Processintern metananrikning vid gödselrötning

– Försök i pilotskala

Johan Andersson, Henrik Olsson, Johnny Ascue, Gustav Rogstrand, Mats Edström, Åke Nordberg
Processintern metananrikning vid gödselrötning
– Försök i pilotskala

In-situ methane enrichment during anaerobic digestion of manure
– Pilot scale tests

Johan Andersson, Henrik Olsson, Johnny Ascue, Gustav Rogstrand, Mats Edström, Åke Nordberg

© JTI – Institutet för jordbruks- och miljöteknik 2014, ISSN-1401-4955
Innehåll

Förord .. 5

Sammanfattning .. 7

Summary .. 8

Inledning ... 10
 Syfte och mål .. 11
 Genomförande och avgränsningar ... 11

Material och metod .. 12
 Försöksuppställning ... 12
 Försöksupplägg ... 13
 Substrat .. 14
 Provtagning och analysmetoder ... 15

Resultat och diskussion .. 16
 Block 1 .. 16
 Block 2 .. 16
 Kinetiken för metananrikningsprocessen .. 18
 Inverkan av processintern metananrikning på rötkammarinnehållet 19
 Processtörningar och praktiska erfarenheter .. 20
 Avlagringar .. 20
 Skumning ... 20
 Uppskalning och ekonomiska beräkningar ... 21
 Uppskalning .. 21
 Investeringsbehov ... 22
 Årliga kostnader ... 22
 Känslighetsanalys .. 23

Övergripande diskussion ... 24

Slutsatser .. 27

Referenser ... 28

Bilaga 1 ... 29
Förord

JTI – Institutet för jordbruks- och miljöteknik har genom finansiering från Jordbruksverket genomfört försök med processintern metananrikning i pilotskala. Empiriska data från försöken har därefter används som underlag för uppskalning av processintern metananrikning till en gårdsbaserad biogasanläggning med 1000 m³ rötkammare.

Projektgruppen vill rikta ett stort tack till Lövsta gård med personal som varit mycket tillmötesgående under projektets gång. Tack!

Uppsala i januari 2014

Anders Hartman
VD för JTI – Institutet för jordbruks- och miljöteknik
Sammanfattning

Det finns en stor outnyttjad potential i att producera biogas från gödsel och annat organiskt material, men bristande lönsamhet gör att utbyggnaden går långsamt. För gårdsbaserad biogasproduktion är den dominerande avsättningen kraftvärme där gasens energiinnehåll omvandlas till el och värme. Låga elpriser gör det emellertid svårt att uppnå god lönsamhet för dessa anläggningar. En väg att gå för att uppnå bättre lönsamhet vid småskalig biogasproduktion är att förädla (uppradera) biogasen till fordongaskvalité. Det skulle till exempel kunna innebära att en del av den uppraderade gasen skulle kunna användas för att draiva gårdens egna arbetsmaskiner som idag drivs av fossil energi. För att nå dit krävs det bland annat utveckling av uppraderingstekniker som gör det lönsamt att producera fordonsgas vid småskalig biogasproduktion.

Syftet med detta projekt har varit att undersöka vilka tekniska, biologiska, kemiska och ekonomiska förutsättningar uppraderingstekniken processintern metananrikning har för biogasanläggningar som i huvudsak rötter gödsel. Processintern metananrikning går ut på att vid vatrötning cirkulera rötkammarinnehållet (slammet) genom en s.k. desorptionskolonn, där luft blåses igenom slammet för avdrivning (desorption) av löst koldioxid. Slammet återförs därefter till rötkammaren och resultatet blir att gasen ut från rötkammaren anrikas på metan. Metoden innebär fördelar gentemot de nuvarande kommersiella metoderna för avskiljning av koldioxid, genom sin enkelhet.

Försöken har utförts i pilotskala där biogas har producerats med JTI:s mobila biogasanläggning. Vid tidigare försök med processintern metananrikning (Nordberg m.fl., 2005) har metanförlusten från systemet varit ca 8% av producerad mängd metan, vilket är för högt med avseende på förlorad energi och klimatpåverkan. Under detta projekt har dimensionering samt inställningar av parametrar valts med hänsyn till att kraftigt minska denna metanförlust. Målsättningen har varit att metanförlusterna ska vara mindre än 2% samtidigt som god koldioxidavdrivning åstadkoms.

Resultat från försöken visar att metanhalten anrikats till 81%, vilket innebär att 72% av koldioxiddesorptionskolonnen har avlägsnats genom desorptionskolonnnen. Metanförlusten har vid dessa driftsforhållanden varit 1,8% i medeltal. Genom att modifiera utformningen av systemet bedöms detta metanslipp kunna reduceras ytterligare, men det behöver verifiersas i framtida studier.

Förutom att processintern metananrikning leder till avsevärt högre metanhalten i biogasen har uppraderingstekniken även förmåga att reducera biogasens innehåll av svavelväte. Den ursprungliga halten svavelväte på 1100 till 1500 ppm har reducerats med mer än 80% under försöken.

JTI – Institutet för jordbruks- och miljöteknik
Utifrån empiriska data från genomförda försök har beräkningar gjorts där process-
intern metananrikning skalas upp till produktionsskala. De ekonomiska beräkn-
ningarna utgår ifrån en biogasanläggning med en rötkammare på 1000 m³ och som
producerar 1000 m³ biogas per dygn. Desorptionsbehållaren är på 50 m³ och slam-
 och Luftflödet är 26 m³/h respektive 1400 m³/h, vilket förväntas ge biogas med
80 % metan och metanförluster på under 2 %. Det totala investeringsbehovet
beräknas till 1,37 Mkr för att bygga och driftsätta processintern metananrikning.
Anrikningskostnaden blir 0,14 kr/kWh biogas och det är lågt för att vara småskalig
uppradering. Det ska dock påpekas att det handlar om uppradering till 80 %
metan, och för att kunna använda gasen till fordonsbränsle behöver gasen uppr-
graderas ytterligare. Inom JTI och SLU pågår utveckling av en annan uppgrade-
ringsteknik som skulle kunna användas för att höja metanhalten efter processintern
metananrikning till fordonsgaskvalité. Tekniken utgår ifrån att använda en badd
av träaska för att fixera innehållet av koldioxid och svavelväte i biogasen. Någon
ekonomiberäkning av att kombinera processintern metananrikning och askfilter
ryms dock inte inom detta projekts omfattning, men kommer att genomföras i ett
parallellt EU-projekt under 2014.

Projektet har levererat resultat som gör det klart intressant att även undersöka
möjligheterna att implementera processintern metananrikning på större biogasan-
läggningar. Svavelvåtereducering är förenat med kostnader och kan stora delar av
detta innehåll reduceras med processintern metananrikning ger det besparningar för
anläggningen. Vidare medför tekniken att det frigörs kapacitet i befintlig uppgrade-
ringsteknik, som därmed tillåter att biogasproduktionen kan öka på anläggningen
utan att ytterligare kapacitet i uppraderingsutrustning (utöver processintern metan-
anrikning) behöver införskaffas. Dessutom kan kvävebelastningen sänkas och fler
kväverika substrat (kycklinggödsel etc.) kan då komma att samrötas. Detta ger även
möjligheter till att utvinna ett mer högvärdigt kvävegödningsmedel, som kan ge
ökade intäkter jämfört med befintligt röterhantering.

Summary

There is great potential to produce biogas from manure and other organic matter
but due to its current lack of economic viability, the expansion of the sector is
slow. Biogas from farm scale production is mainly used for combined heat and
power production. Due to low electricity prices there are challenges in reaching
economic viability for these plants. One way to achieve better economic conditions
for small scale biogas production is to upgrade the gas to vehicle fuel quality.

The aim of this project is to investigate if in-situ methane enrichment has the
potential to be a suitable upgrade technology for biogas plants that mainly digest
manure. The methane enrichment process is based on the fact that carbon dioxide
dissolves in the slurry. A small fraction of the slurry is pumped to a separate con-
tainer, where the carbon dioxide is desorbed through aeration of the slurry. Slurry
with low concentration of carbon dioxide is then pumped back to the digester. This
is a continuous process which results in an enrichment of the methane content of
the biogas.
Tests have been conducted on a pilot scale with biogas produced by the JTI’s mobile biogas plant. Previous studies (Nordberg et al, 2005) have shown methane losses up to 8 %, which is unacceptably high. During this pilot project the focus was to achieve less than 2 % methane losses, a focus that has greatly affected the choice of parameter values.

The JTI test results show that in-situ methane enrichment increased the methane content in raw biogas to 81 %, which means that 72 % of the carbon dioxide was removed. The methane loss was an average of 1,8 %. It is assumed that by modifying the system, the methane loss will decrease further. This assumption needs to be verified by future tests.

In-situ methane enrichment will also reduce the concentration of hydrogen sulphur in raw biogas. The initial hydrogen sulphur concentration of 1100-1500 ppm in the biogas was reduced by more than 80 % when applying in-situ methane enrichment.

Besides the effect on methane concentration and the H₂S removal, the technology also desorbs some of the ammonia. Analysis of the slurry has shown that the total content of nitrogen is reduced by 11-21 %. This means that in-situ methane enrichment can be used to lower the nitrogen load in the digester. At the same time there is a possibility to produce a nitrogen rich fertilizer by processing the ammonia-rich off-gas.

Empirical data from the test was used to scale up to a theoretical biogas plant with a 1000 m³ digester producing 1000 m³ biogas/day. The desorption container at this theoretical plant is 50 m³ with a pump flow of 26 m³/h (slurry) and 1400 m³/h (air). This design is aimed at enriching the biogas to 80 % methane while maintaining the loss of methane from the system below 2 %. The investment cost was calculated to 1,37 MSEK for building and commissioning the process. The resulting theoretical enrichment cost is 0,14 SEK/kWh biogas, which is low for small scale upgrading. It is, however, important to note that this cost represent enrichment up to 80 % methane and not the 97 % methane required to achieve vehicle fuel standard.

In-situ methane enrichment may be suitable as a pretreatment step for biogas if, for example, the aim is to achieve vehicle fuel standard. In this case a second upgrading technology has to be applied to reach 97 % CH₄ and total removal of H₂S. JTI and SLU are developing another small scale upgrade technology, which will be suitable for this final treatment. The technology is based on the principle of carbonation where wood ash is used to absorb the CO₂ and H₂S. Pilot scale tests have been made within a parallel EU-project where the combination of in-situ and ash filter was investigated.

The focus of this project was small scale upgrading. However, results from the tests indicate that the technology could be interesting in larger scale as well. The reduction of H₂S and the nitrogen load of the digester are two positive side effects of in-situ methane enrichment that might have an important positive impact of the plant’s economy. Furthermore the fact that a major part of the CO₂ is removed, could in some cases lead to increased capacity of the plant’s present upgrade technology and, hence, an opportunity to increase the biogas production.
Inledning

Lantbruksbaserad produktion av biogas från gödsel och annat organiskt material är en möjlighet att öka produktionen och användningen av förnybar energi och därmed minska klimatpåverkan. Genom att uppgradera biogasen (dvs. avlägsna koldioxid och därmed öka energitätheten) skulle den kunna användas som drivmedel för arbetsmaskiner på gården. Regeringen har under åren 2012-2014 avsatt 8 miljoner kronor i det s.k. MEKA (MetandieselEfterKonvertering av Arbetsmaskiner)-projektet i syfte att förbättra förutsättningarna för introduktion av dual-fuelteknik för arbetsmaskiner och göra jordbruksmaskiner mer miljövänliga.

Det finns ett flertal konventionella uppraderingstekniker på marknaden, bland annat vattenskrubber, kemisk skruber och PSA (Pressure Swing Adsorption), men vid gasflöden motsvarande de som erhålls vid gårdsanläggningar är kostnaderna för höga för att uppradering ska kunna motiveras ekonomiskt (Bauer m.fl., 2013). För att reducera denna kostnad och kunna bygga upp en marknad för biogasdrivna arbetsmaskiner inom jordbruket behövs innovativa tekniska lösningar med förutsättning att tillämpas i relativt enkla och billiga system. En potentiellt kostnadseffektiv teknik för uppradering i mindre skala är processintern metanrikning (Richard m.fl., 1994; Nordberg m.fl., 2005).

Processintern metanrikning går ut på att vid vätrötning cirkulera rötkammarinnehållet (slammet) genom en s.k. desorptionskolonn, där luft blåses igenom slammet för avdrivning (desorption) av löst koldioxid. Slammet återförs därefter till rötkammaren och resultatet blir att gasen ut från rötkammaren anrikas på metan. Metoden innebär fördelar gentemot de nuvarande kommersiella metoderna för avskiljning av koldioxid genom sin enkelhet.

Vid pilotförsök med metanrikning i en anläggning där avloppsslam rötades har 87 % metanhalt uppnåtts på den producerade biogasen (Nordberg m.fl., 2012). Försöket pekade även på betydande optimeringspotential gällande utformning och drift av avdrivningskolonnen. Ascue m.fl. (2011) visade att en modifierad kolonnutformning kan ge ännu högre metanhalt med lägre insats av elektricitet. Anrikningskostnaden beräknas till ca 11 öre/kWh biogas, vilket är ca en tredjedel av konventionell teknik. En viktig aspekt att förhålla sig till är de metanförluster som processintern metanrikning kan ge upphov till. I tidigare försök (Nordberg m.fl., 2005) blev metanförlusten ca 8 % av producerad metan, vilket är för högt med avseende på förlorad energi och klimatpåverkan. Inställning av parametrar och dimensionering bör därför eftersträva att metanförlusterna är mindre än 2 % av metanproduktionen.

Processintern metanrikning bör ses som ett kostnadseffektivt sätt att i liten skala ta bort merparten av den koldioxid som biogasen innehåller. För att nå svensk standard (SS 15 54 38), dvs. 97 % metanhalt behövs dock ett efterföljande reningssteg. Vid SLU och JTI pågår för närvarande lovande försök med att använda trädbränsleasaka för absorption av koldioxid från biogas, vilket är ett billigt sätt att komplettera processintern metanrikning. I föreliggande projekt ingår dock inte detta poleringssteg. På kortare sikt skulle processintern metanrikning kunna fungera som ett kostnadseffektivt försteg till konventionell uppraderingsteknik. Om anrikningssteget exempelvis höjer metaninehållet i rågasen från 60 till 80 % så har en stor del av koldioxidmassan redan avlägsnats innan gasen når det konventionella uppraderingssteget som då kan dimensioneras för avsevärt lägre massflöden.
De tidigare försöken med processintern metananrikning har baserats på biogas-processer som rötar slam från reningsverk. Principen för processintern metananrikning är tillämpbar även för gödselrötning, men egenskaperna bland annat avseende fiberinnehåll och reologiska egenskaper skiljer sig till viss del åt. Det är därför viktigt att klargöra de tekniska förutsättningarna avseende till exempel pumpning och skumbildning vid gödselrötning med processintern metananrikning samt hur det påverkar den selektiva desorptionen, dvs. en hög desorption av kol-dioxid och en låg desorption av metan.

Syfte och mål

Syftet med projektet var att undersöka tekniska, kemiska, biologiska och ekonomiska förutsättningar att med processintern metananrikning höja metanhalten i biogas från biogasanläggningar som i huvudsak rötar gödsel.

Det övergripande målet med studien var att visa att processintern metananrikning är en billig teknik för att rena biogas till hög metanhalt. De specifika målen bestod av att nå en metanhalt på 90 % utan att den volymetriska metanproduktionen minskar samt att reningskostnaden uppgår till maximalt 10-15 öre/kWh biogas för en mindre anläggning som producerar 1000 m³ biogas per dygn.

Genomförande och avgränsningar

Försöken har genomförts i pilotskala (5 m³ aktiv rötkammarvolym) med JTI:s mobila biogasanläggning placerad vid Lövstas biogasanläggning, Uppsala. Förövningen har varit uppdelat i två block och varje block har inletts med en referensperiod (4 respektive 7 veckor) följt av en försöksperiod (3 respektive 7 veckor) då processintern metananrikning tillämpats.

- Block 1: Den mobila pilotanläggningen har drivits enligt liknande betingelser som Lövstas biogasanläggning avseende substratsammansättning, hydraulisk uppehållstid och organisk belastning. Försöken var av orienterande karaktär där olika inställningar undersöks och utrustningen trimmades in.
- Block 2: Endast flytgödsel har rötats i den mobila pilotanläggningen och uppehållstiden har varit kortare jämfört med försöket i Block 1.

Den dagliga driften och tillsynen har genomförts av personal från Lövstas biogasanläggning och provtagning och övrig drift har genomförts av JTI-personal. I den ursprungliga projektplanen var målet att nå 90 % metanhalt i rötkammargasen, men eftersom metanförlusterna bör begränsas till mindre än 2 % har strategin för parameterinställningarna varit att hålla en låg metanförlust med högsta möjliga metanhalt i rötkammargasen.
Material och metod

Försöksuppställning

JTI:s mobila biogasanläggning är inredd i ett lastväxlarmflak och omfattar en total-ombländad rötkammare på 5 m³ aktiv volym, blandningstankar, pumpar, rör-ledningar, gasflödesmätare och styrsystem. Vid genomförande av projektet var anläggningen placerad vid biogasanläggningen på SLU:s försöks gård Lövsta utanför Uppsala. De tillgängliga substraten vid Lövstas biogasanläggning kunde då utnyttjas för beskickning av pilotrötkammaren.

Inför försöken kompletterades pilotanläggningen med utrustning för processintern metanansökning (figur 1). Den cylindriska bubbelkolonnen i rostfritt stål var upphängd i en vågcell för registrering av vikt i syfte att säkerställa en slamvikt på 230 kg. I toppen av bubbelkolonnen fanns ett horisontellt roterande blad, som hade till syfte att slå sönder eventuellt skum som bildades vid luftningen av slammet. Varvtalet på denna skumkniv kunde varieras mellan 60 och 166 rpm.

Från rötkammaren pumpades rötkammarinnehåll (slam) in i den övre delen av bubbelkolonnen. Luft injicerades i botten av kolonnen genom fyra luftningsdysor som fördelade luftströmmen jämnt. Luftningen skedde med hjälp av en till två luftpumpar som var kopplade till en flödesmätare (Fluid Inventor, UNI-200) och kunde ge flöden på mellan 3,6 och 14,0 m³/h. I toppen av kolonnen leddes svepgasen (luft med desorberad koldioxid) ut i atmosfären. Efter att slammet hade passerat genom kolonnen pumpades det från utloppet i botten vidare till en mellanlagringstank varifrån slammet breddades tillbaka in i rötkammaren. Syftet med mellanlagringstanken var att eventuella luftbubblor som tillförts slammet från bubbelkolonnen skulle få chansen att avgå innan slammet breddades in i rötkammaren.

Försöksupplägg

Projektet var indelat i två delar som i rapporten kallas ”Block 1” och ”Block 2”. Driftsbetingelserna för de olika referensperioderna och försöken finns sammanställda i tabell 1.

Block 1

Pilotrötkammaren ympades med 5 m3 mesofilt (37 °C) röt kammarinnehåll från Lövstas biogasanläggning och processen beskickades därefter med en substratblandning (se under rubriken Substrat) och organisk belastning liknande den som användes på anläggningen. Beskickning skedde vid ett tillfälle under dagtid och var sjätte dag tillsattes 1,4 kg järnoxid för att liksom i värdanläggningen reducera mängden svavelväte. Block 1 inleddes med en referensperiod under en månad då pilotens biogasproduktion kunde jämföras mot produktionen från värdanläggningen. Den hydrauliska uppehållstiden var ca 50 dygn. Därefter startades försöket med processintern metananrikning genom att starta luftfläktarna och pumpa röt kammarinnehåll via bubbelkolonnen. Luftflödet stegades successivt upp till 6,7m3/h medan slamflödet hölls vid ca 75 L/h. Den aktiva slamvolymen i bubbelkolonnen var 230 kg vilket innebar att uppehållstiden för slammet i kolonnen var tre timmar.

Block 2

Under block 2 ändrades substratblandningen till enbart flytgdössel och någon jämförelse mot värdanläggningen var då inte längre möjlig med avseende på gasproduktion. Även block 2 inleddes med en referensperiod för att erhålla en stabil drift och kunna jämföra processprestandan med resultat från det kommande försöket. Matningen skedde tredje timme och dygnssansonen var 200 kg våtvikt, vilket gav en uppehållstid på 25 dagar. Det förekom ingen tillsats av järnoxid under Block 2. Försök 2 med processintern metananrikning genomfördes med liknande luftflöde som vid försök 1, men med nära dubbla slamflödet mot tidigare. Den aktiva volymen i kolonnen var densamma som vid försök 1, vilket innebar att slammets uppehållstid i kolonnen var 1 timme och 46 min.
Tabell 1. Driftbetingelser för de olika försöken. Luft- och slamflöden under block 1 varierades en del för att få orienterande mätningar på systemets prestanda. Vid längre köringar var dock flödena angivna i tabellen som tillämpades.

<table>
<thead>
<tr>
<th>Tidsperiod</th>
<th>Block 1</th>
<th></th>
<th>Block 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Referens-period</td>
<td>Försök 1</td>
<td>Referens-period</td>
<td>Försök 2</td>
</tr>
<tr>
<td></td>
<td>28 april-26 maj 2013</td>
<td>2 juni-23 juni 2013</td>
<td>12 dec-2 feb 2014</td>
<td>3 feb-21 mars 2014</td>
</tr>
<tr>
<td>Rötat substrat</td>
<td>Flytgödsel (nöt & svin), mjöl och ensilage</td>
<td>Flytgödsel (nöt & svin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatur °C</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>HRT D</td>
<td>48</td>
<td>46</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Organisk belastning kg VS/m³ RK/d</td>
<td>2,1</td>
<td>2,1</td>
<td>2,6</td>
<td>2,6</td>
</tr>
<tr>
<td>Luftflöde bubbelkolonn m³/h</td>
<td>-</td>
<td>6,7</td>
<td>-</td>
<td>7,4</td>
</tr>
<tr>
<td>Slamflöde bubbelkolonn L/h</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>130</td>
</tr>
<tr>
<td>Uppehållstid bubbelkolonn H</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1 h 46 min</td>
</tr>
</tbody>
</table>

Substrat

Sammansättningen för de rötade substraten framgår i tabell 2. Flytgödseln under block 1 hade lägre TS-halt jämfört med flytgödseln under block 2. Skillnaden kunde förklaras av att försöken genomfördes under olika tider på året, block 1 var under maj-juni medan block 2 var under februari-mars.

<table>
<thead>
<tr>
<th>Provets märkning:</th>
<th>Block 1</th>
<th>Block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flytgödsel</td>
<td>Ensilage</td>
</tr>
<tr>
<td>Torrsubstans, TS (%)</td>
<td>6,2</td>
<td>23</td>
</tr>
<tr>
<td>Glödförlust (% av TS)</td>
<td>77</td>
<td>92</td>
</tr>
<tr>
<td>Tot-kväve (kg/ton)</td>
<td>2,8</td>
<td>5,1</td>
</tr>
<tr>
<td>Organisk kväve (kg/ton)</td>
<td>1,7</td>
<td>0,43</td>
</tr>
<tr>
<td>Total fosfor (kg/ton)</td>
<td>0,54</td>
<td>0,57</td>
</tr>
<tr>
<td>Totalt kalium (kg/ton)</td>
<td>3,5</td>
<td>5,7</td>
</tr>
<tr>
<td>Totalt magnesium (kg/ton)</td>
<td>0,52</td>
<td>0,26</td>
</tr>
<tr>
<td>Totalt natrium (kg/ton)</td>
<td>0,78</td>
<td>0,21</td>
</tr>
<tr>
<td>Totalt svavel (kg/ton)</td>
<td>0,38</td>
<td>0,4</td>
</tr>
</tbody>
</table>

I tabell 3 redovisas de dagliga substratmängderna för Lövstas biogasanläggning och för den mobila biogasanläggningen under block 1. Vidare redovisas i vilken utsträckning de olika substraten påverkar kvävetillförseln och metanproduktionen i rötningsprocessen för den mobila biogasanläggningen.

<table>
<thead>
<tr>
<th>Aktiv rötkammar- volym</th>
<th>Lövsta</th>
<th>Mobil biogasanläggning</th>
<th>Andel av TS*</th>
<th>Andel av N*</th>
<th>Andel av CH4*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 600 m³</td>
<td>5 m³</td>
<td>0 %</td>
<td>0 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Djupströ</td>
<td>1,21 ton/dag</td>
<td>0,0 kg/dag</td>
<td>0 %</td>
<td>0 %</td>
<td>ca 28 %</td>
</tr>
<tr>
<td>Ensilage</td>
<td>8,62 ton/dag</td>
<td>13,0 kg/dag</td>
<td>25,4 %</td>
<td>16,0 %</td>
<td>ca 34 %</td>
</tr>
<tr>
<td>Flytgödsel</td>
<td>53 ton/dag</td>
<td>90,0 kg/dag</td>
<td>46,7 %</td>
<td>60,3 %</td>
<td>ca 38 %</td>
</tr>
<tr>
<td>Mjölrester</td>
<td>3,27 ton/dag</td>
<td>3,8 kg/dag</td>
<td>27,8 %</td>
<td>23,6 %</td>
<td>ca 38 %</td>
</tr>
<tr>
<td>Summa</td>
<td>66,1 ton/dag</td>
<td>106,8 kg/dag</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

* Delsubstratets bidrag till substratblandningens TS-innehåll, kväveinnehåll och ungefärligt bidrag till metanproduktionen

Provtagning och analysmetoder

Inför och under försök med processintern metananrikning analyserades pH-värdet i rötkamar- respektive kolonninnehållet dagligen. Alkaliniteten i rötkammarinnehållet bestämdes genom prov en gång per vecka under block 2.
Biogasflödet registrerades med den gasflödesmätare GD-100 (Fluid Inventor AB) som fanns i den mobila pilotanläggningen. Under block 2 kompletterades anläggnings men med en Ritter TG5 gasflödesmätare av typen våtur.

Resultat och diskussion

I denna del redovisas resultaten från referens- och försöksperioderna i de båda blocken. Huvudfokus i resultatredovisningen ligger dock på block 2, eftersom genomförandet av block 1 var av en orienterande karaktär där olika inställningar undersöktes och utrustningen trimmades in. Resultat och erfarenheter från driften under block 1 låg till grund för att i block 2 välja ett högre slamflöde än i block 1.

Block 1

Gassammansättningen under referensperioden i block 1 var ca 57 % CH₄, 42 % CO₂ samt 1 % balans (Balans = 100 % - summan av analysvärdena för CH₄, O₂ och CO₂), se tabell 4. Efter att processintern metananrikning införts reducerades mängden CO₂ med 29 %, vilket innebar att biogasens metanhalt höjdes till 68 % i medeltal (70 % som högst). Balansen ökade med ungefär 1 % under försöket, vilket troligen berodde på att kvävgas från luftningen i kolonnen löstes i slammet som återfördes till rötkammaren. Någon minskning av total metanproduktion kunde inte påvisas under försöket i block 1 jämfört med referensperioden.

Block 2

Metanhalten i biogasen under referensperioden då enbart flytgödsel rötades var något högre jämfört med block 1. Detta var förväntat eftersom rötning av flytgödsel generellt ger högre metanhalt än vid samrötning av kolhydratrika substrat som mjöl och ensilage. Svavelvätehalten (H₂S) var överlag omkring 1100-1500 ppm även om det förekom enstaka mätningar på över 2000 ppm. När processintern metananrikning kopplades in uppgick CO₂-avdrivningen i medeltal till 72 %, vilket gav en metanhalt på drygt 80 %. Det var betydligt högre än under block 1 och den ökade CO₂ avdrivningen förklaras av att slamflödet ökats i block 2 jämfört med block 1. Vidare reducerade processintern metananri kning halten av H₂S i biogasen avsevärt till 150-300 ppm (> 80 % reduktion). Balansen uppgick till ca 3 % under stabil drift. Med en gasanalys utfört vid ett externt ackrediterat laboratorium kunde balansens innehåll (analys vid ett provtillfälle) bestämmas till 1,9 % N₂ och 1,1 % H₂O.
Metanproduktionen var något ojämn under försöket i block 2 jämfört med referensperioden. Viss tendens fanns till att metanproduktionen var något lägre vid processintern metananrikning, men då försöket pågick under kort tid (ca en uppehållstid) gick det inte att dra några långtgående slutsatser kring detta. Rötrestens innehåll av lättflyktiga fettsyror (VFA) analyserades, men de låga halter som erhölls indikerade att det inte fanns någon påvisbar störning.

Svepgasen som passerade genom slammets bubbelkolonne innehöll även små mängder metan då den lämnade kolonnen, vilket gav upphov till metanemissioner från systemet. Under försöket i block 1 uppgick detta slipp till 1,0 % av total mängd producerad metan. Vid försöket i block 2 var metanslippet 1,8 %, dvs. 80 % högre. Differensen mellan de olika försökens metanslipp korrelerar mycket väl med slamflödena till och från kolonnen. Vid försöket i block 2 var slamflödet ca 73 % högre jämfört med block 1.

Vid båda försöken höjdes pH-värdet i kolonnen jämfört med pH-värdet i rötkmaren. Höjning av pH-värdet i kolonnen kan förklaras av att avdrivningen av CO₂ leder till en förskjutning av pH till högre nivåer. Det leder i sin tur till att andelen fri CO₂ i bikarbonatbuffertsystemet minskar och vid pH 8,5 finns det i princip ingen löst CO₂ kvar att avdriva. Detta kan tolkas som att luftflödet varit mycket kraftigt och det är möjligt att luftflödet kan minskas utan att det påverkar avdrivningen avsevärt. Alkaliniteten under referensperioderna indikerade att processen hade god buffertkapacitet. Då processintern metananrikning tillämpades sjönk alkaliniteten en del, vilket beror på att koldioxid desorberats och därmed minskar den totala koncentrationen i bikarbonatbuffertsystemet.

Tabell 4. Resultat från block 1 och block 2 under stabil drift. Värdena för biogas- och metanproduktion vid processintern metananrikning under block 2 anges som ett intervall av tre värden där respektive medelvärde anges i fotnoterna till tabellen.

<table>
<thead>
<tr>
<th></th>
<th>Block 1</th>
<th>Block 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Slamflöde</td>
<td>L/h</td>
<td>Processintern</td>
<td>Ref. period</td>
</tr>
<tr>
<td>Luftflöde</td>
<td>m³/h</td>
<td>-</td>
<td>75</td>
</tr>
<tr>
<td>CH₄</td>
<td>%</td>
<td>57</td>
<td>68</td>
</tr>
<tr>
<td>CO₂</td>
<td>%</td>
<td>42</td>
<td>30</td>
</tr>
<tr>
<td>O₂</td>
<td>%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Balans</td>
<td>%</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>H₂S</td>
<td>ppm</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Biogasproduktion</td>
<td>Nm³/m³/d</td>
<td>1,21</td>
<td>0,98</td>
</tr>
<tr>
<td>Metanproduktion</td>
<td>Nm³/m³/d</td>
<td>0,69</td>
<td>0,66</td>
</tr>
<tr>
<td>Avdrivning CO₂</td>
<td>%</td>
<td>-</td>
<td>29</td>
</tr>
<tr>
<td>CH₄-slipp</td>
<td>%</td>
<td>-</td>
<td>1,0</td>
</tr>
<tr>
<td>pH kolonn</td>
<td>-</td>
<td>8,5</td>
<td>-</td>
</tr>
<tr>
<td>pH rötkmare</td>
<td>7,7</td>
<td>7,8</td>
<td>7,4</td>
</tr>
<tr>
<td>Alkalinitet</td>
<td>g CaCO₃/L</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

* Biogasproduktionen anges som ett intervall av tre värden. Medelvärde av dessa är 0,71
** Metanproduktionen anges som ett intervall av tre värden. Medelvärde av dessa är 0,58
Kinetiken för metananrikningsprocessen

Gassammansättning och gasproduktion analyserades ingående under försöket i block 2 och analysresultaten visar tydligt förändringshastigheten (kinetiken) vid uppstart och vid avslut av processinnehåll metananrikning. Uppstartsperioden präglades dock av problem med pumpning av rötkammarinhåll till och från bubbelkolonnen, vilket bidrog till att drifttiden per dygn för kolonnen varierade från 0-24 timmar under den inledande perioden av försöket. Efter modifiering av pumputrustningen kunde emellertid stabilare drift erhållas. Figur 2 visar rågasens sammansättning från en period där pumpning av slam till kolonnen och luftning fungerade oavbrutet under fem dygn. Det framgår att metanhalten steg från 70 % och stabiliserades kring 81 %. Perioden då metanhalten steg upp mot ny jämvikt karaktäriseras inledningsvis av linjär stigningshastighet för metanhalten, ca 10 procent per dygn (motsvarande minskning skedde för koldioxidhalten). Det linjära beteendet upphörde när jämvikt för systemet började infinna sig och metanhalten svängde in och stabiliserade sig kring 81 % för block 2.

Figur 2. Rågasens sammansättning vid uppstart av processintern metananrikning. Diagrammet visar en period med stabil drift (3 mars till 7 mars), dvs. då pumpning till och från bubbelkolonnen fungerat utan avbrott.

I figur 3 redovisas hur gassammansättningen förändrades då processinnehåll metananrikning avslutades. Metanhalten sjönk successivt och stabiliserade sig åter kring 60 %, vilket var samma nivå som under referensperioden. Den linjära hastigheten med vilken metanhalten avtog var ca 10 % per dygn. Halten av H₂S steg kraftigt när pumpningen till bubbelkolonnen upphörde och stabiliserades därefter kring 900-1100 ppm.
Figur 3. Rågasens sammansättning vid slutet av block 2. Processintern metananrikning avslutas under morgonen 21 mars och metanhalten sjunker därefter och stabiliserar sig kring 60 %. Under redovisad period kom det in luft i rötkammaren under två tillfällen, vilket den ökande balansen under den 20 och 21 mars indikerar.

Inverkan av processintern metananrikning på rötkammarinnehållet

Förutom att luftflödet genom bubbelkolonnen ger en avdrivning av framförallt koldioxid och en mindre mängd metan kan det även påverka andra kemiska jämvikter. Vid det höga pH-värdet i kolonnen kommer ammonium/ammoniakjämvikten att förskjutas till ammoniak, som därmed avgår med svepgasen. Vidare kan slamluftningen resultera i utfällning av salter.

Baserat på analyser av sammansättning i rötrester och substrat har storleksordningen på reduktionen av kväve, fosfor, kalcium och magnesium beräknats. I block 1 har rötresten från försöket med processintern metananrikning jämförts med rötrest från Lövstas biogasanläggning. I block 2 har rötresten från försöket med processintern metananrikning (medelvärde av analyser vid tre tillfällen, se bilaga 1) jämförts med det samlingsprov för flytgödseln (se tabell 2) som rötades. Vid denna beräkning togs även hänsyn till den viktreduktion som uppstår vid röting av flytgödseln.

Luftningen i bubbelkolonnen visade sig reducera rötrestens innehåll vad gäller växtnäringssämen och mineraler. Reduktionen av kväve var 11-21 %, fosfor 4-18 %, kalcium 5-8 % och magnesium 0-17 %, se tabell 5.
Tabell 5. Beräknad reduktion av växtämning och mineraler som en effekt av luftningen för processintern metananrikning. Denna beräknade reduktion bygger på analyser som redovisas i bilaga 1 samt tabell 2.

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Reduktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viktreduktion *</td>
<td>6,2</td>
<td>3,3</td>
</tr>
<tr>
<td>Kväve (N)</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>Fosfor (P)</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>Kalcium (Ca)</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>17</td>
<td>0</td>
</tr>
</tbody>
</table>

*Beräknad viktreduktion vid rötning utgående från att ha beräknat biogasens massa.

Processtörningar och praktiska erfarenheter

Avlagringar

Efter avslutade försök med processintern metananrikning kunde det konstateras att det bildas avlagringar på fasta rördetaljer i anslutning till den pumptrutning som användes för att pumpa slam från bubbelkolonnen. Avlagringarna var ungefär 2 mm tjocka. Det hade även bildats avlagringar på kolonnens insida men dessa var betydligt tunnare. Det är troligt att avlagringarna bestod av mineraler uppbyggda av bland annat kalcium, magnesium och fosfor, vilket verifierades av att innehållet av dessa ämnen hade minskat i rötresten då processintern metananrikning hade tillämpats (se tabell 5).

Skumning

Under försöket i block 1 var det ingen betydande skumbildning i bubbelkolonnen men efter att försöket avslutats och nya parameterinställningar började undersökas (ökat slam- och luftflöde) uppstod det problem med skumning. Vid detta skede hade inga förändringar gjorts på substratsammansättningen, dvs. det var fortfarande en blandning av mjöl, ensilage och flytgödsel som rötades. Problemen med skumning fortsatte även när substratsammansättningen ändrades till enbart flytgödsel under block 2.

Skumbildningen hanterades främst mekaniskt genom det roterande bladet ("skumkniven") i toppen av bubbelkolonnen. Vid låga varvtal (60 rpm) förekom det tillfällen då skumkniven inte klarade av att slå sönder allt skum, vilket resulterade i att en del skum följde med svepgasen ut från kolonnen. Genom att växla upp skumkniven till 166 rpm kunde detta problem avhjälpas helt. Det gjordes även enstaka test att injicera skumlämpare direktt i skumfasen i kolonnen. Detta resulterade i att hela skummängden kollapsade intern i bubbelkolonnens vätskefas. Dock gjordes inga långtidsförsök och efter några timmar utan ny injicering återkom skumbildningen (vid det laget var slaminnehållet utbytt i kollonen genom den kontinuerliga pumpningen).
Uppskalning och ekonomiska beräkningar

Uppskalning

Utifrån de genomförda försöken och tidigare erfarenheter har beräkningar för uppskalning till produktionsskala motsvarande en rötkammarvolym på 1000 m3 gjorts (tabell 6). Biogasproduktionen antas vara 1000 m3 per dygn. Vid införande av processintern metananrikning beräknas metanhalten öka från 60 % till 80 % samtidigt som metanförlusten är mindre än 2 %. Detta åstadkoms genom ett slamflöde på 26 m3/h och luftflöde på upp till 1400 m3/h.

Tabell 6. Designparametrar för processintern metananrikning vid uppskalning till en biogasanläggning med 1000 m3 rötkammarvolym.

<table>
<thead>
<tr>
<th>Parametrar</th>
<th>Värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rötkammarvolym (aktiv)</td>
<td>m3 1000</td>
</tr>
<tr>
<td>Biogasproduktion</td>
<td>m3/d 1000</td>
</tr>
<tr>
<td>Kolonn/RK vol</td>
<td>% 5</td>
</tr>
<tr>
<td>Kolonnvol (aktiv)</td>
<td>m3 50</td>
</tr>
<tr>
<td>Luftflöde per dysa</td>
<td>m3/h 6.8</td>
</tr>
<tr>
<td>Antal dysor</td>
<td>206</td>
</tr>
<tr>
<td>Luftflöde drift (max)</td>
<td>m3/h 1400</td>
</tr>
<tr>
<td>Basarea kolonn</td>
<td>m2 50</td>
</tr>
<tr>
<td>kolonnhöjd (aktiv)</td>
<td>m 1</td>
</tr>
<tr>
<td>kolonnhöjd (tot)</td>
<td>m 2</td>
</tr>
<tr>
<td>linjärt luftflöde</td>
<td>cm/s 0,78</td>
</tr>
<tr>
<td>Slamflöde</td>
<td>m3/h 26</td>
</tr>
<tr>
<td>Slamflöde</td>
<td>m3/d 624</td>
</tr>
<tr>
<td>Uppehållstid slam</td>
<td>h 1,88</td>
</tr>
<tr>
<td>Luft/Slam flöde-ratio</td>
<td>53,8</td>
</tr>
</tbody>
</table>

Utformningen av den behållare där desorption av koldioxid sker kan vid fullskala liknas vid en sluten bassäng med stor bottenarea (50 m2) och låg aktiv slamhöjd (1 m). Därmed är benämningen kolonn något missvisande och hädanefter kallas karlet där koldioxid desorberas för desorptionsbehållare. Den aktiva volymen på desportionsbehållaren är 5 % av rötkammarvolymen, vilket är samma förhållande som tillämpats under försöken i block 1 och block 2. Anledningen till att desorptionsbehållaren har stor bottenarea i förhållande till höjden är att det krävs ett stort antal luftningsdysor för att uppnå luftflödeskapacitet på 1400 m3/h. Vidare är det fördelaktigt att ha låg slamhöjd då det ger bättre luftningsegningskaper (mindre risk för att luftbubblor slås samman) och minskar pumpningsmotståndet och därmed energiåtgången. Exempelvis ökar pumpningsenergin med 33 % då den aktiva slamhöjden ökas från en till två meter. Luftflödet är en annan betydelsefull parameter för driftenergin. Sambandet mellan pumpenergi och flöde är linjärt, vilket innebär att om luftflödet kan minskas med 30 % betyder det att pumpenergin reduceras lika mycket (Hansson m.fl., 2013).
Vid fullskala utgår beräkningarna från en luftpump (blåsmaskin) med maxeffekt på 13,6 kW. Luften fördelas genom 206 st tallriksluftare som är jämt fördelade på botten av behållaren. Slammepumpas med två excenterskrupppumpar som är dimensionerade att klara 26 m³/h. Nivån på slammepumpas i rötkamaren kommer att vara högre än nivån desorptionsbehållaren och denna nivåskillnad ger upphov ett hydrostatiskt tryck. Denna tryckskillnad kommer att driva på pumpen för ingående slam och därför antas energiåtgången för denna pump vara i princip noll (T. Pettersson, pers. medd. 2014). Returpumpningen tillbaka till rötkamaren beräknas kräva 1,2 kW.

Investeringsbehov

Följande beräkningsförutsättningar har använts för att bestämma kostnaden för processintern metananrikning vid fullskala:

- Kapitalkostnaden är beräknad med annuitetsmetoden
- 6 % kalkylränta
- Ekonomisk livslängd på 10 år för maskiner och 15 år för byggnader
- Underhåll och tillsyn kostar 60 tkr årligen
- Elbehovet för pumpning av slam är 0,050 kWh/m³
- Elbehovet för luftning av slam är 0,0093 kWh/m³
- Elpriset är 0,65 kr/kWh

Det totala investeringsbehovet beräknas uppgå till 1,37 Mkr för att uppföra och driftsätta processintern metananrikning vid en biogasanläggning med 1000 m³ rötkammare (tabell 7).

Tabell 7. Investeringsbehov för processintern metananrikning dimensionerat för en biogasanläggning som producerar 1000 m³ per år.

<table>
<thead>
<tr>
<th>Investeringsbehov (kr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumpning slam</td>
</tr>
<tr>
<td>Luftning</td>
</tr>
<tr>
<td>Desorptionsbehållare</td>
</tr>
<tr>
<td>Skumhantering</td>
</tr>
<tr>
<td>Styr- och reglersystem</td>
</tr>
<tr>
<td>Oförrutsätt (10 % av kostnaderna)</td>
</tr>
<tr>
<td>Summa</td>
</tr>
</tbody>
</table>

Årliga kostnader

Baserat på annuitetsmetoden där ekonomisk livslängd och kalkylränta vägs in har den årliga kapitalkostnaden beräknats till 154 000 kr, vilket motsvarar 11,2 % av investeringen (tabell 8). Den årliga kostnaden för luftning är betydande och uppgår till 78 000 kr, vilket är mer än nio gånger högre än kostnaden för slampumpning. Tillsyn och underhåll beräknas uppgå till 60 000 kr per år och innefattar normal service på pumpar samt daglig tillsyn av anläggningen.
Tabell 8. Beräknade årliga kostnader baserat på annuitetsmetoden där kalkylräntan är 6 % och den ekonomiska livslängden 10-15 år.

<table>
<thead>
<tr>
<th>Årliga kostnader (kr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapitalkostnad</td>
</tr>
<tr>
<td>Elbehov luftning</td>
</tr>
<tr>
<td>Elbehov slampumpning</td>
</tr>
<tr>
<td>Tillsyn och underhåll</td>
</tr>
<tr>
<td>Summa</td>
</tr>
</tbody>
</table>

Ett vanligt nyckeltal i uppgraderingssammanhang är kvoten mellan årlig kostnad och energiinnehållet i gasen (kr/kWh). För processintern metanankring blir detta nyckeltal 0,14 kr/kWh vid en anläggning som producerar 1000 m³ biogas per dygn. Det ska noteras att beräkningarna utgår ifrån att metanhalten anrikas till 80 % och den anrikade gasen inte komprimeras genom processen. Därför kan nyckeltalet på 0,14 kr/kWh inte jämföras direkt med motsvarande värden för kommersiell uppgraderingsteknik som höjer metanhalten till 97 % samt ökar trycket till några bars övertryck.

Driftenergin för pumpning av slam och luft beräknas till 131 MWh per år, vilket motsvarar 6,2 % av energiinnehållet i den producerade biogasen. Utslaget per volymenhet biogas uppgår processenergin till 0,36 kWh el/m³ biogas.

Känslighetsanalys

En känslighetsanalys har genomförts för att påvisa vilken påverkan betydelsefulla parametrar har på det ekonomiska utfallet. Beräkningarna utgår ifrån basfallet där en parameter i taget har varierats ±30 % (allt annat lika som i basfallet), se figur 4. Det framgår att gasproduktionen och investeringskostnaden för anläggningen har störst påverkan på det ekonomiska utfallet. Kan biogasproduktionen öka med 30 % kommer det att innebära att anrikningskostnaden sjunker med 43 % till 0,08 kr/kWh. Det ska dock noteras att en ökning av biogasproduktionen kan leda till att anrkningshalten minskar något under förutsättning att luft- och slamflöde inte förändras.

Blir kostnaden för utrustning och installation 30 % dyrare kommer det att resultera i 35 % högre anrikningskostnad (0,19 kr/kWh). Känslighetsanalysen visar att luftflödet respektive kostnaden för tillsyn och underhåll har relativt sett mindre påverkan på det ekonomiska resultatet. Det innebär dock inte att de saknar betydelse för resultatet. Kan luftflödet till exempel tillåtas minska med 30 % utan att det ger avkall på anrkningsförmågan leder det till 8 % lägre anrikningskostnad.

Resultaten som framgår av figur 4 är additiva, dvs. det går att kombinera olika åtgärder och få fram vilken effekt de har tillsammans på det ekonomiska resultatet. Kan till exempel gasproduktionen öka med 30 % och luftflödet minska med lika mycket ger det en halvering av anrikningskostnaden jämfört mot beräkningarna i basfallet. Blir däremot kostnaden för utrustning och installation respektive kostnaden för tillsyn och underhåll 30 % dyrare ökar anrikningskostnaden med 41 %.

JTI – Institutet för jordbruks- och miljöteknik

Övergripande diskussion

Vid försöken med processintern metananrikning nåddes som högst en metanhalt på 81 %, vilket är lägre än den ursprungliga målsättningen på 90 %. Detta hänger samman med att slam- och luftflöden ansattes med hänsyn till att minimera metanförlusterna, vilket lyckades. Den selektiva desorptionen var därmed god, dvs. 72 % av den producerade koldioxiden kunde desorberas med mindre än 2 % av metanet desorberades. Detta uppnåddes genom att kombinera ett lågt slamflöde med ett högt luftflöde. I jämförelse med tidigare empiriska försök (Nordberg m.fl., 2005) då metanförluster på ca 8 % uppmättes har metanförlusterna reducerats väsentligt. Under försöken varierade metanslippet mellan 1,0 och 1,8 %.

Merparten av detta metanslipp bedöms relativt enkelt kunna elimineras genom att modifiera anläggningsutformningen för processintern metananrikning, men detta behöver verifieras med försök vid framtida studier.

Rötning av flytgödsel ger ofta en relativt hög halt av svavelväte (upp emot 2 000 ppm), vilket är skadligt för kraftvärmemotorer. Resultaten visade att processintern metananrikning kan reducera halten svavelväte från 1100-1500 ppm ner till 150-300 ppm, vilket är nivåer som kan vara acceptabla för kraftvärmeproduktion. Reduktionen kan förklaras med att svavelväte avdrivits direkt och att den syrgas som introduceras i slammet via luftningen kommer att ge en biologisk oxidering av svavelväte till elementärt svavel, vilket även är den princip som tillämpas när luft injiceras i rökammarens headspace för att reducera svavelväte (Pettersson och Wellinger, 2003).
Förutom den metan och koldioxid som fanns i biogasen efter processintern metan-anrikning kunde även ca 2 % kvävgas detekteras, vilket ligger i nivå med de tidigare studierna, och kan förklaras av att luftning i kolonnen leder till att viss kvävgas löses i rötkamrinnehållet och förs in i rötkammaren (Nordberg m.fl., 2005). Enligt svensk standard för fordonsgas (SS 15 54 38) anges att andelen kvävgas, syrgas och koldioxid maximalt får vara 5 % (varav syrgas maximalt 1 %). I det fall att process-intern metan-anrikning kombineras med annan uppraderingsteknik för att uppnå en metanhalt på 97 ± 2 % (vilket den svenska standarden anger) kommer rimligen halten av kvävgas i den uppraderade gasen inte att överskrida gränsvärdena. Ur det perspektivet kan processintern metan-anrikning bedömas vara ett lämpligt försteg för att avlägsna merparten av koldioxid i biogasen innan kvarvarande koldioxid avlägsnas med annan teknik.

Vid försöket i block 2 fanns tendenser till att den totala metanproduktionen var något lägre vid processintern metan-anrikning än vid referensperioden utan metan-anrikning. Tidigare försök har dock inte visat att desorption av koldioxid med luft skulle ha någon negativ påverkan på den metanbildande aktiviteten och därmed metanutbytet (Nordberg m.fl., 2005). En indiker på hämndan metodanbildningen är halten av VFA, men de analyser som utfördes kunde inte påvisa halter som indikerar begränsningar i metanproduktionen. En förklaring till skillnaden i gasproduktion kan dock vara att VS-belastningen varierat en del och att denna variation inte fångats upp av de gödselprov som togs.

Vidare har det under projektet konstaterats att svepgasen troligen kommer att innehålla ammoniak. Vid en fullskaleapplikation skulle detta i så fall medföra att det krävs ett behandlingssteg för svepgasen för att minska ammoniakemissionerna till en acceptabel nivå. Fjeldgard och Møller (2005) har för ammoniakstrippning av röttad gödsel visat på två tillämpbara principer för att utvinna ammoniak från svepgasen genom att:

1. Svepgasen exponeras mot en syra, till exempel svavelsyra, i ett skrubbertorn varmed avdriven ammoniak löser sig i svavelsyran. Detta ger en ammoniaksulfatlösning som kan innehålla upp mot 10 % kväve (Fjeldgard & Møller, 2005).

2. Svepgasen kyls varmed fukt kommer att fällas ut och ammoniak löser sig i kondensvattnet. Utgående från egna preliminära kalkyler bedöms detta kondensat kunna innehålla 1 % kväve.

Alternativ 1 innebär att svavelsyra måste köpas in och hanteras medan alternativ 2 medför att anläggningens elbehov ökar för att drive kylanläggningen. Båda dessa alternativ kommer medföra kostnader och ökat processenergibehov. Detta har
emellertid legat utanför projektets omfattning och har därför inte inkluderats i den redovisade ekonomiska kalkylen eller energibalan sen för processintern metananrikning. I fortsatta utvecklingsinsatser med processintern metananrikning bör även behandlingen av svepgasen inkluderas för att fastställa behandlingsstegets energi- och kemikaliebehov, kostnader samt effektiviteten att samla upp avdriven ammoniak. Vidare bör det studeras hur den erhållna växtnäringen utnyttjas på bästa sätt samt hur stor ekonomisk intäkt det bidrar med vid beräkning av totalekonomin för processintern metananrikning.

De ekonomiska beräkningarna visar att anrikningskostnaden för en gårdbsbaserad biogasanläggning med en röttkammare på 1000 m³ är 0,14 kr/kWh anrikad gas (80 % metanhalt). För att nå fordonsgaskvalité krävs ytterligare rening med annan metod för att nå upp till 97 % metan.

En annan tillämpning skulle kunna vara att applicera processintern metananrikning för att höja metanhalten och reducera svavelväte innan gasen används till kraft- och värmeproduktion. En högre metanhalt innebär högre värmeverdier på det ingående bränslet vilket kan ge högre verkningsgrad på kraftvärmeehenheten (Alvarez, 2006). Dessutom ger processintern metananrikning kraftig reducering av biogasens halt av H2S, vilken annars måste renas bort med annan teknik.

Projektet har levererat resultat som gör det klart intressant att även undersöka möjligheterna att försöka tillämpa processintern metananrikning på större biogasanläggningar, till exempel samrörningsanläggningar där matavfall etc. rötas. Då skulle man få följande fördelar:

- En betydande del av koldioxiden skulle frånskiljas innan den anrikade gasen renades av befintlig uppgraderingsanläggning. Därmed skulle uppgraderingskapacitet frigöras i det senare reningsteget, vilket öppnar för att röttningskapaciteten kan utökas. Detta keder långsiktigt till ökad fordonsgasproduktion.

- Halten av svavelväte skulle reduceras betydligt och behovet av annan reningsteknik minskas vilket leder till lägre kostnader för anläggningen i dess helhet.

Slutsatser

- Försök har visat att 72% av koldioxidinnehållet kan frånskiljas med processintern metananrikning och det har resulterat i att metanhalten anrikats till 81%.
- Metanslipet har varit 1,0-1,8% under försöken vilket är avsevärt lägre jämfört med tidigare emiriska försök. Genom att modifiera utformningen på systemet bedöms metanslipet kunna reduceras ytterligare.
- Processintern metananrikning har reducerat mängden svavelväte i biogasan med över 80%.
- Kväveinnehållet i rötkammaren har reducerats med 11-21% under försöken till följd av att ammoniak drivs av i bubbelkolonnen. Processintern metananrikning kan därmed ge möjligheter till att minska kvävebelastningen i rötkammaren samtidigt som en kväverik näringsfraktion kan utvinnas ursvepgasen.
- Anrikningskostnaden är 0,14 kr/kWh biogas för en gårdsanläggning med 1000 m³ rötkammare där metanhalten höjs till 80%.
- Gasproduktionen är den parameter som har störst påverkan vid beräkning av anrikningskostnaden. Kan systemet klara av 30% högre gasproduktion utan att prestandan försämras leder det till 43% lägre anrikningskostnad.
Referenser

Edström, M. 2013. Strategier för att effektivisera rötning av substrat med högt innehåll av lignocellulosa och kväve. Waste Refinery rapport 61. ISSN 1654-4706

Bilaga 1

Sammansättning på rötrest från de två försöksleden Block 1 och Block 2 finns redovisade i tabell B1:1. Notera att ”Pilot” är rötrest från pilotanläggningen som beskrivs i figur 1 medan ”Lövsta” är rötrest från Lövsta biogasanläggning.

<table>
<thead>
<tr>
<th></th>
<th>Block 1: Rötrest</th>
<th>Block 2: Rötrest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lövsta 2013-05-03</td>
<td>Pilot 2013-06-28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torrs substans</td>
<td>6,2</td>
<td>5,8</td>
</tr>
<tr>
<td>Glödförlust</td>
<td>69</td>
<td>74</td>
</tr>
<tr>
<td>Tot-kväve</td>
<td>3,9</td>
<td>3,1</td>
</tr>
<tr>
<td>Organiskt kväve</td>
<td>1,6</td>
<td>1,4</td>
</tr>
<tr>
<td>Ammoniumkväve</td>
<td>2,3</td>
<td>1,7</td>
</tr>
<tr>
<td>Totalt fosfor</td>
<td>0,78</td>
<td>0,64</td>
</tr>
<tr>
<td>Totalt kalium</td>
<td>3,6</td>
<td>3,6</td>
</tr>
<tr>
<td>Totalt magnesium</td>
<td>0,53</td>
<td>0,44</td>
</tr>
<tr>
<td>Totalt kalcium</td>
<td>1,3</td>
<td>1,2</td>
</tr>
<tr>
<td>Totalt natrium</td>
<td>0,32</td>
<td>0,43</td>
</tr>
<tr>
<td>Totalt svavel</td>
<td>0,36</td>
<td>0,31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
JT1 – Institutet för jordbruks- och miljöteknik

Vi är ett tekniskt jordbruksinstitut med tydlig miljö- och energiprofil. Institutets fokus ligger på innovation och utveckling i nära samarbete med företag, organisationer och myndigheter.

På vår webbplats publiceras regelbundet notiser om aktuell forskning och utveckling vid JT1. Gratis mejlutskick av JT1:s nyhetsnotiser kan beställas på www.jti.se

Vissa publikationer kan beställas i tryckt form. För trycksaksbeställningar, kontakta oss på tfn 010-516 69 00, e-post: info@jti.se