||al|, and ||a||, < o for all ae X. By the closed graph theorem we obtain

that ||a||, < C||a||y and (14) is proved.

Now, let X be a non-separable r.i. space. In the case X = L., both conditions (iii)
and (iv) are fulfilled. Therefore, consider the case X # L, . Then X is a separable r.i.
space. The canonical isometric imbedding X°c X = X" gives that X%e /7. Let

ae Vy(X). The separability of X implies

21‘1 2’1
Z enila™], k]| < Clla"™] o Z CnJeddyy
k=1 X0 k=1 X0
2}1
= C||a(’”)||X0 Z Cnge XA || »
k=1 X

where a") () = min(a(t),m), m=1,2, ... .
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Since X = X" has the Fatou property and [a"], , = [an,k](m) it follows that

on

§ Cnkcln k

k=1

on (m)
= lim E CnkAn.k
m— oo ’
k=1

on

§ Cnk XA,

k=1

X X

< Cllallx

X

and Theorem 4 is proved. [
Theorem 5. Let X be an r.i. space X on [0,1]. Then X € Ny if and only if X" e V.

Proof. The proof is similar to that of Theorem 4. The essential part is the proof of
the estimate (14). We leave the details to the reader.

Theorem 6. Let X be a separable r.i. space X on [0, 1]. Then the following conditions
are equivalent:

(i) ae Ny(X).
(ii) The operators Ry 4 : Q¢n— Quyn given by

2" 2"
Rn,a < § Cn,/cXA”_k> = E Cnkcln k
k=1 k=1

are uniformly bounded.
(iii) The operators R, , and their inverses are uniformly bounded.

Proof. (i) = (iii): Let ae No(X). Then ||R,4||<C foralln=0,1,2, ..., by Theorem
2. Next, since a#0 there exists npeN and & =¢(ng)>0 such that a(¢)>u(t) =
8;{(0’27%)(1). Therefore, for all ¢, €R,

on on on
E Cnjlnk|| = g CnjUni|| =€ E Cnhe X ((k—1)2-", (k—1420)2-7)
k=1 X k=1 X k=1 X
on on
-1
=slloan [ Y curta, ||| Zellomlxhx|| D cnnta|| -
k=1 be k=1 X

which shows that the inverses (R,,,a)_1 are uniformly bounded.
(ii) = (i): If the operators R, , are uniformly bounded, then we have estimate (14)
or equivalently ae #(X) and Theorem 2(i) gives that ae No(X). O

Now, we present a characterization of L, spaces among all r.i. spaces on
[0, 1].
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Theorem 7. Let X be an r.i. space X on [0, 1]. The following conditions are equivalent:

(l) XeNy and X’GJV().
(i1) There exists a constant C >0 such that
271

2" 2"
E Cnhe X A § Cn,kln k § Cn‘kXAnYA.
k=1 k=1 k=1

SJor all aeVy(X) with ||a|ly =1 and all ¢, eR with k=1,2,...,2" n=
0,1,2,... .

(iii) For any pair of functions (a,f) such that ae Vo(X), f € Vo(X') satisfying (6) the
operators P, .y defined in (7) are uniformly bounded in X .

(iv) The operator of the tensor product ® is bounded from X x X into X (I x I) and
Srom X' x X" into X'(I x I).

(v) There exists a pe|l, o] such that X = L,.

c! <C

X

(15)

<
X X

Proof. (i) = (iv). This follows from Theorem 4.
(iv) = (ii): Let ae Vo(X), |||l = 1. Assumption (iv) implies, by Theorem 4, that

<G
X

2" 2"
§ Cn kAn k § Cn‘kXAn_k
k=1 k=1

X

for some constant C; > 0.

Therefore it only remains to prove left estimate in (15). For arbitrary be V(X')
such that

<1 (dn,k € R)
X/

/] a(t)b(t)dt =1 and
0

2”
E dn,kbn,k
k=1

we obtain ‘fAnk A ()b (1) dt = 27" and

on

§ Cnkln k
k=1

1 2" 2" 2"
= / (Z Cn,kan,k(t)> (Z dn,kbn,k(l)> dt=2" Z Cn,kdn,k~
0% 0 \x=1 k=1

k=1

Since ® is bounded from X’ x X" into X' (I x I) it follows, again by Theorem 4 used
to X', that

on
§ dn,kbn,k
k=1

<G
X/

on
§ dn,kXA,Lk
k=1

X'
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for some constant C, >0, from which we conclude that

on on
=Gy sup/ <Z Crjeln (1 ) (Z dn,kbn,k(t)> dt
X k=1

—n -1
=2 nC2 sup E Cn,kdnJﬁ
d =i

where the supremum is taken over all d = (d,x);_, such that HZ%LI dniia,,
y ny X

The operator P, . defined as in (11) by

N
Prox(1) :Z(z" /A X(s) ds) () (n=1,2,..)

k=1

satisfies || Py ||y _, y» <1. Therefore,

" 1 "
> uita,|| = sup ( Cuka,, (1 )y()d
k=1

x Ibllest k=1

= sup Cnkta,, (1) | Puey(t) dt
Hyl\x/<1 k=1

1
< / Cn Ic}'A,” Py ey(2) dt
1Pl <1 (E: ’

on

< 27" sup E cn‘kdn,k~
4 =l

MN

Hence
211

2"
E CnkcX A, § Cnkcln k
k=1 k=1 ¥

(ii) = (v): By Krivine’s theorem [K,LT, p. 141] for every r.i. space X there exists
pe|l, co] with the following property:

for any n =0,1,2, ... and ¢>0 there exist disjoint and equimeasurable functions
veeX, k=1,2,...,2" such that

<C

on

§ Cn i Vk

(1 =2&)llell, < <(1+e)lld], (16)

1/p
for any ¢ = (cax)i;, where llell, = (212;1 |Cn i \") . Hence, in particular, it follows

(with the notion 2 = 0) that
on

D v

k=1

<(1+¢)2".
X

(1 —g)2"P<
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Let
27!

S

k=1

a(t) = ! (i vk> (1), where r=

k=1

X

Then ||a||y =1 and @, are equimeasurable functions with r~'vx for every
k=1,2,...,2". Therefore,

o
1—¢ I+e
=n/p||p < Z > < =n/p||p
1+82 ||(’Hp\ Cnklnk \1—82 ||(’||p7
k=1 X
that is,
1 —¢|| 2 l+e|| &
1+¢ Z Cn’kXAmk S Z Cnkctin k <1 — & cn,kXAn'k
k=1 » k=1 X k=1 »
Hence, by assumption (15), we have
o o on
~1
CS Z Cnhe XA, < Z Cnk XA, <G Z Cnhk XA, || (17)
k=1 P k=1 X k=1 P

where C, = C(1 +¢)/(1 —¢).

Let 1<p<oco.If X is a separable r.i. space, then (17) implies that X = L,. In the
case when X = X” it is sufficient to consider r.i. spaces X #L.,. Then X° satisfies
(15) and so X° = L,. Hence, X' = (X°) = L, and X = X" = (Ly)' = L,.

Let p = oo. Suppose that there is a function xe€ X\L,. Then from (17) we obtain

on

Z (k27" 4,

k=1

on

Y k2,

k=1

>C!

; =G 2.
X

111>

o0

Since x¢ L., it follows that lim,_, ,, x*(27") = oo. This contradiction shows that
X < L. The reverse imbedding is always true.

(v) = (iii): This follows from the estimate of the norm of natural projections in L,
space

PnasllL,— o, < llall,|f1]y-

(iii) = (i): By definition of the operators P, . we have that X € /7. We want to
show that also X’ €. /7. For all xe X and ye X’

/Ol Parx(t)y(t) dt = é 2" /An_kfn’k(S)X(S) ds/A

annl0() dr = /0 Pogay(s)x(s) ds.

n,

Therefore, the conjugate operator (Pn,a,f)* to Pyays is P, s, on the space X'. Since X’
is isometrically imbedded in X* the last equality implies that the operators P, s, are
uniformly bounded, and so X’ e./"y. The proof is complete. [



274 S.V. Astashkin et al. | Journal of Functional Analysis 202 (2003) 247-276
4. Additional remarks and results

First we describe the difference between the cases on [0, 1] and [0, c0). Let X0, o0)
denote an r.i. space on [0,00) and X = {xeX[0,00):x(f)=0 for t>1} the
corresponding r.i. space on [0, 1]. We use here also the notion X0, co) € /" from the
paper [HS99, p. 56] (cf. also our explanation after Definition 2). Let us present
examples showing that no one of the following statements:

(i) X[0, 00)e,
(i) Xe N

implies the other one, in general.

Example 3. The Orlicz space Lg,[0, 0 ), where ®,(u) = e’ —1, 1<p< oo, belongs
to the class ./". On the other hand, the lower Boyd index o, of Lg, on [0, 1] equals 0
and so ./ (L(pp) = L. Therefore, by Theorem 4, Lo, ¢ .4 .

Example 4. Consider the function

ot) =
(1) rinPr+e—1) if 1<t<oo,

{t“ if 0<r<1,
where 0<f<a<1. Then ¢ is a quasi-concave function on [0,
increasing on [0, c0) and ¢(¢)/t is decreasing on (0, c0). Let ¢
concave majorant of ¢. Then

w), ie., o(t) is
be the smallest

Q(nt
sup M:oo.

0<r<ineN @(n)P(1)
In fact, for every n = 1,2, ..., we can choose 7€]0, 1] such that nz<1. Then

p(n) 1 o(nt)
P(n)p(1)” 4 o(n)o(1)
This implies that the Lorentz space 4;[0, o) ¢ .4 (see [HS99, Theorem 4.1]). At the

same time for Ay = A = L,; with p = 1/a on [0, 1] we have, by (3), that .Z(A;) =
M(Lp1) =L, = A, and, by Theorem 4, A5 e .AN.

=Inf(n+e—1)->00 asn-ow.

The reason of non-equivalences (i) and (ii) is coming from the fact that the dilation
operator g, in r.i. spaces on [0, o) does not satisfy an equation of the form

llo:x[|x10,00) =S (O[X]|xp0,00)»  for x€ X0, 00) and for all 7>0.

If this equation is satisfied, then the function f(¢) is a power function f() = * for
some oe[0,1] and then the above statements (i) and (ii) are equivalent. This
observation allows us to improve, for example, Theorem 4.2 from [HS99]: if
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l<p<oo and 1<¢g< o0, then
N(Ly4[0,00)) =Ly, <= 1<g<p.
We can characterize N(L,4[0, o)) for 1<p<g< 0.
Theorem 8. If 1 <p<g< oo, then N(L,,4[0, ©)) = L,.

Proof. Let aeN(L,4[0,©)). The spaces L,,[0,0) are separable for g< co.
Therefore, similarly as in the proof of Theorem 2, we can show that

n n
> cray <C|D ek tprm (18)
k=1 L,4[0,0) k=1 Ly 4[0,00)
for all c,eR, k=1,2,...,n, n=1,2,... . Since
lloexllr, 0,000 = tl/”||x||vaq[0m) for xeL,4[0, c0) and all >0, (19)
it follows that
n n
Z adl|| <C Z =)
k=1 Lyy k=1 n’n Loy

and, by Theorem 1.14 in [A97] together with property (c), we obtain aeL,.

Conversely, if aeL, then, by using property (c), Theorem 1.14 in [A97] and
equality (19), we get (18) for all n of the form 2", m = 1,2, ... . The space L, , has the
Fatou property, thus passing to the limit, we obtain

o0
§ Crdj
k=1

Next, arguing as in the proof of Theorem 2 (see also [HS99, Theorem 2.3]) we obtain
aeN(L,,4[0, 0)).

8

<

X

Ly 4[0,00)

CleXke—1,k)
k=1

L, 4[0,00)
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