FÄLTTORKNING AV ENERGIKRÄS
Undersökningar år 1982
PER EMGARDSSON

JTI-rapport 43 1983
FÄLTTORKNING AV ENERGIGRÄS

UNDERSÖKNINGAR ÅR 1982

Per Emgardsson

TRYCK: JORDBRUKSTEKNISKA INSTITUTET, UPPSALA 1983
INNEHÅLL

Förord 3
Inledning 5
Försöksuppläggnings 5
Försökens genomförande 7
Försök 1 12
 Väderleksförhållanden 12
 Beskrivning av försök 1 15
 Torktid 20
 Torrsubstansförluster 20
Försök 2 23
 Väderleksförhållanden 23
 Beskrivning av försök 2 24
 Torktid 30
 Torrsubstansförluster 32
Kommentarer till försök 1 och 2 34
 Torktider 34
 Förlust av torrsubstans 35
 Förändringar i energiinnehåll och askhalt 37
Bestämning av återväxtens storlek 37
Slutkommentarer till 1982 års försök 39
Bilagor 40
FÖRORD

Maskiner som behövts för undersökningens genomförande har välvilligt ställts till förfogande av Ana-Maskin AB, AM-Cani Maskin AB, OLEMA, Scantrac AB, Svenska Lantmännens Riksförbund och Zetor Sweden AB.

Till alla som bidragit till undersökningens genomförande riktas ett varmt tack.

Ultuna, Uppsala i februari 1983

Sven-Uno Skarp
Chef för Jordbrukssteknisca institutet
INLEDNING

Under sommaren 1982 har ytterligare två försök rörande fälttorkning av energigräs, dvs vallgräs avsett för energiproduktion genomförts. Syftet med försöken har varit att studera möjligheterna till att fälttorka energigräs vid olika tidpunkter under sommaren. Dessutom studerades olika behandlingars inverkan på fältförlusternas storlek och innehållet av aska och energi i det bärgade materialet. Studien ingår som en del i den undersökning av möjligheterna att torka och lagra gräs för energiproduktion, vilken Jordbruks tekniska institutet bedriver på uppdrag av Projekt Agrobioenergi vid Sveriges lantbruksuniversitet.

FÖRSÖKSUPPLÄGGNING

För att undersöka om olika behandlingsmetoder medför någon skillnad i spill eller torktid vid torkning till 20 % vattenhalt, var försöket uppdelat i fyra led. Dessa behandlades på följande sätt:

<table>
<thead>
<tr>
<th>VÄNDTEG</th>
<th>16m</th>
<th>30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>112A</td>
<td>112B</td>
</tr>
<tr>
<td>3m</td>
<td>5,4m</td>
<td>5,4m</td>
</tr>
<tr>
<td>3m</td>
<td>3m</td>
<td>3m</td>
</tr>
<tr>
<td>102 A</td>
<td>114 A</td>
<td>111A</td>
</tr>
<tr>
<td>3m</td>
<td>5,1m</td>
<td>5,1m</td>
</tr>
<tr>
<td>3m</td>
<td>3m</td>
<td>3m</td>
</tr>
<tr>
<td>104 A</td>
<td>101 A</td>
<td>111 B</td>
</tr>
<tr>
<td>3m</td>
<td>5,4m</td>
<td>5,4m</td>
</tr>
<tr>
<td>3m</td>
<td>3m</td>
<td>3m</td>
</tr>
<tr>
<td>101 B</td>
<td>103 A</td>
<td>114 B</td>
</tr>
<tr>
<td>3m</td>
<td>5,4m</td>
<td>5,4m</td>
</tr>
<tr>
<td>3m</td>
<td>3m</td>
<td>3m</td>
</tr>
<tr>
<td>113 A</td>
<td>113 B</td>
<td>Prov</td>
</tr>
<tr>
<td>3m</td>
<td>3m</td>
<td>och</td>
</tr>
<tr>
<td>3m</td>
<td>3m</td>
<td>reserv</td>
</tr>
<tr>
<td>3m</td>
<td>3m</td>
<td>14m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VÄNDTEG</th>
<th>16m</th>
<th>30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>212 A</td>
<td>213 A</td>
</tr>
<tr>
<td>3m</td>
<td>5,2m</td>
<td>5,2m</td>
</tr>
<tr>
<td>3m</td>
<td>3m</td>
<td>3m</td>
</tr>
<tr>
<td>202 A</td>
<td>211 A</td>
<td>214 A</td>
</tr>
<tr>
<td>3m</td>
<td>5,2m</td>
<td>5,2m</td>
</tr>
<tr>
<td>3m</td>
<td>3m</td>
<td>3m</td>
</tr>
<tr>
<td>203 A</td>
<td>204 A</td>
<td>212 B</td>
</tr>
<tr>
<td>3m</td>
<td>6,0m</td>
<td>5,2m</td>
</tr>
<tr>
<td>3m</td>
<td>3m</td>
<td>3m</td>
</tr>
<tr>
<td>201 A</td>
<td>202 B</td>
<td>211 B</td>
</tr>
<tr>
<td>3m</td>
<td>5,2m</td>
<td>5,2m</td>
</tr>
<tr>
<td>3m</td>
<td>3m</td>
<td>3m</td>
</tr>
<tr>
<td>204 B</td>
<td>213 B</td>
<td>214 B</td>
</tr>
<tr>
<td>3m</td>
<td>5,2m</td>
<td>5,2m</td>
</tr>
<tr>
<td>3m</td>
<td>3m</td>
<td>3m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VÄNDTEG</th>
<th>16m</th>
<th>30m</th>
</tr>
</thead>
</table>

I parcellnumret anger

Första siffran: skördetillfälle 1, 2
Andra siffran: 0 = jämförelseparcell, 1 = försöksparcell
Tredje siffran: försöksled enligt texten ovan
A respektive B betecknar upprepningarna

Bild 1. Parcellernas nummering och placering i de båda försöken.

Bruttoskördens på fältet bestäms genom direktöversikt av jämförelseparcellerna på ömse sidor om varandra slätterparcellen. Skördeförlusterna kunde då beräknas som skillnaden mellan bruttoskörd och bärgad skörd.
Parcellernas nummering och placering i de båda försöken framgår av bild 1.
FÖRSÖKENS GENOMFÖRANDE

Någon tid innan första slätterrättfallet stakades försöksblocken ut enligt bild 1.

På slätterdagen skördades jämförelseparcellerna med en från Institutionen för växtodling inlånad frontskärande vallskördemaskin med våg, bild 2 och 3.

Bild 2. Frontskärande skördemaskin för vallgrödor inlånad från Institutionen för växtodling.

Efter skörden av jämförelseparcellerna, mättes såväl dessa som försöksparcellerna. Bredden mättes på 5 ställen i båda parcelltyperna. I försöksparcellerna mättes längden både i kanterna och på mitten, under det att jämförelseparcellerna endast mättes i kanterna. Sedan detta var gjort slogs försöksparcellerna med respektive maskin.

För uppföljning av torkningsförloppet togs 2 prov per parcell för vattenhaltsbestämning kl. 07, 10, 13, 16 och 19 varje dag. Provplatsens läge fastställdes genom att ett föremål kastades ut i parcellen. I de led där gräset sprits kliptes en ruta om 50 x 50 cm ut, och gräset lades i en märkt plastpåse. I de strävlagda parcellerna kliptes en 2 cm lång bit av strängen bort. Se bild 4a och 4b. Vattenhaltsanalyserna utfördes i ett laboratorium ca 1 km från försöksfältet. Proven vägdes och hackades, varefter ett prov om ca 75 g togs ut och torkades i 150°C under 45 minuter. Samtliga tidsangivelser avser sommartid om inte annat anges.
Bild 4a, 4b. Prov för vattenhaltsbestämning under torktiden klipptes ur strängen och lades i en plasäck för transport till laboratoriet.
Under torktiden skedde endast vändning av materialet 2 ggr/dag i led 3. Då materialet i en parcel nått 20 % vattenhalt stränglades det, bild 5 och pressades med glidkolvpress, bild 6.

Bild 5. Strängläggning med fingerhjulsträfsa.

För bestämning av skörden vägdes sedan det från varje parcell skördade materialet på en plattformsvåg, bild 7.

Efter vägningen togs prover ur 4 balar per parcell, för vattenhaltsanalys och energianalys, med hjälp av ett provborr. Vattenhaltsproven torkades i 105°C under 3 timmar. Proverna för bestämning av energinnehåll och askhalt torkades i 50°C under 12 timmar.

Under försöksstiden utfördes även vissa väderleksobservationer. Temperatur och relativ fuktighet registrerades på en termohygrograf med veckoverk. Avdunstningen (evapotranspirationen) mättes med två avdunstningsmätare av Sigvard Anderssons modell. De var placerade 0,5 respektive 1,5 m över mark. Regn samlades upp i en nederbördsmätare av standardmodell samt mättes i tillhörande mätglas. Vindstyrkan mättes med en vindmätare av tachometer typ. Mätorganen bestod av fyra halvsäriska skålar fästade på

FÖRSÖK 1

VÄDERLEKSFÖRHÅLLANDEN

Vädret var under första delen av juni månad varmt och torrt. Därefter följde en kallare och ostadigare väderleksstyp under månadens senare del. I början av juli skedde så åter ett omslag till varmt och soligt väder. Den väderleksstypen var sedan rådande fram till andra veckan i augusti.

Under försöksperioden var vädret varmt och torrt med eftermiddagstemperaturer mellan 25-30°C. Då skörden av jämförelseparcellerna utfördes den 6/7, fäll 12,5 mm regn. Under torktiden 7/7-11/7 uppmättes däremot inget regn. Dygnsmedeltemperaturen var under perioden +18,0°C. Högsta registrerade temperatur under perioden var +30,0°C och lägsta +4°C. Relativa luftfuktigheten nådde under dagtid vanligen ned till mellan 40 och 50 % med 31 % som lägsta registrerade värde. Bild 8 visar termohygrografens registreringar under perioden. Dagg noterades varje morgon. Den totala evaporimeterav dunstningen under perioden uppgick på 1,5 respektive 0,5 meter över mark till 24,2 respektive 20,6 mm, bild 9. Vinden varierade mellan 0 och 5 m/s med en medelstyrka beräknad på värdena från observationstillfällena på 2 m/s. Registreringarna från heliografen, bild 10, visar att solen gått i moln sammanlagt 2 timmar under torktiden.
Bild 8. Termohygrografens registrering under försök 1.

Beskrivning av försök 1

Bild 11. Grödans utseende vid slättern i försök 1. Tumstocken är 120 cm lång.

Eftersom skördemaskinen var avsedd för ett betydligt kortare material än detta, uppstod vissa problem med att gräset lindade sig runt haspelaxeln och orsakade stopp. Transportmatten hade också en benägenhet att dra med sig material från vågbehållaren, särskilt då denna började bli full. Denna tendens förstärktes då maskinen stannades med verket igång. Det därigenom uppkomna spillet räfsades samman och vägdes tillsammans med övrigt skördat material.

Vattenhaltsuppföljningen startades klockan 07.00 på följande dag. Återväxten kom snabbt igång och redan på kvällen den 9/7 kunde en del grässtrån ses sticka upp ur det slagna materialet i led 1. Gräset kändes då fortfarande mjukt i centrum av strängarna respektive mot marken i de parceler där gräset spritts. På förmiddagen nästa dag (10/7) håller samtliga led under 30 % vattenhalt och på kvällen konstateras att led 4 natt 20 % vh. Bladen var spröda, även i de undre skikten av gräslagret, medan stjälkarna var något mjukare nära marken än vad de var i ytskiktet.

De led som torkats utspritt (led 1 och 4) var då de nått 20 % vh väl genomtorkade. Såväl blad som stjälkar var mycket spröda i ytsskiktet medan stjälkarna på något ställe kändes mjukare i bottenskiktet. Även led 2 och 3 var väl torkade då de pressades. Återväxten hade i led 2 börjat tränga igenom tunnare partier av strängen. Denna var fortfarande relativt luftig, trots att den under torkningen fallit samman något, bild 13 och 14.

Bild 13. Försöksled 2, 8/7 kl 8.30.
I led 3 som vånt 2 ggr/dag med fingerhjulsmärsan var strängarna samman-

Bild 15. Försöksled 3, 10/7 kl 18.30. Observera sammanvinnningen av strängarna.
TORKTID

Torkningsförloppen för de olika försöksleden visas i diagrammet i bild 16. Av detta framgår att led 4 nätt 20 % vh ett knappt dygn tidigare än övriga led, vilka samtliga nätt önskad vh inom en timmes tid. Total torktid var 2,6 dygn för led 4 och för övriga led 3,5 dygn.

TORRSSUBSTANSFÖRLUSTER

I bild 17 och 18 samt i tabell 1 redovisas bärgad skörd och fältförluster för de olika försöksleden. Förlusterna var i led 1, 2 och 4 mycket små liksom avvikelserna mellan dem. Led 3 hade dock en betydligt högre förlustnivå än övriga försöksled.

Någon påverkan av slättermetod, led 4 jämfört med led 4 eller skillnad mellan torkning i sträng respektive utspritt, led 2 jämfört med led 4 kan inte visas.

Energiinnehåll och askhalt vid slätter och vid bärgning redovisas i tabell 1. Värdena har inte förändrats nämnvärt under torktiden.

Tabell 1. Skördenivå vid slätter, bärgad skörd, fältförluster samt energiinnehåll och askhalt vid slätter och vid pressning av de fyra försöksleden i försök 1.

<table>
<thead>
<tr>
<th>Led</th>
<th>Skörd kg ts/ha</th>
<th>Förlust kg ts/ha %</th>
<th>Energiinnehåll MJ/kg ts</th>
<th>Askhalt % av ts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slätter</td>
<td>Bärgad</td>
<td>Slätter</td>
<td>Pressning</td>
</tr>
<tr>
<td>1</td>
<td>7 170</td>
<td>7 110</td>
<td>60</td>
<td>0,8</td>
</tr>
<tr>
<td>2</td>
<td>7 300</td>
<td>7 170</td>
<td>130</td>
<td>1,7</td>
</tr>
<tr>
<td>3</td>
<td>7 520</td>
<td>7 000</td>
<td>520</td>
<td>6,9</td>
</tr>
<tr>
<td>4</td>
<td>7 380</td>
<td>7 270</td>
<td>110</td>
<td>1,6</td>
</tr>
</tbody>
</table>
Bild 16. Torkningsförlopp för de 4 försöksleden i försök 1.

Bild 18. Fältförluster i % av bruttorskörd, försök 1.
FÖRSÖK 2

VÅDERLEKSFÖRHÅLLANDE

Vädret var under den andra försöksperioden mycket torrt och varmt. Eftermiddagstemperaturerna nådde upp till mellan 20 och 30°C. Dygnsmedeltemperaturen var +16,5°C. Under nätterna sjönk temperaturen till som lägst +3,5°C. I bild 19 finns temperatur- och luftfuktighetsregistreringar för perioden. Relativa luftfuktigheten nådde under dagtid vanligen ned till mellan 40% och 50%. Det lägsta värdet 34% noterades under periodens senare del. Dagg noterades på morgonen den 29/7 och den 30/7. På kvällen den 30/7 kunde dagg märkas vid 20.45-tiden. Den under torkperioden uppmätta evaporiometeravdunstningen var på 1,5 respektive 0,5 m höjd över marken 10,1 mm respektive 10,0 mm, bild 20. På grund av brist på destillerat vatten saknas registreringar för tiden 07-14 den 28/7. Vinden var under torkperioden nordostlig och varierade i styrka mellan 0 och 5 m/s med ett genomsnitt av 2,1 m/s.

Bild 20. Ackumulerad evaporimeteravdunstning i försök 2.

Enligt heliografregistreringarna, bild 21, skyndes solen av moln under 35% av tiden den 28/7. Övriga dagar rådade solsken hela dagen. Dagen före försöksbörjan fäll 15 mm regn. Under försöksperioden fäll inget regn.

BESKRIVNING AV FÖRSÖK 2

Vallen hade vid försöksbörjan blommat och frön hade börjat bildas. Plantorna var fortfarande gröna så när som på stråets undre del och de nedersta bladen. Beståndet var jämnt och tätt samt helt upprättstående. Dess höjd var 95 cm. Vallbotten var jämnt beväxt men hade ett flertal mindre ojämnheter, 5-10 cm höga. De försvarande inställningen av maskinernas arbetshöjd. Inlaget av ogräs var litet. De dominerande arterna var kvickrot och baldersbrå. Även enstaka plantor av rödkläver stod att finna. Vattenhalten i gräset på rot var 56,5% och vallen avkastade i genomsnitt 8 800 kg ts, bild 22.
Bild 22. Grödans utseende vid slättertillfället, försök 2. Trumstockens längd är 120 cm.

Vid vändning av gräset från vändtegen mellan försöken skadades kanten av försök 2. Det skadade partiet, ca 2 dm brett, kliptes bort innan skörden av parcellerna påbörjades.

För att underlättta slättern justerades försöksparcellernas bredder jämfört med försök 1, se bild 1. Parcellbredderna blev därmed bättre anpassade till maskinernas arbetsbredder. Bredden av parcell 211 ökades från 5,1 m till 6,0 m medan övriga parcellers bredd minskades från 5,4 m till 5,2 m.
Vid skördan av jämförelseparcellerna lånades den frontskärande skördemaskinen från Institutionen för växtodling. Den kördes på liknande sätt som vid skördan av försök 1. Stubben efter maskinen blev denna gång i genomsnitt 0,5 cm för låg. De siffror som visas i tabell 2 har korrigerats för den för låga stubben, enligt vid JTI gångse schablon 150 kg ts/ha för varje cm stubbhöjden avviker från 5 cm. Även vid det här skördetillfället uppstod problem med lindning kring haspeln på skördemaskinen. Den vid förra försöket observerade tendensen hos skördemaskinens transportmatta, att dra med sig material från vågbehållaren var nu mer påtaglig, eftersom gräset var styvare och längre. På så vis uppkommet spill tätades samman och lades i vågbehållaren före den sista vägningen i varje parcel.

Försöksparcellerna slogs mellan kl 19.00 och 19.30 den 27/7. Slätterkrossens frontplatta var inställd på ca 1/4 av full anliggning och rotorns varvtal var 600 rpm. Bild 23 visar strängen efter slätterkrossen.

Bild 23. Strängen som slätterkrossen lämnat var luftig och lucker.
Vattenhaltsprover för följdning av torkningsförloppet började tas den 28/7 kl 10. De prover som togs kl 7 den 28/7 gav orimliga värden. Detta provtillfälle utesluts därför ur redovisningen. Fr o m provet kl 13 den 29/7 gjordes två provberedningar per parcel. Dessförinnan hade de båda proven slagits samman vid provberedningen.

På kvällen den 28/7 visade det sig att axen vid gnidning i handen släppte frö. Dessa var fortfarande gröna och fuktade då de klämdes mellan naglarna. Vid middagstid den 29/7 hade samtliga led vattenhalter under 30 %.

Torkningen fortgick under hela försöksperioden något snabbare i led 3 och 4 än i led 1 och 2. Kl 13 den 30/7 konstaterades att led 4 nått 20 % vh. Proverna från led 2 och 3 hade nått vattenhalter lägre än 20 % kl 16. Pressningen av leden 4, 3 och 2 påbörjades kl 15. Proven från led 1 kl 19 visade 19,9 respektive 20,5 % vh. Parcellerna började därför pressas kl 20.15. Vid kontroll kl 20.45 konstaterades dagg i gräset. En uppfuktning på grund av dagg hann ske innan pressningen av led 1 var klar. Strax före pressning var såväl blad som strån spröda och torra.

Stråna i led 1, liksom i led 2, bild 24, var något böjligare i skiktet närmast marken. I led 3 var stråna något böjligare mot centrum av strängen. Strängarna i led 3, som vänts med fingerhjulskränk, var tvinnade i repliknande form, bild 25 och 26. De var dock inte lika hårt lindade som i försök 1. Gräset hade i det fjärde ledet torkat väl tvärs igenom hela skiktet.

Bild 26. Strängarna i led 3 var mindre hårt tvinnade i försök 2 än i försök 1.

TORKTID

Torkningsförloppen för de olika försöksleden finns återgivna i bild 27. Även i detta försök torkade led 4 snabbast. Skillnaderna i torktid mellan de olika försöksleden var dock små. Det rör sig om ca 7 timmar mellan det tidigaste och det senaste ledet.

Torktiden för de olika leden var:
Led 1 = 2,9 dygn, led 2 = 2,9 dygn, led 3 = 2,8 dygn, led 4 = 2,7 dygn
Bild 27. Torkningsförlopp för de 4 försöksleden under försök 2.
TORRSSUBSTANSFÖRLUSTER

Torrsubstansförlusterna var i försök 2 betydligt högre än i försök 1, men fortforande allmänt sett små. I tabell 2 redovisas bruttoskörd, bärgad skörd och fältpåverkta samt energinnehåll och askhalt vid slätter och bårgning av de olika försöksleden i försök 2. Skörd- bitet och fältpåverkternas absoluta och relativ storlek visas också grafiskt i diagrammen i bilderna 28 och 29.

Led 1 var även i detta försök det led som hade de lägsta förlusterna av torrsubstans, medan led 4 denna gång vidkänds förhållandevis stora förluster. De övriga försöksleden intog en mellanposition, men hade även de en betydligt högre förlustnivå än i försök 1.

Tabell 2. Skördnivå vid slätter, bärgad skörd, fältpåverkta samt energinnehåll och askhalt vid slätter och bårgning av de fyra försöksleden i försök 2.

<table>
<thead>
<tr>
<th>Led</th>
<th>Slätter</th>
<th>Bärgad</th>
<th>Förlust %</th>
<th>Skörd MJ/kg ts</th>
<th>Energinnehåll MJ/kg ts</th>
<th>Askhalt % av ts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 850</td>
<td>8 650</td>
<td>200</td>
<td>2,3</td>
<td>18,9</td>
<td>5,0</td>
</tr>
<tr>
<td>2</td>
<td>8 780</td>
<td>8 070</td>
<td>710</td>
<td>8,1</td>
<td>18,8</td>
<td>5,0</td>
</tr>
<tr>
<td>3</td>
<td>8 820</td>
<td>7 980</td>
<td>840</td>
<td>9,5</td>
<td>18,8</td>
<td>5,0</td>
</tr>
<tr>
<td>4</td>
<td>9 010</td>
<td>7 900</td>
<td>1 110</td>
<td>12,4</td>
<td>18,8</td>
<td>5,0</td>
</tr>
</tbody>
</table>

I tabell 2 finns även angivet energinnehåll och askhalt i gräset vid slätter respektive vid skörd. Skillnaderna var som synes små. Några förändringar av betydelse kan inte skönnas.

Bild 29. Fältförluster i % av bruttoskörd i försök 2.
KOMMENTARER TILL FÖRÖK 1 OCH 2

TORKTIDER

Diskussionen hänför sig till diagrammen i bilderna 16 och 27, vilka visar torkningsförloppen för de olika försöksleden i de båda försöken. En tvåvägs variansanalys har gjorts, utgående från torktiderna ned till 20 % vattenhalt för de olika försöksparcellerna, bilaga 1. Torktiderna har i samtliga fall beräknats från kl 19 slätterdagen. Variansanalysen har gett som resultat att det finns en statistiskt säkerställd påverkan på torktiden av såväl slättertidpunkt som behandling. Dessutom kan en samverkan mellan slättertidpunkt och behandling med avseende på deras inverkan på torktiderna påvisas. För att möjliggöra beräkningen har tidpunkten då 20 % vattenhalt nätts extrapoleras för parcellerna 113 B, 211 A och 212 A.

Tvåvägs variansanalys har gjorts för vart och ett av försöken, bilaga 2 och 3. Dessa visar en statistiskt säker påverkan av försöksfaktorn behandling på torktiden i försök 1, men inte i försök 2. Dessa analyser visar dock inte vilka av behandlingarna som påverkat torktiden starkast.

Av bild 16 och 27 framgår att led 4 torkade snabbast i båda försöken. Detta var mest markant i försök 1 där det en stor del av tiden skiljde upp till 4 procentenheter i vattenhalt mellan led 4 och övriga led. Mellan de övriga tre leden var skillnaderna små. En tendens till att led 1, knivbalk och gräset spritt, torkade något snabbare än led 2 och 3 kan dock urskiljas. Strängarna i led 3 som vändes 2 ggr/dag med en fingerhjulsräfsa, blev i första försöket relativt hårt sammantvinnade. Det är därför möjligt att den metod som användes för vändningen av strängarna motverkade sitt eget syfte. Tendensen till sammantvinning av strängarna var mindre i försök 2, antagligen beroende på att gräset då var styvare.
Resultaten från försök 2 visar en mindre skillnad i tid mellan det led som torkade snabbast och det som torkade långsammast än vad som erhölls i försök 1. Led 1 som slogs med knivbalk höll under hela torkningstiden aningen högre vattenhalt än de övriga leden. Led 3 hade under torknings- tiden något lägre vattenhalt än led 2. Skillnaderna i vattenhalt mellan leden 2, 3 och 4 under torkperioden var så små att det är omöjligt att säga om de beror på slumpen eller ej. Skillnaden i total torktid mellan led 1 och 4 var emellertid 7 timmar. En sådan skillnad i tork- tid kan vara betydelsefull även om den inte är statistiskt säker.

Eftersom antalet upprepningar är så få, krävs en mycket stor skillnad mellan två mätvärden för att den skall anses som statistiskt säker. Torktiden var ca ett dygn kortare i försök 2 än i försök 1, troligen beroende på den lägre vattenhalten i grödan på rot. I någon mån kan en lägre markfuktighet också ha bidragit till det förhållandet. Som tidigare nämnts var också gräset mera möjligt när försök 2 skördades. Det låg däremot luckrare och vinden kunde påverka torkningen mera.

FÖRLUST AV TÖRRSUBSTANS

Envägs variansanalyser har gjorts för de enskilda försöken, bilaga 5 och 6. Inte heller i dessa kunde någon statistiskt säker påverkan visas av faktorn behandling på förlusternas storlek. Eftersom varje led endast har två upprepningar blir den statistiska osäkerheten större än variationen mellan de olika försöksleden. De skillnader i förlust av torrsubstans som finns mellan de olika försöksleden, är därför inte "säkra" ur statistisk synpunkt, även om de är betydande räknat i procentenheter.

Förlusterna är i led 3 noterbart större än i övriga led. En förklaring kan vara hanteringen av gräset i samband med vändningarna två gånger per dag. De övriga leden visar sinsemellan små skillnader. Någon påverkan av maskintyp eller torkningsförfarande kan inte spåras.

Försöksled 1 hade även i försök 2 de lägsta förlusterna av torrsubstans. Förlusterna i led 2 och 3 var betydligt större, men inbördes ungefär lika stora, under det att led 4 drabbades av för årets försök ovanligt stora förluster, 12 %.
FÖRÄNDRINGAR I ENERGIINNEHÅLL OCH ASKHALT

Prover för analys med avseende på energiinnehåll och askhalt togs dels i samband med skörden av jämformelseparcellerna, dels vid pressningen av det färdigtorkade materialet. Analysresultaten finns i tabellerna 1 och 2.

Såväl för försök 1 som försök 2 är energiinnehållet att betrakta som oförändrat efter fälttorkningen. De variationer som finns beror sannolikt av olikheter, som inte har samband med fälttorkningen, i det material som analyserats. Eftersom värdena är givna med endast en decimals noggrannhet kan också avrundningar spela en viss roll.

Även askhalter får anses ha varit oförändrad efter fälttorkningen av gräset. I försök 2 finns visserligen en variation om -0,4 - +0,2 procentenheter men även dessa förändringar kan antas bero av biologisk variation i gröden.

BESTÄMNING AV ÅTERVÄXTENS STORLEK

I området från försök 1 uppmättes en torrsubstansmängd motsvarande 1 500 kg ts/ha. Motsvarande siffra för området där försök 2 legat var 1 280 kg ts/ha.

Ingen gödsling till andraåkord hade, skett på försöksfältet.
Bild 30. Plan över provplatsen för mätning av återväxtens storlek.
SLUTKOMMENTARER TILL 1982 ÅRS FÖRSÖK

* Försöksled 4, dvs slåtter med slätterkross och därefter spridning av gräset jämnt över området, har i år gett den kortaste torktiden i båda försöken. Mellan de övriga leden finns endast små skillnader.

* Slåtter i slutet av juli (försök 2) har gett en kortare torktid än slåtter i början av månaden. Den viktigaste orsaken till detta är troligen den lägre utgångsvattenhalten i grödan.

* Torrsubstansförlusterna var markant större vid sen slåtter. Försöksled 1 hade lägst förluster av torrsubstans i båda försöken, följt av led 2. Led 3 hade i försök 1 jämförelsevis stora förluster medan ledet i försök 2 hade förluster i samma storleksordning som led 2. Led 4 hade i försök 1 mycket små förluster av torrsubstans medan det i försök 2 förlorade mest torrsubstans av de fyra försöksleden.

* Energiinnehåll och askhalt synes opåverkade av fälttorkningen oavsett slåttertillfälle.

Tvåvägs variansanalys, Torktider i försök 1 och 2, 1982

ANALYSIS OF VARIANCE

<table>
<thead>
<tr>
<th>DUE TO</th>
<th>DF</th>
<th>SS</th>
<th>MS=SS/DF</th>
<th>F-TAL</th>
<th>F-TABELL</th>
<th>PÅVERKAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEH</td>
<td>3</td>
<td>0.75073</td>
<td>0.25024</td>
<td>47.66</td>
<td>4.07</td>
<td>JA</td>
</tr>
<tr>
<td>TID</td>
<td>1</td>
<td>1.94602</td>
<td>1.94602</td>
<td>370.67</td>
<td>5.32</td>
<td>JA</td>
</tr>
<tr>
<td>BEH * TID</td>
<td>3</td>
<td>0.40002</td>
<td>0.13334</td>
<td>25.40</td>
<td>4.07</td>
<td>JA</td>
</tr>
<tr>
<td>ERROR</td>
<td>8</td>
<td>0.04200</td>
<td>0.00525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td>3.13877</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CELL MEANS
ROWS ARE LEVELS OF "BEH" COLS ARE LEVELS OF "TID"

<table>
<thead>
<tr>
<th>ROW</th>
<th>1</th>
<th>2</th>
<th>MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.7350</td>
<td>2.8950</td>
<td>3.3150</td>
</tr>
<tr>
<td>2</td>
<td>3.7200</td>
<td>2.9050</td>
<td>3.3125</td>
</tr>
<tr>
<td>3</td>
<td>3.7550</td>
<td>2.7800</td>
<td>3.2675</td>
</tr>
<tr>
<td>4</td>
<td>2.8800</td>
<td>2.7200</td>
<td>2.8000</td>
</tr>
</tbody>
</table>

COL. MEANS | 3.5225 | 2.8250 | 3.1737

POOLED ST. DEV. = 0.0725

INDIVIDUAL 95 PERCENT C. I. FOR LEVEL MEANS OF "BEH"
(BASED ON POOLED STANDARD DEVIATION)

<table>
<thead>
<tr>
<th>1</th>
<th>2.70</th>
<th>2.85</th>
<th>3.00</th>
<th>3.15</th>
<th>3.30</th>
<th>3.45</th>
<th>3.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>**III</td>
<td>**III</td>
<td>**III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>**III</td>
<td>**III</td>
<td>**III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>**III</td>
<td>**III</td>
<td>**III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INDIVIDUAL 95 PERCENT C. I. FOR LEVEL MEANS OF "TID"
(BASED ON POOLED STANDARD DEVIATION)

<table>
<thead>
<tr>
<th>1</th>
<th>2.75</th>
<th>2.90</th>
<th>3.05</th>
<th>3.20</th>
<th>3.35</th>
<th>3.50</th>
<th>3.65</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>**III</td>
<td>**III</td>
<td>**III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"BEH" = försöksled = behandling

"TID" = försök
 level

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>DATA</th>
<th>LED 1</th>
<th>LED 2</th>
<th>LED 3</th>
<th>LED 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.60</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3.20</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2.80</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

ANALYSIS OF VARIANCE

<table>
<thead>
<tr>
<th>DUE TO</th>
<th>DF</th>
<th>SS</th>
<th>MS = SS/DF</th>
<th>F-TAL</th>
<th>F-TABELL</th>
<th>PÅVERKAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEH</td>
<td>3</td>
<td>1.10205</td>
<td>0.36735</td>
<td>98.62</td>
<td>6.59</td>
<td>JA</td>
</tr>
<tr>
<td>ERROR</td>
<td>4</td>
<td>0.01490</td>
<td>0.00373</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>7</td>
<td>1.11695</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEVEL

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>N</th>
<th>MEAN</th>
<th>ST. DEV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED 1</td>
<td>2</td>
<td>3.7350</td>
<td>0.0495</td>
</tr>
<tr>
<td>LED 2</td>
<td>2</td>
<td>3.7200</td>
<td>0.0141</td>
</tr>
<tr>
<td>LED 3</td>
<td>2</td>
<td>3.7550</td>
<td>0.0495</td>
</tr>
<tr>
<td>LED 4</td>
<td>2</td>
<td>2.8800</td>
<td>0.0990</td>
</tr>
</tbody>
</table>

POOLED ST. DEV. = 0.0610

INDIVIDUAL 95 PERCENT C. I. FOR LEVEL MEANS
(BASED ON POOLED STANDARD DEVIATION)

<table>
<thead>
<tr>
<th>LED 1</th>
<th>I###I####I</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED 2</td>
<td>I###I####I</td>
</tr>
<tr>
<td>LED 3</td>
<td>I###I####I</td>
</tr>
<tr>
<td>LED 4</td>
<td>I###I####I</td>
</tr>
</tbody>
</table>

BEH = försöksled = behandling
Envägs variansanaly. Torktider försök 2, 1982

LEVEL

<table>
<thead>
<tr>
<th>DATA</th>
<th>LED 1</th>
<th>LED 2</th>
<th>LED 3</th>
<th>LED 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2.80</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

ANALYSIS OF VARIANCE

<table>
<thead>
<tr>
<th>DUE TO</th>
<th>DF</th>
<th>SS</th>
<th>MS=SS/DF</th>
<th>F-TAL</th>
<th>F-TABELL</th>
<th>PÅVERKAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEH</td>
<td>3</td>
<td>0.04870</td>
<td>0.01623</td>
<td>2.40</td>
<td>6.59</td>
<td>NEJ</td>
</tr>
<tr>
<td>ERROR</td>
<td>4</td>
<td>0.02710</td>
<td>0.00678</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>7</td>
<td>0.07580</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEVEL

<table>
<thead>
<tr>
<th>LED</th>
<th>N</th>
<th>MEAN</th>
<th>ST. DEV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2.8950</td>
<td>0.1344</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.9050</td>
<td>0.0636</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2.7800</td>
<td>0.0707</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2.7200</td>
<td>0.0</td>
</tr>
</tbody>
</table>

POOLED ST. DEV. = 0.0823

INDIVIDUAL 95 PERCENT C. I. FOR LEVEL MEANS

(BASED ON POOLED STANDARD DEVIATION)

<table>
<thead>
<tr>
<th>LED</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE *ALL VALUES IN COLUMN ARE IDENTICAL*

BEM = försöksled = behandling
Analysis of Variance

<table>
<thead>
<tr>
<th>DUE TO</th>
<th>DF</th>
<th>SS</th>
<th>MS=SS/DF</th>
<th>F-TAL</th>
<th>F-TABELL</th>
<th>PÅVERKAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEH</td>
<td>3</td>
<td>104.03</td>
<td>34.69</td>
<td>3.69</td>
<td>4.07</td>
<td>NEJ</td>
</tr>
<tr>
<td>TID</td>
<td>1</td>
<td>113.42</td>
<td>113.42</td>
<td>12.00</td>
<td>5.32</td>
<td>JA</td>
</tr>
<tr>
<td>BEH * TID</td>
<td>3</td>
<td>55.98</td>
<td>18.66</td>
<td>1.97</td>
<td>4.07</td>
<td>NEJ</td>
</tr>
<tr>
<td>ERROR</td>
<td>8</td>
<td>75.57</td>
<td>9.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td>349.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cell Means

Rows are levels of "BEH"
Cols are levels of "TID"

<table>
<thead>
<tr>
<th>ROW</th>
<th>1</th>
<th>2</th>
<th>MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.80</td>
<td>2.25</td>
<td>1.53</td>
</tr>
<tr>
<td>2</td>
<td>1.70</td>
<td>7.90</td>
<td>4.80</td>
</tr>
<tr>
<td>3</td>
<td>6.90</td>
<td>9.50</td>
<td>8.20</td>
</tr>
<tr>
<td>4</td>
<td>1.55</td>
<td>12.60</td>
<td>7.07</td>
</tr>
</tbody>
</table>

Coll. Means

2.74 8.06 5.40

Cell Standard Deviations

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.10</td>
<td>0.92</td>
</tr>
<tr>
<td>2</td>
<td>1.27</td>
<td>5.09</td>
</tr>
<tr>
<td>3</td>
<td>2.26</td>
<td>3.54</td>
</tr>
<tr>
<td>4</td>
<td>0.49</td>
<td>3.54</td>
</tr>
</tbody>
</table>

Pooled St. Dev. = 3.07

Individual 95 Percent C. I. for Level Means of "BEH"
(Based on pooled standard deviation)

1
I********************************I
2
I********************************I
3
I********************************I
4
I********************************I

-3.0 0.0 3.0 6.0 9.0 12.0 15.0

Individual 95 Percent C. I. for Level Means of "TID"
(Based on pooled standard deviation)

1
I********************************I
2
I********************************I

0.0 2.0 4.0 6.0 8.0 10.0 12.0

"BEH" = försöksled = behandling
"TID" = försök
Envägs variansanalys. Förlust av torrsubstans. Försök 1, 1982

LEVEL

<table>
<thead>
<tr>
<th>DATA</th>
<th>LED 1</th>
<th>LED 2</th>
<th>LED 3</th>
<th>LED 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.0</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

ANALYSIS OF VARIANCE

<table>
<thead>
<tr>
<th>DUE TO</th>
<th>DF</th>
<th>SS</th>
<th>MS=SS/DF</th>
<th>F-TAL</th>
<th>F-TABELL</th>
<th>PÅVERKAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEH</td>
<td>3</td>
<td>47.13</td>
<td>15.71</td>
<td>2.64</td>
<td>6.59</td>
<td>NEJ</td>
</tr>
<tr>
<td>ERROR</td>
<td>4</td>
<td>23.80</td>
<td>5.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>7</td>
<td>70.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEVEL

<table>
<thead>
<tr>
<th>N</th>
<th>MEAN</th>
<th>ST. DEV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED 1</td>
<td>2</td>
<td>0.80</td>
</tr>
<tr>
<td>LED 2</td>
<td>2</td>
<td>1.70</td>
</tr>
<tr>
<td>LED 3</td>
<td>2</td>
<td>6.90</td>
</tr>
<tr>
<td>LED 4</td>
<td>2</td>
<td>1.55</td>
</tr>
</tbody>
</table>

POOLED ST. DEV. = 2.44

INDIVIDUAL 95 PERCENT C. I. FOR LEVEL MEANS

(BASED ON POOLED STANDARD DEVIATION)

LED 1	I***************I***************I
	I***************I***************I
	I***************I***************I
LED 4	I***************I***************I

BEH = försöksled = behandling
Envägs variansanalys. Förlust av torrsubstans. Försök 2, 1982

LEVEL

<table>
<thead>
<tr>
<th>ALL</th>
<th>LED 1</th>
<th>LED 2</th>
<th>LED 3</th>
<th>LED 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

ANALYSIS OF VARIANCE

<table>
<thead>
<tr>
<th>DUE TO</th>
<th>DF</th>
<th>SS</th>
<th>MS=SS/DF</th>
<th>P-TAL</th>
<th>F-TABELL</th>
<th>PÅVERKAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEH</td>
<td>3</td>
<td>112.9</td>
<td>37.6</td>
<td>2.91</td>
<td>6.59</td>
<td>NEJ</td>
</tr>
<tr>
<td>ERROR</td>
<td>4</td>
<td>51.8</td>
<td>12.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>7</td>
<td>164.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEVEL

<table>
<thead>
<tr>
<th>N</th>
<th>MEAN</th>
<th>ST. DEV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED 1</td>
<td>2</td>
<td>2.25</td>
</tr>
<tr>
<td>LED 2</td>
<td>2</td>
<td>7.90</td>
</tr>
<tr>
<td>LED 3</td>
<td>2</td>
<td>9.50</td>
</tr>
<tr>
<td>LED 4</td>
<td>2</td>
<td>12.60</td>
</tr>
</tbody>
</table>

POOLED ST. DEV. = 3.60

INDIVIDUAL 95 PERCENT C. I. FOR LEVEL MEANS
(BASED ON POOLED STANDARD DEVIATION)

BEH = försöksled = behandling
Tidigare utgivna JTI-rapporter

8 1974 Kraftfoderhantering - NJF seminarium 1973 (kr 20)
11 1974 Preservation of moist feed grain by treatment with organic acids.
 N Ekström
13 1975 Luktutsläpp och luktspridning från svinstallar. P Grennfelt, T Lindvall,
 O norén, G Rosén & L Thyselius
14 1975 Komfortmätning av hyttklimat. H-A Eriksson & T Lindvall
15 1975 A review of research relating to thermal comfort of cab operators.
 K W Domier
16 1975 El-risker i lantgårdars djurstallar och anvisningar om åtgärder.
 H Jansson & S Sörlin (kr 15)
17 1975 Noxious gases and odours. O Norén
19 1976 Redskapen kring traktorn - koppling och manövrering.
 NJF seminarium 1976 (kr 25)
20 1977 Damm, buller och vibrationer på skördetrösor. H-A Eriksson (kr 15)
22 1977 Sönderslagning av hö vid fläkttransport. Utveckling av en analysmetod
 och studier med en direktfläkt och en injektorfläkt. L-E Larsson (kr 10)
23 1978 Lufterörelser och luftläckage vid torkning av balat och stackat hö.
 U Isacson (kr 15)
25 1978 Värmeavlastning i förarhytter. Studier av avvikelser från optimal
 klimatkomfort. A Browén (kr 15)
26 1978 Sönderslagning av hö vid fläkttransport. Inverkan av fläktstorlek, arbets-
 varvtal, matningshastighet och insläppssöppningens läge. A Köhlerstrand (15)
27 1979 Hö i storbilar. En utredning om storbalsteknik för hö i Sverige.
 N Bengtsson, E Nilsson, O Norén, L Plym Forshell & K Svensson (kr 15)
28 1979 Kartläggning av driftsavbrott och reparationsservice för lantbruks-
 traktorer. B Danfors & P Bodin (kr 15)
29 1979 Värmeavlastning i förarhytter. Studier i klimatkammare av olika
 principer för värmeavlastning. A Browén & A Gustafsson (kr 25)
30 1979 Värmeavlastning i förarhytter. Klimatupplevelser under fältförhållanden.
 A Gustafsson (kr 20)
31 1979 Värmeavlastning i förarhytter. Studier av utrustning i praktisk drift.
 J Bergström (kr 15)
32 1981 Uttagning och utfodring av ensilage ur plansilor. N Bengtsson &
 E Nilsson (kr 20)
33 1981 Orienterande försök med tidig strånläggning vid förtorkning av hö.
 E Nilsson (kr 10)
34 1981 Metanjämning. Energi och ekonomisk utvärdering. Examensarbete i
 kemisk teknologi. I Hellman & K Haara (kr 25)
35 1981 En kopplingsenhet mellan traktor och redskap. Kartläggning och
 analysering av de tekniska lösningarna. Bo Carlson (kr 25)
36 1982 Kemisk konservering av fuktig vallgrönmassa med ammoniak. N Bengtsson & P Ciszuk (kr 20)

37 1982 Torkning av balat hö. Försök i mindre skala (kr 20)

40 1982 Dammförekomst vid kraftfoderhantering. K Larsson (kr 25)

Distribution
Jordbruks-ekniska institutets expedition
750 07 Uppsala. Tel 018/30 19 30
Postgiro 29 74 00 - 4

Pris 25 kronor