SIK-Rapport
1972 Nr 314

VARMHÅLLNINGENS INVERKAN PÅ KVALITETEN
HOS FÄRDIGLAGAD MAT

Y. Andersson
VARMHÅLLNINGENS INVERKAN PÅ KVALITETEN HOS FÄRDIGLAGAD MAT

(Influence on the quality of prepared foods when keeping them at serving temperature)

Yngve Andersson
Svenska Institutet för Konserveringsforskning
Fack, 400 21 Göteborg 16

SUMMARY

This is a literature review regarding the problem of how the quality of prepared foods is influenced when the foods are kept at serving temperature. This procedure is often believed to have negative effects on the quality in nutritional as well as flavour and consistency aspects. The greatest influence is exerted on the heat sensitive vitamins, but changes in colour, consistency and flavour also occur in vegetable and animal products. As a consequence of these quality deteriorations there will probably be a transition from keeping the foods at serving temperature to using systems with direct heating immediately before serving, e.g., using microwaves or IR heating.
VARMHÅLLNINGENS INVERKAN PÅ KVALITETEN HOS FÄRDIGLAGAD MAT

Y. Andersson

Svenska Institutet för Konserveringsforskning (SIK),
Fack, 400 21 Göteborg 16.

SAMMANFATTNING

Varmhållning av matvaror för ofta med sig negativa verk-
ingar på kvaliteten, såväl näringsmässigt som ur flavor-
och konsistenshänseende. Störst påverkan har varmhåll-
ingen på de värmeänsliga vitaminerna, men även färg-,
konsistens- och flavorförändringar inträffar för såväl
vegetabiliska som animaliska produkter. På grund av dessa
kvalitetsförsämringar torde därför i framtiden en över-
gång ske från varmhållning till system med direkt upp-
värmning i anslutning till servering, t.ex. med mikro-
vågsvärming eller IR-värming.

1. INLEDNING

Vid beredning av livsmedel i storhushåll har man hit-
tills, för att kunna servera maten vid en någorlunda be-
haglig åttemperatur, tillgripit olika former av varmhåll-
ing. Härvid har utrustningar såsom kantiner, vattenbad,
värmeugnar och värmeplattor använts. Varmhållningen har
ofta medfört, att en kvalitetsmässigt sämre måltid er-
hållits jämfört med den efter tillagningen direkt serve-
rade maten. Så t.ex. har värmeänsliga komponenter såsom
olika vitaminer och färgämnen påverkats i ogunnsam rikt-
ing, en påtaglig försämring av textur och konsistens
har skett och icke önskvärda flavorkomponenter har bildats.
Detta har gjort att mat, som serverats i olika typer av
stорhushåll, ofta fått en negativ stämpel på sig. Bilden
förvärvas ytterligare av att några storhushåll dessutom
använt alltför långa varmhållningstider på grund av t.ex.
distributions-organisatoriska skäl. I en undersökning som SIFO 1970 genomförde (och som för övrigt senare starkt kritiserades) redovisades för i genomsnitt 25 % av de privata storhushållen varmhållningstider på mer än tre timmar. För de offentliga inrättningarna var siffrorna bättre; endast 8 % hade varmhållningstider längre än tre timmar (tabell 1 och 2), (Anon. 1970). Mot bakgrund av dessa siffror kan det således sägas vara önskvärt, att antingen så fullständigt som möjligt försöka reda ut vad som kvalitetsmässigt händer med livsmedlen under varmhållningen, för att därigenom kunna fastlägga lämpliga normer för denna, eller också helt frångå denna typ av mathantering och i stället använda andra metoder.

2. UTRUSTNING SOM ANVÄNDS INOM STORHUSHÅLL FÖR ATT VARMHÅLLA LAGAD MAT

b. Vattenbad. Vattenbad är lämpliga som värmeåkallor för korttidsvarmhållning av bl.a. gröt, välling, klara soppor, raguer, grytor, kokt kött, stuvningar, såser och kokt potatis. De kan med fördel kombineras med ovan nämnda med innerbox försedda kantiner.

d. Värmeskap. Värmeskap bör vara försedda med en regulatör, som håller maten vid lämplig fuktighet. Om
denna anordning inte finns, bör skåpet endast användas för varmhållning under korta tider. Värme-skåpen kan göras antingen fasta eller rörliga, och kan i det senare fallet användas på exempelvis sjukhus för distribution av i centralek kök färdigställda måltidsbrickor (s.k. brickdukningsystem).

3. **Varnhållningens inverkan på vitaminer, proteiner och fetter**

Vid tillagning och varmhållning av livsmedel förstörs näringskomponenter genom ofördelaktig inverkan av värme, syre, lju och pH. Spårelement såsom koppar och järn samt olika enzymsystem kan dessutom ha en katalysatorande effekt. Emellertid kan andra komponenter utöva en skyddande inverkan på de känsliga beståndsdelarna, och det är därför svårt att förutsätta, hur en näringskomponent skall påverkas i ett speciellt livsmedel.

Studiet av värmeinverkan på näringsvärdet har i första hand koncentrerats till vitaminer och endast i mindre grad till proteiner, fett och kolhydrater. I tabell 3 finns inverkan av några olika faktorer på den relativa stabiliteten av vitaminer och aminosyror tabellerad. Påverkan av värme, syre och lju är påvisbara för flertalet av de tabellerade vitaminerna och för några av aminosyrorna. De vitaminer (eller provitaminer), som påverkas mest av de olika behandlingarna är A-vitamin, C-vitamin, karotin, D-vitamin, folysyra, tiamin och tokoferol (Harris 1960).

Den grad, till vilken proteiner påverkas av värme, är beroende av temperatur och tid. Försök med modellsystem,
i vilka endast proteiner ingick, visade att även en mild värmebehandling förorsakar denaturering av proteinet. Detta behöver i och för sig inte innebära någon nackdel, eftersom en mild denaturering ökar digererbarheten och upptagningsförmågan i matsmältningsskanalen. I livsmedel där även kolhydrater finns närvarande kan ytterligare destruktion av aminosyrorna tänkas förekomma, beroende på Maillardreaktioner. Förutom att näringsvärdet därvid försämras, sker en brunfärgning av livsmedlet och vissa lukt- och smakkomponenter uppstår.

Fetter påverkas i mindre utsträckning än vitaminer och proteiner, då de utsätts för de värmedoser som är vanliga vid normal tillagning och varmhållning av livsmedel. Näringsvärdet och produktionen av eventuella toksiska substanser påverkas nämligen först då fetter och oljor antingen exponeras för syrgas under längre tider eller upphettas till temperaturer över 150°C (Lang 1970).

4. VARMHÅLLNINGENS INVERKAN PÅ VEGETABILIER

Många arbeten har rapporterats beträffande näringsvärdet hos vegetabilier, men mycket litet har gjorts för att undersöka inverkan av olika tillagnings- och varmhållningsmetoder. Dessutom har de flesta undersökningar relatats till vitamininnehållets förändringar, och andra kvalitetsmässiga aspekter har blivit eftersatta. I tabell 4 finns undersökta produkter och egenskaper sammanfattade.

4.1. Inverkan på vitamininnehåll

De mest värmeåkända vitaminerna (C- och B-vitamin) är de vitaminer, som tilldragit sig den största uppmärksamheten, naturligt nog. Bladgrönsaker såsom kål, spenat, broccoli etc. samt potatis är de vegetabilier, som blivit undersökta i störst utsträckning. Resultaten, som härvid erhållits, varierar mycket, beroende på de skiftan-
de villkor under vilka undersökningarna genomförts. Här spelar sådana faktorer såsom materialmängd, varmhållningstemperatur, vattenmängd etc. in. Enligt tabellerna 1 och 2 är varmhållningstider på mer än en timma vanliga inom storhushållen. I det stora flertalet undersökningar beträffande C-vitamin har förluster på 50-60 % jämfört med C-vitaminhalten omedelbart före varmhållningens början rapporterats. Tyvärr anges i många rapporter inte varmhållningstemperaturen, men i försök gjorda vid Lunds Tekniska Högskola (Hansson och Olsson 1972) har betydande minskningar av C-vitaminhalten erhållits vid varmhållning av potatis och ärtor vid fastställda temperaturer enligt fig. 1 och 2. Här bör observeras att varmhållningstudien gjorts på en potatishalva respektive en mindre mängd ärtor, vilka fått stå i värmeskåp upp till fem timmar. C-vitaminhalten i potatis sjunker hastigt under de tre första timmarna, varefter den tycks hålla sig på en någorlunda konstant nivå. Askorbinsyrabestämningen i ärtorna visade, att efter fem timmar är endast cirka 5 % av den ursprungliga halten kvar.

![Fig. 1. Varmhållningens inverkan på C-vitaminhalten i potatis. (Efter Hansson och Olsson, 1972).](image)

![Fig. 2. Varmhållningens inverkan på C-vitaminhalten i ärtor. (Efter Hansson och Olsson, 1972).](image)
I en undersökning i storköksskala vid en Stockholmsskola (Virgin et al. 1967) bestämdes förändringen i C-vitaminshalt efter förvaring av kokt potatis i värmeugna vid 95°C. Efter 1,5 timmar fanns 65 % av ursprunglig ascorbinsyrahalt kvar i potatisen, medan efter fyra timmar värdet sjunkit till 43 %. Även denna undersökning bekräftar således det faktum, att den relativt största förlusten av C-vitamin sker under de första timmarna, varefter hastigheten, med vilken ascorbinsyra omvandlas, sjunker. Förklaringen till detta kan eventuellt vara att strukturen förändras under varmhållningen så att porer och dylikt täpps till, och syrgasdistributionen därigenom försvåras. Resultatet blir att oxidationen av ascorbinsyra avtar med det sjunkande syrgasfrycket. Om denna förklaring är riktig, kan man anta, att även en kort blanchering av ärtor före tillagningen skulle hjälpa till att hålla nedre C-vitaminförlusterna. En annan möjlighet att åstadkomma detta är, att under varmhållningen låta grönsakerna vara täckta av eventuell kokvätska, så att luftsyret inte kommer i kontakt med dem. Visserligen sker därvid en urläkning av C-vitamin ut i kokvätskan, men de förluster, som då uppkommer är mindre än de oxidationsförluster, som skulle uppträdt om luftsyret kunnat angripa ascorbinsyran.

Traditionellt brukar potatis anges som en av de viktigaste C-vitaminkällorna för den svenska befolkningen, men mot bakgrund av de här angivna siffrorna med förluster på 60-70 % för varmhålln potatis torde dessa uppgifter behöva omprövas, inte minst med tanke på att en allt större del av befolkningen är hänvisad till konsumtion av störhushållsprodukter.

Vad beträffar tiaminförlusten vid varmhållning kan sägas, att den för många produkter rapporteras vara av samma storleksordning som ovan angetts för ascorbinsyra, alltså 50-60 %. Dessa siffror baseras på äldre undersökningar; två färskare rapporter (Hansson och Olsson 1972, respektive Kahn och Livingston 1970) an-
ger motsvarande vitamin B₁-förlust till 10-20 % för ärtor varmhållna vid 70-90°C. För potatis rapporterar Hansson och Olsson praktiskt taget inga förluster alls vid förvaring i temperaturer om 70-90°C. Eftersom tidaförörjningen för den svenska befolkningen främst baseras på cerealieprodukter spelar således de förluster som uppståer vid varmhållning av grönsaker en relativt liten roll.

4.2. Inverkan på textur och konsistens

Påstän en mångfald studier gjorts beträffande näringsvärdet hos livsmedel efter tillagning, har endast ett fåtal rapporter av hur varmhållningen påverkar kvaliteten kunnat påträffas i litteraturen. Ur textur- och konsistenssynpunkt har undersökningarna koncentrerats till broccoli, möjlichen beroende på de stora skillnaderna, som förekommer mellan stamcell och "huvud" på denna typ av grönsak. Enligt tabell 5, som redovisar en sensorisk bedömning av texturen hos broccoli, kan sammanfattningsvis sägas, att tid-temperatur-villkoren vid varmhållningen är av stor betydelse för inverkan på texturen, eftersom stora förändringar inträffar vid höga temperaturer och långa varmhållningstider. Vidare kan sägas att övertäckning av varmhållningskärlen har en negativ inverkan på konsistensen (Hitchcock et al. 1966).

Stora konsistensproblem brukar erhållas i störhushåll vid varmhållning av potatis. Om fukthalten är alltför hög (genom att exempelvis behållaren täcks), kan en stark svällning av stärkelsen i potatisen åstadkomma att cellväggarna sprängs och potatisen får ett mosigt utseende. Å andra sidan kan en uttorkning av potatisens ytor lätter erhållas, om den varmhålls i ej täckta behållare. Några mera ingående undersökningar av dessa problem har inte kunnat återfinnas i litteraturen, men det kan nämnas att ett projekt, som nyligen startats.
på Lunds Tekniska Högskola, avser att belysa dessa aspekter vid sidan av analys av ingående näringskomponenter.

4.3. Inverkan på färgen

Klorofyll, som ger de gröna vegetabilierna deras färg, är extremt känslig för kombinationen sur miljö och värme. Om det extraheras från växtvävnad och hålls vid pH 6,0 förlorar det sin färg redan efter fem minuter, om temperaturen i extraktet uppgår till 90-92°C. Vid kokning och efterföljande varmhållning tenderar de naturligt sura vegetabiliiska juicerna att bringas i kontakt med klorofylllet, och resultatet blir att den gröna färgen försvinner. Orsaken till denna reaktion är förmodligen, att magnesium i klorofylllet substitueras med väte i sur miljö. I en undersökning företagen med sparris, bönor och broccoli påvisades att om grönsakerna hölls varma på ett ångbord så uppträdde redan efter 15 minuter små färgförändringar, om behållaren i vilken grönsakerna förvarades var övertäckt. Användes en icke täckt behållare kunde efter en timme inte någon färgförlust iakttagas (Mac Gibbon och Halliday 1937). I tabell 5 finns data angivna för sensorisk och instrumentell bestämning av broccoli, som förvarats under 30-120 minuter vid 71°C respektive 104°C (Hitchcock et al. 1966). De där rapporterade resultaten bekräftar Mac Gibbons och Hallidays iakttagelser.

Klorofyll är det naturliga färgämme, vars färgförändringar har störst betydelse i vegetabiliiska produkter. Karotenoïderna är andra viktiga pigment, vilka är olösliga i vatten och vilka oxideras vid kontakt med luftsyre. Vid varmhållning av t.ex. morötter, som ej förvaras under vätska, skulle därför en viss blekning av matvaran förväntas. I morötter som varit tärnade och som hållits vid 62°C under 20 timmar har också en fullständig
pigmentförlust kunnat observeras (Meyer 1960). Någon mera ingående studie av förloppets hastighet synes dock inte ha blivit utförd.

5. VARMHÅLLNINGENS INVERKAN PÅ ANIMALISKA LIVSMEDEL

Endast ett fåtal rapporter beträffande inverkan av varmhållning på kvaliteten hos köttprodukter har påträffats i litteraturen, och de behandlar i huvudsak förändringar i näringsvärde. Konsistens-, färg- och flavorundersökningar tycks vara mycket sällsynta i detta sammanhang.

5.1. Inverkan på näringsvärdet

Näringsvärdet hos köttprodukter beror i första hand på den relativt höga proteinhalten samt på den välbalanserade aminosyrasammansättningen hos proteinet. Dessutom är B-vitaminhalten samt ingående mineral- och spårämnen av viss betydelse.

5.2. Inverkan på textur och konsistens

tills 52°C uppnåtts i stekens mitt, och därefter överförda den till ett värmeskåp, som hölls vid 60°C. Efter sex respektive arton timmar bestämdes 1) textur och konstens såväl sensoriskt som instrumentellt samt 2) droppförluster vid tillagningen. En jämförelse med kött, som tillagats konventionellt vid en ugnstemperatur av 149°C, visade därför inga signifikanta skillnader beträffande konstens, medan droppförlusterna vid den konventionella metoden var betydligt mindre. I den andra undersökningen hade försöksmetodiken modifierats i så måtto att en ugnstemperatur av 149°C användes under den första tillagningsperioden varefter köttet hölls i dels skivad och dels oskivad form under 90 minuter i en kammare med torr värme vid 106°C. Vid denna undersökning gjordes liknande analyser som i den ovan nämnda rapporten. Även här jämfördes resultaten med data erhållna för konventionell tillagat kött. Några skillnader kunde inte iakttagas mellan det oskivade, varmhållna köttet och det konventionell tillagade, medan det skivade, varmhållna köttet signifikant skiljde sig från dessa båda. Här finns således en metod, där varmhållningen positivt kan utnyttjas vid tillagningen av kött i storkökskälla för att få ett jämnare och mera ekonomiskt arbetstempo.

5.3. Inverkan på flavor

När kött efter kokning varmhållas, utvecklas s.k. "warmed-over" flavor. De ämnen som är ansvariga för denna flavor är vattenlösliga, och har relaterats till oxidationsprodukter av proteinbundna lipider. Reaktionerna kan delvis inhiberas genom tillsats av vissa antioxidanter eller ketlatbildande ämnen (t.ex. askorbinsyra, nitrit eller polyfosfat). Det fakta om "warmed-over" flavors har påvisats även hos malet, okott kött, indikerar att beredningsprocesser, som sliter sönder membransystemet i muskelvävnaden, vilket exempelvis kokning eller malning gör, resulterar i att labila lipidkomponenter kommer i
kontakt med syrgas och oxideras. Dessa "warmed-over" flavors uppträder också i muskulatur från fågel, där dessutom skämda och svavelliknande flavors kan förekomma. Här bör även påpekas, att även vid en relativt kort tids lagring av kokt kött dessa "warmed-over" flavors kan utvecklas (Harris och Lindsay 1972, Sato och Hegarty 1971 samt Younathan och Watts 1960).

6. BAKTERIOLOGSKA SYNPUNKTER PÅ VARMHÅLLNINGEN

Som ett livsmedelshygieniskt krav på varmhållen mat (t.ex. vid försäljning i varuhus av grillade, varma matvaror) anger den nya livsmedelslagen att den måste hållas vid en temperatur av minst 60°C. Detta krav torde även kunna ställas på mat som varmhålles i storhushåll.

I en undersökning rörande serveringstemperaturen av varm mat, som distribuerats i isoleringskantiner till skolor i Kristianstads län (Svedberg och Sefastsson 1968) har resultaten ur bakteriologisk synvinkel varit synnerligen dåliga. För soppor och potatis har 60°C-gränsen i stort sett uppnåtts, medan för kött- och fiskrätter ett inte oansenligt antal mätresultat erhållits i temperaturzonerna 40–50°C respektive under 40°C. Orsakerna till detta antas vara att såväl soppor som potatis snabbt kan fyllas på kantinerna och ge en homogen fyllnad av dem, medan påfyllningen av de fasta kött- och fiskrätterna är långsammare och heller inte ger samma utfyllnad som de förra matvarorna. En luftcirkulation kan härvid uppstå ifall kantinen är defekt i lock eller kanter.

Risken för matförgiftning som en följd av de låga temperaturvärdena bedöms emellertid som små. Tidsintervallet mellan tillagning och utspisning torde maximalt uppgå till 5-7 timmar. En infektion med matförgiftande bakte-
rier behöver minst 5 timmar vid optimala temperaturbe-
ingelser (30-40°C) för att en sådan anrikning och
toxinbildning skall ske, att ett sjukdomsutbrott kan
förväntas. Ty även om maten vid förtäringen haft de an-
givna låga temperaturerna är det inte troligt att dessa
betingelser rått under hela distributionsskedet.

De rekommendationer, som kan ges vid användningen av
isoleringskantiner, går ut på att stor omsorg måste
iakttas vid påfyllning och hantering av dem för att
undvika att lock och kanter skadas. Vidare kan en iso-
lerad ytterbox för måltidens samtliga kantiner användas.
Vid utportioneringen kan också ett värmande vattenbad
användas.

Övriga metoder för varmhållning av livsmedel som t.ex.
värmeugnar eller värmeplattor ger inga speciella svå-
righeter, då det gäller att hålla den rekommenderade
temperaturgränsen.

7. DISKUSSION

Som framgått ovan medför varmhållningen av livsmedel be-
tydande kvalitetsförsämringar utom i det fall, där den
direkt utnyttjats som ett led i tillagningskedjan för
helt kött. Dessa problem accentueras ytterligare av den
i flera fall rapporterade dåliga hanteringen av matva-
rorna under varmhållningens gång. Den forskning som hit-
tills har utförts på förändringar under processen synes
vara otillräcklig framför allt inom de rena kvalitetsom-
rådena textur och konsistens, flavor, färg och allmän
acceptans.

Alternativet till varmhållning är att använda system
med direkt uppvärmning i anslutning till serveringen,
t.ex. med mikrovågsvärmning eller IR-värmning. Anled-
ningen till att dessa ännu inte på allvar kunnat kon-
kurrera med de mera konventionella metoderna torde bl.a.
vara de relativt sett större investeringskostnaderna. Fördelarna med mikrovågsugnarna är framför allt de relativt korta uppvärmningstiderna, som medför en positiv tendens såväl i vitaminretention som i konsistens. Vidare finns ju här möjligheten att i förväg tillaga maten portionsvis och sålunda få en förenklad serveringsproceduren (Anon. 1968).

Då medvetenheten om livsmedlens näringsmässiga och kvalitetsmässiga innehåll alltmera tycks öka hos konsumenterna, och då en allt större andel av befolkningen blir mera beroende av storhushållsprodukter torde även en mycket försiktig bedömare kunna sätta om att en gradvis övergång från gängse konventionella varmhållningsmetoder till exempelvis de ovan nämnda systemen med mikrovågs- och LR-värming kommer att ske.
LITTERATURFÖRTECKNING

Anon., 1968

Anon., 1970

Aktuellt från Djupfrysningsbyråns verksamhetsberättelse 1970.

Anon., 1971

Quality food service must bridge the temperature gap between cooking and serving. Food Service Magazine 33(1971):12, p. 13-15

Boyle, M.A. & Funk, K., 1970

Holding roast beef by three methods. J. of the American Dietetic Ass. 56(1970), p. 34-38

Erikson, S.E. & Boyden, R.E., 1960

Funk, K. et al., 1966

Hansson, E. & Olsson, H., 1972

Personliga kontakter.

Harris, N.D. & Lindsay, R.C., 1972

Flavor changes in reheated chicken. J. of Food Science 37(1972), p. 19-22

Harris, R.S., 1960

Hitchcock, M.J. et al., 1966

Hofmann, K., 1966

Kahn, L.N. & Livingston, G.E., 1970
Effect of heating methods on thiamine retention in fresh or frozen prepared foods.

Lang, K., 1970
Influence of cooking on foodstuffs.

Mac Gibbon, C.H. & Halliday, E.G., 1937
Color changes in large-quantity cooking and service of green vegetables.
J. of Home Economics 29(1937), p. 40-44

Meyer, L.H., 1960
Food chemistry.

Munsell, H.E. et al., 1949
Effect on large-scale methods of preparations on the vitamin content of food. III Cabbage.
J. of the American Dietetic Ass. 25(1949), p. 420-426

Nagel, A.H. & Harris, R.S., 1943
Effect of restaurant cooking and service on vitamin content of foods.
J. of the American Dietetic Ass. 19(1943):1, p. 23-25

Olliver, M., 1943
The effect of cooking on the nutritive value of vegetables.
Chemistry & Industry (London) 60(1943), p. 586-596

Ross, L.N., 1971
Food temperature control.
Hospitals 45(1971) June, p. 67-69

Sato, K. & Hegarty, G.R., 1971
Warmed-over flavor in cooked meats.
J. of Food Science 36(1971), p. 1098-1102

Scheunert, A. & Reschke, J., 1938
Untersuchung über den Einfluss der Zubereitungsweise und der Verwendung der Kochkiste auf den Vitamin-C-Gehalt einiger Gemüse.
Vorratspflege und Lebensmittelforschung 1(1938), p. 238-243

Schillinger, A. & Zimmermann, G., 1965
"Über den Vitamingehalt von Fleisch- und Fischkonserven.
Svedberg, S. & Sefastsson, S., 1968

Virgin, E. et al., 1967

Westerman, B.D., 1960

Wood, M.A. et al., 1946
Effect of large-scale food preparation on vitamin retention: Cabbage. J. of the American Dietetic Ass. 22(1946):8, p. 677-682

Younathan, M.T. & Watts, B.M., 1960

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Restauranger</td>
<td>46%</td>
<td>12%</td>
<td>13%</td>
<td>27%</td>
</tr>
<tr>
<td>Hotell/Hotell</td>
<td>42%</td>
<td>19%</td>
<td>22%</td>
<td>18%</td>
</tr>
<tr>
<td>Barer</td>
<td>31%</td>
<td>11%</td>
<td>16%</td>
<td>42%</td>
</tr>
<tr>
<td>Personalerost.</td>
<td>27%</td>
<td>22%</td>
<td>31%</td>
<td>21%</td>
</tr>
<tr>
<td>Samtliga företag</td>
<td>35%</td>
<td>18%</td>
<td>22%</td>
<td>25%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sjukhus</td>
<td>51%</td>
<td>28%</td>
<td>18%</td>
<td>3%</td>
</tr>
<tr>
<td>Älderdomshem</td>
<td>68%</td>
<td>26%</td>
<td>4%</td>
<td>1%</td>
</tr>
<tr>
<td>Skolor</td>
<td>30%</td>
<td>21%</td>
<td>36%</td>
<td>13%</td>
</tr>
<tr>
<td>Samtliga företag</td>
<td>44%</td>
<td>23%</td>
<td>25%</td>
<td>8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Näringsämne</th>
<th>Neutral pH 7</th>
<th>Sur pH<7</th>
<th>Alkal. pH>7</th>
<th>O2</th>
<th>Ljus</th>
<th>Värme</th>
<th>Kokförluster %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A</td>
<td>S</td>
<td>O</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0-40</td>
</tr>
<tr>
<td>Askorbinsyra (C)</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0-100</td>
</tr>
<tr>
<td>Biotin</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>0-60</td>
</tr>
<tr>
<td>Karotin (pro-A)</td>
<td>S</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
</tr>
<tr>
<td>Choline</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>0</td>
<td>S</td>
<td>S</td>
<td>0-5</td>
</tr>
<tr>
<td>Cobalamin (B₁₂)</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0-10</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0-40</td>
</tr>
<tr>
<td>Folsyra</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0-100</td>
</tr>
<tr>
<td>Inositol</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>0-95</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>S</td>
<td>0-5</td>
</tr>
<tr>
<td>Niacin</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>0-75</td>
</tr>
<tr>
<td>Pantotensyra</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>S</td>
<td>0</td>
<td>0-50</td>
</tr>
<tr>
<td>Vitamin B₆</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0-40</td>
</tr>
<tr>
<td>Riboflavin (B₂)</td>
<td>S</td>
<td>S</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0-75</td>
</tr>
<tr>
<td>Tiamin (B₁)</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>0-30</td>
</tr>
<tr>
<td>Tokoferol (E)</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0-55</td>
</tr>
<tr>
<td>Essentiella aminosyror</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoleucin</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>0-10</td>
</tr>
<tr>
<td>Leucin</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>0-10</td>
</tr>
<tr>
<td>Lysin</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>0</td>
<td>0-40</td>
</tr>
<tr>
<td>Methionin</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>0-10</td>
</tr>
<tr>
<td>Fenylalanin</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>0-5</td>
</tr>
<tr>
<td>Troponin</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>S</td>
<td>0</td>
<td>0-20</td>
</tr>
<tr>
<td>Tryptofan</td>
<td>S</td>
<td>0</td>
<td>S</td>
<td>S</td>
<td>0</td>
<td>S</td>
<td>0-15</td>
</tr>
<tr>
<td>Valin</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>0-10</td>
</tr>
</tbody>
</table>

S = stabil (inget destruktion)
0 = osäkert (signifikant destruktion)
<table>
<thead>
<tr>
<th>Vegetabilier</th>
<th>Tid</th>
<th>Temperatur</th>
<th>C-vitamin</th>
<th>Riboflavin</th>
<th>Tiamin</th>
<th>Färg</th>
<th>Textur</th>
<th>Referens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blomkål</td>
<td>3 tim.</td>
<td>"varm"</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>Nagel & Harris (1943)</td>
</tr>
<tr>
<td>Blomkål med säs</td>
<td>0-2 tim.</td>
<td>73°C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Virgin et al. (1967)</td>
</tr>
<tr>
<td>Broccoli</td>
<td>15-60 min.</td>
<td>"ångbord"</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Mac Gibbon & Halliday (1937)</td>
</tr>
<tr>
<td>Broccoli</td>
<td>30-60 min.</td>
<td>71-104°C</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Hitchkock et al. (1966)</td>
</tr>
<tr>
<td>Bönor</td>
<td>15-60 min.</td>
<td>"ångbord"</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mac Gibbon & Halliday (1937)</td>
</tr>
<tr>
<td>Bönor</td>
<td>3 tim.</td>
<td>"varma"</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Nagel & Harris (1943)</td>
</tr>
<tr>
<td>Grönkål</td>
<td>18-60 min.</td>
<td>"varm"</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scheunert & Reschke (1938)</td>
</tr>
<tr>
<td>Kål</td>
<td>18-105 min.</td>
<td>"varm"</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"-"</td>
</tr>
<tr>
<td>Kål</td>
<td>15-90 min.</td>
<td>"varm"</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Olliver (1943)</td>
</tr>
<tr>
<td>Kål</td>
<td>7 min.</td>
<td>"kokad"</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Munsell et al. (1949)</td>
</tr>
<tr>
<td>Kål</td>
<td>15-120 min.</td>
<td>"ångkokad"</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Wood et al. (1946)</td>
</tr>
<tr>
<td>Kål</td>
<td>15-120 min.</td>
<td>"varm"</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>"-"</td>
</tr>
<tr>
<td>Kålrot</td>
<td>3 tim.</td>
<td>"varm"</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nagel & Harris (1943)</td>
</tr>
<tr>
<td>Lök</td>
<td>0-4 tim.</td>
<td>"varmhällen"</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Virgin et al. (1967)</td>
</tr>
<tr>
<td>Morötter</td>
<td>3 tim.</td>
<td>"varm"</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"-"</td>
</tr>
<tr>
<td>Potatis</td>
<td>3 tim.</td>
<td>"varm"</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nagel & Harris (1943)</td>
</tr>
<tr>
<td>forts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vegetabilier</th>
<th>Tid</th>
<th>Temperatur</th>
<th>C-vitamin</th>
<th>Riboflavin</th>
<th>Tiamin</th>
<th>Färg</th>
<th>Textur</th>
<th>Referens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potatis</td>
<td>0-4 tim.</td>
<td>95°C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Virgin et al. (1967)</td>
</tr>
<tr>
<td>Potatis</td>
<td>0-5 tim.</td>
<td>50-90°C</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Hansson & Olsson (1972)</td>
</tr>
<tr>
<td>Pumma</td>
<td>3 tim.</td>
<td>"varm"</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nagel & Harris (1943)</td>
</tr>
<tr>
<td>Rödkål</td>
<td>3 tim.</td>
<td>"varm"</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>"-"</td>
</tr>
<tr>
<td>Sparris</td>
<td>15-60 min.</td>
<td>"ångbord"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>Mac Gibbon & Halliday (1943)</td>
</tr>
<tr>
<td>Spenat</td>
<td>3 tim.</td>
<td>"varm"</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Nagel & Harris (1943)</td>
</tr>
<tr>
<td>Ärtor</td>
<td>3 tim.</td>
<td>"varma"</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"-"</td>
</tr>
<tr>
<td>Ärtor</td>
<td>0-5 tim.</td>
<td>70-90°C</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Hansson & Olsson (1972)</td>
</tr>
<tr>
<td>Ärtor i gräddsäs</td>
<td>1-3 tim.</td>
<td>82°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>Kahn & Livingston (1970)</td>
</tr>
</tbody>
</table>
Tabell 5. Färg, textur och flavor hos varmhållen broccoli (Hitchcock et al. 1966).

<table>
<thead>
<tr>
<th>Varmhållningsbehandlingar</th>
<th>Medelpoäng vid sensorisk bedömning</th>
<th>Färg-differens mätningssvärden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Färg</td>
<td>Textur</td>
</tr>
<tr>
<td>Tid min Temp. °C Fuktighet</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>kontroll 6</td>
<td>11,17</td>
<td>11,06</td>
</tr>
<tr>
<td>30 71 o b. 7</td>
<td>10,25</td>
<td>9,80</td>
</tr>
<tr>
<td>30 71 t b. 8</td>
<td>10,19</td>
<td>10,39</td>
</tr>
<tr>
<td>30 104 o b.</td>
<td>9,39</td>
<td>9,53</td>
</tr>
<tr>
<td>30 104 t b.</td>
<td>8,53</td>
<td>8,92</td>
</tr>
<tr>
<td>120 71 o b.</td>
<td>8,03</td>
<td>9,08</td>
</tr>
<tr>
<td>120 71 t b.</td>
<td>5,50</td>
<td>7,44</td>
</tr>
<tr>
<td>120 104 o b.</td>
<td>3,11</td>
<td>5,42</td>
</tr>
<tr>
<td>120 104 t b.</td>
<td>1,33</td>
<td>1,28</td>
</tr>
</tbody>
</table>

1 = Poängskala: 9-12 betecknar grön; 5-8 grön, gulgrön; 1-4 olivgrön
2 = Poängskala: 9-12 betecknar att grönsaken är så mjuk att den kan skäras med en gaffel, inte mosas, bibehåller ursprunglig form; 5-8 för mjuk för att bibehålla formen, mosas när den skäres; 1-4 mosig, mjuk, "huvudet" faller sönder
3 = Poängskala: 9-12 betecknar mild flavor, lätt söt; 5-8 moderat flavorförändring; 1-4 stark flavorförändring
4 = Mått på grönhet. Minskad värde betecknar minskad grönhet
5 = Gulhet-grönhet-förhållande. Minskad värde betecknar ökad gulhet
6 = Kontrollen ej varmhållen
7 = otäckt behållare
8 = täckt behållare