

Bachelor thesis

Develop Mobile Hybrid

Application with Ionic and

Angular.js
Suitable for further development?

Author: Anton Mösenbacher

Supervisor: Anders Haggren

Examiner: Anders Haggren

Supervisor, company: Erik Stenberg,

Softhouse Växjö

Date: 2016-05-27

Course code: 2DT00E, 15,0 hp

Topic: Computer Engineer

Level: Bachelor

Department of Technology

Faculty of Technology

 I

 II

Summary

This report presents a proof- of-concept regarding hybrid mobile application

and its development, based on Ionic with the implemented framework

Angularj.js for web and mobile application development.

 Regarding the background of requests from APEA-Hotworks to Softhouse

Växjö, a complementary application for the convenience of how hot work is

carried out in industry. Based on a specification from the customer, a hybrid

mobile application, using Softhouse Växjö and their Agile approaches to

realize this vision.

The report is based on the explanation mentioned above, account for the

difference in the production and implementation of basic elements of hybrid

and native- components, particularly Android, are implemented. Finally, a

conclusion is drawn as to which of them different development methods,

hybrid or native, are best suited for further development.

 III

Sammanfattning

Denna rapport presenterar ett proof-of-concept avseende hybrid mobil

applikation och dess utveckling, baserat på Ionic med det implementerade

ramverket Angularj.js för web och mobil applikationsutveckling.

 Detta mot bakgrunden av ett önskemål från APEA-Hotworks till Softhouse

Växjö, om en kompletterande applikation för att underlätta för hur heta

arbeten genomförs inom industrin. Baserat på en kravspecifikation från

kunden, ska en hybrid applikation, med hjälp av Softhouse Växjö och deras

Agila tillvägagångssätt förverkliga denna vision.

 Rapporten kommer utifrån förklaringen nämnd ovan, redovisa skillnaden

för hur tillverkning och implementation mellan grundläggande element i

hybrid och native- miljöer, främst Android, genomförs. Slutligen kommer en

slutsats dras om vilket av dem olika utvecklingssätten, hybrid eller native,

som lämpar sig bäst för vidareutveckling.

 IV

Abstract

This report presents a proof-of-concept regarding hybrid mobile application

development and mobile phones. Regarding the background of a desire to

simplify and modernize of how hot work is carried out in in industry.

A conclusion on future developments regarding a hybrid or native options

will also be deducted.

Keywords: native, hybrid, mobile application, future development, Agile,

Scrum.

 V

Preface

I want to begin by thanking Henric Westergren with personnel at Softhouse

Växjö (2016), for letting me realize my thesis and for all support and help during

my time with you. By showing enthusiasm and dedication, you have given me the

inspiration to develop myself in programming and web development.

 Finally, I would also like to thank my family for your near-limitless patience,

your understanding, your encouragement and your willingness to support me

through, inter alia, proofreading. You have made it possible for me to carry out

this work and I am forever grateful!

 VI

Table of contents
Summary .. II

Sammanfattning ... III

Abstract .. IV

Preface ... V

Table of contents .. VI

1. Introduction .. 1

1.1. Background ... 1

1.2. Purpose and objectives .. 2

1.3. Limitations .. 3

2. Theory .. 4

2.1. Applications .. 4

2.1.1. Native application .. 4

2.1.2. Web application ... 4

2.1.3. Hybrid application ... 4

2.2. Agile .. 5

2.2.1. Brief history ... 5

2.2.2. Agile manifesto .. 5

2.2.3. Agile software development .. 5

2.2.4. Scrum ... 6

2.3. JavaScript .. 8

2.3.1. Angular.js ... 9

2.3.2. JSLint and JSHint .. 10

2.4. HTML .. 10

2.4.1. CSS .. 10

2.4.2. Ionic ... 11

2.5. Cordova ... 11

3. Research methodology & Implementation .. 13

3.1. Development environment and software 13

3.2. Softhouse ... 13

3.2.1. Approach .. 14

3.3. Survey .. 14

3.4. Development environment .. 14

3.4.1. Native development environment .. 14

3.4.2. Native development programming language 15

3.4.3. Hybrid development ... 15

3.5. Survey methodology ... 15

3.6. Test device ... 15

 VII

4. Results and analysis ... 16

4.1. Graphical Implementations Differences .. 16

4.2. Code implementations differences .. 17

4.3. Test 1: buttons ... 17

4.3.1. Graphical differences ... 17

4.4. Test 2: List ... 18

4.4.1. Graphical differences ... 18

4.4.2. Implementations ... 19

4.5. Test 3: Text field & keyboard ... 19

4.5.1. Graphical differences ... 19

4.5.2. Features .. 20

4.5.3. Text field & Two-way data binding 21

4.6. Result Softhouse .. 21

4.7. Further development ... 22

6. Discussion and conclusion ... 24

7. References .. 25

5. Appendices ... 28

 1

1. Introduction

Many would describe the man as lazy in today's digital society, then you are

constantly striving to find ever simpler and more flexible solutions to today's

complex problems. Personally I would rather describe the man as

comfortable, as the todays technology allows for ease of access and

flexibility. That was why APEA – Hotworks, contacted Softhouse Växjö

(2016), for them in a convenient and easy way to realize a vision of hot work

in today's digitized industrial society to become more efficient, easy to use,

increment the quality, but also to prevent fires in the workplace. As the

permission and checklist of hot work is done manually and follow-up is

lacking in several businesses, has APEA - Hotworks with its product found a

way to digitize and increase the quality.

During my last year at Linnaeus University in Växjö, where I was studying

to be a computer engineer, I did my thesis on Softhouse. The first official

meeting between Softhouse and APEA–Hotworks happened on my first day

as an intern. Thus I came to be a big part of the process to create a mobile

application in line with APEA-Hotworks wishes.

Just as APEA-Hotworks, there are many other companies, but also private

stakeholders who´s seeking integrated solutions of consulting firms to

develop mobile applications. In addition to web application is native and

hybrid the most established and therefore the most common application

types. Based on the present finding, bottoms this report to compare two of

the most used application types.

The report´s focus is in the area of native and hybrid mobile application, the

Agile movement and the Agile methodology, Scrum, in a consulting firm.

Based on the report´s background defines the problem area, that is the basis

for the report´s problem and its boundaries.

1.1. Background

The well-known expression " Rome was not built in a day" indicates that

nothing magnificent is done from one day to the other. There is a story

behind every technological marvel that reveals years of development,

innovation and updates to the modernity that prevails. With this in mind, we

can take a step back to briefly see how the application's development curve

has been like since the IBM Simon came into the world.

IBM Simon [1], which is said to be the first official smartphone was

introduced 1992 and available to consumers August 16 1994. Simon was

preloaded with several features, or mobile applications as we say today.

Some of the preloaded mobile applications was: Address Book, Calculator,

Calendar etc. Since there was no app marketplace where you could purchase

 2

other mobile applications, the number of mobile applications was quite

limited at this time.

The next big event that made an impression in world of mobile applications,

was when Research in Motion Limited (RIM) [2], released the first

BlackBerry in 2002, which later developed to become the first mass-

produced smartphone, optimized with an innovative wireless email and with

voice and data support.

During this time, small app marketplaces, like Handango, struggled to

survive in a small and relatively unknown world for smartphone users. It

was not until Apple´s cofounder, Steve Jobs (1955-2011), introduced the

first generation iPhone and IOS on his keynote speak in January 9, 2007 [3],

as the mobile application industry took off. Steve Jobs created a need for

mobile applications, which users themselves, did not know they needed. But

it was not until July 2008, when Apple launched the App Store and the new

iPhone 3G, as the mobile application sales really took off [4]. A few months

later, Google launches their own app marketplace, Android market, or

Google Play, as it is now called and HTC releases the first commercially

available Android smartphone [5].

This is said to be the start of mobile applications purchasing and it is

estimated a total of 44 billion mobile applications during 2016 will be

downloaded so far [2].

This overall success would not have been possible if it were not for the

underlying technology, such as those different operating systems that began

to emerge in the twenty first century, which made it possible for third-party

developers to create, but also sell their products in any of those various app

marketplaces [6].

Until today, the development of mobile applications has led us to three

different types of apps, namely native, web and hybrid [7].

This reports main research area will focus on the construction of a native

and hybrid mobile application in a first edition, using web technologies

relatively new to the market and investigate different elements between

hybrid and native mobile applications for Android.

1.2. Purpose and objectives

The purpose with this comparative study aims to give an insight to develop a

native and hybrid mobile application in a first stage edition, but also to show

differences in how to create different elements with current techniques. The

report will also address the Agile Scrum methodology of working at an early

stage in a project.

 3

1.3. Limitations

The report refers only to treat the technologies and practices that are deemed

to have a broad consensus on how to produce a hybrid application of a

consulting firm for the modern mobile phones. This means that parts of the

report that deals with native and hybrid applications, will only cover the

basic knowledge of programming and development. The prototype is the

basis for the report's proof-of-concept, is only intended to cover Android

based devices, with a focus on the graphical user interface. The

implementation made by the techniques and methods with respect to

Android, should only be viewed as an alternative solution and not a final

approach.

 4

2. Theory

In order to understand the report's result and discussion, the section intends

to present the necessary and relevant theory in the field of native and hybrid

mobile application, the Agile movement, and the Agile methodology,

Scrum. This presentation includes mainly only theoretical areas that are

directly necessary to understand the big picture, which means that areas that

advance has been limited not included in the section.

2.1. Applications

In this section gives a short description about those various mobile

application alternatives.

2.1.1. Native application

Native applications are developed specifically for one operating system or

platform and are downloaded and installed through app marketplaces. Since

the application is all native, they have full access to the device´s

functionality like camera, accelerometer, contacts and so on. To develop a

native application, you need some of the existing development environment,

like Android Studio for Android or xcode7 for iOS. Native applications

work even if the device do not have any internet connection. Unfortunately,

to develop and maintain a native application that will work on several

platforms, has proven to be expensive, since native applications exists in

several versions [7].

2.1.2. Web application

A web application is an application that only exists in the browser and

should not be mistaken for genuine native applications. An ordinary web

application is built on web technologies, such as HTML, JavaScript and CSS

and since it runs in the browser, you need internet connection to access

them. A web application has almost the same graphical appearance and feel

as a native application, but are limited of accessibility to the device´s core

functionality. Web applications are not installed on the device, but can be

accessed through bookmarks located on device´s home screen to a specific

URL [7].

2.1.3. Hybrid application

Hybrid applications consists of the best from two worlds, namely native and

web applications. Hybrid applications have the graphical appearance,

responsiveness and device specific functionality from native, but have

maintainability and cross platform technologies from web applications. This

 5

has proven to be a cheaper alternative than native applications, since hybrid

does not require several development teams to reach several platforms.

Hybrid applications is available in those different app marketplaces [7].

2.2. Agile

This section intends to give the reader an introduction to the Agile

movement and the Scrum methodology.

2.2.1. Brief history

The Agile approach arose in the 1970s, as a result of a fast and dynamically

changing software development market, where the industry changed more

promptly than they could deliver a finished product to customer, in which

requirements, systems and sometimes entire businesses changed during the

development period. Until 2000, the waterfall principle was the most used

methodology, but was considered inflexible to changes in the development

process [8].

2.2.2. Agile manifesto

During a meeting in Utah 2001, a group of Extreme Programming pioneers

and well known in the Agile community, Agile as a practice, came to shape

in what to become today's Agile methodology, the Agile manifesto. [8].

The Agile manifesto is an academic proclamation, consisting of twelve basic

principles and four key values of how an iterative, people-centric software

development, is to be used daily. By satisfying customer through continuous

delivery in an early stage, welcome changes in develop process at any time,

motivate individuals with trust and environmental support, and by

maintaining regular reflections of the team’s work is just some of the

principles in the Agile manifesto [9].

2.2.3. Agile software development

Agile software development derived from traditional approaches (waterfall,

sequential etc.) where planning, documentation, unrealistic project plans,

specific roles and predictability prevent to actually deliver results to

customer [10].

Agile software development intends through iterative software development

and collaboration between cross-functional teams, quickly give customers

access to high-quality and bits of working software as soon as they´re ready.

Instead of big pieces of a project at once.

 The developers, in return, will receive quick feedback on their work. Rapid

feedback and the desire to quickly respond to feedback, is one of the key

 6

characteristics. If the developers are not confident in what customer wants,

can they form an approximation of the customer’s requirements. If this

approximation does not satisfy the customer´s need, the misunderstanding

can be resolved quickly, thanks to the feedback from the customer [8].

This approach is based on small, but simple methods that forms the basis for

Agile software development. i.e. it focuses on being flexible to adjustments

that may occur during the development process, methodical testing of

software, simple but applicable code and continuous delivery [11].

2.2.4. Scrum

 Scrum, which is a subset of Agile, is a lightweight process framework for

Agile development and has become one of the most used Agile methods

[12].

To get necessary knowledge about Scrum, regarding this project, are some

important keywords listed below.

2.2.4.1. Sprint

The foundation of Scrum is called a Sprint. Sprint is a limited iteration cycle

of one to four weeks and where the development team is focused on

completing defined objectives before the current sprint ends. Each sprint

ends with Review Meeting, or Sprint Review. Every iteration in the sprint

aims to increase the product value.

2.2.4.2. Sprint Review

 Is a final meeting with the customer, or the customer representatives and

others involved in the development of the product in the current sprint. At

this meeting demonstrates and discusses any progress or setbacks that might

occurred during the sprint workflow. The meeting then ends with the next

sprint planning.

2.2.4.3. Product Backlog

Is a to-do-list where the product owner or representatives of the product,

dynamically adds any new functionality to the product that he might want to

be prioritized in a higher order to the next sprint. The highest prioritized

objectives are later transferred to a Sprint Backlog.

 7

2.2.4.4. Sprint Backlog

Consists of a fixed amount of product backlog objectives, determined by the

Scrum team and the product owner, which has been branched into smaller,

prioritized tasks.

2.2.4.5. Scrum Team

Is a self-organized group of three to nine members that has been optimally

arranged by the product owner and the Scrum Master and they are also

included. The team itself, is responsibly to assemble all the expertise needed,

hence they do not have fixed project roles within the firm. Task allocation

and information distribution is determined by the team members themselves,

but every member of the scrum team shares the responsibility for the sprint´s

outcome and delivering a complete, qualitative product.

2.2.4.6. Scrum Master

Serves as a coach, fixer, a gate-keeper and ensures that the product owner

and the development team has the best conditions to succeed and moving

towards established goals. It is also the Scrum Masters responsibility to

ensure that everyone keeps themselves informed about what is happening,

what has happened and what will happen. By having daily, short and

informative meetings, the Scrum Master ensures that everyone in the team

keeps themselves updated. These little meetings are called Stand Up. It is

also the Scrum Masters responsibility to make sure the whole team is in a

good shape.

2.2.4.7. Daily Scrum

Is a short, informative meeting, located at the same time and place every

day, held by the Scrum Team. Every member in the Scrum Team should be

able to answer the following questions:

 What have you accomplished since the last meeting?

 What will you accomplish until next meeting?

 Are there any impediments in your way?

By answering these fundamental questions, the team are able to discuss and

bring input on how to solve any complications that might occurred during

the development. The purpose with Daily Scrum is to synchronize the team

progress and redirect jobs to the developer who is more suited,

then you always strive for product increment [13].

 8

To get an overview of how the Agile methodology Scrum works, see

figure1.

2.3. JavaScript

JavaScript is a dynamic script language (Figure

2), designed to interact with web pages and its

data management. JavaScript is also designed to

give the user a more fluent experience on web

pages, is often found on the client side and is

executed by browsers integrated JavaScript

engine. Example of when JavaScript is used on

web pages:

 Automatically format date on web page.

 Route between web pages.

 Change graphic on item when pressed or mouse rollover

 Real time validation on text field and others.

 Capable of performing more advanced functions, such as games in

browser.

JavaScript does not only exist in web browsers, but on server side as well,

called Node.js, which allows developers to work with connections to

databases [14].

Figure 2. Example of JavaScript programming in

Microsoft Visual Studio Code.

Figure 1. Flowchart of the Agile methodology, Scrum.

 9

2.3.1. Angular.js

Angular.js is a client-side, JavaScript MVC (Model-View-Controller)

framework for adding interactivity to HTML [15]. Angular.js helps you

create responsive and dynamical websites, but also helps you write

organized JavaScript code which is easy to test. Figure 3 illustrates the

principle of Angularj.s. Instead of loading entire webpage again, web server

only response with some JSON data, resulting in a web page that feels

responsive.

Figure 4, illustrates the principles of MVH architecture and below is a short

explanation.

2.3.1.1. Controller

 processes and responds to user interactions,

such as button click or typing in a text field.

2.3.1.2. View

Is the graphical presentation of your processed

data, like the graphical presentation on a web

page or other medium.

2.3.1.3. Model

Encapsulates the underlying data and business logic. The model is basically

plain JavaScript objects.

Figure 4. MVC Architecture.

Figure 3. Illustrates the principle of Angular.js.

 10

2.3.1.4. Two-way data binding

One key feature to Angular.js is “two-way data

binding”, which keeps the model and the view in

sync at all times, meaning a change to the model

is equal to a change in the view and vice versa.

The result of two-way data binding, is that the

user gets an application that feels responsive and

quickly responds to user interactions.

Figure 5, illustrates two-way data binding in

practice.

2.3.1.5. Directive

Directive is one of the most confusing, yet most powerful features of

Angular.js, and has become one important part of any application. It adds

specific behavior to the HTML DOM-element (via event listeners etc.),

which results in you write code that is reusable and testable.

2.3.2. JSLint and JSHint

JSLint and JSHint is a code quality tool and used in software development

for analyzing if JavaScript source code complies with specific syntax. They

both works almost the same way as a modern compiler for Java or C# etc.

JSLint is used from command prompt and JSHint is used within the

JavaScript document.

2.4. HTML

HTML is used by browsers and web pages to give

structure to its content. The content in HTML is called

element, and it can be everything from headers, buttons,

paragraphs etc. which later results in a graphical user

interface to interact with. HTML is then combined with

JavaScript to add functionality to its elements and CSS for

styling. The newest version, HTML5, allows

implementations like, video playback and drag and drop

[16]. Figure 6 illustrates the basics of HTML file.

2.4.1. CSS

CSS stands for Cascading Style Sheet, is an independent CSS-file describing

how script language, like HTML and its elements are to be rendered on

Figure 6. Example of HTML

programming in Microsoft Visual

Studio Code.

Figure 5. Two-way data binding.

 11

different kinds of media, such as papers or screens.

Since CSS-file is independent, you are able to use

the same file on several documents and it has

proven to be very efficient, from maintenance point

of view. CSS, HTML and JavaScript forms the basis

of today’s mobile applications and webpages.

Figure 6 illustrates a simple example of how to

change color on body and header elements in CSS

[17].

2.4.2. Ionic

Ionic strive to simplify the hybrid mobile application development for

devices of today and the future. Thanks to their own powerful framework

and by using web technologies like HTML5, CSS and JavaScript, they have

managed to create a framework that brings native graphical appearance and

feel, and UI interaction of your mobile application to the table [18].

Ionic comes with many basic functions of your mobile application, such as

buttons, lists, icons and much more. Ionics standard graphics look similar to

iOS7, but because the styling is built in CSS, there is no problem to

customize the design at will (Figure 8).

Ionic has made its source code open source

for third-party developers, especially web

developers, to have the opportunity to

simplify and develop new features for future

development.

Currently, Ionic is applying Angular.js to obtain the core functionality of the

framework, but you´re able to use ionic without it, hence you are missing

out some powerful UI interaction, animations, gestures and alternative

concepts [19].

2.5. Cordova

The framework makes your hybrid mobile application get the functionality

available in today's smartphones. By taking your hybrid mobile application

and wrap it in a container, it will act like a bridge between your application

and your device-specific functionality, such as Camera, Accelerometer,

GPS, Calendar, to mention a few. The result is your web application behaves

and feels like an ordinary native mobile application, even though you are

running in a web view (Figure 9). Unfortunately, in the current situation has

Ionic and Cordova not the potential to reach the same standard as a native

application. [20].

Figure 7. Example of CSS programming in

Microsoft Visual Studio Code.

Figure 8. Illustrates modified Ionic components.

 12

Figure 9. Ionic, Angular.js and Cordova cooperate to receive the device's full potential.

 13

3. Research methodology & Implementation

Since the report covers two different areas, the research methodology will

contain two parts. The first part describes a period of internship development

of hybrid mobile application takes part in a consulting firm (Softhouse) and

which methods is implemented to achieve firm’s and customer’s goals.

The second part describes which methods are used to develop and then

comparing different elements of native and mobile application.

3.1. Development environment and software

In order to develop the product for APEA-Hotworks, needed a development

environment that handles both HTML, CSS and JavaScript. Microsoft

Visual Studio Code offers a complete and easy to use text editor that also

supports JSHint and JSLint, which makes it a great development tool for

hybrid mobile applications. In order to continuously test their improvements

in the application development, mainly used Google Chrome and its

Developer Tool (Appendix 1), but there is also the opportunity to test the

application in a simulated environment on your own device.

3.2. Softhouse

The first step into realize APEA-Hotworks vision, is to design a mobile

hybrid application that will span multiple platforms, mainly IOS and

Android. By using technologies and methodologies that is currently up to

date, in an upward and modern consulting firm in software development.

Softhouse has been commissioned from the customer, APEA-Hotworks, to

develop a hybrid mobile application, in order to rationalize and simplify

how hot work is carried out in the industry. The first step in realizing their

vision began March 16, 2016, when the customer featured product for

Softhouse during the introduction meeting.

This meeting was to include the basics from the customer's requirements,

which later came to design how the Agile methodology Scrum, came to be

carried out during the development process. Together with customer

determines who should act scrum master, sprint backlog is discussed and

prioritized, and the length of the sprint is stated.

The customer provided a graphical template for further development and

ambition to continue with the current software. This template became an

illustration of how their first edition might look like, but was

developmentally also a good opportunity for further development.

There were given no further instructions on other implementations or

specific wishes of software than the current implemented software. which

 14

means that other implementations to the product that requires other software

of any kind were implemented without customer approval.

3.2.1. Approach

Initial weeks came to be a learning process of how Scrum works in practice,

how the implemented software is related to each other, but also to build a

foundation in how web programming works, since it is a crucial part of the

project. During these first weeks, was planned along with the scrum master

and the customer, a sprint backlog that was tailored to the level of

knowledge that was available. The sprint backlog was later to become more

progressive, when the workflow became more efficient over time. If the

customer against all odds was not satisfied with how the product evolved

over the last sprint, there is the possibility to customize and prioritize tasks

to the next sprint from the customer's new requirements, since the Agile

movement welcomes changes.

The product development progressed on a weekly basis according to the

scrum methodology and where try and error was an everyday routine. Since

I was stationed at Softhouse offices in Växjö, there were personnel expertise

directly available in my scrum team, which meant the ability to discuss any

problems or solutions never was distant. This resulted in the development of

the product could gradually proceed, accordance with the continuous

delivery. Much of the time was also spent to find information and tutorials

on the internet about the various problems that arose during the development

process.

3.3. Survey

The investigation part will mainly illustrate the comparison of different

elements in hybrid and native mobile applications for Android. Since some

of the parts, about developing hybrid mobile application is mentioned above,

it will not be mentioned in this section.

3.4. Development environment

This section describes the different methods and technologies for developing

a native mobile application.

3.4.1. Native development environment

Regarding this project, the survey will be conducted with Android Studio,

which has been developed by Google since 2013, so it is relatively new to

Android development market. Android studio comes with a well-designed

built-in IDE (Integrated Development Environment) based on intellij IDEA,

well documented website, but even an emulator, which thanks to the latest

update (Android Studio 2.1.1, May 18th, 2016) has become much simpler to

 15

use than its predecessor. Android Studio offers a graphical environment for

developing GUI, which makes it quite convenient to use. By unlocking

development option on your Android device, it is also possible to directly

download your application on the device for further testing.

3.4.2. Native development programming language

For developing native mobile applications, Android Studio will be used with

Java, although it is possible to program applications with other programming

languages in Android Studio.

3.4.3. Hybrid development

The same techniques, methodologies and environments that were applied in

Softhouse Växjö to develop hybrid mobile applications, will also permeate

the following tests in order to fulfill the survey.

3.5. Survey methodology

The report´s comparative study intends to compare several different

elements on native and hybrid applications, each representing methodology

and techniques behind creation of different elements in standard version (No

third-party software developers).

The report will later recognize them biggest differences between those

different approaches and from that draw a conclusion that reveal which

option might hold for future development. The report will only focus on

comparing elements, based on their own conclusions, which seems to be

used most frequently in today's mobile applications, such as buttons, lists,

keyboards etc.

3.6. Test device

All tests will be using Samsung Galaxy S6, Android version 6.0.1, to

conduct the tests on native and hybrid mobile applications.

 16

4. Results and analysis

This section will show the results of these different approaches for how to

make various elements in them both application types, native and hybrid.

The degree of difficulty will gradually increase, start with the simplest and

finish with the more complex element to be implemented.

4.1. Graphical Implementations Differences

 Since there are several completely different ways to manufacture mobile

applications, it is not entirely surprising that there are several

implementation ways as well. Both cases have proven to be easy to grasp.

Android Studio with its graphical GUI tool, which allows drag and drop but

even implement components in xml version. Ionic offers their own Ionic

Creator, which also has drag and drop functionality and HTML version. Ass

figures 11-12 illustrates, just by implementing a button in the native

application requires some lines of code, while the hybrid only have a few. In

this example, the buttons do the same thing, calling a function that generates

a random number.

Figure 12. Example of button implementation with xml in Android studio.

Figure 11. Ionic Creator offers drag and drop

functionality for creating hybrid applications.

Figure 10. Button from Ionic, implemented with HTML.

Figure 13. Graphical development environment

in Android Studio.

 17

Both ways have their advantages and disadvantages. One advantage with

hybrid mobile development is that you do not need to download the

application to your phone to test your changes, as you can use Google

Chrome Development tool (Appendix 1), although the possibility exists.

While Android Studio either have to open up the emulator, or download the

application to your phone. Both ways with Android Studio has proven to be

time consuming and the emulator requires some resources from your

computer. The advantage with Android Studio, compared to the hybrid

mobile application development with Ionic Creator, is that you are

constantly updated on Android's latest feature and components.

Both development options offer unlimited possibilities for styling of

components. Thanks to third-party developers, there are also components

and software that advances your application even more, both to native and

hybrid.

4.2. Code implementations differences

Since the applications are created with different techniques, depending on

the implementation of the hybrid application, you can according to old -style

web development add logic and elements in a single file, which also

operates today, but in large programs can become confusing and even to

complex. With Ionic and Angular.js, you are more or less forced to separate

the elements with the logic, then you usually are using the templates where

the code is already structured. This might be difficult to grasp in the

beginning, but when building large projects, it will definitely help you

develop structured code. Android Studio offers empty templates as well and

thanks to the power of Object Oriented programming, you can structure your

code as you please. But compared to the other technique, you are not forced

to it, which might result in complex code when your application grows in

size.

4.3. Test 1: buttons

Buttons is one of the key elements in applications and comes in various

shapes and sizes. When interacted with, user expects a particular action will

transpire. Both types come with a wide variety of buttons, such as radio

buttons, checkboxes, sliders etc.

4.3.1. Graphical differences

Figure 14 and Figure 15, illustrates a button implemented in both hybrid and

native mobile applications. The graphical user interface differs very little,

 18

and with a little more CSS adjustment, you can certainly get them to look

the same. Android button´s has something called long click, which also can

be implemented in Ionic button´s.

4.4. Test 2: List

Lists allows users on a representative and easy way present different types of

data in a scrollable view. The ability to dynamically add and remove data are

now a thing we take for granted in various applications. In both hybrid and

native exists the ability to add lists in popups and others.

4.4.1. Graphical differences

Graphically, it's nothing that distinguishes them significantly. Should I go

into details, have the hybrid application what looks to be a list constructed

with labels, making the list do not go all the way to the edges. Worth

mentioning is that no styling or other modification has been made on the list

views, but this is the default of the respective frameworks. Both approaches

were found to not have any problems with rendering the list when it was

filled with over 40 items, but both delivered a responsive and smooth

experience. In the current situation provides Android more modification to

their lists, when you have the ability to do much more modifications to how

each row should look like.

Figure 14. Graphical illustration

of button implemented in native

application

Figure 15. Graphical illustration of

button implemented in hybrid

application

 19

4.4.2. Implementations

Both methods have their own characteristics on how to implement a list and

to populate data. Both types retrieve data from a source, which may be a

complete data source, possibly an array or other container, or add to the list

dynamically.

Android uses the adapter, which is the link between the source and your List

View, to populate your list. While Ionic uses a Angular.js directive called ng

-repeat. Technically, the principles are the same and both methods are

simple to use and understand.

4.5. Test 3: Text field & keyboard

Text fields allows the user to enter text into your application. The text itself

may not only consist of letters, but also numbers, date, email, password and

other characters and can be completed in single line or multi-line. Every

time the user presses a text field, the cursor moves and the internal keyboard

will appear. It is also possible to limit the keyboard to mere numbers, letters,

or modify content or styling according to their own needs.

4.5.1. Graphical differences

Both the hybrid and the native mobile application uses the inbuilt keyboard

and its features, like cut, copy, share etc. They main differences is the hybrid

applications lack of two buttons and the letters hinted in almost each

number. The text field in Figure 19, have been styled in CSS to look like the

native text field in Figure 18. Current figures are limited to numerical

values.

Figure 17. List view in

hybrid application.
Figure 16. List view in

native application

 20

The similarities between the two keyboards becomes more similar to each

other when you change to plain text input, as illustrated in figure 20-21. If

you are developing hybrid applications with Ionic and Cordova, there is no

reason why you should not use the Ionics keyboard plugin to really make

use of your device's functionality and modification opportunities.

In addition to the above, there is nothing more that separates them visually.

4.5.2. Features

Native applications and especially Android Studio offers much more

modifications to their text field modifications, than Ionic do in the current

situation. An important feature that currently is difficult to implement in

Ionic is AutoComplete, which more or less require some form of third-party

developed software, while it is available in the Android Studio. When it

comes to further modifications on the text field, unfortunately, Ionic has not

quite managed to implement all the features that are available in native

applications. But then, web development is on the rise, it will not be long

before Ionic, more or less, has the same features as native.

As for the keyboard, you can only restrict the type of input. To modify as

you like, requires a complete framework from a third-party developer or

Figure 18. Default numeric keyboard

on native application.
Figure 19. Default numeric keyboard

on hybrid application.

Figure 20. Default text keyboard on

native application
Figure 21. Default text keyboard on

hybrid application

 21

Ionic Keyboard Plugin, compared to Android Studio where you can change

the layout without additional frameworks.

4.5.3. Text field & Two-way data binding

The hybrid mobile application development has a great preamp, if you use

Angular.js as an easy and convenient way to get real-time validation of your

input. This is thanks to a Angularj.js directive ng -model and two-way data

binding. Android currently has two-way data binding, but is in beta stage

and is complex to implement into your application [21]. Real-time validation

means in this case that input is validated while the user types, and not to

validate input after the user performing another event.

4.6. Result Softhouse

My work on Softhouse Växjö resulted in a first stage version of a hybrid

mobile application that came to be part of APEA-Hotworks product. The

result is an application that feels responsive and looks and feels like a native

application, but maybe the most important thing, user-friendly.

Unfortunately, much time went to learn various programming languages,

technologies and methods. Figures 22-27 illustrates the result.

Figure 24. About-tab. Figure 24. Feedback-tab,

send feedback about the

product.

Figure 24. Main view in the

application.

 22

4.7. Further development

When there is demand for a mobile application that more or less requires the

device's basic functionality such as camera, GPS, Accelerometer etc., but

also more advanced device-specific features which may require much

performance, then native is right way to go. Native applications are currently

more modifiable and you get the full performance of the device. The

downside to native is that it is expensive to develop, as a native application

usually occurs in several versions and requires specialized platform

developers. For a company that has a different platform -based applications,

this can prove to be expensive, since it requires multiple development teams.

Another drawback of the native is that you also have to upload every single

update of the application to any app marketplaces.

When the need for an application does not require the entire device´s full

potential, functionality and performance, then the hybrid application is the

right choice. With a hybrid application, you do not really get the

performance of a native or its functionality, but you get an application that

will pay off in the long run and almost feels like a native application. Not

only do you not need to upload every update to the app marketplace when it

is done automatically in the Web view of your application, without the

development costs of a hybrid application is lower than the native. The

reason the cost is lower, it only requires a development team to reach

multiple platforms.

Both applications tend to be more complex the more advanced functions and

bigger it becomes, but both can be built with the structured code because of

their different construction techniques. Android and Java, which is an Object

Figure 27. Send and unsent

reports shows in history-tab.
Figure 27. Settings-tab.

Figure 27. Show modal when

report being send.

 23

Oriented programming language and Ionic, thanks to its structure with

Angular.js offers easy structured code. in the current situation has native a

small advantage, but it is only a matter of time before hybrid application

development is beyond the native application development.

 24

6. Discussion and conclusion

The report's actual results, which are the result of my work at Softhouse

Växjö. I think it reflects all those many hours that have been spent on trying

to learn them different methods and techniques used for developing a hybrid

mobile application. When it comes to the survey, I would like to go deeper

into both the development of both native and hybrid manufacturing, but

when the time was not sufficient and loss of work, I think, despite what

happened the result is acceptable. I am, after all that has occurred, pleased

about my result. What I have done is to prove to others and not just myself

that I can learn a new programming language, and even get a result that I

think is good, considering how short the process still has been. To get an

even better result, I might have been able to create an application on a

programming language that for me to be known before, or get a few weeks

to learn a new programming language.

When web development made great progress in the introduction of HTML5,

it reduced the distance between the native and hybrid application

development. Once Ionic and Angular.js was introduced, hybrid caught

almost up, but it will, unfortunately, not quite live up to their full potential

available in native. If they ever do it? I believe that native mobile application

belongs to a larger company with the financial resources. As the costs of

having specialized development team within a given platform can be

expensive in the long run. I think hybrid is an option that will, more or less,

replace the native, thanks to it cross platforms availability. But before that,

the next revolutionary thing in web development must be introduced before

the hybrid mobile application development even catch up, or even bypass.

 25

7. References

[1]. D. Aamoth. (Aug 18th, 2014). First Smartphone Turn 20: Fun Facts

About Simon [Online]. Tech Gadgets, http://time.com/3137005/first-

smartphone-ibm-simon/(May 9th, 2016).

[2]. AppSchopper blog team, no name. (Dec 6th, 2012). History – Mystery

of Mobile Application Development Revealed Here. [Online]. Appschopper,

http://www.appschopper.com/blog/history-mystery-of-mobile-application-

development-revealed-here/(May 9th, 2016).

[3]. P. Cohen. (Jan 9th ,2007). Macworld Expo Keynote Live Update.

[Online]. Macworld,

http://www.macworld.com/article/1054764/liveupdate.html (May 9th, 2016).

[4]. P. Ahrnstedt. (July 14th, 2008). iPhone App Store Downloads Top 10

Million in First Weekend. [Online]. Apple Press Info,

http://www.apple.com/se/pr/library/2008/07/14iPhone-App-Store-

Downloads-Top-10-Million-in-First-Weekend.html (May 9th, 2016).

 [5]. A. Dobie, R. Holly, J. Hildenbrand. (Oct 21th, 2015). ANDROID´S

EARLY DAYS, The T-Mobile G1 arrives. [Online]. Androidcentral,

http://www.androidcentral.com/androids-early-days (May 9th, 2016).

[6]. D. Reagle. (Nov 30th, 2012). Mobile Operating Systems and App

Marketplaces. [Online]. Sitepoint, http://www.sitepoint.com/the-

advancements-in-mobile-design-and-how-it-has-developed-into-a-strong-

industry/ (May 10th, 2016).

[7]. R. Budiu. (Sep 14th, 2013). Mobile: Native Apps, Web Apps, and Hybrid

Apps. [Online]. Nielsen Norman Group,

https://www.nngroup.com/articles/mobile-native-apps/ (May 10th, 2016).

[8]. P. Varhol. (Aug 26th, 2015). To agility and beyond: The history-and

legacy-of agile development. [Online]. TechBeacon,

http://techbeacon.com/agility-beyond-history%E2%80%94-

legacy%E2%80%94-agile-development (May 10th, 2016).

[9]. M. Rouse. (Sep 9th, 2011). Agile Manifesto. [Online]. TechTarget,

http://searchcio.techtarget.com/definition/Agile-Manifesto (May 11th, 2016).

[10]. D. Bishop, A. Deokar, “Toward an Understanding of Preference for

Agile Software Development Methods from a Personality Theory

Perspective”, 47th Hawaii International Conference on System Science,

Hawaii, 2014, pp.2. (May 11th, 2016).

 26

[11]. M. Rouse. (Feb 15th, 2007). Agile software development (ASD).

[Online]. TechTarget,

http://searchsoftwarequality.techtarget.com/definition/agile-software-

development (May 11th, 2016).

[12]. K. Thompson. (2010). What Is Agile? What Is Scrum? [Online].

cPrime, https://www.cprime.com/resources/what-is-agile-what-is-scrum/

(May 12th, 2016).

[13]. Softhouse Agile Coach Team, no name. (Feb 6th, 2014). SCRUM in

five minutes [Brochure]. Softhouse,

https://issuu.com/softhouse/docs/scrum_5min_eng_131210 (May 13th,

2016).

[14]. M. Rouse. (Sep 21, 2005). JavaScript. [Online]. TechTarget,

http://searchsoa.techtarget.com/definition/JavaScript (May 13th, 2016).

[15]. D. Lau. (Sep 5th, 2013). 10 Reasons Why You Should Use Angular JS

[Online]. Sitepoint, http://www.sitepoint.com/10-reasons-use-Angular.js/

(May 16th, 2016).

[16]. M. Rouse. (Jul, 2010). HTML File Format. [Online]. WhatIs,

http://whatis.techtarget.com/fileformat/HTML-A-Web-page (May 14th,

2016).

[17]. J. Kyrnin. (Dec 10th, 2014). What Is CSS? [Online]. About tech,

http://webdesign.about.com/od/beginningcss/a/aa021607.htm (May 16th,

2016)

[18]. A. Bradley. (Oct 28th, 2013). Where does the ionic framework fit in?

[Online], http://blog.ionic.io/where-does-the-ionic-framework-fit-in/ (May

15th, 2016).

[19]. Ionic, (May 12th, 2016). Chapter 1, All About Ionic, [Guide],

http://ionicframework.com/docs/guide/preface.html (May 17th, 2016).

[20]. P. Virinchy, (Jul 27th, 2014). What is Cordova and how does it work?

[Online], http://scn.sap.com/community/developer-center/mobility-

platform/blog/2014/07/27/what-is-cordova-and-how-does-it-work (May 22t,

2016).

[21]. F. Collini, (Jul 22, 2015). Two-way Android Data Binding – How to

use two-way Data Binding to manage a layout. [Online],

https://medium.com/@fabioCollini/android-data-binding-

f9f9d3afc761#.cwu566atn (May 24th, 2016).

 27

 28

5. Appendices
APPENDIX 1 Development environment Google Chrome

 1

APPENDIX 1 Development environment Google Chrome

Illustrates the development environment in Google Chrome.

When running your application, Ionic will start a local server on your

computer and build a local emulator on your default web browser which you

can interact with.

Fakulteten för teknik

391 82 Kalmar | 351 95 Växjö

Tel 0772-28 80 00

teknik@lnu.se

Lnu.se/fakulteten-for-teknik

