
Special Effects and Rendering

Proceedings from SIGRAD 2002
held at

Linköpings universitet, Norrköping, Sweden,
November 28th and 29th , 2002

organized by
Svenska Föreningen för Grafisk Databehandling

and
Norrköping Visualization and Interaction Studio

Edited by

Mark Ollila

Published for Svenska Föreningen för Grafisk
Databehandling (SIGRAD) by

Linköping University Electronic Press
Linköping, Sweden, 2002

The publishers will keep this document online on the Internet - or its
possible replacement - for a period of 25 years from the date of
publication barring exceptional circumstances.

The online availability of the document implies a permanent
permission for anyone to read, to download, to print out single copies
for your own use and to use it unchanged for any non-commercial
research and educational purpose. Subsequent transfers of copyright
cannot revoke this permission. All other uses of the document are
conditional on the consent of the copyright owner. The publisher has
taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to
be mentioned when his/her work is accessed as described above and to
be protected against infringement.
For additional information about the Linköping University Electronic
Press and its procedures for publication and for assurance of document
integrity, please refer to its WWW home page: http://www.ep.liu.se/

Linköping Electronic Conference Proceedings, No. 7
Linköping University Electronic Press
Linköping, Sweden, 2002

ISBN 91-7373-464-0 (print)
ISSN 1650-3686 (print)
http://www.ep.liu.se/ecp/007/
ISSN 1650-3740 (online)

Print: UniTryck, Linköping, 2002

© 2002, The Authors

iii

Table of Contents

Prologue
Mark Ollila and Anders Ynnerman iii

Keynote Presentations
The Light Stage: Photorealistically Integrating Real Actors in Virtual Environments
Paul Debevec 1

Other Keynote Presentations
Michael Conelly, Viktor Björk, Peter Zetterberg, Mats Erixon,
Marcos Fajardo, and Jani Vaarala 3

Research Presentations
Implementation of a Dynamic Image-Based Rendering System
Niklas Bakos, Claes Järvman, and Mark Ollila 5

Snow Accumulation in Real-Time
Håkan Haglund, Mattias Andersson, and Anders Hast 11

Animation of Water Droplet Flow in Structured Surfaces
Malin Jonsson and Anders Hast 17

Distributed Redering in Heterogeneous Display Environments – A Functional
Framework Design and Performance
S. Seipel, and L. Ahrenberg 23

Real-Time Image-Based Lightning in Software Using HDR Panoramas
Jonas Unger, Magnus Wrenninge, Filip Wänström, and Mark Ollila 29

Towards a Perceptual Method of Blending for Image-Based Models
Gordon Watson, Patrick O’Brien, and Mark Wright 35

Work in Progress
Framewordk for Real.Time Sumulations
Anders Backman 41

Surface Construction with Near Last Square Acceleration based on Vertex
Normals on Tringular Meshes
Tony Barrera, Anders Hast, and Ewert Bengtsson 43

Time Machine Olulu – Mulitchannel Augmented Reality
Jaakko Peltonen 49

v

Welcome to SIGRAD2002 in Norrköping!

SIGRAD had a big year in 2002, as we officially signed a cooperation agreement with
ACM SIGGRAPH. This agreement means that ACM SIGGRAPH and SIGRAD will
work to promote the field of computer graphics and interactive techniques through
cooperation, collaboration and the free exchange of information.

The goal of the SIGRAD2002 conference is to provide a Nordic (yet international)
forum for presenting recent research results in computer graphics, with a focus on
special effects and rendering, and to bring together experts for a fruitful exchange of
ideas and discussion on future challenges.

This year is the first time that the SIGRAD conference has spanned two days. Over the
past 20 years we have had a single day of invited presentations from experts in
academia and industry. To help foster the development of a computer graphics research
community in Sweden (and also the Nordic) it was decided to have an actual Call-for-
Papers to help form a focused research day, and hence, a two day event.

The nuclei of the research day are examples of research and work in progress from all
over Sweden. We also have research presentations from Scotland and Finland, an
important step in building a critical mass of local and regional cooperation for future
projects in the area of computer graphics. The second day, can be seen as a traditional
SIGRAD, with invited keynote presentations from leading experts from both academia
and industry. These include experts from the USA, Spain, Finland, and internal to
Sweden in disciplines such as gaming and special effects. The day begins with a
keynote presentation from Dr. Paul Debevec, from the Graphics Lab at the Institute of
Creative Technology. We would like to thank our many experts for accepting our
invitation to present at SIGRAD2002.

We are very pleased with the good response to the call for papers, which resulted in 17
submissions, of which 9 were accepted for publication through a blind review. We
hereby wish to thank the program committee and contributing reviewers for putting
together a strong program, which, by spanning from image based rendering, to
augmented reality allows us to have a broad coverage of the field. The conference is
supported by the SIGRAD, Norrköping Municipality and NVIS. Thanks should go to
Linköping University Electronic Press for arranging the electronic publishing of this
conference. Last but not least, special thanks are due to the organizing committee for
making the conference possible.

We would like to express our gratitude and warm welcome to the keynote speakers,
authors of contributed papers, and other participants. We wish you a most pleasant stay
in Norrköping.

Mark Ollila Anders Ynnerman
Chair, Program committee Chair, SIGRAD

vi

SIGRAD2002 Program Committee

SIGRAD2002 consisted of experts in the field of computer graphics from all over
Sweden. We thank them for their comments and reviews.

Dr. Tomas Akenine-Möller
Dr. Matthew Cooper
Dr. Mark Dieckmann
Professor Mikael Jern
Dr. Lars Kjelldahl
Dr. Mark Ollila
Professor Anders Ynnerman

SIGRAD2002 Organizing Committee

Niklas Bakos
Kai-Mikael Jää-Aro
Lars Kjelldahl
Erika Tubbin

SIGRAD Board for 2002

Anders Ynnerman, Chair
Mikael Jern, Vice Chair
Lars Kjelldahl, Treasurer
Anders Backman, Secretary
Kai-Mikael Jää-Aro, Member
Mark Ollila, Member
Arash Vahdat, Member
Björn Kruse, Subsitute
Gustav Taxén, Substitute
Åke Thurée, Substitute
Harald Tägnfors, Substitute
Örjan Vretblad, Substitute
Josef Wideström, Substitute

The Light Stage: Photorealistically Integrating Real Actors into
Virtual Environments

Paul Debevec
USC Institute for Creative Technologies

www.debevec.org

The key to achieving realism in much of visual effects is to successfully combine a
variety of different elements - matte paintings, locations, live-action actors, real and
digital sets, CG characters and objects - into a single shot that looks like it was all there
at the same time. An important, subtle, and frustratingly complex aspect of this
problem is to match the lighting amongst these elements. Not only do the objects and
environments need to be lit with the same sources of light, they need to properly reflect
and shadow each other. In our graphics research, we have explored ways of using
advanced lighting simulation techniques and philosophies to integrate CG objects,
digital characters, and live-action performances into real and synthetic environments
with physically correct and perceptually believable lighting.

In our 1999 film Fiat Lux, we used the Facade photogrammetric modeling system to
model and render the interior of St. Peter's Basilica from a set of high-dynamic range
digital photographs. The film called for this space to be augmented with numerous
animated computer-generated spheres and monoliths. The key to making the computer-
generated objects appear to be truly present in the scene was to illuminate the CG
objects with the actual illumination from the Basilica. To record the illumination we
used a high dynamic photography method we had developed in which a series of
pictures taken with differing exposures are combined into a radiance image -- without
the technique, cameras do not have nearly the range of brightness values to accurately
record the full range of illumination in the real world. We then used image-based
lighting to illuminate the CG objects with the images of real light using the RADIANCE
global illumination rendering system, also calculating the cast shadows and reflections
in the floor. The full animation may be seen at: http://www.debevec.org/FiatLux/

Most movies star people rather than spheres and monoliths, so much of our research
since then has focused on the more complex problem of realistically rendering people
into real and virtual scenes. In this work we have designed a series of Light Stage
devices to make it possible to light real people with light from virtual sets. Version 1 of
the Light Stage was designed to move a small spotlight around a person's head (or a
small object) so that it is illuminated from all possible directions in about a minute - the
amount of time a person can comfortably stay still in a neutral expression. It consisted
of a two-bar rotation mechanism which can rotate the light in a spherical spiral about the
subject. During this time, a set of stationary digital video cameras record the person or
objects' appearance as the light moves around, and for some of our models we precede
the lighting run with a geometry capture process using structured light from a video
projector. From this data, we can then simulate the object's appearance under any
complex lighting condition by taking linear combinations of the color channels of the
images in the light stage dataset. In particular, the illumination can be chosen to be
measurements of illumination in the real world or the illumination from a virtual
environment, allowing the image of a real person to be photorealistically composited
into such a scene with correct illumination. Light Stage 1 may be seen at:
http://www.debevec.org/Research/LS/

1

Light Stage 2 was designed to shorten the amount of time needed to acquire a light stage
dataset so that a person could be captured in a variety of natural facial expressions. This
set of expressions could then be used as morphing targets to produce an animated
version of the person. Light Stage 2 consists of a semicircular arm three meters in
diameter that rotates about a vertical axis through its endpoints. Attached to the arm are
twenty-seven evenly spaced xenon strobe lights, which fire sequentially at up to 200 Hz
as the arm rotates around the subject. The arm position and strobe lights are computer-
controlled allowing the strobes to synchronize with high-speed video cameras.

In 2001 we applied the Light Stage 2 capture process to capture a number of Native
American cultural artifacts including an otter fur headband, a feathered headdress, an
animal-skin drum, and several pieces of neckwear and clothing. We were able to show
these artifacts illuminated by several real-world natural lighting environments, and
designed a software program for interactively re-illuminating artifacts in real time.
Images from this project can be seen at: http://www.debevec.org/Research/LS2/

Light Stage 1 and 2 provided the necessary proof-of-concept to build Light Stage 3,
which can achieve realistic composites between a actor's live-action performance and a
background environment by directly illuminating the actor with a reproduction of the
direct and indirect light of the environment into which they will be composited. Light
Stage 3 consists of a sphere of one hundred and fifty-six inward-pointing computer-
controlled light sources that illuminate an actor standing in the center. Each light source
contains red, green, and blue light emitting diodes (LEDs) that produce a wide gamut of
colors and intensities of illumination. We drive the device with measurements or
simulations of the background environment's illumination, and acquire a color image
sequence of the actor as illuminated by the desired environment. To create the
composite, we implemented an infrared matting system to form the final moving
composite of the actor over the background. When successful, the person appears to
actually be within the environment, exhibiting the appropriate colors, highlights, and
shadows for their new environment. Images and videos from Light Stage 3 can be seen
at: http://www.debevec.org/Research/LS3/

This talk will present joint work with Tim Hawkins, Andreas Wenger, C.J. Taylor,
Jitendra Malik, HP Duiker, Westley Sarokin, Dan Maas, Mark Sagar, Jamie Waese,
Andrew Gardner, and Chris Tchou.

2

Reconciling theory with the realities of production
Michael Conelly, Lighting Supervisor, Rhythm and Hues

Michael Conelly is a Senior Lighting Supervisor for Rhythm and Hues in the USA. He
creates new toolsets for lighters, supervise senior technical directors and manages
productions. His recent work has been seen in "Scooby Doo" and he is currently
working on "Cat in the Hat" and "X-Men 2".

State of the Art in the Nordic Special Effects Industry address
Viktor Björk, Co-founder of Swiss AB

Viktor Björk has been involved in the Visual Effects-industry in Sweden for over seven
years. As of today he works as CEO at the newly founded company Swiss that has
recently finished character animation and compositing of a new Moby promo for the
track 'In This World'. Viktor Björk will give an overview of the status of the Special
Effects-industry in the Nordic region.

The King is Dead, Long live the King - The new emerging Production Pipeline
Peter Zetterberg, Founder of UDS

Peter Zetterberg is the founder of UDS. A company that has produced games for many
platforms such as the PS, PS2, PC etc. Peter will discuss the production pipeline and
how the Special FX community and the Gaming community are merging closer
together.

Distribution of Film Digitally - The HUB
Mats Erixon, Advanced Media Technology Lab, KTH

Mats Erixon is involved in building up the digital HUB for distribution of film content
to digital cinemas across Sweden. He has a deep interest in uncompressed distribution
of moving images and over 30 years experience in the film industry. Mats Erixon,
Advanced Media Technology Lab,

Global Illumination Rendering - the Arnold way
Marcos Fajardo, Spain

Marcos is the creator of the Arnold Global Illumination rendering package. Recently, he
has been working on some shots for the movie The Core which involved rendering 18
million bubbles with inter-reflections, shadows and extreme motion blur.

The future of Mobile Graphics and Rendering
Jani Vaarala, Research Scientist, Nokia Mobile Phones

Jani Vaarala is a research scientist at Nokia Mobile Phones in Finland. He is currently
working on implementation of mobile graphics architectures for rendering and
augmented reality.

3

Implementation of a Dynamic Image-Based Rendering System
Niklas Bakos1, Claes Järvman2 and Mark Ollila3

Norrköping Visualization and Interaction Studio
Linköping University

Abstract
Work in dynamic image based rendering has been presented by Kanade et al. [4] and Matusik et al. [5]
previously. We present an alternative implementation that allows us to have a very inexpensive process of
creating dynamic image-based renderings of digitally recorded photo realistic, real-life objects. Together
with computer vision algorithms, the image-based objects are visualized using the Relief Texture
Mapping algorithm presented by Oliveira et al [6]. As the relief engine requires depth information for all
Texels representing the recorded object in an arbitrary view, a recording solution making depth extraction
possible is required. Our eyes use binocular vision to produce disparities in depth, which also is the most
effortless technique of producing stereovision. By using two digital video cameras, the dynamic object is
recorded in stereo in different views to cover its whole volume. As the depth information from all views
are generated, the different views from the image-based object are textured on a pre-defined bounding
box and relief textured into a three dimensional representation by applying the known depth disparities.

1 System Prototype
The first step in the process is to record a dynamic object in stereo,
which gives us the photo textures for the image-based object and the
possibility to derive depth information from the stereo image-pairs.
To be able to use the recorded video as a texture when rendering, it is
important that one camera (i.e. the left) is installed parallel to the
normal of the sides of the bounding box surrounding the object, and
the other (i.e. the right) next to, in a circular path so that both
cameras have the same radius to the object. As we are interested in
the recorded object only, the image background should be as simple
as possible. By using a blue or green screen, the object can easily be
extracted later on. A blue screen can easily be installed by using
cheap blue matte fabric on the walls. Depending on the amount of
cameras available, the dynamic object is recorded in stereo in up to
five views (front, back, left, right and top). In this project, only two
cameras were used, giving us only one view when filming the
dynamic object. As the recording is finished, the video streams are
sent via firewire to a PC, where the resolution is rescaled to 256x256
pixels, the background is removed and the depth maps are calculated,
enhanced, cropped and sent to the relief rendering engine. (Pipeline
in figure 1).

2 Depth approximation
When the stereo video have been recorded and streamed to the computer client, our algorithms start
processing the data to create useful video frames and information about the scene. As the objects are
extracted from the original video, the process of estimating the depth of the scene is initiated. When the
approximated depth map for a certain frame is generated, it is used together with the object image to
render unique views, using the relief-rendering engine. This session starts with a brief overview of the
depth algorithm, followed by complete descriptions about all the steps from using original video streams
to sending a finalized depth map and video frame to the rendering process of virtually viewing the object
from an arbitrary view.

1 nikba@itn.liu.se
2 claja622@student.liu.se
3 marol@itn.liu.se

Real Scene + BlueScreen
(Sony Digital Video Cameras)

Recorded stereo video
(DV-PAL 720x576)

Relief Texturing
(OpenGL)

Virtual Camera Video stream with
depth maps

Bounding Box
(1-6 polygons)

Relief Textured
Bounding box

Unique virtual
viewpoints

Recorded stereo video
(DV-PAL 720x576)

Removing background,
creating silhouettes

(256x256)

Correlation-Based
Stereo Depth Maps

(256x256)

Error removal, depth
map smoothing

Figure 1: Prototype overview. A
schematic view over the different
stages required in the process of
rendering new views of an image-
based object.

5

2.1 Algorithm overview
A summary of the algorithm pipeline is shown in figure 2.
From the N stereo video cameras, we have 2N video streams.
From the left camera (which sees the scene straight from the
front), the object-only video frames and silhouette will be
created. As the scene is recorded with a blue screen
background, both the silhouette and the object extraction are
created rapidly. Simultaneously, both the left and the right
video streams are segmented into frames and sent into our
filter-based depth algorithm. At this stage, the frames can be
downsized for optimization purpose, which will result in faster
depth map approximations with lower quality. For each frame,
each pixel from the left image is analyzed and compared with
a certain area of the right image to find the pixel
correspondence. With this known, the depth could be
estimated for each frame. Since this mathematical method
outputs a relatively distorted image, it needs to be retouched to
fit the relief engine better. First, the depth map is sent to an
algorithm for detecting edges, where an edge could be thought
of as noise, distorting the depth map, and removed by pasting the intensity value of neighboring pixels.
With the errors removed, the depth approximation of the image-based object will contain less noise and
unnecessary holes, but disparities between contiguous object regions might be rendered with too sharp
intensity variances, which will exaggerate the displacement of some object parts when applying the relief
mapping. To solve this, the depth map is smoothened and finally, the silhouette is added to remove
approximated background depth elements.

2.1.1 Filter-based stereo correspondence
The method implemented in our system prototype uses filter-based stereo correspondence developed by
Jones and Malik [2], a technique using a set of linear filters tuned in different rotations and scales to
enhance the features of the input image-pair for better correlation opportunities. A benefit of using spatial
filters is that they preserve the information between the edges inside an image. The bank of filters is
convolved with the left and the right image to create a response vector at a given point that characterizes
the local structure of the image patch. Using this information, the correspondence problem can be solved
by searching for pixels in the other image where the response vector is maximally similar. The reason for
using a set of linear filters at various orientations is to obtain rich and highly specific image features
suitable for stereo matching, with fewer chances of running into false matches. The set of filters Fi (fig. 3)
used to create the depth map consists of rotated copies of filters generated by

)()(),(00, vGuGyxG nn ³=q ; qq sincos yxu -= , qq cossin yxv -=

where n=1, 2, 3 and nG is the nth derivative of the Gaussian function, defined as

2
2

0

2

2

1)(
z

exG
-

=
ps

 ;
s
x

z = 01
1)(zGxG
s

-= ;

0
2

22)1(1)(GzxG -=
s

 ; 0
3

33)3(1)(GzzxG --=
s

.

The matching process was performed using different filter sizes to find the optimized filter settings,
resulting in an 11x11-sized matrix with a standard deviation value s of 2. The number of filters used
depends on the required output quality. Using all filters would result in a high detailed depth
approximation, but the processing time would be immense. Testing different filters to optimize speed and
output quality, the resulting filters consisted of nine linear filters at equal scale, with some of them
rotated, as shown below.

Video stream

Filter-based stereo
scene depth map

Object silhouette

Image-based object

Error Removal

Smoothing

Object depth map

Relief rendering

(Left camera)
Video stream
(Right camera)

Figure 2.

6

The disadvantage of using one scaling level only is the loss of accuracy when matching pixels near object
boundaries or at occluded regions. But again, using more scales, the rendering time will increase
proportionally. To search for pixel correspondence, an iterative process is created, scanning the left image
horizontally, pixel by pixel, left to right, and seeks for similar intensity values inside a defined region
surrounding the current pixel location. For each row, the set of linear filters are convolved with a region
of the right image determined by its width and the height of the filter size, to create a response vector that
characterizes the features of this row. At this row, a new response vector for each pixel is created by
convolving the filter bank with a filter-sized region from the left image. How the convolved response
vectors for a whole image would look like is illustrated in figure 4. (Note that the response vectors are
only representing a small region of the image for each iteration of the correspondence process).

rightiv , = Right image (r) * Fi = [] []ää --
' '

','','
x y

i yyxxFyxr

leftiv , = Left image (l) * Fi = [] []ää --
' '

','','
x y

i yyxxFyxl

The convolving returns only those parts of the convolution that are computed without the zero-padded
edges, which minimizes the response vectors and optimizes the whole process of finding the
correspondence. As soon as the images are convolved with the filters, the matching process for finding
the correlation is initiated. To restrict the searching area, a one-dimensional region needs to be
determined. By using a small region, the corresponding pixels may not be found, as the equivalent pixel
probably is located outside this region. On the other hand, if the region is too large, a pixel not related to
that area might be thought of as correct. When the region is established, this is used to crop the response
vector vi,right created from the right image. When the response vectors are defined at a given point, they
need to be compared in some way to be able to extract some information about how the pixels are related.
By calculating the length of their vector difference e, which will equal zero if the response vectors are
identical, this can be used to solve the correspondence problem. This is done by taking the sum of the
squared differences (SSD) of the response vectors,

()
ä

-
=

i

vv
e rightilefti

2
,,

where i is the amount of filters used and the pixel position (defined as k)
containing the value closest to zero is saved. When the correspondence
has been established, the disparity has to be defined to be able to create a
depth map. For each pixel in the left image, we know the position of the
matching pixel in the right image. To create a connection between this
data, the depth value),(jid for each pixel could be estimated by

where k is the horizontal position of the corresponding pixel and i is the current pixel position. The depth
map (fig. 5) is approximated with intensity levels depending on the size of the constant defining the size

Figure 3: Spatial filter bank.
Image plots of the nine filters
generated by copies of rotations of
Gaussians.

Figure 4: Response vectors. An
illustration of how the response
vectors will look like after being
convolved with different filters. In
reality, a response vector never
represents a whole image.

matching region

i k ikjid -=),(

Figure 5.

7

of the matching region and if a corresponding pixel is found to the left of current pixel i, the intensity is
set to a value pointed to white, and vice versa, depending on the rotation of the image-pair.

2.1.2 Locating errors and noise
The primary depth map image generated by the filter-based stereo algorithm is a general approximation of
the depth information regarding the objects in the video frames. As this algorithm has no knowledge in
form of estimating the structure of object connectivity or how the scene is designed, unpredicted outputs
might appear. They can be found by convolving the image with an edge detection filter [7]. The operator
best suited for our needs turned out to be the Robinson filters h1 and h3.

With the vertical and the horizontal Robinson filters defined, they are convolved with the depth map to
find obvious edges in it, using the convolution formula for two dimensions. We now have two temporary
depth map images, with the edges defined vertically and horizontally, shown in figure 6. From this, the
edge magnitude of each pixel could be derived as

),(),(),(),(),(2
2

2
121 yxdyxdyxdyxdyxd +=+=

The result is shown in figure 7a and gives a better analysis of how the errors are structured. To be able to
use this information cleverly, the pixels convolved and defined as positions of eventual errors need to be
saved. Also, these pixels need to be easily accessed. By using a threshold value, we can decide which of
the convolved ‘edge’-pixels that will belong to the error pixels in the original depth map, shown in figure
7b. With the positions of the erroneous pixels known, they are replaced by neighboring pixel values,
which creates a smoother depth map, although not mathematically perfect, since it is only assumed that
these pixels have the same properties as the invalid and replaced ones. On the other hand, the noiseless
depth maps, shown in figure 8, will generate tremendously enhanced renderings when applied by the
relief engine.

ù
ù
ù

ú

ø

é
é
é

ê

è

-=

111
121
111

1h

ù
ù
ù

ú

ø

é
é
é

ê

è

-
--

-
=

111
121
111

3h

Figure 6.

Figure 7a & b.
Figure 8.

8

2.1.3 Smoothing the depth map
The output from the edge detection process is a
more or less error free depth map, regarding the
hole filling and the depth intensity interpretation.
On the subject of intensity, it can fluctuate
significantly over connected and contiguous
surfaces over the object. As some intensity
values diverges in areas were they actually
would be similar, the solution would be to decrease the higher values and increase the lower to create
more similar intensities over that specific area, in other words, smoothing the image. This might generate
an intensity value incorrect for the true depth of that part of the object, but applying this solution to the
whole image, the displacement would act as an intensity threshold only. The Gauss function is used to
generate a smooth depth map, defined as the well-known Gaussian blur filter [1]. We defined a Gaussian
operator and convolved it with the depth map to obtain the smooth result, seen in figure 9.

2.1.4 Rendering
A fully functional application for the relief rendering of the image-
based object and its depth maps was written in C++ using
OpenGL, created in parallel to this project [3] and modified to
fulfill the criterion of our system prototype. The number of
polygons required for rendering equals the amount of stereo
cameras used. Because of the good depth information
approximated with the filter-based stereo algorithm, the viewing
angle was set to AN45° from the center of the origin of the
textured polygon box, illustrated in figure 10.

3 Results
The resulting application consists of two demos (screenshots
available on the last page):

¶ Static demo (yellow pullover) - Requires two input
textures and with two depth maps, textured on two polygons. From two original views, with 90
degrees separation, new unique views can be created within 180 degrees. The polygons are
mapped with textures of size 256x256 pixels and the frame rate is ~15 frames/sec.

¶ Dynamic demo (pink pullover) - Representing a person walking around. Textured on only one
polygon, which restricts the viewing angle to 90 degrees. The amount of input data required
depends on the frame rate. We used a frame rate of 20 frames/sec, with a video buffer of 40
images and 40 depth maps. The relief engine had no problems with rendering a constantly
updating image buffer and the animated sequence showed no indications of flickering.

References
[1] BOGACHEV, V. 1998. Guassian measures. Mathematical Surveys and Monographs 62.
[2] JONES, D., AND MALIK, J. 1992. ”A computational framework for determining stereo
correspondence from a set of linear spatial features”. In EECV, 395–410.
[3] JÄRVMAN, C., “Static and Dynamic Image-Based Applications using Relief Texture Mapping”,
Linköping University, LITH-ITN-MT-20-SE. May 2002.
[4] KANADE, T., NARAYAN, P., AND RANDER, P. W. 1997. Virtualized reality: Constructing virtual
worlds from real scenes. IEEE Multimedia 4, 1, 34–47.
[5] MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S. J., AND MCMILLAN, L. 2000.
Image-based visual hulls. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, ACM Press/Addison-Wesley Publishing Co., 369–374.
[6] OLIVEIRA, M. M., BISHOP, G., AND MCALLISTER, D. 2000. Relief texture mapping. In
Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 359–368.
[7] SONKA, M., HLAVAC, V., AND BOYLE, R. 1996. Image Processing, Analysis, and Machine
Vision, second ed. Brooks/Cole Publishing Company.

0

90

180

o

o

o

N=1

N=2

Stereo camera

Stereo camera

Viewing angles

polygon

polygon

-45 +45
oo

-45
o

+45
o

Figure 9.

Figure 10.

9

10

SIGRAD (2002)
Mark Ollila (Editors)

Snow Accumulation in Real-Time

Håkan Haglund,1 Mattias Andersson2 and Anders Hast3

University of Gävle
Department of mathematics, nature and computer science

1na99hhd@student.hig.se
2 mattias.andersson@gavle.to

3 Creative Media Lab
aht@hig.se

Abstract
Whenever real-time snowfall is animated in computer games, no snow accumulation is simulated, as far as we
know. Instead, so-called zero thickness is used, which means that the blanket of snow does not grow when the
snowflakes reach the ground. In this paper we present a method for simulation of snow accumulation, which
simulates the different stages, starting with a snow free environment and ending with a totally snow covered scene,
all in real-time. The main focus is not on the physical properties of snow but on speed and visual result.

1. Introduction

Snow is one of the most complex natural phenomenon. It has
the ability to transform a rocky landscape to a soft cotton
like blanket in only a few hours. One of the most fascinating
properties of snow, is that it is not constant but changes form
and appearance from day to day, depending on factors like
wind and temperature.

To reproduce the snows properties in computer graph-
ics is an challenging task. There exist a few fine examples
where realistic snow environments has been created, but so
far no one has done a realistic snowfall with accumulation in
real-time. When snow occur in computer games it has zero-
thickness. In this paper we present a method for simulat-
ing snow accumulation. The focus is neither on the physical
properties of snow, nor on how the snow falls through the
sky. Instead it is on visual result and the possibility of using
the proposed algorithm in real-time.

2. Previous Work

Law et al.7 describes a method for simulating how snow ac-
cumulates over alp terrain. The work is concentrated on vi-
sualizing a realistic blanket of snow from long distance.

Summers et al.10 deals with simulation of how sand, mud
and snow deforms. To be able to create a deformable surface,

the surface is divided into rectangular voxels with different
height values. When an object touches the surface, the sur-
face is deformed and the material is moved to surrounding
voxels.

Fearings3 algorithm generates very nice and realistic
snow. He divides his algorithm into two parts and together
they generate a thick blanket of snow on the ground. The
first part is the accumulation model. It decides how much
snow every surface will get considering flake flutter, the in-
fluence of wind and snows ability to get stuck on an uneven
vertical surface. The second part of the algorithm handles
the stability of the fallen snow. It moves snow from instable
places to stable.

Of the methods mentioned above, Fearings is the one pro-
ducing the most realistic blanket of snow. However the pro-
duced images has taken hours to render. Furthermore, none
of the mentioned methods are suitable for real-time render-
ing.

3. The Model

The main idea is to use a two dimensional matrix in order
to store information about snow depth over certain areas
where snow might fall. How detailed the blanket of snow
would be is determined by the size of the matrix and the size
of the accumulation area. It would be preferable to have a

c© SIGRAD 2002.

11

Haglund et al / Snow Accumulation in Real-time

matrix where each cell is in the size of a single snowflake.
This would yield a very nice and detailed rendering of the
snow blanket. However, since a real-time simulation is the
goal, each cell must correspond to a much larger area. Thus,
we have a trade off between speed and visual appearance.
Nonetheless, this is no big problem and the rendering turns
out to be visually plausible.

The height information was the used for making a trian-
gulation over the area in question. This was then rendered as
the a cover of snow. In the beginning of the snow fall when
just a little amount of snow have reached the ground, the
snow cover is more or less transparent. Therefore, blending
was used in order to imitate this impression.

The snow fall itself was animated by using a particle sys-
tem, where each particle correspond to a single snowflake.
During the snowfall, the individual flakes will finally reach
the snow cover and then the corresponding cell in the matrix
is updated. Furthermore, the particle animating the flake will
itself be destroyed.

Each snowflake was modeled by using billboards11. They
are two dimensional images which always are oriented to-
wards the camera. A polygon model of snowflakes is simply
too expensive to use and billboards turn out to give a con-
vincing impression of real snow fall.

3.1. Triangulation

Triangulation of scattered points can be done in many ways9.
In this case the points are uniformly distributed and the tri-
angulation is easily implemented. When the matrix is tra-
versed, two triangles is created using the height information
in four neighboring cells in the matrix. As shown in figure 1
the triangulation could be done in two different ways.

Figure 1: (a) Current points in the matrix. (b,c) Possible
triangulations.

The natural thing would be to choose one orientation and
use it for the triangulation of the whole matrix as shown in
figure 2(a). However, it turns out that the way the triangu-
lation is done affects the resulting image negatively, since
vertical lines will appear in the image as shown in figure
2(b).

Figure 2: (a) A triangulation pattern, where all triangles are
oriented the same way. (b) Diagonal lines are visible.

Figure 3: (a) Triangulation pattern, where every other trian-
gle is oriented in the opposite direction. (b) A zigzag pattern
becomes visible.

Figure 4: (a) A triangulation pattern which seams to be
more random. (b) No repeating pattern shows in greater ex-
tent.

Another triangulation scheme was used in order to get rid
of the visible lines and it is shown in figure 3(a). This re-
sulted in a zigzag pattern instead, which is visible in fig-
ure 3(b). Therefore a more random triangulation was made,
similar to the way Cook1 handles textures, to avoid repeat-
ing patterns. The first two triangle pairs on a row was ori-
ented one way and the next two oriented the other way. Fur-
thermore, every other row was displaced to get irregularities
vertically, as shown in figure 4(a). Zigzag patterns can come
up but only occasionally and only in smaller sizes, which
can be seen in figure 4(b). These patterns could probably be
by dimished using some stochastic scheme. Moreover, this
would probably cost more computationally and since our

c© SIGRAD 2002.

12

Haglund et al / Snow Accumulation in Real-time

goal was to implement a real-time simulation, the third tri-
angulation pattern was used in our model.

3.2. Shading

Since the triangles are rather large due to the speed crite-
ria, the triangles must be shaded using Gouraud4 shading or
even Phong8 shading. Flat shading would make the blanket
of snow look very angular and sharp. Since OpenGL was
used, Gouraud shading was chosen for the animation.

To be able to do proper shading, each normal for every
points in the triangulation had to be computed. This could
be done in several ways. Either to compute the normalized
average of all triangles sharing that vertex, as proposed by
Gouraud4. Another and eventually faster method would be
to make an approximation. Since speed is crucial for a real-
time rendering, we chose to make a fast approximation.

Every point has got four closest neighboring points in the
four main directions. Hence, it is possible to obtain four gra-
dient vectors. The vector to the right and the vector down-
wards was used to obtain one normal by computing the cross
product. The vector to the left and upwards was used in order
to compute a second normal. The average of these normals
was then used as the normal of that particular vertex. Two
special cases had to be treated differently. At the corners and
at the edges, there is not four neighboring points available.
Then, only one normal was computed from two gradient vec-
tors, to be used in the shading computation.

It could be tempting to compute only one normal from
two neighboring points for the whole triangulation, since it
will be even faster. For flat surfaces the difference was ac-
tually very small. However, when the difference in height
was larger, the result was not acceptable. Especially surfaces
with sharp edges as the ridge on the roof, like on the left
house in figure 10, was not shaded in a convincing way. The
normals will point straight upwards on the ridge with the
more advanced method. This made the snow look very soft
over the ridge. However, with the method only considering
three points, the normals at the ridge will point in the same
direction as the other normals on one roof side. This gives
a peculiar shading effect where the roof ridge seems to be
skewed towards one roof side.

3.3. Blending

Whenever a snowflake intersects the surface the closest
height value is increased. As explained earlier, this will af-
fect a much bigger area of the snow surface than the size of
a small snowflake, due to the trade off between speed and
accuracy. The result is that a large area will go from the state
of having no snow to the state of having snow, after the first
snowflake reaches that area. This will clearly not yield a con-
vincing simulation. Because the surface should not go from
no snow at all, to suddenly be a solid white surface, the snow

had to gradually tone in. For this purpose blending was used.
How transparent the snow should be was decided in every
point by the snow depth in that point. When the depth was
zero the snow was totally transparent. How thick the snow
should be in order to be completely white with no trans-
parency, was decided differently for each type of material
that the snow where about to cover.

The blending factor was decided in every point of the ma-
trix and linearly interpolated over the triangles. Thus, every
corner of the triangles could have different blending factors.
One triangle could be totally transparent in one corner and
white in another. Figure 7 and 8 shows how blending is used
to give the impression of that the surface starts to having a
thin layer of snow. After all, snow is not really opaque. In-
stead, the snow cover will actually be transparent when it is
rather thin. After some more snowing, the blending will turn
the triangles completely white. After that the snow cover has
no blending and the snow cover continues to increase while
the triangles are raised by using the stored height values.

3.4. At the Edge of the Snow Cover

The edges of the snow cover had to be treated differently.
This is clearly shown in 6. In this case, not only the surface
of the snow cover had to be rendered, but also the sides of
the snow had to be triangulated and rendered.

Figure 5: (a) Corner with no maximum value for the snow
depth. (b) Corner with maximum value along the edges.

The sides were triangulated from the edge of the snow sur-
face and down to the surface beneath. Because the sides are
vertical, the normal at the ground was set to be perpendicular
from the sides and the normal at the surface was set equal to
the normal for that particular point in the matrix. The shad-
ing would make an illusion of soft edges, due to the linear
interpolation of the light intensity. This illusion only worked
satisfactory for thin snow. However, when the snow blanket
became large as in figure 5(a) the corner looks very sharp
and edgy. Therefore a maximum value for the snow depth
was set at the edges. Hence, the edges could not grow as
much as the interior of the area. This problem is handled by
the stability criterion by Fearing. Anyway, in the real world,
snow will fall of the sharp edges, and the snow will not be

c© SIGRAD 2002.

13

Haglund et al / Snow Accumulation in Real-time

as high on the edge as in the interior. The result, using max-
imum height is softer edges, even with rather thick snow as
shown in figure 5(b).

4. The Simulation

In the animation the blanket of snow was divided into four
sections and thus four matrices. One on each house, one on
the road and one on the pavement. At the edge on the road up
on the pavement a maximum value was set for the thickness
of the snow in order to make th edge softer as explained
previously. When the snow on the road eventually reached
this value, the maximum value was removed and the two
blankets was connected to each other. This gave a smooth
and soft blanket of snow over the hard and sharp pavement
edge. Moreover, snow tend to get a bit thicker close to a wall.
In order to illustrate this, the value of the snow height was
simply increased at the corresponding cells.

Figure 6 - 10 are a few snapshots from simulation. The
textures in the model was borrowed from Hill 6.

5. Discussion

There are several possible improvements that could be made
to the proposed model. Nonetheless, we have kept things
simple with the real-time criterion in mind. The rendering
of snow is done in such way that the blue part of the RGB
color is a bit stronger as it is in nature. However, the snow
cover will be rather smooth due to the linear interpolation
used in Gouraud shading. A more sofisticated shading model
like the Cook Torrance2 model would probably yield a much
more convincing snow like appearance of the snow cover.
Nevertheless, it would take much more time to render. Other
possible improvements are mentioned in the Future Work
section.

As computers becomes faster, it should be possible to use
a matrix where each cell corresponds to a smaller area than
used in our simulation. Hence, the snow cover could be more
detailed and thus yielding a more convincing snow cover. A
drawback with using large areas for each cell, is that foot
prints could not be done in the snow. However, if smaller
areas are used, this is possible. Again, the trade off between
speed and visual appearance has to be taken into account for
each case.

Even though the normal computation works quite well, it
is more or less an good estimation of the normal. A better
way to compute the normal is of course by taking all the
polygons into account that share the vertex in question. An-
other way to go about would be to use a spline filter to re-
construct the normal as is done by Hast et al.5 Since no cross
product is necessary in their approach, this could turn out
to be a feasible solution. At least if a reconstruction filter of
lower degree is used.

6. Conclusions

A new method for snow accumulation was proposed, where
speed is crucial without sacrificing visual appearance. A
heigh value matrix was used to store current snow depth.
These height values where used to triangulate the area, and
the triangles were rendered with Gouraud shading which is
fast. The combination of blending and triangulation gives the
impression of snow slowly accumulating on a surface. First
the snow will give the impression of being transparent since
the snow cover is thin. After a while the snow cover becomes
opaque and it will grow during the simulation. The instabil-
ity of snow at edges was modeled by using maximum values
for these places, giving the impression of smooth snow cov-
ered edges.

The model should be easy to implement in real-time 3D
games as long as the ground is not cluttered with small ob-
jects that must have their own height value matrix.

6.1. Future Work

One important feature that should be implemented in a real-
istic simulation, is the influence of wind. This is not an easy
thing to implement since it will affect stability and also the
edges. Furthermore, snow that is affected by wind will accu-
mulate faster near walls etc. An efficient model handling all
these cases should be possible to derive.

Another interesting possibility is to use bump-mapping11.
It is probably not feasible to let each bump represent an
snowflake that reaches a specific area. However, precom-
puted bump maps can be used in order to enhance the visual
appearance of the shaded triangles. Which shading model
would be preferable for snow should also be ascertained.

References

1. R. L. Cook. Stochastic sampling in computer graphics.
In ACM Transactions on Graphics, vol 5, pp. 51 - 72,
1986.

2. R. L. Cook and K. E. Torrance. A Reflectance Model
for Computer Graphics. In Computer Graphics, 15(3),
pp. 307-316, 1982.

3. P. Fearing. Computer modeling of fallen snow. In
Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 37 -
46, 2000.

4. H. Gouraud. Continuous Shading of Curved Surfaces,
IEEE transactions on computers vol. c-20, No 6, June
1971.

5. A. Hast, T. Barrera, E. Bengtsson. Reconstruction Fil-
ters for Bump Mapping WSCG’02, Poster, pp. 9-12,
2002.

6. P. Hill. http://www.planetunreal.com/hillgiant, 2002-
05-10.

c© SIGRAD 2002.

14

Haglund et al / Snow Accumulation in Real-time

7. S. Law, B. M. Oh and J. Zalesky.
The synthesis of snow covered terrains.
http://www.graphics.lcs.mit.edu/boh/Projects/snowGen-
FinalWrite.html, 1996.

8. B. T. Phong, Illumination for Computer Generated Pic-
tures Communications of the ACM, Vol. 18, No 6, June
1975.

9. J. O’Rourke. Computational Geometry in C Second
Edition. Cambridge University Press, 1998.

10. R. W. Summer, J. F. O’brien and J. K. Hodgins. Ani-
mating sand, mud and snow. In Proceedings of Graph-
ics Interface, pp. 125- 132, 1998.

11. A. Watt. 3D Computer Graphics Third Edition.
Addison-Wesley, 2000.

Figure 6: The model were it shall snow.

Figure 7: The model after about 5 minutes of snowing.

Figure 8: The model after about 12 minutes of snowing

Figure 9: The model after about 25 minutes of snowing

Figure 10: The model after about 50 minutes of snowing.

c© SIGRAD 2002.

15

SIGRAD (2002)
Mark Ollila (Editors)

Animation of Water Droplet Flow on Structured Surfaces

Malin Jonsson

University of Gävle,
Kungsbäcksvägen 47, S-801 76 Gävle, Sweden.

na99mjn@student.hig.se

Anders Hast

Creative Media Lab
University of Gävle,

Kungsbäcksvägen 47, S-801 76 Gävle, Sweden.
aht@hig.se

Abstract
Several methods for rendering and modeling water have been made and a few of them address the natural phe-
nomenon of water droplets flow. As far as we know, none of those methods have used bump maps in order to
simulate the flow of a droplet on structured surfaces. The normals of the bump map, that describes the geometry
of the micro structured surface, are used in the flow computation of the droplets. As a result, the water droplets
will meander down on the surface as if it has a micro structure. Existing models were not suitable for this purpose.
Therefore, a new model is proposed in this paper. The droplet will also leave a trail, which is produced by chang-
ing the background texture on the surface. This method will not present a physically correct simulation of water
droplets flow on a structured surface. However, it will produce a physically plausible real-time animation.

1. Introduction

There is an endless ever-changing kingdom of phenomenon
provided by the nature that is possible to model, animate
and render. These phenomenons offers, with their complex-
ity and richness, a great challenge for every computer artist.
Several natural phenomenons, like fire, smoke, snow, clouds,
waves, trees and plants, have with different success been
modeled in computer graphics through the years. Several
different methods that address the problems of rendering and
modeling water and other similar fluids have been developed
since the 1980t’s. Most of them concern animation of mo-
tion in water in forms of waves and other connected fluids
and surfaces, i.e. whole bodies of water. For example have
oceans waves 10 5 13 and waves approaching and braking on
a beach 12 been modeled. Realistic and practical animation
of liquids 2 3 has also been made. Only a few methods that
have been proposed during the 1990’s address the problems
of the natural phenomenon of water droplets. Methods for
simulating the flow of liquids were proposed to render a tear
falling down a cheek 4 and changes in appearances due to

weathering 1. Different methods for animation of the flow
of water droplets running down a curved surface with 7 or
without obstacles on it 8 have also been proposed. Different
ways to create droplets have been used 6, for example meta-
balls that are affected by the gravitation were used as one
solution 14. It is quite difficult to simulate the flow of water
droplets for the purpose of high-precision engineering, due
to the complicated process that the flow and the shape of the
droplet represent. This process has many unknown factors
that plays a big role. The shape and the motion of a water
droplet on a surface depend on the gravity force that acts
on the droplet, the respective surface tensions of the surface
and the water droplet, and the inter-facial tension between
them6. Shape and motion is also under the sway of other
things like air resistance and evaporation. These effecting
factors can be divided into two different groups. As an exam-
ple, gravity and wind can be placed in the group of external
forces. Factors like surface tension and inter-facial tension
belongs to the group of internal forces. To be able to create
an accurate physical simulation of the phenomenon of water
droplets, a tremendous amount of forces and factors would

c© SIGRAD 2002.

17

Jonsson and Hast / Droplet Flow

have to be taken into account. As mentioned above many of
the dominant factors for water droplets are still unknown not
only within computer graphics but also within physics. To
the long list of effecting factors these ones can be added:

• Motion of the water within the droplet.
• The capillarity of the surface.
• The interaction forces between each point on the surface

of the droplet and the solid surface.

1.1. Main Contribution

Trying to take all of these different factors into account
would create an accuracy that goes far beyond what is pos-
sible to do in the scope of this paper. A method is proposed
for generating an animation of the flow of water droplets on
a structured surface. Instead of creating a structured surface
with a huge amount of polygons, a bump mapped9 flat sur-
face is used. Furthermore, the bump normal is used to control
the motion of the droplets. To our knowledge, this has never
been investigated before. Hence, the droplet will meander
down the surface and move as if it actually was flowing on
a structured surface. However, as mentioned earlier, all the
different factors which have an influence on water droplets
and their flow, have not been taken to account in the method.
The aim of this paper is not to make a simulation that is
physically correct at every point, but to make a plausible an-
imation of droplets meandering down on a bump mapped
surface.

2. Previous Research

There are at least four published papers about droplets and
their flow that address similar problems as this paper.

2.1. Animation of Water Droplets on a Glass Plate

Kaneda et al6 propose a method for realistic animation of
water droplets and their streams on a glass plate. The main
purpose is to generate a realistic animation, taken into ac-
count gravity of water droplets, inter-facial tensions and
merging of water. Those are the dominant parameters of dy-
namical systems. A high-speed rendering is also proposed,
which takes reflection and refraction of light into account.
Their method will reduce the calculation cost of animations
that contains scenes seen through a rainy windshield or win-
dowpane.

The route that the water a droplet takes as it meanders
down on a glass plate is determined by impurities on the
surface and inside the droplet itself. To be able to animate
water droplets and their stream a discrete surface model is
developed and the surface of the glass plate is divided into a
mesh. Figure 1 shows a lattice that is used on a glass plate.
To every lattice point on the glass plate an affinity, 0-1, for
water is assigned in advance.

A water droplet begins to meander down a surface when

Figure 1: A discrete surface model, with the droplet at posi-
tion (i,j)

the mass exceeds a static critical weight. To simulate the me-
andering the droplet at point (i, j) can move to one of three
different points on the lattice, as shown in Figure 1. If some
water exists on any of the three points, the droplet will move
to the lattice point with the direction (i, j+1) has the highest
priority.In case there is no water already existing on the dif-
ferent points, a value depending on for example the angle of
inclination is used as a decision parameter. They claim that
the speed of the droplet is not depending on the mass of the
droplet. Instead it depends on the wetness and the angle of
inclination of the glass plate. When two droplets collides and
merges the speed of the new droplet is calculated by using
equation law of conservation of the momentum. A meander-
ing droplet that has no water ahead will decelerate and when
the dynamic critical weight is larger than the mass of the
droplet, it will finally stop.

2.2. Animation of Water Droplet Flow on Curved
Surfaces

The previously proposed method is not able to simulate a
water droplet on a curved surface, which is an important and
necessary technique for drive simulators. Therefore an ex-
tended method for generating realistic animation of water
droplets and their streams on curved surfaces is proposed by
Kaneda et al 8. The dynamics, such as gravity and inter-facial
tension that acts on water droplets is also taken into account
in this method. Two different rendering methods that takes
refraction and reflection into account, is also proposed. One
method pursues photo-reality with help of a high quality ren-
dering. The other proposes a fast rendering method that uses
a simple model of water droplets.

A discrete surface model is used to make it possible to
simulate the flow of droplets running down the curved sur-
face. The curved surface is divided into small quadrilateral
meshes and may be specified by Beziér patches. It is con-
verted to a discrete model, using a quadrilateral mesh with a
normal vector at the center. Affinity contributes to the mean-
der of the streams and to the wetting phenomenon. The de-
gree of affinity for water is assigned to each mesh in advance.

c© SIGRAD 2002.

18

Jonsson and Hast / Droplet Flow

Figure 2: The eight directions of movement

This value describes the lack of uniformity on a surface, for
example a glass plate. The uniformity can be impurities and
small scratches.

The droplet is affected by gravity and wind. When these
forces exceed a static critical force, the water droplet starts
to meander down the surface. The critical force originates
from the inter-facial tension between water and a surface
and is the resistance that prevents the droplet from moving.
The direction of movement is classified into eight different
directions as shown in figure 2. The probabilities for each
direction is calculated based on three different factors. The
first one is the direction of movement under circumstances
in which it obeys Newton’s law of motion. The second factor
is the degree of affinity for water on the meshes next to the
droplet. The last one is the wet or dry condition of the eight
neighboring meshes. The water droplet is moved to the next
mesh when the direction of movement is determined and if
the accumulated time exceeds a frame time, the droplet is
moved to the next mesh.

A solution to the wetting phenomenon that appears when
a droplet meander down a surface, as well as the problem
with two droplets merging, is also addressed. Two different
methods for rendering water droplets are proposed. The fast
version use spheres. The more sophisticated use meta-balls.

2.3. Simulating the flow of liquid droplets

Fournier et al 4 present a model that is oriented towards an
efficient and visually satisfying simulation. It focuses on the
simulation of large liquid droplets as they travel down a sur-
face. The aim is to simulate the visual contour and shape of
water droplets when it is affected by the underlying surface
and other force fields.

The surface is defined as a mesh of triangles. At the be-
ginning of the simulation a "neighborhood" graph is built.
In this graph each triangle is linked to the triangles adja-
cent to itself. Through the entire simulation each triangle
knows which droplets are over it as well as every droplet
know which triangle it lies on at the moment. Adhesion and
roughness is considered in this method. The adhesion is a
force that works along the surface normal. A droplet will fall
from a leaning surface if the adhesion force of the droplet

becomes smaller than the component of the droplets accel-
eration force that is normal to the surface. The roughness of
the surface is assumed to only reduce the tangential force.

The motion of droplets is generated by a particle sys-
tem, where droplet is represented by one particle each. This
representation offers many advantages for simulations that
have a wide spectrum of behaviors, because of the general-
ity and flexibility such systems can offer. A droplet might
travel over several triangles between two time steps. To en-
sure that the droplet is properly affected by the deformations
on the surface it has traversed, the motion of the droplet
over each individual triangle is computed. When a droplet
travel from one triangle to another, the neighborhood graph
is used to quickly identify which triangle the droplet moves
to. The two forces gravity, and friction, which affects the
water droplets, are assumed to be constant over a triangle.

2.4. Animation of Water Droplets Moving Down a
Surface

Kaneda at al7 propose a method for generating an animation
with water droplets that meander down a transparent surface.
A large amount of droplets are used to generate a realis-
tic and useful animation for drive simulators. There method
employs a particle system in which water droplets travel on
a discrete surface model. The proposed method involves ex-
tensions of previously discussed papers68. One of the main
achievements is modeling of obstacles that act against water
droplets, like the wiper on the windshield.

The curved surface is divided into small quadrilateral
meshes and the droplets move from one mesh point to an-
other under the influence of external forces and obstacles.
The degree of affinity for water is assigned in advance to
each mesh. Affinity describes the lack of uniformity on an
object surface due to such things as small scratches and other
impurities. The degree of affinity in most cases is assigned
randomly based on a normal distribution in order render the
droplets meandering and wetting phenomenon.

By taking into account some dominant factors the direc-
tion of movement can be determined. The dominant factors
that affects the meandering of water droplets that is men-
tioned the paper is:

1. Direction of movement under circumstances in which it
obeys Newton’s law of motion.

2. Degree of affinity for water of the neighboring meshes.
3. The wet or dry condition of the neighboring meshes
4. Existence of obstacles on the neighboring meshes

A stochastic approach is taken for determining the direc-
tion of movement, because the route of the stream cannot
be calculated deterministically. This is due to the many un-
known factors that play a role. This means in other words
that the direction of movement is classified into eight differ-
ent directions, as done in an earlier mentioned paper 8. The

c© SIGRAD 2002.

19

Jonsson and Hast / Droplet Flow

probabilities of movement for every direction is calculated
with the four dominate factors, described above, taken into
account.

The method for rendering water droplets which is pro-
posed in this paper is based on a method that is published
by Kaneda et al 6. The method uses environment mapping to
generate realistic images of water droplets. Spheres are used
to approximate the water droplets. The contact angle of the
water on the surface is taken into account. This method has
been extended further in this paper. Such factors as defocus
and blur effects are added to generate more realistic images.

3. Droplet Flow Controlled by Bump maps

The different factors that have an affect on the flow of the
water droplet are almost countless. Hence, a correct anima-
tion is more or less impossible to make. The goal of this pa-
per is therefore to make a physically plausible animation that
will produce a natural looking animation of the flow. A real
wetting effect which will affect other droplets was not be im-
plemented. Neither was a method for merging of droplets. A
simple solid sphere was used to model the droplets. An ani-
mation was implemented using C++ and OpenGL. In the an-
imation a flat surface is modeled using a texture and a bump
map which is retrieved from the texture. An object oriented
particle system was used where each droplet is a particle.
This will make the animation easy to control. Furthermore,
it is easy to add more droplets to the animation.

3.1. External and internal forces

There are different forces that acts on the water droplets as
they meander on the surface. The different forces can be di-
vided into two groups, the external forces, fext , and the in-
ternal forces, fint . Kaneda et al8 set the external forces to be
gravity and wind. However, we will set the external force
to be gravity only, since no wind is applied in the proposed
model. Nonetheless wind or any other external force could
be added if applicable. Moreover, we will use the same deno-
tation of vectors as used by Kaneda et al and also introduce
some new vectors.

The internal force is a force of resistance and its direction
is opposite to the direction of movement, dp:

fint = −αdp. (1)

The resistance originates from the inter-facial tension that
exists between the water droplet and the surface. The affinity
which is denoted α is in advance experimentally set to some
value, which is assumed to be constant all over the surface
for simplicity.

3.2. Direction of movement

The direction of movement can be computed by applying
the Gram Schmidt orthogonalization algorithm11 as shown

N

fext

dp

�

�

�

Figure 3: The direction of movement dp for a bump with
normal N and gravity fext

N

fext

fint

ap

�

�

�

�

Figure 4: Forces acting on the droplet

in figure 3:

dp = fext − (
N · fext)N. (2)

The normal vector N is the unit length normal which is re-
trieved at every point from the bump map. This normal will
affect the water droplets as they meander down the surface.
It will appear as the droplets are directed in a natural way
by the visual bumps on the surface underneath the droplet.
Furthermore, the whole polygon has a main direction down-
wards or tangent T, computed from the external force fext

and the normal of the polygon N′:

T = fext − (
N′ · fext)N′. (3)

The bi-normal of the plane is computed as:

B = T×N′. (4)

In order to calculate the acceleration of the water droplet,
the mass, m, and the forces that acts on the droplet, fext

and fint , are used. The acceleration ap shown in figure 4 is
then decomposed into the component toward the direction of
movement dp, by projecting it onto this vector8:

ap =

(
fext + fint

)
·dp

m
dp. (5)

The velocity v of the droplet is computed by adding the
acceleration ap to the velocity for each step. Similarly, the
velocity is added to the position P. Furthermore, the velocity

c© SIGRAD 2002.

20

Jonsson and Hast / Droplet Flow

Figure 5: One frame from the droplet animation. The trails
show that the droplets are affected by the underlying bump
mapped surface.

must be projected down onto the plane, in order to prevent
the drop from leaving the surface, which of course is mod-
eled in nature by other forces. Nevertheless, this will work
for our purposes. This algorithm gives us the new position
of the droplet and the droplet is moved to that point during
one frame of animation. Hence, the following computations
are necessary besides computing the acceleration:

vi+1 = vi +ap, (6)

vp = T(T ·vi+1)+B(B ·vi+1), (7)

Pi+1 = Pi +vp. (8)

3.3. Speed Control

In nature, water meandering down a surface will not accel-
erate up to full speed, due to several of the forces mentioned
in the introduction. Therefore, a speed controller was imple-
mented, delimiting the speed in two ways. First a maximum
speed was introduced. Secondly, the speed will be reduced
on bumpy areas. Thus, letting the droplet flow rapidly on flat
surfaces, but be slowed down considerably on bumpy areas.
A bumpy area is defined as a position where:

N ·N′ < 1− ε, (9)

where ε is a threshold value that can be used to control how
large the bumps should be in order to slow down the droplet
more than usual bumpiness would.

3.3.1. The trail

In order to produce a natural looking trail on the surface
which the droplet has traversed, a texture map is used. A
snapshot from the animation is shown in figure 5 In the an-
imation a texture map is used and the height map is derived
from it. The trail is produced by altering the glossiness of the
part of the texture that the droplet has passed. It can easily be
confirmed by looking on a wall, on which water have been
poured on, that the thin layer of water in the trail reflects
light with a higher degree of specularity than the underlying
surface has.

4. Discussion

The aim is to make an animation that look as natural and re-
alistic as possible. Because of that and several physical fac-
tors that still are unknown for the flow of water droplets,
there are lot of tampering that needs to be done with the dif-
ferent parameters. The only way to get a satisfying result is
to experiment with the different values and see what is going
to happen.

As shown earlier the velocity is projected down to the
plain in order to prevent the droplet from leaving the sur-
face. This is something that maybe can be controlled in a
smoother way. For example, a factor that makes the droplet
adhere to the surface would be one way to handle it.

The wetting effects that the flow of a droplet has on the
traversed surface is only implemented as a change of the
specular light in the trail after the water droplet. If the wet-
ting phenomenon were to be more correct implemented, the
droplet would for instance leave a small amount of water
behind as it flows down the surface. This would reduce the
size of the droplet and finally make it stop. The wetting phe-
nomenon would also make other droplets that comes near a
trail of water adhere to it. Subsequently it would flow almost
strictly in the same trail as the droplet before. The problem
with two merging droplets is not addressed in this paper.

Only one normal is retrieved from the map for each
droplet. Nonetheless, it is also possible to use several nor-
mals for this computation. The droplet is after all covering
more than one position in the height map. It turns out not to
be an good idea to compute an average of the normals in-
volved to use in the droplet computations, since the effect on
the droplet will be diminished due to the averaging.

Another way to use more than one normal would be to
define the bumpiness which should slow down the droplet
as described earlier. If the average deviation of the normals
from the mean normal, under the droplet, is larger than some
threshold value, then the area is considered being bumpy.

Even though the animation is realistic, nature can some-
times surprise you. This is especially true for droplets on
a structured surface. Sometimes droplets will not meander

c© SIGRAD 2002.

21

Jonsson and Hast / Droplet Flow

straight down on a totally flat surface. Instead they will me-
ander sideways. By making an experiment where two pic-
tures are taken, one of the structured surface and one of a
water droplet that flow over the surface, a comparison of the
simulated result and the real thing could be done. The picture
taken on the surface would subsequently be used as a texture
and a bump map could be retrieved from it in order to pro-
duce an animation. The result would show how far from the
real thing the animation is.

The proposed model in will make the simulation of the
flow of a water droplet on a structured surface considerable
faster than if polygons were used to form the micro structure.
The object itself will also be rendered faster.

5. Conclusions

A method for animation of water droplets flow on struc-
tured surfaces was proposed and the droplets in this method
were affected by the underlying bump mapped surface. The
proposed method will save time due to the use of a bump
mapped surface instead of a larger amount of different tri-
angles. Several parameters where used for the animation of
the flow of a water droplets, like the gravity working on the
droplet, affinity of the surface, and the mass of the droplet
used in the proposed method. Moreover, is the algorithm
simplified in such way that adhesion to the surface on bumpy
areas is modeled by slowing down the drop. A maximum
speed is also used for modeling adhesion. All this will make
the animation of the individual droplets fast.

5.1. Future Work

There are several improvements that can be done to the pro-
posed method. Moreover, there are various of extensions that
can be employed to the present method. Some examples of
possible improvements are, to make a better simulation of
the wetting phenomenon, so that it will affect the droplets
size and shape. Hence, droplets will become smaller as they
leave a trail.

Another improvement would be to create the droplet with
help of Beziér curves and let the control points be altered by
the bump mapped normals. Different normals should affect
the different parts of the droplet, making the droplet stretch
and bend. The shape of the water droplet is something that
overall should be improved.

If the affinity of the surface would depend on the bump
map, then it would probably give the meandering of the
water droplet a much more realistic and natural look. The
method should be extended so that the droplet adheres to the
surface and when the adhesion becomes small enough the
droplet will depart from the surface.

Other proposals for extensions can be, to implement the
enlargement effect that water droplets have on their underly-
ing surface and how light are reflected in the water droplets.

Another extension is implement collision and merging of
water droplets.

References

1. Dorsey J, Pedersen H, Hanrahan P. Flow and changes
in appearances. SIGGRAPH 96, pp. 411-420, 1996.

2. Foster N, Metaxas D. Realistic Animation of Liq-
uids. Graphical Models and Image Processing. 58(5)
pp. 471-483, 1996.

3. Foster N, Fedkiw, R. Practical Animation of Liquids.
Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, 2001.

4. Fournier P, Habibi A, Poulin P. Simulating the flow of
liquid droplets. Proceedings of Graphics Interface 98
pp. 133-42, 1998.

5. Fournier A. A Simple Model of Ocean Waves. Com-
puter Graphics 20(4), pp. 75-84, 1986.

6. Kaneda K, Kagawa T, Yamashita H. Animation of Wa-
ter Droplets on a Glass Plate. Proceedings of Computer
Animation 93, pp. 177-89, 1993.

7. Kaneda K, Shinya I, Yamashita H. Animation of Wa-
ter Droplets Moving Down a Surface. The Journal of
Visualization and Computer Animation 10 1999.

8. Kaneda K, Zuyama Y, Yamashita H, Nishita T. Anima-
tion of Water Droplet Flow on Curved Surfaces, Pro-
ceedings of Pacific Graphics 96, pp. 50-65, 1996.

9. Kilgard M. J. A Practical and Robust Bump-mapping
Technique for Today s GPUs Game Developers Con-
ference, Advanced OpenGL Game Development. 2000.

10. Max N. Vectorized procedural models for natural ter-
rain: Waves and islands in the sunset. SIGGRAPH 15,
pp. 317-324, 1981.

11. Nicholson W. K. Linear Algebra With Applications
PWS Publishing Company, Third Edition, pp. 275,
1995.

12. Peachey D. Modeling Waves and Surf. Computer
Graphics 20(4), pp. 65-74, 1986.

13. Ts’o P, Barsky B. Modeling and Rending Waves: Wave-
Tracing Using Beta-Splines and Reflective and Refrac-
tive Texture Mapping. ACM Transactions on Graphics
6, pp. 191-214, 1987.

14. Yu Y-J, Jung H-Y, Cho H-G. A new water droplet
model using metaball in the gravitational field. Com-
puter & Graphics 23, pp. 213-222, 1999.

c© SIGRAD 2002.

22

Distributed Rendering in Heterogenous Display
Environments - A Functional Framework Design and

Performance Assessment

Seipel S. and Ahrenberg L.,
Department of Information Technology, Uppsala University

ABSTRACT
With this paper we focus on complex display environments in which several users view upon numerous types
of 3D displays. We present a method for synchronization and shared state management for independent
rendering processes. Our approach is based on TCP/IP based virtual shared memory architecture and
intelligent clients in order to accomplish state coherent rendering on multiple displays. We describe a series
of benchmark tests that we used to identify frame-to-frame incoherency for rendering of animated objects.
The results of these tests allow for a quantitative assessment of the underlying distribution model for
networked rendering.

Keywords

Distributed Rendering, NetVR, Display Environments

1. INTRODUCTION
In many applications from industrial design to process
control, retrieval of complex information and its
appropriate visualization has become a group work task
that must be accomplished in a collaborative manner. In
the past, different post-desktop computer interfaces have
been investigated, which allow for collaborative work in
an environment where participants are co-located in the
same physical space. Typical examples are the iSpace
project at Stanford University [1]. Common to these
approaches is that they are based on conventional i.e. 2D
human-computer interfaces.

At the Swedish Defense College the potential of
collaborative virtual environments has been recognized
and research has been initiated (project AQUA) that
investigates advanced 3D visualization techniques for
command and control [2]. The current configuration of
the AQUA visual environment consists of one horizontal

large screen display, and four stereoscopic large screen
retro-projectors, which are arranged in the corners of the
AQUA environment (see figure 1). These displays are
viewed by up to 10 users that communicate with one
another in the AQUA environment. In addition, each user
has at least on local computer display for individual non-
collaborative work.

In the AQUA project a general assumption is made that
all displays are 3D displays, and that there are arbitrary
number and arbitrary spatial orientations of the displays
in the physical environment. In consequence all
information to be visualized is represented in a thought
virtual space that is metrically aligned with the physical
space and all displays that are presented in the physical
AQUA environment are defined by their corresponding
windows-on-world parameterization in the virtual space.

Since the AQUA environment is supposed to be a general
3D visualization environment there is a large number of
individual viewing parameter configurations depending

23

on which user is watching on what display at a certain
given point in time.
Rendering of 3D graphics in this multiple-display
environment is naturally accomplished by using clusters
of independent hosts. Hence, all information that is
simultaneously visualized on different screens must be
distributed and shared among the involved rendering
engines.

Figure 1. View upon the physical environment of the
AQUARIUM (above). For 3D representations various
individual viewing frustums must be maintained (below).

2. METHOD
In this project we developed a shared state database for
accomplishing simultaneous and distributed 3D rendering
of remotely shared virtual objects. It also provides means
for runtime re-configuration of the viewing parameters for
all involved rendering clients in a complex visualization
scenario.
The primary goal of this shared state database is to
maintain good runtime performance for a limited number
of rendering clients (up to 30) and for a relatively low

number of shared states (up to 10.000 floating point
values). We also anticipate that rendering applications are
executed concurrently in the local area network of a local
PC rendering cluster. Unlike other architectures for
building distributed VR environments as e.g. DIVE [3], it
is not the intention to provide a generalized and fully
replicated scene-graph database. We also wanted to avoid
a very specialized low level implementation of a specific
simulation protocol as e.g. found in the SIMNET
environment [4]. Instead, our conceptual approach builds
upon intelligent clients that administrate their individual
scene-graphs independently. They are using minimal state
change propagation to maintain consistency.

On the network level we implemented transparently
usable shared memory architecture - STREEP [5]. This
library is based on a TCP/IP based protocol and it
facilitates allocation of virtual memory, propagation
mechanisms for state change updates, and subscriptions
for process notification.

Based on this virtual shared memory architecture,
applications in the AQUA environment can share relevant
information in so-called “pools”. Figure 2 illustrates our
concept of shared pools. A pool can be considered as a
shared memory area that can be allocated by 3D clients or
to which clients can subscribe. A pool contains data of the
same type. An example of a pool is a projector pool that
contains the parameter configuration to defining the
projection pipeline for an individual user looking at a
specific display. A pipe pool contains information about
the number and configuration of visual channels on a
specific display. Other pools are e.g. sensor pools, which
store information from various tracking devices, and
shared data pool that contains shared data, which is
actually to be visualized in the AQUA environment.

Apart from assuring state consistency, the minimization
of network latency is one of the most critical issues in
distributed rendering. This is in particular true for
applications, where the result of the 3D rendering process
is visualized simultaneously in the same physical
environment. Here, the synchronization of graphical
states (i.e. transformation matrices) in the local rendering
processes must ideally be frame consistent. In other
words, animated objects and other animated states
(illumination etc.) must be rendered in the same attitude
on all displays at the very moment. Absolute frame
consistency cannot be guaranteed with a purely software
based synchronization method based on virtual shared
memory as in our proposed framework. On the other hand
we can ague that absolute frame consistency might not be
necessary since the human visual apparatus has
limitations both in regard to spatial and temporal
resolution.

24

Figure 2. Illustration of the shared data pool concept. Different applications share data for rendering purposes, which is shared a network
based shared memory.

In order to shed more light upon this issue we performed
an initial runtime performance study. Its goal is to
measure and quantify visual artifacts as a consequence of
delayed state propagation in our concept for distributed
rendering.
To that end, we designed a generic server application that
manipulates the states of one (or many) shared objects.
Two client applications were designed that render the
object with exactly the same viewing conditions. The
output of those two independently running client
processes is rendered into equally large view ports on the
same host computer. Hence, in the ideal case of absolute
frame consistency, the graphical output of both processes
should be identical for moving objects. In the practical
case however, we expect differences in the visual output
of these processes as described above. This basic program
set-up was used to benchmark the real-time performance
under different conditions.

Test set-up:
Two client applications where executed on the same
computer, and each was reserved half the available screen
space. Both processes where rendering a shared object
that was in continuous motion (see figure 3). The test
object is a very simple fan geometry rotating with a

predefined angular velocity of 360 degrees per second.
The actual rotational angle was not manipulated by the
client applications, but by a third server process, that also
maintains the shared state (rotation) for this fan.

Assessment method and criteria
The client applications where run simultaneously on one
computer and a software based frame grabber application
(Camtasia by TechSmith) was used to capture the entire
screen content i.e. both application windows at a certain
frame grabbing rate (20Hz). A sequence of 200 frames
was recorded in this manner. In order to assess frame and
state delays, we developed a program that superimposes
the graphical output of both client applications, and that
counts the number off different pixels in those pictures.
For absolute frame consistency, the output should be
identical and hence the number of differing pixels should
be zero. An increasing number of differing pixels
indicates frame delay. Since the number of pixels
increases in big intervals, every interval indicates the
delay of exactly on frame.

Physic
Displa
Devic

Renderin
Proces

Projecto Poo

Pipe Poo

Physic
Displa
Devic

Renderin
Proces

Physic
Displa
Devic

Renderin
Proces

Displa
Manage

Hea
Tracke

Physic
Displa
Devic

Renderin
Proces

Physic
Displa
Devic

Physic
Displa
Devic

Renderin
Proces

Renderin
Proces

Projecto Poo

Pipe Poo

Physic
Displa
Devic

Renderin
Proces

Physic
Displa
Devic

Physic
Displa
Devic

Renderin
Proces

Renderin
Proces

Physic
Displa
Devic

Renderin
Proces

Physic
Displa
Devic

Physic
Displa
Devic

Renderin
Proces

Renderin
Proces

Shared
Information

Shared
Information

Displa
Manag
Displa
Manag

Hea
Tracke

Hea
Tracke

25

Figure 3. Screen-shot of a test setup. Two independent
applications render an animated object, whose rotational state is
shared through network based shared memory.

3. RESULTS
Based on the general set-up, we performed three tests
under different conditions. Test A: 2 Clients windows are
opened on the same computer, the screen resolution is
chosen to be 800x600 pixels to allow for higher screen
capturing rates. The server is running on a separate
remote computer, which resides in the same sub-network.
The observed variable is the difference in pixels in the
two client windows over time i.e. the number of frames
that are out-of-sync. This experiment is repeated several
times, whereby the rate of the object updates from the
server side is increased. Observe, that an increased update
rate on the server side implies relatively small angular
increments because the angular velocity was chosen to be
constant with 360degrees/sec. The goal is to study the
relation between frame delay and shared state update rate.

Table 1 shows the data measured for 200 animation
frames. They where measured by capturing at different
object update rates. The observed variable is the number
of differing pixels in the two client windows, and the data
was sorted in descending order. For clarity, only the first
20 data sets are shown in the graphics, because the
remaining values are zero altogether. At lower update
rates, the angular increment per frame is higher given a
constant angular velocity. This explains that in table 1, the
difference in the pictures at 10Hz object update rate is
higher than compared to the 40 Hz or 50 Hz situations,
where there is less angle increment per animation frame.
The figures show that for 10 Hz object update rate there is
only 1 out of 200 frames delayed. At 20 Hz and 30 Hz
object update rate, there are 7 or 6 frames out of 200
frames delayed by one step. The number naturally
increases as the object state update increases, but it does
not exceed 11 frames delayed per 200 animated frames.

Interesting to observe is, that even for higher object
update rates the number of delayed frames in the client
windows does not exceed one frame.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10Hz

20Hz

30Hz

40Hz

50Hz

Table 1. The number of differing pixels in between the two
client frames sorted by magnitude in descending order for
different state update frequencies.

0

5000

10000

15000

20000

1 4 7 10 13 16 19

10Hz

20Hz

30Hz

40Hz

50Hz

Table 2: The number of differing pixels in between the two
client frames sorted by magnitude in descending order for
different state update frequencies (server and visualisation
clients on same host).

0
1
2
3
4
5
6
7
8

1 20 60 10
0

14
0

18
0

one frame lost

tw o frames lost

Table 3: The number of in-coherent frames out of 200 frames
rendered for increasing number of shared states.

26

Test B: The test was repeated with the same conditions as
in Test A except for the fact that now the server (the
process manipulating the object state) is also running on
the same host as the two client processes. We would
expect that in this condition network routing efforts be
reduced, since all TCP/IP traffic is routed on the local
host rather than being passed through the Ethernet. Table
2 shows the result for this test. The observed values show
a similar pattern as in test A i.e. for increasing state
update rates, the number of frames out of sync is
increasing. For almost all state update rates, the number
of dropped frames was less than in test A. Remarkable is
that for the lowest update rate of 10Hz a one-frame delay
could be observed three times.

Test C: Another test was carried out to study how much
the total network traffic affects frame consistency. In the
previous tests, the server only had to maintain the shared
attributes of one single object (one fan). In the following
experiment the set-up was as in Test A: Two clients
windows opened on the same host, the screen resolution
set to 800x600 pixels. One is server running on a remote
host. The object animation update rate was set to only
10Hz server side. Variable parameters in this test set-up
were the number of distributed objects, which was
increased stepwise from 1 object to 200 objects. The
result of the observations is visualized in table 3.

The result of this experiment shows that up to a number
of 100 shared objects there are only between 1 and 4
frames incoherent in an animation sequence of 200
frames. Further increase of the total network traffic (i.e.
number of shared objects) will also increase the number
of incoherent frames up to seven frame-mismatches at
180 updated objects. Worth mentioning is the fact that
with an increasing number of objects that are shared, the
frame delay between the two rendering processes is not
only one frame, instead the frame incoherence starts to
stretch over two animation steps.

4. DISCUSSION
Prior to interpretation of the results the methods of testing
must be critically discussed. This initial benchmarking
was performed by adopting a very straightforward and
easily to implement measuring method using a frame
grabber software. This means that the processor load
induced by the frame grabbing application introduces
artefacts, since less processing power is available to the
rendering applications. On the other hand, this speaks
rather for an optimistic interpretation of the measured
results, because the frame grabber application could
indeed be a reason for observed frame delay, which
would not occur without running the grabbing process.
Due to the need for simultaneously capturing the

rendering result of two processes, both rendering clients
were running on the same single processor computer
system. Load balancing is managed by the operative
system and is therefore an uncontrollable factor in the
test. Asymmetric task scheduling might therefore be an
additional cause for frame inconsistency. After all, the
characteristics of the test set-up suggest that we actually
should expect better network throughput performance and
therefore we do not see a reason to mistrust or
pessimistically interpret our results.

5. CONCLUSION AND FUTURE
WORK

Summarizing our first observations we can conclude that
the TCP/IP based propagation of shared states performs
surprisingly well. In a local area network we can expect
that about 5 frames in a sequence of 200 animation steps
will be out of synchronisation for an average object
update rate of 30 Hz (which appears sufficient for almost
all object animations in a 3D scene). These frame
incoherencies mean only delay of a single animation step.
It depends actually on the speed of simulated objects and
the scale how dominant this one-frame incoherence is
perceived by the user. In regard to the total network
traffic we can see that for 200 shared states the proportion
of dropped frames is about 10 out of a total of 200
animated frames i.e. 5% of all animated frames are not
synchronised. At this stage we can conclude that the
runtime performance exceeds our expectations and is
more than satisfactory for applications, where a limited
number of shared states (below 1000) needs to be
synchronized.
It remains to be seen in our future studies, if and how
these figures will improve when rendering processes are
running exclusively on dedicated hosts. The will also
show how performance will scale for increasing numbers
of shared states. Our future studies will therefore
incorporate superimposition of multiple independent
computer displays that will be captured using high-speed
video cameras rather than software-based capturing of
several application windows that are executed
concurrently on one single host. Another issue that needs
to be addressed is the question to what extend the human
user is capable of perceiving dropped frames or frames
that are not fully synchronized. In order to explore that,
further user-oriented tests will be carried out to measure
visual-perceptual artefacts in different situations of state
incoherency.

27

REFERENCES

[1] Fox, Armando, Brad Johanson, Pat Hanrahan, and
Terry Winograd, Integrating Information
Appliances into an Interactive Space, IEEE
Computer Graphics and Applications 20:3
(May/June, 2000), 54-65.

[2] Sundin C. and Friman Henrik (eds.) ROLF 2010 –
The Way Ahead and The First Step,
Försvarshögskolans Acta C6, Elanders Gotab,
Stockholm 2000

[3] Carlsson, C. and Hagsand, O. DIVE – a Multi-User
Virtual Reality System. IEEE VRAIS, Sept 1993.

[4] Pope, A. The SIMNET network and
protocols.Technical Report 7102. Cambridge, MA:
BBN Systems and Technologies, July 1989.

[5] Lindkvist M: A state sharing toolkit for interactive
applications. Master Thesis. Department of
Information Technology, Uppsala University. 2001.

28

Real-Time Image Based Lighting in Software Using HDR
Panoramas

Jonas Unger, Magnus Wrenninge, Filip Wänström and Mark Ollila
Norrköping Visualization and Interaction Studio

Linköping University, Sweden

Abstract
We present a system allowing real-time image based lighting based on HDR panoramic
images. The system performs time-consuming diffuse light calculations in a pre-
processing step, which is key to attaining interactivity. The real-time subsystem processes
an image based lighting model in software, which would be simple to implement in
hardware. Rendering is handled by OpenGL, but could be substituted for another
graphics API. Applications for the technique presented are discussed, and includes
methods for realistic outdoor lighting. The system architecture is outlined, describing the
algorithms used.

Introduction
Over recent years there has been much excitement about image based rendering,
modelling and lighting [1,3,4,5,6,7]. The aim of this research is to create a system that
allows dynamic objects to be lit accurately according to their environments, preferably
using a global technique (i.e. everything in the surrounding scene can affect the given
object), while still keeping the process fully real-time. The main benefit will is to obtain
greatly enhanced realism, as well as better visual integration through the added object-
scene interaction. This aim requires us to part with the ordinary way of doing real-time
lighting; that is, with well-defined light sources. In real life, everything we are able to
observe reflects light to a certain extent, and thus cannot be neglected in lighting
calculations [1, 5]

Disregarding the fact that other objects cast light onto each other is a great
simplification, and the greatest limitation of real-time rendering has always been the
necessary use of local illumination models. Local illumination accurately models what a
given surface would look like considering one or a few point light sources, but does not
take into account the interaction between illuminated surfaces. The downside of this is
evident in the poor realism seen in most computer games and other real-time applications.

In the last few years the use of lightmaps has become popular, since they allow static
objects to have a radiosity solution baked onto the model as a texture. This way, the time-
consuming part of the lighting calculations is moved to a pre-processing step. Lightmaps
work very well for buildings and such objects, but do not allow dynamic objects to be lit
using global illumination. The fact that dynamic objects (for example player characters
and opponents) are not lit as convincingly as their environments makes for poor and
unrealistic integration.

29

Applications
Our technique of using images to light virtual scenes has many possible application areas.
Here we will focus on lighting outdoor scenery. Lighting outdoor scenes has always been
a difficult area in creating computer images and especially in real-time graphics. As
mentioned earlier, this is a consequence of using local illumination models. Mainly, these
fail to model the fact that in outdoor scenes a large contribution of incoming light is
reflected light, whereas local illumination models only regard direct lighting, i.e. light
sources that have a direct view of the object.

By capturing the light situation using a light probe [5], far more realistic lighting can be
achieved. This kind of lighting has proven successful in, for example, motion pictures.
All kinds of natural phenomena in outdoor scenes could potentially benefit from using
image based methods for lighting.

The System
Figure 1 shows the basic dataflow of the system. As can be noted, it is divided into two
main blocks – offline image pre-processing and online real-time rendering.

Figure 1: System architecture

30

Irradiance Mapping

In order to achieve real-time lighting, the time consuming integrations are performed in a
pre-processing step. The HDR panorama image (the radiance map) is used to calculate a
diffuse map which, during rendering, is used as a lookup table by mapping a normal
direction N(f,q) into an irradiance value IN(N). Both maps are stored as a latitude-
longitude map, since that gives a one-to-one correspondence with spherical coordinates.

q=-p q=p

f=0

f=p

Figure 2: Radiance map.

The radiance map (see Figure 2) is a representation of the plenoptic function I(x, y, z,
f, q, l, t) as IR(f,q). We assume that the interaction between an object at point P = (x, y,
z) and the distant scene recorded in the irradiance map is one-way, i.e. we only consider
light transport from the surrounding scene to the object and not vice versa. This is
accurate as long as the distance between the object and the surrounding scene is
sufficiently great.

Figure 3: Diffuse map.

The diffuse map (see Figure 3) can be explained as follows: For every direction (f, q),
given the point P where the radiance map was captured, there is an imaginary surface
element with a normal N(f, q). The diffuse map then stores a measure of the incoming
radiance onto the surface element for each direction N, which is calculated in as follows:

31

IN= IR(L)
0

p 2

ñ
-p

p

ñ Ö(N¶L)dfdq

L = (f,q), L = 1

Where L is the unit vector in direction (f,q), where IR(L
C

) is the intensity in the radiance
map in direction L and N is the surface element normal. In Figure 4 we show how the
integration limits comes from the hemisphere around the normal N. To produce an entire
diffuse map, solve IN for all N and store the result at the pixel corresponding to N.

Figure 4: Hemisphere

Lighting
During rendering, the normal direction N of any given vertex in the object is used to look
up the diffuse light intensity affecting it. Since the intensity values in the diffuse map are
stored in spherical coordinates this is a straightforward process. The value is then used in
combination with the vertex material properties to produce the final colour at the vertex.
The algorithm is outlined below:

 For each vertex
 Get the normal N
 Convert N to spherical coordinates N = (f,q)
 Look up the pixel value stored at (f,q) in the diffuse map
 Light vertex according to material properties and the light intensity
 Store result as vertex colour
 End

Results
The system presented fulfils the goals set, being real-time and interactive. It implements a
software image based lighting model, passing lit geometry to OpenGL for rendering.
Inputs required are 3D-objects and HDR panoramas, making the process simple and
straightforward. The panoramas are processed off-line in our custom image-processing

32

application to produce diffuse maps. This pre-processing removes the time-consuming
integration involved in global illumination solutions allowing real-time performance
during rendering.

Figure 5: We demonstrate the difference between using a single point light source and
using the algorithm described in this paper. Most importantly, the second image shows
realism in two areas: matching light intensity with that perceived as coming from the
surroundings, as well as matching the overall colour balance of the object to the
panorama. We show two images which show the effect of colour blending. Great
dynamism is evident in the second image where the light under the arcades is
approximately 1000 times weaker than that coming from the somewhat cloudy sky. This
gives rise to the truly dramatic, yet realistic, shading of the model.

Figure 6: The dynamic properties of the system are shown in the above 3 images. Here,
the model is clearly lit differently as it is spun to face different parts of the surrounding
scene. The effect is clearly evident in the forehead of the model, as well as on its coat.

33

Conclusions and Future Work
Further developments of this lighting technique can be divided into three main areas:
improving the quality and speed of the rendering through hardware implementation,
adding greater realism to the given system, and extending the system to allow completely
dynamic scenes and views to be rendered [2].

In order to speed up the rendering process even further it could be implemented for
consumer hardware with vertex and pixel programs. This would also allow the lighting to
be calculated per pixel instead of per vertex, as is currently the case. The entire lighting
process could then be performed using just a single texture unit, however this requires
implementation of HDR texture support in hardware, as well as reprogramming the
hardware’s texture lookups.

Yet greater realism could be achieved by adding reflections and specular highlights. Both
could be pre-processed by the same image-processing software as used to create diffuse
maps. This way, rendering quality close to what ray-tracing software produces is possible
for dynamic objects, not just static ones. The system described is currently only able to
display lighting situations in a single location. This would be quite sufficient to model
outdoor lighting coming from the sun and clouds. A major advancement would be to
extend the system into using many light situations. This would allow dynamic actors in a
scene to be influenced by different light situations depending on where in a scene they
are located.

Acknowledgements
Paul Debevec for providing the light probe images from http://www.debevec.org/.

References
[1] CHEN, W.-C., BOUGUET, J.-Y., CHU, M. H., AND GRZESZCZUK, R. 2002.
Light field mapping: efficient representation and hardware rendering of surface light
fields. In Proceedings of the 29th annual conference on Computer graphics and
interactive techniques, ACM Press, pp 447–456.
[2] DAMEZ, C., DMITRIEV, K., AND MYSZKOWSKI, K. 2002. Global illumination
for interactive applications and high-quality animations. In Eurographics 2002 STAR
Reports, 1–24.
[3] COHEN, J., TCHOU, C., HAWKINS, T., DEBEVEC, P. 2001. Real-Time High
Dynamic Range Texture Mapping. Rendering Techniques 2001: 12th Eurographics
Workshop on Rendering. pp. 313-320, 2001.
[4] DEBEVEC, P. E. Rendering synthetic objects into real scenes. 1998. In Proceedings
of the 25th annual conference on Computer graphics. ACM Press..
[5] DEBEVEC, P. E., AND MALIK, J. Recovering high dynamic range radiance maps
from photographs. 1997. In Proceedings of the 24th annual conference on Computer
graphics, ACM Press, pp. 369-378.,
[6] DEBEVEC, P. 1998. Rendering synthetic objects into real scenes: bridging
traditional and image-based graphics with global illumination and high dynamic range
photography. In Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, ACM Press, 189–198.

34

Towards a Perceptual Method of Blending
for Image-Based Models

Gordon Watson, Patrick O’Brien† and Mark Wright

Edinburgh Virtual Environment Centre

University of Edinburgh

JCMB, Mayfield Road,

Edinburgh EH9 3JZ

<g.c.watson, mark.wright>@ed.ac.uk

†Now at Sony Entertainment Europe

patrick@optikal.demon.co.uk

Abstract
We present a technique for view-dependent texture mapping that attempts to minimise the perceived

artefacts that can arise from image blending. These artefacts result from imperfect image registration,

typically due to un-representative scene geometry, or scene motion during capture. Our method draws

inspiration from work in image mosaicing, but uses a metric based on perception of Mach bands that

we also use to quantitatively evaluate the method. We discuss the implications of this work to creating

a fully perception-based method of image-based rendering.

Keywords: image blending, image-based rendering, perceptual methods.

1 Introduction
The image-based rendering field of computer

graphics attempts to produce novel views of a scene

by reconstructing the plenoptic function from discrete

samples [1, 10]. The samples usually take the form of

photographs of the scene, and reconstruction involves

sample interpolation. The approach has several

advantages over traditional three-dimensional

graphics, including constant rendering cost regardless

of scene complexity and photorealistic output.

A key operation in IBR is therefore interpolating the

discrete samples to produce a new approximation of

the plenoptic function for the novel view. To date,

image-based rendering methods have employed

interpolation schemes with simple mathematical

formulations that pay little attention to how the

resulting images are actually perceived. We believe

an interpolation scheme based upon image perception

would both improve the quality of rendered images

and extend the scope of image-based rendering, for

example, to the capture and rendering of natural

outdoors environments.

In this work we focus on a specific image-based

rendering technique referred to in [4] as view-

dependent texture mapping (VDTM). A geometric

model of the scene (termed a geometric proxy by

Buehler et al. [2]) is recovered from the input images

using photogrammetric modelling techniques. The

geometric proxy is texture mapped by projecting the

photographs back onto it, producing novel views of

the scene, VDTM assumes only an approximate

geometric model of the scene is available but can give

the appearance of more complex geometry being

present.

In common with other image-based rendering

techniques, VDTM employs either linear

interpolation between the images, or nearest-

neighbour.

35

Computer

We will show that in VDTM these interpolation

techniques can generate artefacts when geometric

features in the real scene are not modelled by the

proxy. A highly accurate proxy is difficult to recover

from a sparse set of input images, so we seek to

reduce these artefacts by controlling interpolation

using a perception based metric.

 The metric allows us to classify sample

components and interpolate them at different rates

thus reducing interpolation artefacts. We use the same

perception based metric to verify the quality of our

results.

2. Background and Related Work
IBR attempts to model a scene using a continuous

representation of the plenoptic function [10]. The

plenoptic function was first proposed by Adelson and

Bergen in [1] and describes all the rays of any

wavelength that are visible from a point in space.

Producing a continuous representation of the

plenoptic function requires some way of processing

discrete samples of the function to provide a

reasonable approximation. Many methods of doing

this have been proposed. For example, Lippman's

Movie Map technique [8] simply chooses the sample

which is closest to the current viewing position

(equivalent to nearest neighbour interpolation). Other

methods are based on interpolating the samples using

image flow fields [3, 7, 10].

Figure 1: The correct choice of photograph to use
for texturing point P depends on the relative
positions of the real cameras A & B, and the

virtual camera V.

View-dependent texture mapping, presented by

Debevec et al. in [4], uses a fitness function to assess

the suitability of each input image for texturing the

geometric proxy.

 The fitness function considers the relative gaze

angles of the viewer and the camera that captured the

image under consideration. The smaller the

divergence between the angles, the more suitable the

image for texturing. Figure 1 illustrates this with two

cameras. Intuitively, it is desirable to use the image

captured by camera B. The fitness function weights

each image's contribution to the final colour of the

point being textured.

 In [2], Buehler et al. present an IBR algorithm

which generalizes many existing IBR approaches.

With a sparse set of input images and an accurate

geometric proxy, the algorithm behaves like VDTM.

This approach uses a more advanced fitness function,

considering sample resolution in addition to angle

similarity.

Both [4] and [2] use the fitness function to

linearly interpolate the samples. We will show that

when the geometric proxy is approximate (as is often

the case due to the low number of input images),

piecewise linear interpolation generates artefacts.

Pollard et al. have shown that IBR artefacts can be

reduced by interpolating different texture frequencies

at different rates [11]. In this paper we examine the

nature of these artefacts and extend the technique. We

use a metric based on the human visual system to

identify the texture components which should be

blended at different rates. The new metric is then

used to evaluate the quality of results.

2.1 The Mach Band Effect
An edge-ramp in an image corresponds to high spatial

frequencies. The human vision system is well adapted

to identifying these high frequencies that cause a

perceptual phenomenon known as the Mach band

effect (discovered in 1865 by Mach, an Austrian

physicist), which emphasizes the border between two

regions of differing intensities. Close to the border,

the region on the light side looks lighter and the

region on the dark side looks darker. These regions

only appear close to the border, and they are called

Mach bands. A detailed study of Mach bands can be

found in [12].

Mach bands are relevant in computer graphics

because the eye is naturally drawn to the regions

containing them. Of course, Mach bands in a

computer generated image are not necessarily

artefacts because we see them around edges in the

real world. However, a Mach band may greatly

emphasize existing artefacts. For example, in

computer graphics, smoothly curving surfaces are

often approximated using polygons. When the

polygonal surface is illuminated the polygons in the

surface will have slightly different intensities due to

their differing orientations relative to the light source.

These differing intensities produce obvious edges

between the polygons producing a faceted

appearance. The edges are emphasized by Mach

bands and the illusion that we are viewing a smoothly

36

curving surface breaks down. The obvious solution

of increasing the number of polygons fails since it

increases the number of high frequencies in the

image, and therefore creates more Mach bands.

Gouraud showed that interpolating the vertex

shading values allowed smooth shading across

polygon borders. This eliminates intensity

discontinuities and minimises Mach bands [5].

3. Existing Interpolation Techniques

3.1. Why Interpolate ?
 Images of a scene are discrete samples of the

plenoptic function. As described in section 2, the aim

of image based rendering is to reconstruct a

continuous representation of the plenoptic function

from samples. In our case, the reconstruction takes

place in the texture blending stage of view dependent

texture mapping; the most appropriate samples are

selected and interpolated to give an approximation of

the plenoptic function for the current viewpoint.

3.2. Nearest Neighbour Interpolation
The easiest way to achieve the reconstruction is to use

‘nearest neighbour’ interpolation. This simply means

using the sample with the highest fitness for the

current point. That is, choose the sample whose

parameters (such as view direction and position) most

closely match the novel view parameters.

Clearly, this means that the samples will not be

blended. When the viewer moves, the most suitable

sample may change, causing the surface texture map

to be instantly swapped for the new 'nearest

neighbour'. When this form of interpolation is used,

the texture changes are very obvious due to

incongruent textures. The causes of texture

incongruence are explored in section 4.

3.3. Piecewise Linear Interpolation
In approaches such as [4] and [2], the plenoptic

function is reconstructed using piecewise linear

interpolation of the samples. Multiple textures may be

blended together to give the colour for a surface

point, using the fitness of an image to weight its

contribution. For example, imagine we are texturing

point P in figure 1 using images captured from

viewpoints A and B. Call these Sample α and Sample

β respectively. As the viewer moves from viewpoint

A towards viewpoint B, Sample α will contribute

progressively more to the point, while Sample β will

contribute progressively less. When the viewer is

halfway between A and B, each sample will

contribute equally to the colour of the point.

Piecewise linear interpolation produces smooth

changes between textures as the viewpoint changes

and avoids the sudden texture switching and 'seams'

which occur with nearest neighbour interpolation.

However, texture incongruence may still cause

artefacts with this interpolation technique.

4. Sources of Texture Incongruence

Figure 2: Depending on the viewing position, point
A projects to a different point on the surface.

4.1 Unmodelled geometric features.
Figure 2 illustrates what happens when a photograph

is taken of a surface with a protrusion. Depending on

where the photograph is taken from, the protrusion

will project onto a different position on the surface. If

a perfect geometric proxy has been recovered, the

photographs will project back onto the model in the

correct manner when texture mapping is performed.

Unfortunately in practice it is not possible to

recover a perfect geometric model of the scene. If the

protrusion in figure 2 is not recovered, the part of the

texture containing the protrusion will be projected

onto the model surface behind it. The exact position

on the surface where it appears depends on the

viewpoint of the original photograph. Therefore

photographs taken from different positions will

disagree as to where the protrusion appears.

4.2 Non-lambertian Surfaces.
In the real-world many surfaces exhibit non-

lambertian reflections. If a surface is slightly

specular, it may appear different shades when viewed

from different angles. As a result, two different

photographs of the same surface under the same

lighting conditions may record dramatically different

colours for the surface.

37

4.3 Motion during capture.
In practice it is not possible to capture all the images

required for an image-based model instantaneously.

This implies motion may occur during capture, either

to elements of the scene, or to the position or

brightness of the light sources. This is a very real

problem in the case of capture out of doors.

Changes in the brightness of a light source will cause

artefacts similar to a non-lambertian surface, wheras

motion of the scene itself will cause an artefact

similar to un-modelled scene geometry – due to the

images disagreeing as to the location of a scene

element.

5. Implications for Blending
Nearest Neighbour Interpolation always produces the

same class of artefact regardless of the cause of

texture incongruence. The artefacts take the form of

‘seams’ on the model surface at the border between

the textures. In a movie sequence, this causes an

effect known as ‘popping’, when the current texture is

abruptly changed for the new ‘most fit’ texture.

Piecewise Linear Interpolation copes well with

texture incongruence caused by slightly specular

surfaces. The transition from one texture to another is

smooth with no obvious seams or popping. Texture

incongruence caused by unmodelled geometry is not

handled as effectively. If the two photographs in

figure 2 are linearly interpolated as the viewer moves

from View1 to View2, an image of the unmodelled

protrusion will be simultaneously projected onto two

different places on the surface. The edges in the

textures being interpolated will not align, even though

they are associated with the same edge in the real

scene. This creates spurious high frequencies in the

synthetic image, which generates undesired Mach

bands. The artefacts will be at their worst when the

viewer is halfway between view1 and view2, an

example of this can be seen in figure 3b.

6. The Mach Band Metric.
As previously described, linear interpolation of

textures that are incongruent due to unmodelled

geometry produces spurious high spatial frequencies,

and hence more Mach bands. The presence of

spurious Mach bands can dramatically alter the

perceived quality of a synthetic image [5].

If n textures are to be blended, each containing m
Mach bands, the ideal situation is one in which no

texture incongruence occurs – i.e the Mach bands

from each image align perfectly with each other. This

produces a synthetic image with m Mach bands

Conversely in the worst case scenario an image with

n*m Mach bands could be generated in the case that

no Mach bands align at all between the textures.

We propose that measuring the number of

generated Mach bands in a synthetic image provides a

perception based metric for comparing the relative

proficiencies of different interpolation techniques.

Clearly, as the Mach bands tend to m, less artefacts

will be generated. An obvious way of minimising

these is to use nearest neighbour interpolation.

However, as previously discussed, this solution can

suffer from significant artefacts in the form of `seams'

on the model surface.

6.1. Desired Properties of a texture
interpolation technique.

This motivates the following requirements for a

texture interpolation technique:

1. Produces smooth changes between textures for

non-Lambertian surfaces

2. Minimises the number of Mach bands around

areas of unmodelled geometry.

7. Frequency Dependent Interpolation
We attempt to meet the requirements stated in section

6.1 by separating a texture t into two parts:

1. The high frequency (ie Mach band generating)

component (call this tm).

2. The component containing no high frequencies

(call this tn)

These components are then interpolated at

different rates.

If the tm components are interpolated using a

nearest neighbour scheme, the high spatial

frequencies from incongruent textures cannot be

simaultaneously projected onto the same point,

thereby minimising spurious Mach bands. Linear

interpolation of the tn components produce smooth

overall changes between textures.

We call this technique Frequency Dependent

Interpolation. It requires a method of identifying the

regions that cause Mach bands, a method for splitting

the texture into the two regions, and a method of

recombing the texture components on the model

surface.

7.1 Identifying Mach band regions
 Marr-Hildreth edge detection [9] was used to identify

the high spatial frequencies that give rise to Mach

bands. The Marr-Hildreth method is isotropic and

closely matches the human perception of edges. The

filter is equivalent to applying a high-pass filter to the

texture, with the cut-off set to the response of the eye.

38

The result was thresholded to provide a binary map of

high frequency edges.

7.2 Separating texture components.
We require a process that separate the texture into tm

and tn components such that tm + tn = t.
Marr-Hildreth filtering identifies those pixels that

give rise to Mach bands. The image is dilated to form

a small region around each edge, gaussian filtering is

performed inside that region to remove all high

frequency components. The size of the dilation filter

depends only on the texture size and is simply

required to give adequate support to the gaussian

filter.

This result is now tn and contains no Mach bands,

tn is then subtracted from t to form tm, which is re-

scaled into a signed 8-bit image.

7.3 Texture recombination.
Now that we have tn and tm for each texture we must

interpolate all the components in such a manner that

minimises Mach bands and ensures a continuous

surface colour. We use a fitness function related to

the angular difference between the sample camera

and the viewing position. The low frequency

components are linearly interpolated using these

fitness weights, wheras the high frequency

components are interpolated using a nearest

neighbour scheme that ensures only a single set of

Mach band producing edges appear on the final

image at any time.

8. Implementation.
A renderman complient ray-tracer called the Blue
Moon Rendering Tools was used to generate the

synthetic images. Textures were projected into the

scene using custom light source shaders which could

be configured with the intrinsic and extrinsic

parameters of the camera that captured the original

image. Two texture projectors replaced each camera

from the original scene, one projecting tm and the

other projecting tn. In addition a third projector was

used to project an alpha channel. This allowed the

weight of each image to be reduced towards the edge

and allowed occluding foreground objects to be

masked out.

Interpolation was achieved using custom surface

shaders assigned to the model surface. Surface

shaders which performed nearest neighbour, linear,

and frequency dependent interpolation were

implemented. This allowed different algorithms to be

easily compared.

9. Results
Figure 4 shows an original image and the

corresponding low and high frequency components

after filtering. Figure 3a shows a frame from an

animation rendered with frequency dependent

blending, linear blending is shown in figure 3b.

Figure 5 shows a plot of Marr-Hildreth filter response

– a proxy to Mach band number, for a simple cross-

fade between two images. As can be seen the

frequency-dependent method reduces the overall

number of Mach bands compared with the linear

method except in the transition region where the two

are equal.

10. Discussion & Conclusions.
The results have showed a blending method based on

perception of edges can reduce visible artefacts for an

image based model.

However seams still appear in the images. These

are due to the algorithm ‘cross-fading’ between the

two highest weighted images, the seam representing a

transition from one ‘2nd best’ image to another. The

problem occurs if the capture cameras are not

arranged in a plane. Cross-fading between more than

two images reduces the appearance of visual seams,

but at the expense of more cumulative errors and

more Mach bands.

The solution to this problem isn’t clear with the

current implementation since the ray-tracer employed

casts rays that are completely independent from each

other, and hence a point on the surface has no

knowledge of adjacent surface points. This may be a

computationally desirable property for parallel

execution, but it means we are not able to take into

account visual field perception or ‘hole fill’ areas

unseen by any camera.

Animation frames generated by the system are

similarly independent from previous or future frames

meaning we are unable to take into account temporal
perception and coherence.

Clearly the eye does not perceive the world in this

manner, our perception-based approach to rendering

therefore raises the question as to what would be the

requirements for a renderer to use a comprehensive

model of visual perception, and the challenge of

implemention - particularly in an interactive context.

11 Acknowledgements
The authors wish to thank Dr Paul Debevec for

access to the Facade photogrammetric modelling

system.

39

12 References
[1] E. Adelson and J. Bergen. Computational models

of visual processing, chapter 1. The MIT Press,

Cambridge Mass. 1991.

[2] C. Buehler, M. Bosse, S. Gortler, M. Cohen, and

L. McMilllan. Unstructured Lumigraph rendering.

Proceedings of SIGGRAPH 2001. 2001

[3] S. Chen and L. Williams. View interpolation for

image synthesis. Proceedings of SIGGRAPH
1993, 1993.

[4] P. Debevec, C. Taylor, and J. Malik. Modeling

and rendering architecture from photographs: A

hybrid geometry- and image-based approach.

Proceedings of SIGGRAPH 1996, pages 11-20,

1996.

[5] H. Gouraud. Continuous shading of curved

surfaces. IEEE Transactions on Computers, pages

623-629, 1971.

[6] L. Gritz and J. Hahn. Bmrt: A global illumination

implementation of the renderman standard.

Journal of Graphics Tools, 1(3), 1996.

[7] S. Laveau and O. Faugeras. 3d scene

representation as a collection of images and

fundamental matrices. INRIA, Technical Report
No. 2205, 1994.

[8] A. Lippman. Movie-maps: An application of the

optical video-disc to computer graphics.

Proceedings of SIGGRAPH 1980, 1980.

[9] D. Marr and E. Hildreth. Theory of edge

detection. Proceedings Royal Society of London
Bulletin, 207:187-217, 1980.

[10] L. McMillan and G. Bishop. Plenoptic

modelling: An image-based rendering system.

Proceedings of SIGGRAPH 1995, 1995.

[11] S. Pollard and S. Hayes. 3d video sprites. Report
HPL-98-25, 1998.

[12] F. Ratliff. Mach Bands: Quantitative Studies on

Neural Networks in the Retina. San Fransisco:
Holden-Day, 1965.

[13] Zakia, Richard D. Perception and Imaging.

Focal Press, 2002.

Figure 3: A frame blended using frequency-
dependent blending at the top, and linear blending
on the bottom. Looking at the perspective at the
two ends of the building it is evident they are
derived from different source photographs. The
geometric proxy for this façade is just a plane.

Figure 4: The original image is shown on the left,
the low-frequency image in the middle, and the
high frequency image (normalised) on the right.

Figure 5: A plot of Marr-Hildreth filter response
shows the frequency-dependent interpolation
reduces the appearance of Mach bands except for
the centre ‘change-over’ region

40

Work in Progress
Framework for Real-Time Simulations

Anders Backman
VRlab/HPC2N

Abstract

Virtual Environments (VE) as well as games has traditionally been pre-scripted and or
pre-animated. Interacting with an animated environment can be hard due to the
explicit actions that have been introduced into the environment.

With more and more CPU power and recent breakthroughs in real-time physical
simulation methods, it now has been possible to incorporate complex physical
structures in the VEs.

This talk will describe a work in progress at VRlab, where the aim is to develop a
simulation framework for interactive real-time physical simulations. It will also touch
the benefits of using real-time physical simulation when it comes to authoring of the
VE as well as interacting in it.

An application, the Haptic Wheelchair will be presented, using the existing
framework.

41

SIGRAD (2002)
Mark Ollila (Editors)

Surface Construction with Near Least Square Acceleration
based on Vertex Normals on Triangular Meshes

Tony Barrera

Cycore AB
Dragarbrunnsgatan 35, P.O. Box 1401, S-751 44 Uppsala, Sweden

Anders Hast

Creative Media Lab
University of Gävle, Kungsbäcksvägen 47, S-801 76 Gävle, Sweden. aht@hig.se

Ewert Bengtsson

Centre for Image Analysis
Uppsala University, Lägerhyddsvägen 17. S-752 37, Uppsala, Sweden. ewert@cb.uu.se

Abstract
Shading makes faceted objects appear smooth. However, the contour will still appear non smooth. Subdivision
schemes can handle this problem by introducing new polygons in the mesh. The disadvantage is that a more com-
plex mesh takes more time to render than a simple one. We propose a new method for constructing a curvilinear
mesh using quadratic curves with near least square acceleration. This mesh could be used for subsequent subdi-
vision of the surface. This can be done on the fly, at least in software rendering, depending on the curvature of the
contour. The advantage is that new polygons are only inserted where needed. However, in this paper we will focus
on how such curvilinear mesh can be constructed using vertex points and vertex normals for each polygon. Thus,
information about neighboring polygons are not needed and on the fly subdivision is made easier.

1. Introduction

Recursive surface subdivision has gained a lot of attention
in recent years since it makes it possible to have several lev-
els of detail11. As an example, the famous Utah teapot was
modeled by using Beziér patches in a rather coarse mesh.
This mesh could be subdivided into smaller patches creat-
ing a tighter mesh, and thus a smoother looking teapot. The
new mesh points are created by computing new points on
each Beziér surface patch. Nevertheless, many models do
not have an underlying curve description that could be used
for subdivision. Such faceted models only have a flat poly-
gon mesh. The interior of the object can appear smooth if
a shading algorithm is used. Nonetheless, the contour will
still appear non smooth since the edges are straight lines.
However, it is possible to create a spline surface interpolat-
ing or approximating the polygonal mesh, which then can
be used for recursive subdivision. This will yield a tighter

mesh, which will make the object appear more smooth on
the contour.

Several such approaches have been made and the algo-
rithm by Catmull and Clark2 use information about neigh-
boring polygons. Others only use the vertices and nor-
mals at these vertices, when constructing the new surface.
Volino and Magnenat-Thalmann10 construct a spherical sur-
face called a Spherigon. Vlachos et al.9 use a three sided cu-
bic Beziér surface for their Curved PN triangles and Bruijn1

uses quadratic Beziér surfaces. Overveld and Wyvill7 also
use Beziér surfaces, however they replace the cubic curve
with two quadratic curves in order to guarantee monotonic
curvature. In surface subdivision presented by Maillot and
Stam5, a spline surface is generated and the curvature and
smoothness is controlled by a parameter α, which is set to
some proper value for optimal smoothness. Other subdivi-
sion schemes have been introduced by Loop4 and kobbelt3.

c© SIGRAD 2002.

43

Barrera, Hast and Bengtsson / Surface Construction

P1

P2

P3

N1

N2

N3

�

�

�

Figure 1: Three sided polygon with three vertices and three
normals

1.1. Main Contribution

We propose a new algorithm for finding a near least square
acceleration curvilinear mesh. And we will focus on three
sided polygons for simplicity. This mesh is constructed by
using quadratic curves which are derived using vertex nor-
mals and vertex points only. Thus, we do not propose a new
subdivision scheme. We only propose how the new vertex
points can be found by using the curvilinear mesh. More-
over, it will not produce surfaces that are C1 continuous over
polygon edges. This would have required the use of cubic
surfaces. However, this method will be faster since it uses
quadratic meshes. Hence, the method will yield a surface
which is smoother than the original mesh.

2. Second Degree Best-Fit Least Square Acceleration
Boundary Curves

The method of finding a least square acceleration boundary
curve has been explored before by Overveld and Wyvill7.
They use cubic Beziér curves that are divided into two
quadratic curves. We will show how this can be done for
quadratic curves directly, even though the curve will be an
approximation of the a least square acceleration curve.

We assume that we have a triangular mesh with coordi-
nate points P1,P2,P3 and corresponding normalized normals
N1,N2,N3 as shown in figure 1. The tangents correspond-
ing to a pair of normals as shown in figure 2 can be ob-
tained by using the so-called Gram-Schmidt orthogonaliza-
tion algorithm6:

T1 =N2 −N1(N1 ·N2), (1)

T2 =−N1 +N2(N1 ·N2). (2)

Note. that the normals are assumed to be normalized. We
shall show later that we do not need to normalize the tan-
gent vectors. However, at this point we shall assume that they
have unit length. It should also be pointed out that when the
angle θ between the normals, as shown in figure 2, is zero,
then we can not compute the tangent in this way. The simple
solution is to use linear interpoltaion between the surface

N1 N2

T1

T2

θ

�

�

	

Figure 2: Construction of the tangent vectors T1 and T2
orthogonal to N1 and N2 respectively, lying in the plane
spanned by N1 and N2

points instead of a quadratic curve, whenever the angle is
zero or very close to zero.

We shall derive a curve spanned by the tangent vectors
and vertex points which is as relaxed as possible. This curve
can be obtained by minimizing the integral which is the total
sum of the square acceleration:

∫ 1

0
‖ f ′′(t)‖2dt (3)

on some variable β that controls the tangent length and ap-
ply it on the boundary curve. This defines the least square
acceleration. However, a second degree curve can only have
one derivative determined when it is also determined to pass
through two end points. Therefore, we have to find a sec-
ond degree curve spanned by the tangent vectors and ver-
tex points which have optimal fit between both these tangent
vectors and the derivatives. We shall derive such a curve by
finding an optimal fit for the first tangent, then we can mini-
mize the integral in equation (3).

2.1. Optimal Fit for the First Tangent

The quadratic curve is given by the equation:

f = at2 +bt + c. (4)

We have the initial conditions:

f(0) =P1, (5)

f(1) =P2, (6)

f′(0) =αβT1, (7)

f′(1) =βT2, (8)

c© SIGRAD 2002.

44

Barrera, Hast and Bengtsson / Surface Construction

where T1 and T2 is the tangent vectors corresponding to N1
and N2 respectively. The constants α and β are to be deter-
mined. The value of α will determine optimal (in the least
square-sense) fit between the curve and the second tangent.
The value of β will determine the least square acceleration
of the curve in the interval [0,1]. It can be shown that:

c =P1, (9)

a+b+ c =P2, (10)

b =αβT1. (11)

Let P be the vector from P1 to P2:

P = P2 −P1. (12)

Then we have:

a = P−αβT1. (13)

At the first edge, we have the initial condition that the
tangent is equal to the derivative, as shown in equation (7).
Furthermore, we want to determine α so that the difference
between the derivative and the tangent is as small as possi-
ble. Thus:

∂
∂α

{
‖f′(1)−βT2‖2

}
= 0. (14)

In this way we seek the least-square difference between
the tangent and the derivative. The difference of the curve
slope and the polygon tangents in one of the ends equals
zero, but at the other end minimization can be performed:

∂
∂α

{
(2a+b−βT2)

2
}

= 0 ⇒ (15)

2αβ2T1 ·T1 − 4βP ·T1 +2β2T1 ·T2 = 0. (16)

Finally, divide both sides of the equation (16) by −2β and
rearrange the terms:

2P ·T1 −αβT1 ·T1 −βT1 ·T2 = 0. (17)

In order to find an α that fulfills the criterion set in equation
(17) we must also determine β.

2.2. Finding the Least Square Acceleration

Next, we determine β such that the integral of the accelera-
tion is least-square minimum in the interval [0,1]:

∂
∂β

∫ 1

0
‖f′′(t)‖2dt = 0 (18)

The second derivative of f(t) is constant: f′′ = 2a. Since it
does not depend on the variable t we have:

∂
∂β

‖2a‖2 = 0 ⇒ (19)

8α2βT1 ·T1 − 8αP ·T1 = 0. (20)

Divide both sides of the equation (20) by −8β and rear-
range the terms:

P ·T1 −αβT1 ·T1 = 0. (21)

This gives us a system with the two equations 17 and 21.
The solution becomes:

α =
T1 ·T2

T1 ·T1
, (22)

β =
P ·T1

T1 ·T2
. (23)

This is valid for the quadratic curve

f1(t) = (P−αβT1)t
2 +αβT1t +P1. (24)

2.3. Near least Square Acceleration

So far we have a curve where the derivative of f1(t) at P1 is
the same as the tangent T1 and the derivative at P2 is as close
to T2 as the least square minimization allows. If we had cho-
sen to have the same derivative of the function as the tangent
at P2 and optimize at P1 instead, we would get another curve.
Which one will be the best? It is hard to tell. However, we
could get an approximation by taking the average of both.
Hence, we will get an near least square acceleration second
degree curve which is close to optimal in both ends.

2.4. Same Procedure for the Other Side

The next step is to repeat the same procedure for the other
tangent T2 at the other end of the curve, in order to obtain
f2(t). We use the initial conditions:

f(0) =P1, (25)

f(1) =P2, (26)

f′(0) =β′T1, (27)

f′(1) =α′β′T2, (28)

Then we derive the boundary curve using these conditions,
where:

c =P1, (29)

a+b+ c =P2, (30)

2a+b =α′β′T2. (31)

This system of equations gives:

a+b =P2 −P1 = P, (32)

a =α′β′T2 −P, (33)

b =2P−α′β′T2. (34)

Finally, the quadratic curve becomes:

f2(t) =(α′β′T2 −P)t2+ (35)

(2P−α′β′T2)t +P1.

c© SIGRAD 2002.

45

Barrera, Hast and Bengtsson / Surface Construction

Repeating the minimization process of f2(t) for both β and
α gives:

α′ =
T1 ·T2

T2 ·T2
, (36)

β′ =
P ·T2

T1 ·T2
. (37)

2.5. Putting it all together

By taking the mean value of (24) and (35) we get a symmet-
ric curve with near least square acceleration:

f3(t) =
(

α′β′T2 −αβT1

2

)
t2+

(
P+

αβT1 −α′β′T2

2

)
t +P1. (38)

It is easy to prove that it will be symmetric. The derivative
is:

f′3(t) = (α′β′T2 −αβT1)t

+
(

P+
αβT1 −α′β′T2

2

)
. (39)

Moreover, the derivatives at the edges are:

f′3(0) = P+
αβT1 −α′β′T2

2
, (40)

f′3(1) = P− αβT1 +α′β′T2

2
. (41)

Clearly, the derivatives will be symmetric around P which
is the vector between the vertex points. Since the curve is
quadratic we can not get a curve that has derivatives equal
to the tangents at the vertex points. However, for a quadratic
curve, this is as close as we can get with the least square
acceleration requirement.

2.6. Invariance with respect to Normalization

We stated earlier that the tangent vectors do not need to be
normalized and we shall prove that this is true. Expand the
terms αβT1 and α′β′T2:

αβT1 =
T1 ·T2

T1 ·T1

P ·T1

T1 ·T2
T1 =

P ·T1

T1 ·T1
T1, (42)

α′β′T2 =
T1 ·T2

T2 ·T2

P ·T2

T1 ·T2
T2 =

P ·T2

T2 ·T2
T2. (43)

Remember that P is an vector and not a point and therefore
equation (42) is the projection of P on T1. Likewise, equa-
tion (43) is the projection of P on T2. Hence, normalization
of T1 and T2 is not necessary, since projection of one vector
onto another is independent of the other vectors length.

3. Quadratic curvilinear surfaces

A quadratic surface can be determined by using the six con-
trol points8 in figure 3. The edge mid points P12,P23 and

P1

P2

P3

P12

P13

P23

Figure 3: Six control points

P13 can be determined by setting t = 0.5 in (38). By using
a quadratic surface, it is possible to use any kind of subdivi-
sion scheme without recalculating new points in a recursive
manner. Instead, new points are retrieved from the quadratic
surface.

4. Rendering the Curvilinear Polygons

Figure 4 shows a wire frame rendering of a Torus. It is quite
obvious that the Torus has got straight edges on the outer
contour. These can be made smooth by using the proposed
method. Figure 5 shows the same Torus, but this time, the
curvilinear mesh is used. The contour is now smooth.

To our knowledge, most modern hardware do not have the
capability to insert new polygons on the fly. The only possi-
ble solution, in order to make the contour smooth, is to sub-
divide the whole object before rendering. However, the result
is a more complex object. Moreover, it will take more time
to render it since it has more polygons. It would be prefer-
able if we could subdivide the object on the fly, only where
extra polygons are needed, i.e on the contour. The proposed
method could be used to produce these extra polygons that
will make the object smoother.

The extra points will lie on the quadratic surface, that will
have near least square acceleration. This will assure that the
contour will be as relaxed as possible using quadratic bound-
ary curves. However, since quadratic surfaces are used, C1

continuity is not guaranteed. If the angle between the nor-
mals is large, then the constructed curve can make a rather
large bend. This implies that there is a sharp edge between
the polygons or that the polygons should have been subdi-
vided prior rendering. This is of course a problem common
also for shading, not only for this method.

However, subdivision on the fly is not as easy as one might
think at first glance. First of all, we must be able to deter-
mine which polygons lie on the contour. This can be done
if pointers to neighboring polygons are available. Then, it is
possible to check if a neighboring polygon is back facing.
Secondly, it is possible that a polygon edge that lies behind
another polygon can have a large curvature and if subdivi-
sion is performed, then it will be visible. As long as it is

c© SIGRAD 2002.

46

Barrera, Hast and Bengtsson / Surface Construction

considered being hidden, it is no problem but when it even-
tually lies on the contour, due to that the object is rotating,
it will suddenly pop up as a heavily curved contour. This
problem is generally known as popping.

We suggest these problems for further research. Nonethe-
less, the proposed method could be used for determining new
points for any subdivision scheme that will subdivide an ob-
ject in order to make it appear more smooth.

Vlachos et al.9 suggest that their PN triangles should be
subdivided on the graphics chip without any software assis-
tance. The proposed method could also be used for hardware
subdivision since it is based on the available vertex informa-
tion for each polygon. Furthermore, it should be an attractive
method for hardware implementation, since the bottleneck in
todays graphics hardware is in feeding the graphics proces-
sor with triangles at a sufficient rate. Thus, fewer triangles
could be transfered and more triangles are created on the fly
on the graphics chip. This can not easily be done for the con-
tour only, since information from neighboring polygons are
needed. Instead, on the fly subdivision is done for the whole
object.

Another interesting fact is that the dot product of P and
the tangents T1 and T2 is invariant under rotation and trans-
lation. Hence, these products could be precomputed. This is
probably better for software rendering where it is possible to
save computation time. For a hardware implementation, this
means that two new variables must be transferred through
the graphics pipeline and this will make the bottleneck prob-
lem previously discusses even worse.

5. Conclusions

It has been shown that a curvilinear mesh with near least
square acceleration for quadratic surfaces could be con-
structed from vertex normals and vertex points. This mesh
can then be subdivided using an appropriate subdivision al-
gorithm. The proposed method will be fast, since the com-
puted tangents does not need to be normalized. Furthermore,
it has been shown that some terms can be precomputed in or-
der to speed up software rendering.

5.1. Future Work

We propose for future work, how the presented method for
constructing a curvilinear mesh, could be used in order to
make on the fly subdivision for contours only. Moreover, it
should be easy to use the method for on the fly subdivision
on the graphics chip. This would decrease the problem of the
bandwidth bottleneck.

It should also be determined if this method is good enough
for more complex objects, or if cubic surfaces are preferred,
even though they are computationally more expensive. Fur-
thermore, it should be investigated whether the average func-
tion (38) could be replaced with either of the functions (24)

Figure 4: A wire frame rendering of a Torus

Figure 5: A curvilinear mesh for a Torus

c© SIGRAD 2002.

47

Barrera, Hast and Bengtsson / Surface Construction

and (35) depending on how the normals are pointing com-
pared to the edge.

References

1. J. Bruijn. Quadratic Bezier triangles as drawing
primitives Proceedings of the 1998 EUROGRAPH-
ICS/SIGGRAPH workshop on Graphics hardware 1998
, Lisbon, Portugal pp. 15 - 24, 1998

2. E. Catmull, J. Clark. Recursively generated B-spline
Surfaces on arbitrary Topological Meshes. Computer
Aided Design, 10 pp.350 - 355, Oct 1978.

3. Leif Kobbelt.
√

3-subdivision Proceedings of the 27th
annual conference on Computer graphics and interac-
tive techniques, pp. 103 - 112, July 2000.

4. Charles Loop. Smooth subdivision surfaces based on
triangles. Master s thesis, University of Utah, Depart-
ment of Mathematics, 1987.

5. J. Maillot, J. Stam. A unified Subdivision Scheme for
Polygonal Modeling Proceedings Eurographics 2001,
Vol 20, No 3, pp. 471-479, 2001.

6. W. K. Nicholson. Linear Algebra With Applications
PWS Publishing Company, Third Edition, pp. 275,
1995.

7. K. van Overveld and B. Wyvill. An Algorithm for Poly-
gon Subdivision Based on Vertex Normals Proceedings
Computer Graphics International 1997, pp. 3-12, 1997.

8. L. Seiler. Quadratic Interpolation for Near-Phong Qual-
ity Shading Proceedings of the conference on SIG-
GRAPH 98: conference abstracts and applications,
Page 268, 1998.

9. A. Vlachos , J. Peters , C. Boyd , J. L. Mitchell. Curved
PN triangles Proceedings on 2001 Symposium on In-
teractive 3D graphics, March 2001 pp. 159-166, 2001.

10. P. Volino, N. Magnenat-Thalmann. The SPHERIGON:
A Simple Polygon Patch for Smoothing Quickly your
Polygonal Meshes. Computer Animation’98, proceed-
ings, IEEE Press, pp.72-79, 1998

11. A. Watt. 3D Computer Graphics. Addison-Wesley,
pp.59-64, 2000.

c© SIGRAD 2002.

48

Time Machine Oulu - Multichannel
Augmented Reality
Jaakko Peltonen
Oulu, Finland
jaakko.peltonen@oulu.fi

Oulu is a city of technology, technopolis as they say, but
only small number of the inhabitants know even some facts
about its history. We have implemented a ‘time-machine’,
that can represent the city in terms of past physical
structures. A new dimension is also added, a database of
Oulu containing not only buildings, but also all kinds of
information and activities that has happened the city over
the years such as fires. The material for the database was
obtained from a fire-insurance company named Tarmo Oy.
It was insuring most of the buildings in Oulu, and had
material representing approximately 80% of the city. The
insurance documents have been verified to be accurate. The
characteristics for the city of Oulu in 18th and 19th century
is quite unique for the region. The city was fairly large and
major part of the houses were built from timber logs. The
city was a vast number of small wooden 1 and 1 ½ story
height buildings. The current database covers the years
between two devastating fires in Oulu, 1822-1882. There
are over 3500 buildings with more than 110 records at the
most in the database. Soon the years 1882 to 1950, which is
approximately the same time scale as the previous time
period will be merged into the current database.

The interesting aspect to Time Machine Oulu is that it can
provide different views according to the type of user. A
researcher receives only the exact, academic view. That is,
data that has been correctly validated. Researchers can
update the information and add new buildings as well as
other material. They can also access the original data which
could be an original insurance map. Normal users receive
views of the plain model, and are provided with less
research orientated data. The other type of user is one that is
interested in ‘edutainment’. The user receives narrative
descriptions to the levels and time periods, which can be
used with their own imagination. Each of these different
types of users demand robustness in the system and
understanding of the type of client the user is using. The
current system allows for browsing over the Web through
an VRML compliant browser. We have had successful
results using the system with a wireless LAN and a Pocket
PC. In this sense, Time Machine Oulu is experimenting
with what we term, Multichannel Augmented Reality,
through the use of multiple different client types for
examining the information in the database, as well as the
possibility of been immersed in the actual world, and seeing
a bygone era. The idea for using a 3D model came almost
instantly when the material was started to gather. The main
idea was to model a block of buildings as a stationary
model, and create some still renderings and some high
quality animations. It soon became apparent that the scope
of the material was large and the shape of the city started to
form out. Since the material and the data
for each building was already in database, a natural
extension was to model the city in 3D based on SQL
queries. VRML was chosen and in combination with a

backend architecture of Apache, mySQL and PHP4. The
first step was taken to enlarge the visual representation of
historical town. The basic 3D model represents merely
dimensions of object, materials, lights, animation objects
and scripting are further levels.

 Sharing the database to the Internet is somewhat
straightforward procedure. Using VRML makes the site
more dependent on the client connections, browser
software, and ability to handle different constraints
demanded by the client. Parameters include level of detail
in the model, textures, other model features such as
animations, client operating system, client hardware type,
network throughput and user settings. VRML-generation
for each client is different and the system is evolving
constantly. Future work includes location based services
where users can walk through Oulu, and visualize with their
PDA, the environment in any time period. This will mean
examining more issues around model optimizations,
bandwidth and hybrid rendering algorithms.

Figure: From top left moving clockwise. 1. Original
insurance map of city. 2. PC based browser of VRML
world generated from SQL query. 3. Original drawing from
fire insurance register of a block. 4. Pocket PC browser of
world over wireless LAN.For more information, visit the
MediaTeam homepage on www.mediateam.oulu.fi

49

