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Abstract 
 
Ulrika Eriksson (2016): Contribution of polyfluoroalkyl phosphate esters 
(PAPs) and other precursor compounds to perfluoroalkyl carboxylates 
(PFCAs) in humans and the environment. Örebro Studies in Chemistry 18.
 
Per-and polyfluoroalkyl substances (PFAS) are anthropogenic com-
pounds that have been spread all over the world. The use of fluorote-
lomer compounds, short-chained homologues, and other PFASs with 
perfluorinated moieties has emerged recent years. One of these emerg-
ing compound classes is polyfluoroalkyl phosphate esters (PAPs), 
which have the ability to degrade into persistent PFCAs.  
The aim of this thesis was to assess the contribution of PAPs and other 
precursors to the exposure of PFCAs to humans and the environment. 
The main objective was to analyze a wide range of PFAS in human 
serum, wild bird eggs, indoor dust, waste water, and sludge. 
There was a significant contribution from selected precursors to the 
total amount of PFASs in the abiotic compartments indoor dust, waste 
water, and sludge. Levels of PAPs found in house dust exceeded those 
of PFCAs and perfluorosulfonic acids (PFSAs), revealing PAPs as a 
world-wide important exposure source.  
A net increase was during waste water treatment was observed for 
several PFASs in Swedish waste water treatment plants. Together with 
presence of precursor compounds and intermediates in the influent 
water and the sludge, this suggest that degradation of PFCA precur-
sors contributed to the increase of PFCAs. Detection of precursors in 
human serum, together with slow declining trends of PFCAs, revealed 
an ongoing exposure of PFCAs to the general population of Australia. 
The diPAPs and the FTSAs were also detected in raptor bird eggs from 
Sweden from both the terrestrial and the freshwater environment.  The 
precursors concentrations and patterns observed reveal that current 
regulatory measures are insufficient for the purpose of protecting hu-
mans and the environment from PFASs exposure.  

Keywords: PAPs, precursors, PFCA, exposure, indoor dust, human serum, 
WWTP, bird eggs 
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1. Introduction 
The group of per- and polyfluoroalkyl substances (PFASs) consist of a 
large number of classes, of which most of them have in common that they 
have an alkyl chain which is partially or fully fluorinated, with a function-
al head group, typically carboxylate, sulfonate, phosphate, or alcohol 
(Buck et al. 2011). The high electronegativity of the fluorine provides 
strong polarity and high energy to the carbon-fluorine-bond (Chambers 
2009). The bond strength increase with number of fluorines attached to 
the carbon atom. The strong carbon-fluorine bond together with effective 
shielding of the alkyl chain of the fluorine atoms result in high stability of 
the molecule. Fluorine has a high ionization potential and therefore the 
inter- and intramolecular interactions in fluorocarbons are low, leading to 
extremely low surface tension and similar or higher volatility compared to 
their hydrogen carbon counterparts. A charged moiety attached to the 
fluorinated alkyl chain enhance the water solubility, resulting in a mole-
cule with both hydrophobic and hydrophilic properties. These superior 
properties compared to other surfactants make PFASs suitable for oil- and 
water repellency and high temperature applications, which have led to an 
extensive use in a wide range of applications such as in wetting and level-
ing agents, paints, coatings, waxes, chrome plating bath, fire-fighting 
foams, cosmetics, paper, food packaging, textiles, carpets, cleaning agents, 
pesticides, photographic emulsifiers. The PFAS group comprises several 
thousand compounds (KEMI 2015). Only a few of these are usually cov-
ered by monitoring and scientific studies. Analysis of total extractable 
organic fluorine content suggest that a large proportion of the organofluo-
rine in the environment and humans are unknown compounds (Yeung et 
al. 2013a, Yeung and Mabury 2016). Commonly used commercial PFASs 
that will eventually be transformed to persistent PFASs, but are always 
ignored in monitoring programs, may represent a significant portion of the 
total amount. 

1. 1. Synthesis and use of PFASs 
There are two main processes for PFAS production; electrochemical fluor-
ination (ECF) and telomerization. In the ECF process, the starting material 
is octane sulfonyl fluoride (C8H17SO2F) or a carbonyl fluoride (C7H15COF) 
(3M Company 1999a, Lehmler 2005, Buck et al. 2011). In the presence of 
anhydrous fluoride, a current is passed through the solution and all the 
hydrogen atoms are replaced with fluorine, leading to a perfluorinated 
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substance (fig. 1). This process can lead to rearrangement and breakage of 
the carbon chain, yielding a proportion of 20-30% branched isomers. 
With octane sulfonyl fluoride as starting material, the process yields per-
fluorooctane sulfonyl fluoride (POSF), which can be further processed to 
yield perfluorooctane sulfonic acid (PFOS) through base-catalyzed hydrol-
ysis, and with carbonyl fluoride the process yields perfluorooctanoic acid 
(PFOA). PFOS has been produced using ECF since 1949 and has been 
widely applied in for example aqueous film forming foam (AFFF), metal 
plating, and hydraulic fluids (Paul et al. 2009). Further reaction with me-
thyl or ethyl amine yields perfluorooctane sulfonamides (MeFOSA and 
EtFOSA). FOSA can either be used in commercial applications, for exam-
ple EtFOSA in pesticides (Gilljam et al. 2016), or be further reacted with 
ethylene carbonate to perfluoroalkane sulfonamidoethanols (MeFOSE and 
EtFOSE). MeFOSE has been used in polymeric substances in textiles and 
carpets (Olsen et al. 2005).  EtFOSE was amongst others used as building 
material for perfluorooctane sulfonamide phosphate esters (SAmPAPs), 
which has been used for paper treatment (D'eon et al. 2009). POSF-based 
chemistry has been phased out by the former major manufacturers but 
homologues with shorter chain length, foremost perfluorobutane sulfonyl 
fluoride (PBSF), have replaced POSF in the ECF process (OECD 2007, 
Buck et al. 2011). 
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Figure 1. A simplified scheme over the ECF process (Buck et al. 2011) 

In the telomerization process, tetrafluoroethylene (TFE) is reacted with a 
pentafluoroethyl iodide (PFEI) yielding perfluoroalkyl iodides (PFAI) (fig. 
2) (Lehmler 2005, Buck et al. 2011). Almost exclusive linear homologues 
are produced, in contrast to the ECF process, though synthesis of 
branched perfluoroalkyl iodides also has been described (Bertocchio et al. 
1993). In general, only even-numbered homologues are produced, though 
there have been some reports about odd-numbered fluorotelomer-based 
compounds in literature (Ding et al. 2012). The PFAI can be reacted to 
yield for example PFOA, perfluorononanoic acid (PFNA), fluorotelomer 
iodide (FTI), and perfluoroalkyl phosphonic acids (PFPA) and phosphinic 
acids (PFPiA) (Wang et al. 2016a). The major use of PFOA is as pro-
cessing aid in the synthesis of the fluoropolymer polytetrafluoroethylene 
(PTFE), and for PFNA as a processing aid in synthesis of polyvinylidene 
fluoride (PVDF). Mixtures of PFPAs and PFPiAs have been used in pesti-
cides, wetting and leveling agents, plating, and cleaning products 
(Dookhith 2001, Pilot Chemical 2016). 
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FTI can be further reacted to produce various PFASs, fluorotelomer alco-
hols (FTOH), fluorotelomer olefins (FTO), fluorotelomer sulfonic acids 
(FTSAs), polyfluoroalkyl phosphate esters (PAPs) and perfluoroalkyl car-
boxylates (PFCAs). FTSA-based compounds have been used mainly in fire 
fighting foams as an active ingredient, due to their low surface tension, 
which enables aqueous film formation on hydrocarbon fuels (Harding-
Marjanovic et al. 2015). Other uses have been described as well, for in-
stance in ink to reduce puddling of the ink-jet ink on the nozzle plate (Ma 
et al. 2002). The FTOHs can be functionalized to fluorotelomer acrylate 
(FTAC) and further synthesized to fluorotelomer acrylate polymers, for 
which major use has been in textile, leather, and paper. Alternatively, the 
FTOHs can be further functionalized to yield PAPs or fluorotelomer mer-
captoalkyl phosphate diesters (FTMAPs). Major use for PAPs have been in 
paper and packaging, including food packaging, but other uses have been 
described as well, as in personal care products, floor finish, cleaning prod-
ucts, paints, and coatings (Pilot Chemical 2016). The products in the te-
lomerization process are usually mixtures that can have chains of a length 
between 2 and 18 fluorinated carbons. Distillation is used for separations 
and purifications. Neither ECF nor telomerization have a 100% yield, and 
the starting materials can be left as residuals in the final product. 
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Figure 2. A simplified scheme of the telomerization process (Lehmler 2005, Buck 
et al. 2011, Wang et al. 2016a). 

1. 2. A historical view 
PFASs have been produced since the 1950s. Amongst the first applications 
was the use of ammonium perfluorooctanoate (APFO), a salt of PFOA, as 
processing aid for polymerization of PTFE (Prevedouros et al. 2006). The 
fluorinated tail of APFO keep the PTFE particles in dispersion state during 
the polymerization process (McKeen 2015). Similarly, PFNA was imple-
mented as processing aid for polyvinylidene fluoride (PVDF). Between 
1951 and 2002, ECF was the dominating process for manufacturing both 
PFOS and PFOA (Prevedourus, Buck). The 3M company was the major 
global POSF producer with manufacturing plants in the US and Europe, 
though minor quantities were also produced by other companies in Eu-
rope, Asia, and South America (Paul et al. 2009). Fluorotelomer produc-
tion started in 1961 and PFOA production using the telomerization pro-
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cess started in the 1970s by DuPont (Wang 2014), though ECF continued 
for decades to be the major PFOA synthesizing technique (Prevedouros et 
al. 2006, Wang et al. 2014). In the 1970s, elevated levels of organic fluo-
rine were found in blood of workers at a PFAS production factory, and 
PFOA was found in their urine (Ubel et al. 1980). This was the first indi-
cator of human exposure to this compound group. 

 
From 1960s to 2000, production volumes of PFASs steadily increased. 
Annual APFO production has been estimated to increase from 5 – 25 ton 
in the early 1960s to 200 – 300 ton in the late 1990s (Prevedouros et al. 
2006). Production of PFOSF has been estimated to increase from about 
500 ton in 1970 to 4 650 ton in 2000 (Paul et al. 2009). Of this amount, 
33% was used in paper and packaging, including food packaging, 48% in 
surface treatment such as textile and leather protection, 3% in AFFF, and 
15% in other consumer and industrial applications (3M Company 2000). 

 
In the late 1990s, the analytical technique of electrospray ionization mass 
spectrometry (ESI-MS) had been largely improved and was applied for the 
analysis of PFASs, lowering the limit of detection for PFOS to 50 ppb (3M 
Company 1999b). Attention started to grow around PFAS and in particu-
lar PFOS. In 1997, PFOS in serum of the general population was observed 
by the 3M Company (3M Company 1999b). Previously PFOS and PFOA 
had been found in occupational exposed workers and monitored for years, 
but now PFOS was also found in a control group with supposedly con-
taminant-free serum. Between 1997 and 2000, the 3M Company reduced 
their waste water discharged by 50% and the air emission by 40% at their 
facility in Decatur, Alabama, one of their two major POSF plants (3M 
Company 2000). After increasing pressure from the US EPA, the 3M 
Company announced their phase-out of the C8-technology in May 2000 
and completed it in 2002 (3M Company 2000). This led to several chang-
es in the PFAS production and manufacturing.  

As a result of ceased production in North America and Europe, PFOS 
production expanded in China. The annual production of PFOS in China 
has increased from <50 ton in 2001 to 250 ton in 2006 and ranged be-
tween 220 and 250 ton in 2006 - 2011 (Zhang et al. 2012, Xie et al. 
2013). The 3M Company continued their PFAS production, but switched 
over to PBSF-based chemistry (3M Company 2002). New PFASs with 
sulfonic acids have also been introduced worldwide, for example per-
fluoroalkyl ether sulfonic acids (PFESAs) (Wang et al. 2013).   
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In the years 2006 – 2009, the use of PFOS became further restricted. In 
the EU, the use and import of PFOS was restricted under REACH in 2006 
(REACH 2010). Norway banned the use of PFOS in AFFFs, impregna-
tions, and textiles in 2004 (Norway 2004). Manufacturing, use and sale 
become prohibited in Canada in 2008 (Canada 2006). PFOS was listed 
into the Annex B of Stockholm Convention on Persistent Organic Pollu-
tants in 2009 (UNEP 2009). Recently, a project has been initiated by For-
eign Economic Cooperation Office (FECO) and World Bank (WB) with 
the aim to help China reduce their PFOS emission (GEF 2016).  

 
Restrictions of PFCAs have been lagging and implemented later than for 
PFOS. The 3M Company produced 85% or more of the global production 
volume of PFOA until 2000, using the ECF technique (OECD 2002). 
DuPont had previously purchased PFOA from the 3M company, but start-
ed producing PFOA through fluorotelomerization at their facility in the 
US in 2002 (OECD 2007).  

 
In 2006, the Voluntary Stewardship Program was initiated by the US EPA, 
where eight major PFAS manufacturers participated (DuPont, Arkema, 
Asahi, BASF Corporation, Clariant, Daikin, 3M/Dyneon, and Solvay So-
lexis), aiming to reduce PFOA emissions by 95% to 2010 and completely 
phase-out by 2015 (EPA 2006). Fluorotelomer companies not bound to 
the Stewardship Program, mainly in China, India, and Russia, have taken 
over their market share of long-chain PFCAs (Wang et al. 2014). It has 
been estimated that 31% of the fluorotelomer production was covered by 
companies not participating in the Stewardship Program in 2013, of which 
74% of the production occurred in China (ECHA 2014). The process of 
regulation of PFOA and long-chain PFCAs in the EU began in 2012-2013 
by adding these compounds to the REACH Candidate List of Substances 
of Very High Concern (SVHC) (REACH EC No. 1907/2006). In 2012, the 
production volume of PFOA in China was 90 ton, exclusively produced by 
the ECF process (Li et al. 2015). Emissions of PFOA at one production 
site in China have been estimated to be 58 ton in 2013 (Wang et al. 
2016b). In comparison, 50 ton PFOA was emitted in 2006 from the eight 
companies participating in the Stewardship program.  

 
A majority, about 80%, of the fluorotelomers were incorporated in poly-
mers in year 2000, while the remaining 20% were used in surfactants 
(TRP 2002). The information about actual production volumes of 
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fluorotelomer compounds are however scarce. It has been estimated 
though that the annual global production was 2 500 ton/year in 1961 – 
1979, then increased to 7 500 ton/year in 1980 – 1994, followed by an 
increase to 20 000 ton/year in 1995 – 2004 (Wang et al. 2014). Current 
production volume (2004 – 2030) is estimated to be 45 000 ton/year.  

 
Majority of replacement compounds for the long-chained PFASs that have 
entered the market continues to have a fluorinated structure. One of the 
major changes is the shift in the industry towards short-chain C4 – C6 
PFASs (3M Company 2002, Daikin 2007, DuPont 2008, AGC 2016). The 
shift towards short-chain PFASs also includes PAPs. For example, the 
company Daito Kasei has replaced their product PF, a mixture of C8 – 
C20  mono-, di-, and triPAPs, with 6:2 monoPAP under the trade name 
EPF (environmental PF) (Kasei 2015). Recently, the use of C8-C18 PAPs 
in food contact paper and paperboard was banned in the US (FDA 2016). 
Other replacement compounds are the polyfluorinated ethers (PFPE), for 
instance ADONA (CF3OCF2CF2CF2OCHFCF2COO−NH4

+) and GenX 
(CF3CF2CF2OCF(CF3)COO-NH4

+) from Dyneon and Chemours (formerly 
DuPont), respectively (Wang et al. 2013). New compounds are constantly 
entering the market, and it has been estimated that more than 3000 com-
mercial PFAS compounds are circulating on the global market (KEMI 
2015). Volumes of PFASs produced are also expected to increase as a con-
sequence of short-chain PFASs having less effective surfactants properties 
compared to long-chain PFASs. Forecasts predict that the fluorotelomer 
industry will continue to increase as a consequence of increased living 
standard and high market demand on products such as textiles, papers, 
metal plating, and semiconductors (Insights 2016). There are no signs of 
an instant elimination of PFASs at a global scale within a perspicuous 
future. 

1. 3. Direct and indirect sources 
The exposure sources of PFCAs and PFSAs are commonly referred to as 
being of direct or indirect origins. Direct sources are herein described as 
including both intentionally produced compounds, residuals from the 
production process, and unintended produced byproducts. Indirect sources 
are herein described as compounds formed during degradation from pre-
cursor compounds. Due to limitations of information on actual produc-
tion volumes and homologue distribution, and uncertainties in the yield of 
persistent PFASs from precursors, it has been difficult to determine to 
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which extent indirect sources contribute to total PFCAs and PFSAs emis-
sion. Prevedouros et al. (2006) made the first extensive estimation and 
concluded that direct emission was the major source for global PFOA and 
PFOS contamination.  

 
More recently, a global emission inventory showed that emissions of 
PFOA, PFNA, PFUnDA, and PFTrDA historically (1951 - 2002) came 
from direct sources, while the majority of the short-chain PFCAs (C4 – 
C7) were originated from degradation of precursor compounds. Between 
2003 and 2015, it was estimated that degradation of precursor com-
pounds and impurities in fluorotelomer-based products were the dominant 
emission sources for most PFCAs (Wang et al. 2014).  

 
Another possible indirect source that has been heavily debated is the po-
tential contribution from degradation of fluorotelomer polymers (Wash-
ington and Jenkins 2015). Their relatively long half-times observed in soil-
plant microcosm induce a delay in PFCA release, and bring a possible 
future dramatic increase of persistent PFAS (Rankin et al. 2014).  

1. 4. Degradation 
Precursor compounds not having fully fluorinated alkyl chains may have 
the ability to degrade, in both biotic and abiotic mechanisms, to persistent 
PFAS. Various pathways for different PFASs in different environmental 
compartments has been suggested. Biodegradation of PAPs has been 
demonstrated in rats, sludge, and soil (D'Eon and Mabury 2007, Lee et al. 
2010, Lee et al. 2014). It was shown that PAPs degraded to corresponding 
PFCAs, for example 8:2 diPAP degraded into PFOA. 

 
Biodegradation of n:2 diPAP starts with cleavage of the phosphate ester 
bond resulting in production of n:2 monoPAP and n:2 FTOH (Lee et al. 
2010) (fig. 3). Further cleavage of the phosphate ester bond of n:2 
monoPAP will result in n:2 FTOH. Subsequent degradation then follows 
the FTOH degradation pathway, which has been thoroughly studied in 
soil, sludge, and microbial culture (Dinglasan et al. 2004, Liu et al. 2010, 
Kim et al. 2014a). The n:2 FTOH is oxidized to a n:2 fluorotelomer alde-
hyde, which is further oxidized to n:2 fluorotelomer saturated carboxylic 
acid (FTCA). Then n:2 fluorotelomer unsaturated carboxylic acid 
(FTUCA) is formed through microbial defluorination. Degradation then 
follows two different pathways. Further defluorination of n:2 FTUCA 
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yield either n-1:2 sFTOH or n-1:3 FTUCA. The terminal product of n-1:2 
sFTOH will be Cn PFCA. In the other pathway, Cn-2 PFCA and Cn-1 PFCA 
will be the degradation product from n-1:3 FTUCA. There are differences 
in the FTOH degradation pathway depending on the chain length. Similar 
molar yield of PFHxA and PFPeA from 6:2 FTOH has been observed in 
activated sludge, while in degradation of 8:2 FTOH in soil, PFOA was the 
major degradation product with only a small fraction of PFHpA (Liu et al. 
2007, Wang et al. 2011). 

 
In mammals as rat and mice, and in fish, degradation pathways have simi-
larities with microbial degradation. The only difference is that 8:2 FTOH 
has shown to also produce PFNA through α-oxidation of 8:2 FTCA in 
rats, mice, and fish (Martin et al. 2005, Fasano et al. 2006, Butt et al. 
2010). Degradation of 8:2 FTOH to PFCAs has been suggested to occur in 
humans, with PFOA as major metabolite (Nilsson et al. 2013).  

 
Proposed biodegradation pathway of 6:2 FTSA involves desulfonation as 
an initial step (fig. 3), and a subsequent pathway much in similar with 
FTOH degradation pathway (Wang et al. 2011). In the degradation path-
way suggested by Wang et al., 1-hydroxy 6:2 FTS is formed after desul-
fonation of 6:2 FTS, followed by rapid conversion to 6:2 fluorotelomer 
aldehyde, bypassing the formation of 6:2 FTOH. 6:2 FTSA in activated 
sludge has shown to result in formation of PFPeA and PFHxA. The FTSAs 
can also be formed from degradation of 6:2 fluorotelomermercaptoalkyl-
amido sulfonate (FTSAS), an ingredient in AFFF, which has been demon-
strated in sludge biodegradation experiments (Weiner et al. 2013). The 
proposed pathway involves S-dealkylation of 6:2 FTSAS by P-450 to 6:2 
fluorotelomer thiol, which can be further oxidized to 6:2 FTSA. Alterna-
tively, oxygenation of 6:2 FTSAS yields 6:2 FTSAS sulfoxide, and subse-
quently cleavage of the C-S bond finally yields 6:2 FTOH, which can be 
further degraded into PFCAs. 

 
PFPiAs have shown to degrade to corresponding PFPAs, and PFPA/PFPiAs 
have also been suggested to be potential PFCA precursors (Lee et al. 
2012). However, in a study of PFPA/PFPiA biotransformation in rainbow 
trout, no PFCAs above LOD were found (Lee et al. 2012). 

 
In atmospheric degradation of n:2 FTOH, oxidation of n:2 FTOH leads to 
formation of n:2 FTAL, which will be further degraded to equal amounts 



ULRIKA ERIKSSON  Contribution of precursors to PFCAs in humans and environment   23 
  

of Cn PFCA and Cn+1 PFCA and to a lesser extent homologues other than 
Cn PFCA (Ellis et al. 2004). The proportional yield thus differs between 
biotic and atmospheric degradation, and it has been hypothesized that an 
odd-even pattern in remote places is a result of atmospheric degradation, 
followed by increased bioaccumulation with increasing chain length (Mar-
tin et al. 2004, Bossi et al. 2005). 
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Figure 3. Combined simplified biodegradation pathways for 6:2 diPAP, 6:2 
monoPAP, 6:2 FTSA, and 6:2 FTOH (Dinglasan et al. 2004, Lee et al. 2010, Liu 
et al. 2010, Wang et al. 2011, Kim et al. 2014a) 

1. 5. Exposure pathways and sources 
PFASs are spread in the environment through point sources and diffuse 
sources. Point sources are production facilities, industrial facilities that 
utilize PFASs in their production, domestic waste water treatment plants 
(WWTPs), landfills, military sites, airports, and firefighting practicing 
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grounds. Recently, the magnitude of PFAS pollution from such point 
sources was highlighted in a comprehensive study from the US, where 
harmful levels of PFOA in drinking water were associated with emissions 
from industrial sites, military firefighting training areas, airports, and 
WWTPs, affecting 6 million people (Hu et al. 2016).  

A number of studies have reported high levels of PFASs in fish, water, 
waste water, soil, and sediment in surroundings of manufacturing and 
production sites (Wang et al. 2010, Bao et al. 2011, Oliaei et al. 2013). 
For example, groundwater levels of up to 82 µg/L PFOA and 31 µg/L 
PFOS has been found at a production site in the US (Oliaei et al. 2013), 
and PFOA levels of up to 48 ng/g and 668 ng/L has been found in river 
sediment and water close to a fluorochemical plant in China (Bao et al. 
2011). 

 
Fire fighting practicing areas are a significant point source, when PFAS-
containing AFFF is used as extinguishing. The use of AFFF at fire fighting 
practicing areas has led to severe contamination of soil and groundwater 
worldwide (Gewurtz et al. 2014, Houtz et al. 2016). Elevated levels of 
PFOS, 6:2 FTSA, PFPeA, and PFHxA in waste water have been linked to 
AFFF sources connected to the WWTPs (Houtz et al. 2016). Studies of 
former fire fighting practicing areas have revealed that PFASs continue to 
be released to the surroundings for a long time, even decades (Ahrens et al. 
2015, Arias et al. 2015, Filipovic et al. 2015)  

 
Waste water treatment plants are a source for PFASs to water, sludge, and 
the atmosphere. Increased levels of PFASs in the effluent compared to the 
influent have been attributed to degradation from precursor compounds, 
such as PAPs, FTSAs, FTOHs, FOSAs, and FOSEs (Schultz et al. 2006). In 
the WWTPs, PFASs will be distributed to different environmental com-
partments depending on their physico-chemical properties. The more wa-
ter-soluble short-chain PFASs will be distributed mainly to the water 
phase, while long-chain PFASs are more prone to sorb to the sludge. Vola-
tile PFASs are emitted to the atmosphere, and FTOHs has been recognized 
as the dominant PFAS class released to the atmosphere from waste water 
treatment facilities (Ahrens et al. 2011a). However, a recent study report-
ed similar atmospheric emission of PFCA/PFSAs as for FTOHs (Yao et al. 
2016). Most WWTPs are not designed for efficient removal of PFASs. 
Adsorption to activated carbon, nanofiltration membranes, and advanced 
oxidation processes have shown to be effective for removal of PFOS and 
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PFOA (Arvaniti and Stasinakis 2015). Other examples of processes that 
have been evaluated are reverse osmosis and reduction processes. Howev-
er, short-chain PFASs are not effectively captured by these techniques. 
While the aquatic environment is affected by the release of waste water, 
sludge will end up in landfills or is used as bio-solids. Application of 
sludge in agriculture contributes to further spread of PFASs through plant 
uptake (Yoo et al. 2011, Lee et al. 2014). Upon disposal of PFASs in land-
fills, there is a risk of leaching to the environment through migration in 
soil, reaching the groundwater, and emissions to the atmosphere (Ahrens 
et al. 2011a).  

 
Except from point source emissions, humans and environment are subject-
ed to diffuse exposure, which are usually related to as inputs from mainly 
dry- and wet deposition, oceanic currents, but also urban runoff from 
streets (Ahrens 2011).  

The contribution from urban runoff is less studied compared to the release 
from WWTPs, but emissions have been estimated to contribute equally as 
WWTPs to PFAS mass load in urban rivers (Zushi and Masunaga 2009). 

 
Currently, there are two hypotheses regarding the transport of PFASs; 
oceanic transport and atmospheric transport. Oceanic transport is a slow 
process, where it can take years for pollutants to be transported to remote 
regions (Armitage et al. 2006). Volatile precursors such as FTOHs and 
FASAs, can be atmospheric transported long distances and have an at-
mospheric lifetime of several weeks before degradation (Ellis et al. 2003, 
Martin et al. 2006). The relative importance between oceanic and atmos-
pheric transportati of PFAS to remote areas has been estimated, and PFOA 
and PFNA have been suggested to be predominantly oceanic transported, 
while atmospheric transport and precursor degradation were found to be 
of more significance for PFDA, PFUnDA, PFDoDA and PFTrDA 
(Armitage et al. 2009). In a global survey of soil from areas with no evi-
dent human impact, the homologue pattern of PFASs indicated significant 
contribution from atmospheric degradation of precursors, based on the 
ratio of PFOA/PFNA, supporting the hypothesis that atmospheric 
transport is the dominant pathway for the rural and terrestrial environ-
ment (Rankin et al. 2016).  

 
Atmospheric transported PFASs have been found to be a significant source 
for contamination in the aquatic environment, with similar or higher con-



ULRIKA ERIKSSON  Contribution of precursors to PFCAs in humans and environment   27 
  

tribution compared to emissions from waste water (Muller et al. 2011, 
Kim et al. 2014b). The relative importance of diffuse emissions compared 
to WWTPs have shown to be related to population density, even at sites 
with no known PFAS industry activity, and diffuse emissions became more 
important in less densely populated areas. 

 
In wild-life, animals are subject to PFAS exposure from food and water 
through point-source emissions, and long-range atmospheric and oceanic 
transport. Higher levels of PFAS in the terrestrial environment compared 
to agrarian and close to conurbation environments have been observed in 
roe deer, suggestions diffuse atmospheric sources to be the dominant ex-
posure pathway for terrestrial mammals (Falk et al. 2012).  

 
Food, drinking water, and indoor environment have been identified as the 
major exposure pathways to PFASs for the general population (Vestergren 
and Cousins 2009, Domingo 2012). Of these sources, food has been re-
garded to be the major contributor, especially fish, seafood and meat 
(D'Hollander et al. 2010, Domingo 2012, EFSA 2012). As mentioned 
previously, food items such as vegetables can be contaminated by PFASs 
through soil and water during growth. Plants have shown to take up 
PFASs from soil in greenhouse and field experiments, especially short-
chain PFASs (Lee et al. 2014). Animals used for food production take up 
PFASs through ingestion of contaminated food and water, and many 
PFASs bioaccumulate along the food chain. Contamination can also occur 
through migration from food packaging material (Begley et al. 2005).  

 
Drinking water is another important exposure pathway. Elevated PFAS 
concentrations in humans have been linked to contaminated point sources 
such as firefighting practicing grounds, but there are also reports suggest-
ing that even low water PFAS concentrations could implicate a risk to 
human health (Post et al. 2012, Weiss et al. 2012, Hu et al. 2016).  

 
Indoor environment has been recognized to be a significant route of expo-
sure (Bjorklund et al. 2009). Route of exposure is mainly through dust for 
ionic PFASs and through air for neutral, volatile PFASs. The uptake from 
dust is believed to occur mainly through ingestion, and the dermal uptake 
is only a small fraction of the total dust intake (Lorber and Egeghy 2011).  
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Although exposure assessments suggested rather strong positive correla-
tion between PFOS levels in serum and diet, the association between 
PFOA in serum and food intake was found to be weaker, implying other 
important exposure pathways for PFOA (Fromme et al. 2007, De Felip et 
al. 2015). Exposure assessments of relative contribution from different 
pathways to the total exposure have found that food is of more im-
portance for PFOS compared to PFOA (Gebbink et al. 2015a). Other 
pathways such as air and dust were of more significance for PFCAs than 
for PFOS, for example the contribution from precursor compounds in dust 
was the dominant pathway for PFOA and PFNA in a high exposure sce-
nario.  

 
Exposure and elimination pathways differ among men, women, and chil-
dren. During pregnancy, PFASs are transferred through the placenta to the 
fetus, which is a sink for the mother but a source for the fetus (Manzano-
Salgado et al. 2015). After giving birth, PFASs continues to be transferred 
through lactation (Karrman et al. 2007). Women eliminate PFASs through 
menstruation (Wong et al. 2014). Children spend more time on the floor 
and are therefore more exposed to dust. Therefore, when conducting ex-
posure assessment, it is important to consider all these factors. 

1. 6. Toxicity 
PFCAs and PFSAs are extremely persistent and are well absorbed in the 
gastrointestinal tract after ingestion and are distributed mainly to the se-
rum, liver and kidney, where they bind to serum albumin and fatty acid 
proteins. Persistent PFASs are not metabolized, they are excreted mainly 
through urine and to a lesser extent in feces. The adverse effects of PFASs 
include immunotoxicity, developmental toxicity, neurotoxicity, hepatotox-
icity, tumor induction, weight loss, and endocrine disruption (DeWitt 
2015).  

 
Epidemiological studies have linked some PFASs to kidney and testicular 
cancer (Barry et al. 2013), low birth weight (Darrow et al. 2013), immune 
dysfunction (Grandjean et al. 2016a), thyroid disease (Melzer et al. 2010), 
reduced fertility for women (Fei et al. 2009), early menopause (Taylor et 
al. 2014), and increased cholesterol levels (Nelson et al. 2010). 
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The toxicity varies among PFASs depending on their structure, such as 
degree of fluorination, chain length, and active head group. Most toxico-
logical studies have focused on PFOS and PFOA.  

 
The risk of precursor compounds though are not only their potential to 
degrade into persistent and documented toxic PFASs, but also the harmful 
effects the precursor themselves may cause, and additionally the potential 
harmful effects from intermediates formed during degradation. Limited 
data on toxicity are available for precursor compounds. One study has 
shown endocrine disruption potential for PAPs in terms of inhibited male 
sex hormone synthesis (Rosenmai et al. 2013). In a H295R steroidogenesis 
assay, 8:2 monoPAP and 8:2 diPAP decreased levels of testosterone, dehy-
droepiandrosterone, androstenedione, and increased levels of estrone. 
Additionally, aromatase mRNA expression increased with 8:2 monoPAP 
and 8:2 diPAP, which could be a contribution factor to increased estrogen 
and decreased androgen levels. 

 
PFPAs have shown to induce changes in apolipoprotein A-IV, related to 
the fatty acid metabolism, with greater effect than those of PFOS and 
PFOA in rat hepatoma cells (Jones et al. 2010). PFDPA was the most po-
tent of three PFPAs tested. 

 
The potential toxicity of intermediates and metabolites formed during 
degradation of precursor compounds have shown to have a reversed rela-
tionship with chain length, compared to PFCAs and PFSAs. While in gen-
eral toxicity increase with chain length, FTALs and FTUALs have been 
reported to have enhanced toxicity for homologues with shorter chain 
length, where 6:2 FTAL was more toxic for human liver cells than 8:2 
FTAL, and 6:2 FTUAL was more toxic than 8:2 FTUAL (Rand et al. 
2014).  

1. 7. Temporal trends in humans 
The use of temporal and spatial monitoring of PFASs in humans and envi-
ronment are an important tool to elucidate the effects of regulations and 
changes in production and consumption. After the early report of PFOS in 
general population, increased attention and concern led to several biomon-
itoring studies of PFASs (Hansen et al. 2001). Retrospective studies have 
shown that PFAS levels increased globally in humans since the 1970-80s 
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until year 2000 (Haug et al. 2009, Sundstrom et al. 2011, Schroter-
Kermani et al. 2013, Yeung et al. 2013b, Yeung et al. 2013c).  

 
After year 2000 the trends differ among homologues, and spatial varia-
tions can be observed for most PFAS homologues. For PFOS, the levels 
started to decrease around 2000 in North America, Norway, Sweden, and 
Australia, which could be linked to the phase-out by the 3M Company 
(Calafat et al. 2007, Olsen et al. 2008, Haug et al. 2009, Glynn et al. 
2012). For instance, the PFOS median level in serum decreased from 30 
ng/g to 21 ng/g between 1999/2000 and 2003/2004 in the US (Calafat et 
al. 2007). In contrast, no change in PFOS levels have been observed in 
Korea between 1994 and 2008 (Harada et al. 2010). PFOS precursors 
have been observed in human serum and generally seem to follow the 
same declining trend as PFOS (Yeung et al. 2013c, Gebbink et al. 2015b).  

 
The levels of PFOA have decreased globally since 2000 at a slower rate 
than PFOS, whereas an increase has been observed for long-chain (C9 – 
C11) PFCAs (Calafat et al. 2007, Olsen et al. 2008, Kato et al. 2011, Nost 
et al. 2014, De Felip et al. 2015). The trend may be attributed to the in-
creased production of fluorotelomer compounds and contribution from 
fluorotelomer-based precursors. A shift in trends have been noted around 
2006. Some studies reported a peak in PFNA concentrations at this time 
point, and also the increasing trends of PFDA and PFUnDA seem to slow 
down (Nost et al. 2014, Toms et al. 2014). This could be related to the 
initiation of the Stewardship program. 

The PFSA and PFCA profile in human serum around year 2000 was 
generally dominated by PFOS, followed by PFOA>PFHxS>PFNA (Nost et 
al. 2014, Toms et al. 2014, Gribble et al. 2015). This profile has gradually 
altered, and long-chain PFCAs (>C8) are becoming relatively more im-
portant.  

 
Analysis of total fluorine (TF) and extractable organic fluorine (EOF) has 
revealed that a large proportion of PFAS in human serum cannot be ex-
plained by the PFAS compounds generally included in biomonitoring stud-
ies (Yeung et al. 2008). A proportion of only 30 – 70% of TF could be 
explained by PFCAs, PFSAs, and PFOSA in Chinese serum samples from 
2004. Precursor compounds could be part of the unknown PFASs. In 2009 
diPAPs were detected for the first time in human serum samples from the 
US (D'eon et al. 2009). More recently, human serum from Germany, Chi-
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na, and Sweden have been analyzed for diPAPs (Yeung et al. 2013b, 
Gebbink et al. 2015b, Yeung and Mabury 2016). While diPAPs were de-
tected in European samples, no diPAPs were found in the Chinese samples, 
which indicates geographical differences in PFAS exposure patterns. In 
German samples, temporal trends between 1982 and 2009 were assessed, 
revealing increasing levels of long-chain PFCAs and decreasing trend for 
PFOA in recent years (2000 – 2009), and no change in concentration for 
diPAPs. Another emergent PFAS class, PFPiA, was detected in 2011 in 
human serum (Lee and Mabury 2011).  

 
The FTSAs were detected for the first time in human serum in 2002, and 
have later been detected in serum from US, Germany, and China (Connol-
ly et al. 2002, Lee and Mabury 2011, Yeung and Mabury 2016). 

 
In general, low PFCA precursor levels in human serum have been report-
ed. That does not rule out the possibility that precursors are of signifi-
cance for human exposure, since they may have been readily biodegraded 
to corresponding PFCAs.  

1. 8. Temporal trend in the environment 
Concerns about the impact of PFASs to the environment arose in 2001, 
when global PFOS contamination in wild-life was reported for the first 
time (Giesy and Kannan 2001). Environmental contamination can be 
tracked backed to the 1950s. Analysis of sediment cores from Canada has 
shown that PFOS can be observed with beginning in 1952, whereas FOSA 
and long-chain PFCAs (C8 – C10) appear first in 1970s. PFAS concentra-
tions continues to increase during the whole study period until 2005 
(Yeung et al. 2013b). The patterns observed in the sediment cores are in 
temporal agreement with appearance of new compounds entering the 
PFAS market and industry, but are not reflecting the turning point for 
ceased production of PFOS by the 3M Company.  

 
In wildlife, a number of species of fish, birds, and mammals have been 
studied, especially in the aquatic environment and in the northern hemi-
sphere. Various PFAS trends have been reported, but a common trend is a 
significant increase of PFOS since 1970s up to around 2000 (Paul et al. 
2009). In the marine environment, increasing trends in polar bears, guil-
lemots, and pilot whales were reported (Smithwick et al. 2006, 
Holmstrom et al. 2010, Rotander et al. 2012). Geographical variations 
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where also observed within the same specie; as for herring gull where lev-
els increased in the Baltic Sea but not in the North Sea (Rudel et al. 2011); 
and for ringed seals where levels increased between 1994 and 2003 in East 
Greenland, but not in West Greenland (Bossi et al. 2005). In the terrestrial 
environment, increasing trend has been less apparent compared to the 
marine environment; for instance in roe deer where levels slightly in-
creased between 1989 and 2001 (Falk et al. 2012). 

 
After the 3M Company’s phase-out, there are various trends of PFOS in 
the environment. For some species and locations, PFOS has been reported 
to decrease after 2000, as in in roe deer (Falk et al. 2012), and sea otter 
(Hart 2009 temporal trends). A peak around 2000 has been observed for 
ringed seals and polar bears (Riget et al. 2013). In other cases, little 
change in PFOS levels are observed, for example in seals, dolphins, and 
whales, and in golden eagles from the terrestrial environment (Rotander et 
al. 2012, Herzke et al. 2014). Increasing levels has also been reported, for 
example in otters from Sweden the PFOS levels continuously increased 
from 1972 to 2011 (Roos et al. 2013).  

 
The trends of PFCAs are more complicated than that of PFOS. Levels 
increased between 2000 and 2006 – 2008; after that levels of PFOA and 
PFNA declined, while other long-chain PFCA levels either stabilized or 
increased. Increased levels of long-chain PFCAs since 2000 have been ob-
served in the marine environment, for example in seals, polar bears, har-
bor porpoise, and whales (Routti et al. 2011, Huber et al. 2012, Rotander 
et al. 2012, Riget et al. 2013). In the terrestrial environment, increasing 
levels of long-chain PFCAs are also observed, as for tawny owl from 
Norway and otters from Sweden (Ahrens et al. 2011b, Roos et al. 2013). 
On the other hand, no apparent trend was observed for PFNA and PFDA 
in European roe deer after 2001 (Falk et al. 2012).  

 
Only a few studies have reported PFCA precursors in wildlife, therefore 
temporal trends for these compound classes are lacking. However, PAPs 
and FTSAs have been found globally in the environment. In the last dec-
ade, PAPs have been observed in lake trout from Canada sampled in 2009 
(Guo et al. 2012), in mussels from Spain in 2009, in benthic worms from 
HongKong in 2011 (Loi et al. 2013), in zooplankton from Baltic Sea 
(Gebbink et al. 2016a), and in tuna from Indian Ocean in 2013 (Zabaleta 
et al. 2015). On the other hand, PAPs were not detected in fish from Baltic 
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Sea. The 6:2 FTSA has been found in ice amphipod sampled in 2004 
(Haukas et al. 2007), in benthic worms from HongKong in 2011 (Loi et 
al. 2013), and in fish from a contaminated area in Norway in 2011 
(Karrman et al. 2011).  

 
Global measurements of FTOHs in the atmosphere between 2006 and 
2011 have shown increasing levels of 6:2 FTOH (Gawor et al. 2014). 
While 10:2 FTOH decreased during these studied periods, 8:2 FTOH ini-
tially declined but returned to initial level in 2011. Levels of MeFOSA and 
MeFOSE decreased between 2006 and 2011. 

 
Besides detection of PFCA precursors, product change towards short-chain 
PFASs is also reflected by recent reports on PFBS and PFBS precursors in 
the environment. Levels of PFBS in cetacean have increased in the South 
China Sea between 2002 and 2014 (Lam et al. 2016). PFBS has been 
found in mammals in Greenland (Gebbink et al. 2016b). Fish from Cana-
da and Europe has been found to have levels of perfluorobutane sulfona-
mide (FBSA) at up to 80 ng/g (Chu et al. 2016). In addition, methyl per-
fluorobutane sulfonamidoethanol (MeFBSE) and methyl perfluorobutane 
sulfonamide (MeFBSA) have been detected in the atmosphere over the 
North China Sea, at comparable levels as PFOS precursors (Lai et al. 
2016).  

 
To summarize, a scarce number of studies reports about emerging PFASs, 
including precursors, and observations made so far witness of global oc-
currence and distribution in various types of environmental compart-
ments.  
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2. Aim and objectives 
The aim of the thesis was to assess if polyfluoroalkyl precursor com-
pounds are a significant contributor to PFCA exposure, both environmen-
tal and human exposure. Such exposure data of other compounds besides 
persistent perfluoroalkyl substances is an important basis for risk assess-
ments and not least for regulatory and policy work aiming at reducing 
hazardous chemicals in the society. The hypothesis of the work was that 
current monitoring and regulatory efforts are insufficient to protect hu-
mans and the environment from PFASs. By a cross-section analysis of the 
biosphere and technosphere the contribution of precursor compounds in 
relation to persistent PFASs in humans and the environment can be as-
sessed. The specific objectives were: 

 

• Assess human levels of semi-persistent precursor compounds in re-
lation to persistent PFAS by analysis of sera 

• Assess human exposure of semi-persistent precursor compounds in 
relation to persistent PFAS from indoor environment by analysis of 
household dust 

• Assess the release of semi-persistent precursor compounds in rela-
tion to persistent PFAS from households to the environment by 
analysis of waste water and sewage sludge 

• Assess the environmental exposure of semi-persistent precursor 
compounds in relation to persistent PFAS by analysis of wild bird 
eggs 
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3. Methods 
The methods used are based on analysis protocols previously described 
with modifications to suit a broader range of substances (Powley et al. 
2005, Taniyasu et al. 2008). The sampling and handling of the different 
sample matrices and detailed analytical procedures are given in Papers I-
IV. Presented here is a schematic overview of the analytical methods used 
(Table 1) together with brief method descriptions. 

 
Table 1. Method description of sample amount, pretreatment, extraction, clean-up, LC 
column, solvent extract composition. 
 
 Dust Eggs Serum Water Sludge 

Sample 
amount 

0.1 g 0.25 g 1 mL 500 mL 0.25 g 

Pre-
treatment 

NaOH   Filtration  

Extraction MeOH Acetonitrile Acetonitrile Oasis SPE-
WAX 

NaOH  in 
Methanol 

Clean-up Oasis SPE-
HLB 
Oasis SPE-
WAX 
ENVI-Carb 

ENVI-Carb   Oasis SPE-
WAX 

Extract 
composition 
PFCAs, 
PFSAs, 
FTSAs 

40%  
methanol 

40%  
acetonitrile 

40%  
acetonitrile 

40%  
methanol 

40%  
methanol 

FTCAs, 
FTUCAs,  

40%  
methanol 

40%  
acetonitrile 

- 40%  
methanol 

40%  
methanol 

FOSAs, 
FOSEs 

40%  
methanol 

40%  
acetonitrile 

- 80%  
methanol 

80%  
methanol 

PFPAs, 
PFPiAs 

- - - 40%  
methanol 

40%  
methanol 

diPAPs 80%  
methanol 

80%  
acetonitrile 

80%  
acetonitrile 

80%  
methanol 

80%  
methanol 

monoPAPs 100%  
methanol 

- - 80%  
methanol 

80%  
methanol 

triPAPs 80% methanol - - - - 
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3. 1. Extraction 

3. 1. 1. Dust 
Dust was sieved before extraction using 150 µm mesh size and 0.1 g was 
used in the analysis. The samples were spiked with isotopic labelled stand-
ard, followed by addition of 100 µL 0.2 M sodium hydroxide that were 
left soaking for 30 min; after which extraction with 5 mL of methanol was 
performed followed by neutralization with an addition of 20 µL 1 M hy-
drochloric acid. The extracts were ultrasonicated for 15 min and shaken 
for 30 min. The extraction, sonication and centrifugation steps were re-
peated once using 2 mL methanol. Clean-up was performed with solid 
phase extraction (SPE) using Oasis WAX cartridges (Waters, 150 mg, 6 
mL, 30 µm) and Oasis HLB cartridges (Waters, 6 m3, 200 mg, 30 µm) 
coupled in tandem during the whole extraction procedure. Prior to SPE, 
the sample extracts were adjusted to a 20% methanol content by addition 
of Milli-Q water. Conditioning of the sorbents were performed with 4 mL 
of methanol followed by 4 mL of water. The samples were loaded on the 
SPE cartridges and which were subsequently washed with 4 mL of 25 mM 
ammonium acetate buffer solution (pH 4) and 4 mL 20% methanol in 
water, all discarded. The analytes were eluted with 4 mL of methanol 
followed by 4 mL of 2% ammonium hydroxide in methanol, combining 
neutral and anionic analytes. Further clean-up was performed with the 
additions of 50 mg of ENVI-carb and 100 µL glacial acetic acid. The ex-
tracts were evaporated under nitrogen to a volume of 200 µL, then filtered 
through 0.2 µm hydrophilic propylene filters, and split into three fractions 
for further analysis. The fraction´s methanol content was adjusted to 40%, 
80%, and 100% with 2mM ammonium acetate (aq), respectively in which 
the different PFAS classes were analyzed according to Table 1. 

3. 1. 2. Bird eggs 
In the extraction of bird eggs, 0.25 g sample was spiked with isotopic 
labelled standards, and then extracted with 4 mL of acetonitrile with ul-
trasonication for 15 min, shaking for 15 min, and centrifugation. The 
supernatant was collected and the extraction step was repeated with 4 mL 
of acetonitrile. The combined supernatants were mixed with 50 mg ENVI-
carb and 100 µl glacial acetic acid. The extracts were then evaporated 
under nitrogen and filtered using 0.2 µm hydrophilic propylene filters. 
Evaporation to a final volume of 200 µL was performed, and the final 
extract was split into one fraction with a final composition of 20% 2mM 
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ammonium acetate (aq) and 80% acetonitrile for analysis of diPAPs, and 
one fraction with a final composition of 60% 2mM ammonium acetate 
(aq) and 40% acetonitrile for analysis of PFCAs, PFSAs, FTCAs, FTUCAs, 
FOSAs, FOSEs, and FTSA.  

3. 1. 3. Serum 
Serum extraction was performed using 1.0 mL serum which was spiked 
with isotopic labelled standards. An amount of 4 mL acetonitrile was add-
ed and the samples were vortexed, ultrasonicated for 15 min, and shaken 
for 15 min. The extraction step was repeated with 4 mL of acetonitrile, 
and the supernatant aliquots were combined. The extracts were filtered 
(0.2 µm hydrophilic propylene filters) and evaporated under nitrogen to a 
final volume of 50 µL. The extracts were split into two fractions; one with 
a final composition of 20% 2mM ammonium acetate (aq) and 80% ace-
tonitrile for analysis of monoPAPs and diPAPs, and one fraction with a 
final composition of 60% 2mM ammonium acetate (aq) and 40% acetoni-
trile for analysis of PFCAs, PFSAs, and FTSAs.      

3. 1. 4. Water 
The water samples (0.5L) were first filtered using GF/B glass fiber filters (1 
µm mesh), and then extracted using SPE after addition of isotopic labelled 
standards. The sorbent used was Oasis WAX cartridges (Waters, 150 mg, 
6 mL, 30 µm). Before extraction, the sorbents were conditioned with 4 mL 
of methanol followed by 4 mL of water. The samples were passed through 
the cartridges at an approximate rate of one drop per second. After that, 
the sorbents were washed with 4 mL of ammonium acetate buffer solution 
(pH 4). Finally the analytes were eluated using 4 mL of methanol and 
collected, followed by 0.1% ammonium solution in methanol and collect-
ed separately. The extracts were evaporated to a final volume of 200 µL, 
filtered (0.2 µm hydrophilic propylene filters), and the anionic fraction 
was split into one fraction with a final composition of 20% water and 
80% methanol for analysis of monoPAPs and diPAPs, and one fraction 
with a final composition of 60% water and 40% methanol for analysis of 
PFCAs, PFSAs, FTCAs, FTUCAs, FTSAs, PFPAs, and PFPiAs. The neutral 
fraction was adjusted to a final composition of 20% 2mM ammonium 
acetate (aq) and 80% methanol used for analysis of FOSAs and FOSEs. 
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3. 1. 5. Sludge 
The sludge samples were freeze-dried and an amount of 0.25 g dried mate-
rial was spiked with isotopic labelled standards. Before extraction, 2 mL 1 
M sodium hydroxide in methanol was added to the sample. The samples 
were ultrasonicated for 15 min, shaken for 15 min, and centrifuged. The 
extraction was repeated twice with 2 mL of methanol, and the aliquots 
were combined. Clean-up was performed with Oasis WAX cartridges 
(Waters, 150 mg, 6 mL, 30 µm). The sorbents were conditioned with 4 
mL methanol followed by 4 mL Milli-Q water, all discarded, and the ex-
tracts were thereafter loaded on the sorbents. The sorbents were then 
washed with 4 mL sodium acetate buffer solution (pH 4), followed by 4 
mL of 20% methanol. The neutral analytes were eluted with 4 mL of 
methanol and collected, followed by elution of anionic analytes with 4 mL 
2% ammonium hydroxide in methanol, collected separately. The extracts 
were filtered (0.2 µm hydrophilic propylene filters) and evaporated under 
nitrogen to a final volume of 200 µL. The anionic fraction was split into 
two fractions; one with a final composition of 20% 2mM ammonium 
acetate (aq) and 80% methanol for analysis of monoPAPs and diPAPs, 
and one fraction with a final composition of 60% 2mM ammonium ace-
tate (aq) and 40% methanol for analysis of PFCAs, PFSAs, FTCAs, 
FTUCAs, FTSAs, PFPAs, and PFPiAs. The neutral fraction was adjusted to 
a final composition of 20% 2mM ammonium acetate (aq) and 80% meth-
anol used for analysis of FOSAs and FOSEs. 

3. 2. Instrumental analysis and quantification 
An Acquity UPLC system coupled to a XEVO TQ-S (Waters Corporation, 
Milford, USA) mass spectrometer was used. A guard column (PFC isola-
tor, Waters Corporation, Milford, USA) was inserted after the solvent 
mixer and before the injector to prevent contamination from the system. 
This guard column successfully retained all analyzed PFASs thus led to a 
contamination free instrumental analysis. The column used was 100 mm 
Acquity BEH C18  (2.1 mm, 1.7 µm) except for monoPAP analysis of dust 
(Paper I) for which a 50 mm column was used. Mobile phases used for 
diPAPs and triPAPs analysis were water and methanol with addition of 2 
mM ammonium acetate and 5 mM 1-methylpiperidine. MonoPAPs were 
analysed using water and methanol with addition of 5 mM 1-
methylpiperidine for dust in Paper I, and water and methanol with addi-
tion of 2 mM ammonium acetate and 5 mM 1-methylpiperidine for sludge 
in Paper III. For PFCAs, PFSAs, FTCAs, FTUCAs, FOSAs, FOSEs, PFPAs, 
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and PFPiAs, water and methanol with addition of 2 mM ammonium ace-
tate were used. For each analyte, cone voltage and collision energy were 
optimized for molecular ion and product ions. 

 
For analysis of the congeners of diPAPs and triPAPs, several transitions 
were monitored. Since triPAPs were also difficult to ionize in negative 
electrospray, insource fragmentation was therefore selected for analysis of 
triPAPs, and transitions for corresponding diPAPs were used for quantifi-
cation. The transition corresponding to the loss of both alkyl chains was 
used for quantification and the transitions corresponding to the loss of one 
alkyl chain were used for qualification. Complete separation of the [M-H]- 
-> [PO4H2-] transition was not achieved for all isomers, for example the 
peaks of 10:2 diPAP and 8:2/12:2 diPAP overlapped at more than 50% of 
peak height (fig. 4). Under these circumstances, it could be argued that the 
transition corresponding to the loss of one alkyl chains would be most 
suitable for quantification because this transition is unique for each iso-
mer. However, since the loss of one alkyl chain may result in two product 
ions for x:2/y:2 homologues, the response for each product ion is compa-
rable less than the fragment yielded from a x:2/x:2 homologue. Using only 
one of these product ions for quantification would lead to an underestima-
tion in concentrations. The sum of the two product ions yielded from loss 
of one alkyl chain for x:2/y:2 were therefore used as qualification, and the 
transition corresponding to loss of two alkyl chains were used for quanti-
fication. This approach was later validated with the 6:2/8:2 diPAP stand-
ard when it became commercially available. Homologues with x:2/x+2:2 
structures were quantified against their closest homologue where authentic 
standard was available, for instance 8:2/10:2 diPAP was quantified against 
8:2 diPAP. For analysis of other PFASs, at least two transitions were mon-
itored except for PFBA, PFPeA, PFHxPA, PFOPA, and PFDPA, where one 
transition was monitored. 
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Figure 4. Chromatogram of 10:2 diPAP and its isomers 8:2/12:2 diPAP and 
6:2/14:2 diPAP in a dust sample. 

Isotopic labelled standards were used and will compensate for matrix ef-
fects and losses during extraction. However, labelled standards were not 
available for all PFASs, therefore matrix effects needs to be taken into 
consideration when quantifying PFASs using external standards in solvent. 
Calibration curves within a range of at least five points were run along 
with the samples. Criteria for limit of detection was a peak of at least 3:1 
signal to noise, a concentration within the range of the calibration curve, 
and a concentration at least three times the blank concentration, or a 
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mean concentration of the blank levels with an addition of three times the 
standard deviations. The efficiency of extraction and clean-up were evalu-
ated by comparing matrix effects, process efficiency, matrix recovery, 
precision, and accuracy. Matrix effects were assessed by the ratio of the 
area in a sample matrix, spiked with standards after extraction, against 
the area of standards in pure solvent. Matrix recovery were assessed by 
the ratio of a spiked sample matrix before extraction against a spiked 
sample matrix after extraction. Process efficiency were assessed by the 
ratio of a spiked sample matrix before extraction against standards in pure 
solvent, thus including matrix effects in the recovery. Accuracy were eval-
uated by the relative standard deviation of internal standard corrected 
concentration in spiked sample matrix, and precision as the deviation 
from the spiked amount.   

3. 2. 1. Daily intake 
The daily intake of PFAS was calculated from the serum levels in Paper II 
in a first-order pharmacokinetic (PK) model, using the formula below: 

 
VD * (dCs/dt) = Dt – k * VD * Cs     

 
VD is volume of distribution (mL/kg b.w.), Cs is the serum concentration 
(ng/ml), Dt is the total dose (ng/day/kg b.w.), k is the elimation rate con-
stant (k=ln(2)/t ½). The volume of distribution used was 170 mL/kg b.w. 
and the value was derived from the study of Thompson et al., which was 
calibrated from human serum and exposure data (Thompson et al. 2010). 
Half-time for PFOA used was 2.3 years and was derived from the study of 
Bartell (2010).  
At steady state, dCs/dt = 0. The formula can then be resolved as: 

 
Dt = k * VD * Cs   

 
However, during an increase or decrease in concentration, there will be a 
non-steady state. The calculated dose from the formula above does not 
account for changes in exposure. In the serum samples, the contribution 
from the ongoing exposure is revealed by the discrepancy between the 
intrinsic half-time and the apparent halving-time. The apparent change 
over time is described as: 

 
dCs/dt = -ka * Cs 
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where ka is the apparent elimination rate constant, and the dose is set to 
0. The changes in concentration over time using the apparent halving-time 
can be calculated as follows: 

 
Dt = VD * Cs * (ki - ka) 

 
This equation is then used to calculate the total dose. 

3. 2. 2. Blank contamination 
Contamination of PAPs and PFCAs were detected in the procedural blanks 
during method development. The laboratory environment can have several 
potential sources for contamination where diPAPs have been detected in a 
variety of common laboratory consumables, such as transfer pipets, pipet 
tips, and their containing boxes (Yeung et al. 2013b). Rinsing all lab ware 
including disposable glass pipettes with methanol, and sonication of pro-
pylene filters in 2% NH4OH in methanol eliminated the diPAPs contami-
nation, while the monoPAPs and the PFCAs weren’t completely removed 
and were occasionally observed in the blanks.   
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4. Results and discussion 

4. 1. Method development 
Simultaneous extraction and analysis of different classes of PFASs is a key 
issue with the increasing number of PFASs that needs to be monitored and 
analyzed. Measuring a broader range of PFASs in various sample matrices 
is challenging, since different compound classes have different properties 
such as ionic strength and polarity, and the matrices differ in composition. 
To avoid ion signal effects, interferences in the matrix need to be removed 
during extraction and clean-up steps. Concurrently, the extraction must be 
efficient enough for quantitative analysis with minimal loss of the ana-
lytes. 

4. 1. 1. Extraction and clean-up 
Different solvents and solvent compositions were evaluated for the extrac-
tion of dust. Initially, methanol and acetonitrile were evaluated with satis-
factory recoveries for PFCAs and PFSAs. The process efficiencies were 
208% for 6:2 diPAP and 99% for 8:2 diPAP with methanol, while only 
13% for 6:2 diPAP and 1.8% for 8:2 diPAP were obtained using acetoni-
trile. Methanol showed, however, poor recoveries for the monoPAPs. Sol-
vent mixtures have shown to provide more efficient extraction of PFASs 
(Ballesteros-Gomez et al. 2010). Solubility of a solvent is described by its 
Hildebrand solubility parameters, which is an overall measure of disper-
sion (δd), dipole-dipole (δp), and hydrogen bonding (δh) components. A 
combination of solvents with different solubility parameters allows for a 
wider range of polar interactions. Methanol, acetonitrile, and isopropanol 
were chosen due to their different forces of dipole-dipole and hydrogen 
bonding interactions. Methanol and acetonitrile have δh of 22.3 MPa1/2 
and 6.1 MPa1/2, respectively. Acetonitrile and isopropanol have δp of 6.1 
and 18.0 MPa1/2, respectively. Two solvent mixtures of metha-
nol:acetonitrile 1:1 and acetonitrile:isopropanol 1:1 were evaluated. No 
improvement in monoPAP recoveries using these solvent mixtures were 
found. It was hypothesized that the monoPAPs bound strongly to particles 
in the dust, and pretreatment step with 100 µl 0.2 M NaOH in methanol 
was added to loosen these bond. Additional clean-up step using solid-
phase extraction was also added in an attempt to reduce observed sup-
pression by the matrix. Several solid-phase extraction (SPE) sorbents were 
evaluated for the aim of simultaneously clean-up of a wider range of 
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PFASs. Initially, a weak anion exchange (WAX, Waters Corporation, Mil-
ford US) sorbent was tested in the extraction and clean-up procedure. 
Satisfactory recoveries were obtained for monoPAPs and diPAPs with the 
WAX sorbent. However, poor recoveries were observed for triPAPs 
(<1%). This was unexpected since WAX has previously been used in the 
extraction of triPAPs in sludge with acceptable recoveries (Liu 2013). The 
reason for the unexpected low recoveries for triPAPs on WAX remains 
unclear. Several other SPE sorbents were tested; quaternary amine 
(CUQAX, United Chemicals, Bristol UK), hydrophilic-lipophilic balanced 
(HLB, Waters Corporation, Milford US), and C18 (Sep-Pak, Waters Cor-
poration, Milford US). The diPAPs were well recovered on all sorbents (61 
- 99%). Recoveries of 6:2 triPAP were 22 – 43% and 8:2 triPAP 71 – 78% 
on CUQAX, HLB, and C18 sorbents, while triPAPs were not recovered on 
WAX sorbent. The monoPAPs on the other hand were well recovered on 
WAX (90 – 97%), but poor recoveries were obtained for other sorbents 
tested (7 – 17%). Therefore, the strategy applied was the use of both 
WAX and HLB cartridges coupled in series. Matrix recoveries using this 
extraction and clean-up method were 23-31% for monoPAPs, 48-86% for 
diPAPs, 30% for 6:2 triPAP. Recoveries for spiked amount corrected for 
with internal standards were 96% for 6:2 monoPAP, 123% for 8:2 
monoPAP 84% for 6:2 diPAP, and 103% for 8:2 diPAP.   

 
Several extraction solvents were evaluated for analysis of sludge; however 
the method development was carried out using a sediment sample free 
from detectable levels of PFASs, since PFAS free sludge sample was not 
available. Initially, methanol (4 mL) with pretreatment of 100 µL 0.2 M 
NaOH was tested. Matrix recoveries were unsatisfactory for the PAPs; 
35% for 6:2 diPAP and 11% for 8:2 diPAP, and monoPAPs were not 
recovered at all. It was hypothesized that the PAPs strongly sorbed to or-
ganic and mineral particles in matrices as sludge and sediment. The use of 
acetic acid in the extraction solvent has been found to increase recoveries 
of PFASs in sludge (Higgins 2005, Liu 2013). An extraction solvent com-
position of 1% acetic acid (HAc) in methanol (4 mL) resulted in recoveries 
of 9.3% for 8:2 monoPAP, 30% for 6:2 diPAP, and 14% for 8:2 diPAP. 
Still, 6:2 monoPAP was not recovered. An extraction solvent mixture of 
THF:HAc yielded similar results, with recoveries of 13% for 6:2 diPAP 
and 14% for 8:2 diPAP, and no recovery of the monoPAPs. Also PFPAs 
and PFPiAs showed low recoveries of 2.8 to 26% using HAc treatment. In 
a further attempt to extract the presumed strong bonds of the monoPAPs 
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to the matrix, the pH was increased in the solvent. Extraction with 2 mL 1 
M NaOH in methanol and additionally 2 mL methanol resulted in im-
proved recoveries for the PAPs; 78% for 6:2 monoPAP and 117% for 8:2 
monoPAP, 26% for 6:2 diPAP, and 29% for 8:2 diPAP, and was chosen 
as the final method. This method was also proven to be efficient for PFPAs 
and PFPiAs, except for PFHxPA, with recoveries of 43 – 117%.  

 
For the analysis of PFCAs and PFSAs in serum, the use of protein precipi-
tation and phospholipid removal well plates have proven to be a rapid and 
robust method (Salihovic et al. 2013), and was initially tested for the di-
PAPs. This method was found to be less efficient for the diPAPs (recover-
ies of 62% and 11% for 6:2 diPAP and 8:2 diPAP, respectively). In further 
method development, acetonitrile extraction was performed for the serum 
samples with satisfactory recoveries of 93% for 6:2 diPAP and 83% for 
8:2 diPAP. The recoveries for PFCAs and PFSAs were all also satisfactory, 
63 – 95%. 

4. 1. 3. Matrix effects 
Ion signal effects are commonly observed in analysis using electrospray 
ionization. Co-eluting compounds from the matrix affect the number of 
charges in the droplets formed in electrospray and subsequently affects 
formation of gas-phase ions from the analyte of interest. When the num-
ber of charges decrease, competition of charges in the electrospray drop-
lets leads to suppression of the analyte. Reversely, an excess of charges 
facilitate ionization and leads to signal enhancement. Formation of gas-
phase ions from an analyte in electrospray is also affected by its polarity 
and pKa (Hirabayashi 2012) and there is a large variety regarding physio-
chemical properties within the group of PFASs. 

 
Matrix effects were evaluated by spiking samples with native standards 
after extraction and compare the response with a standard solution made 
in solvent (fig. 5, 6 and 7). A matrix effect of zero means that the ioniza-
tion of a compound is not affected by co-extracted substances In general, 
matrix effects were more pronounced for the compound classes 
monoPAPs, diPAPs, triPAPs, PFPAs, PFPiAs compared to PFCAs and 
PFSAs.  

 
Dust was more affected by matrix effects compared to sludge and serum. 
Interfering compounds in biological and environmental matrices are main-
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ly polar and elutes early, hence relatively polar PFASs are in general most 
affected by matrix effects (Bonfiglio et al. 1999). This can be seen with the 
PFCAs, for example PFBA is clearly affected by enhancement in the dust 
(72%) and serum (56%) samples and suppression in the sludge samples (-
44%).  

 
The monoPAPs on the other hand behaved differently, where signal en-
hancement increased with chain length in both dust and sludge. Severe 
signal enhancement was observed for monoPAPs in the dust samples; 86% 
for 6:2 monoPAP, 105% for 8:2 monoPAP, and 175% for 10:2 
monoPAP. Also in the sludge samples, enhancement was observed for 8:2 
monoPAP (16%) and 10:2 monoPAP (67%).  

 
Matrix effects were less pronounced for the diPAPs compared to the 
monoPAPs. While moderate effects were observed for 6:2 diPAP and 8:2 
diPAP in dust (16% and -9.3%, respectively), sludge  (27% and 33%, 
respectively), and serum (-18% and 37%, respectively), 10:2 diPAP in all 
matrices and triPAPs in the dust were strongly suppressed. 

 
In sludge, PFCAs and PFSAs were relatively free from matrix effects, while 
suppression was observed for most analytes in dust and serum (fig. 5). 
With exception from early eluting PFBA and PFPeA, there are little varia-
tion in matrix effects between homologues of various chain lengths. No 
pronounced matrix effect was observed for the FTSAs in sludge (4% - 
25%), while 6:2 FTSA was enhanced in dust (219%). Severe suppression 
was observed for PFPAs and PFPiAs, with stronger suppression for PFPiAs 
(-73% to -78%) compared to the more polar PFPAs (-45% to -57%). Also 
FOSAs and FOSEs suffered from suppression (fig. 5). 

 
The strong matrix effects for phosphate compounds challenge the quanti-
fication of these compounds, since even closely eluted homologues can 
experience totally different ion signal effects. For example, the large dis-
crepancy in matrix effects between 8:2 PAP and 10:2 PAP indicated that 
13C-labelled 8:2 PAP would not be a suitable surrogate standard for 10:2 
PAP quantification. A matrix-matched calibration is an option for isotope 
dilution when authentic standards are lacking. This is assumed that the 
sample matrix is homogeneous, free from the targeted analytes. Alterna-
tively, standard additions for each individual sample could be used, given 
that native standards are available. 
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Covering a wide range of substances likely leads to quantification using 
non-authentic standards, for example with the large number of structural 
isomers of diPAPs and triPAPs. Semi-quantification using standards of 
other homologues or isomers is an approach by which more analytes can 
be covered when estimating total amounts of PFASs, though evaluating 
matrix effects is of outermost importance to assess reliability of these data. 

 

 

Figure 5. Matrix effects of PFCAs and PFSAs in dust (n=6), sludge (n=3), and 
serum (n=2). Error bars displays standard deviation. 



48  ULRIKA ERIKSSON  Contribution of precursors to PFCAs in humans and environment 
 

 

Figure 6. Matrix effects of monoPAPs, diPAPs, triPAPs, and FOSA/FOSEs in dust 
(n=6), sludge (n=3), and serum (n=2). Error bars displays standard deviation. 
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Figure 7. Matrix effects FTSAs, PFPA/PFPiAs, and FTCA/FTUCAs in dust (n=6) 
and sludge (n=3). Error bars displays standard deviation. 

4. 1. 4. Composition in extracts 
The high surface energy of PFASs make them stick to surfaces, as tubings 
and vial walls. The diPAPs in particular are prone to adsorb to surfaces. In 
an attempt to force more of the diPAPs out in solution and increase the 
sensitivity, different composition of organic and water composition were 
tested in the final extracts. The range of organic solvent tested were be-
tween 40 and 100%. A sharp increase was observed above 50% organic 
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solvent. However, exceeding an amount of 80% organic solvent resulted 
in poor chromatography with tailing and splitting peaks. A proportion of 
80% organic solvent was therefore finally chosen for the extracts. The 
sensitivity also increased for the monoPAPs with higher proportion of 
organic solvent, and peak shape could be retained at proportion up to 
100% organic solvent. 
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4. 2. Dust levels of precursors 
The importance of different sources for the exposure of persistent PFASs 
can differ between compound classes and homologues. While food gener-
ally is considered to be the major pathway for human exposure, dust has 
been found to contribute relatively more to PFOA exposure compared to 
PFOS exposure (Fromme et al. 2007, Jogsten et al. 2012, De Felip et al. 
2015). 

 
The contaminant profile in the indoor environment reflects the amount 
and use of PFAS-containing consumer products in the general population. 
In Paper I, dust sampled from Canada, Faroe Islands, Sweden, Greece, 
Spain, Nepal, Japan, and Australia were analyzed for PAPs, PFCAs, 
PFSAs, FTSAs, FOSA/FOSEs, and FTCA/FTUCAs. The results revealed a 
high contribution from PAPs to the total amount of PFASs in all countries. 
Including semi-quantified PAPs, the contribution of monoPAPs to ∑PFAS 
was 8 – 47%, and the contribution of diPAPs to ∑PFAS was 21 – 47%. 
Several triPAPs were detected, but due to matrix effects and lack of la-
belled internal standards, these could not be quantified. In total, 
monoPAPs and diPAPs accounted for 39 – 94% of ∑PFAS. In figure 8, the 
diPAP profiles in dust from the different countries are shown. 

 

 

Figure 8. The profiles of diPAPs in indoor dust samples from different countries. 

Most abundant diPAPs were 6:2 diPAP, 8:2 diPAP, 6:2/8:2 diPAP, and 
6:2/10:2 diPAP. The highest median levels of 6:2 diPAP in the different 
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countries were 164 ng/g in Canada, 119 ng/g in Japan, and 106 ng/g in 
Faroe Islands, and the highest median levels of 8:2 diPAP in the different 
countries were 81 ng/g in Japan, 49 ng/g in Australia, and 47 ng/g in Faroe 
Islands. Prior to this study, diPAPs in dust have been analyzed in Canada, 
with levels 3 – 16 times higher compared to this study (De Silva et al. 
2012). Recently, 6:2 diPAP and 8:2 diPAP have been found in dust sam-
ples from Norway at median levels somewhat higher but similar to the 
Swedish dust samples in this study (Padilla-Sanchez and Haug 2016). 

 
The diPAPs and triPAPs have a large number of structural isomers. The 
profiles of the diPAP homologues reveal that a substantial proportion of 
∑diPAPs are covered by structural isomers and homologues other than 6:2 
diPAP, 6:2/8:2 diPAP, 8:2 diPAP, and 10:2 diPAP, for which authentic 
standards are available. Quantifying these structural isomers and homo-
logues separately provides important information about total levels and 
homologue length patterns. For example, 8:2 diPAP has the isomer 
6:2/10:2 diPAP. During degradation, 8:2 diPAP will yield PFOA as major 
PFCA product, while 6:2/10:2 diPAP will yield PFHxA and PFDA. 

 
The PAPs were found in all countries, also those countries without known 
PFAS production, suggesting that the direct use of commercial products is 
an important source for human exposure. There was a large variation of 
PAP levels between countries, while the variation of PFCAs and PFSAs 
was less pronounced. Highest median level of ∑PAPs was found in Japan 
(1 720 ng/g), followed by Faroe Islands (900 ng/g), Australia (709 ng/g), 
Canada (658 ng/g), Sweden (167 ng/g), Greece (31 ng/g), Spain (29 ng/g), 
and Nepal (7.3 ng/g). These variations can be caused by several reasons. 
The age of the dust could differ substantially, and lead to different degrees 
of degradation of PAPs. Also, consumption pattern and PAPs-containing 
products available can differ between countries.   

 
Second most abundant compound class was the PFCAs, with a contribu-
tion of 7 – 50% of ∑PFAS, followed by PFSAs with a contribution of 0.4 – 
11%. In general, the levels of PFOA were higher than the levels of PFOS.  

 
Correlations were found both within and between compound classes. 
When summarizing the compound classes, ∑PFCAs, ∑PFSAs, ∑monoPAPs 
and ∑diPAPs were all positively significantly correlated to each other. A 
vast majority of the diPAP homologues, as well as monoPAP homologues, 
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were correlated with each other, as expected since these compounds usual-
ly are produced in mixtures. Most PFCA and PFSA homologues were cor-
related with each other, especially within the short-chain (<C8) and long-
chain (≥C8) homologues. Several positive significant correlations were also 
found between diPAP and PFCA homologues; as for 6:2 diPAP, 6:2/8:2 
diPAP, 6:2/8:2 diPAP, 8:2/10:2 diPAP, 6:2/12:2 diPAP, and PFHxA, 
PFHpA, and PFNA. For 6:2 diPAP, PFHxA is one of the the major PFCA 
products formed during degradation. The association between PFOA and 
diPAPs on the other hand was less clear, significant correlations were only 
found between PFOA and 6:2/8:2 diPAP and 10:2 diPAP. It could be ex-
pected to find co-variance between PFOA and 8:2 diPAP, since PFOA is 
the major PFCA metabolite formed during degradation of 8:2 diPAP 
(D'Eon and Mabury 2007, Liu and Liu 2016). It is possible that lack of 
correlation is due to multiple sources of PFOA in indoor dust. When 
grouping the data per country, no significant correlations were found be-
tween precursor and persistent homologues. 

4. 2. 1. Exposure assessment 
In Paper I, the daily intake of PFCA via dust was calculated, both from 
direct and indirect PAPs exposure, in low exposure scenario and high ex-
posure scenario. The limitations of the assessments are partly due to the 
unknown proportion of the quantified PFCAs that derives from already 
degraded precursor compounds. This could lead to a possible underesti-
mation of indirect contribution. There are few studies of the biotransfor-
mation yield of PFCAs from PAPs which also contributes to the uncertain-
ty in the assessment as well as possible unknown precursor compounds 
present in the dust which upon degradation could yield PFCAs. 

 
In the high exposure scenario, a majority of the PFCA exposure via dust 
could be attributed to precursor compounds (fig. 9). The contribution 
from PAPs to the dust exposure was >71% for PFHxA, PFOA, and PFDA 
in all countries except for Greece and Spain. There was similar contribu-
tion from PFCAs with different chain length to the total intake from dust. 
The daily intake for a two years old child in the high exposure scenario, 
including both direct and indirect exposure, was 0.2 – 1.4 ng/day/kg b. w. 
for PFHxA, 0.2 - 1.8 ng/day/kg b. w. for PFOA, and 0.2 – 2.4 ng/day/kg 
b. w. for PFDA in Japan, Australia, Canada, the Faroe Islands, and Swe-
den. 
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At a lower exposure scenario, there was still a significant contribution 
from PAP precursors. The contribution from indirect exposure became 
increasingly important with increasing chain length; indirect exposure 
dominated for PFDA, and direct exposure dominated for PFHxA. The 
estimated contribution from diPAPs to daily intake in the low exposure 
scenario was 5-25% for PFHxA, 20-57% for PFOA, and 54-84% for 
PFDA, in all countries but Spain, Greece, and Nepal. The daily intake for 
a two years old child in the low exposure scenario, including both direct 
and indirect exposure, was 0.02 – 0.04 ng/day/kg b. w. for PFHxA, 0.05 – 
0.18 ng/day/kg b. w. for PFOA, and 0.01 – 0.15 ng/day/kg b. w. for PFDA 
in Japan, Australia, Canada, the Faroe Islands, and Sweden. 

 
Tolerable daily intake (TDI) has been established by European Food Safe-
ty Authority (EFSA) for PFOA at an amount of 1 500 ng/day/kg b. w. 
(EFSA 2008). However, current TDI for PFAS is under debate, and it can-
not be ruled out that these levels might be as much as hundreds fold too 
high. Immunotoxic effects are seen at levels as low as 0.13 ng/mL serum 
for PFOS and 0.03 ng/mL serum for PFOA (Grandjean et al. 2016b). This 
corresponds to a daily intake of PFOA as low as 0.004 ng/day/kg b. w. 
Based on the level derived from the immunotoxicity study, PAPs alone can 
have an influence on human health of children in all countries but Nepal, 
and an influence on human health of adults in Faroe Islands and Japan, 
even in the low exposure scenario.   
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Figure 9. Exposure assessment of proportional contribution from indirect exposure 
of PAPs and direct exposure from PFCAs to total PFCA exposure via dust intake 
(%). In low exposure scenario, a biotransformation factor of 10% was used for 
PAPs ≥ C8, 1% for PAPs < C8, and an uptake fraction of 66%. In high exposure 
scenario, a biotransformation factor of 100% was used for PAPs, and an uptake 
fraction of 100%. 
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4. 3. Human levels of PFCA precursors 
Human serum levels are suitable indicator for PFAS internal exposure 
since PFASs mainly distributes to liver, plasma and serum. In Paper II, the 
PFCA precursors PAPs and FTSAs were analyzed together with PFCAs 
and PFSAs in Australian serum stratified by age and gender during the 
sampling period from 2002 to 2011. The result revealed occurrence of 
both persistent and precursor PFASs in all age groups, both men and 
women, during the entire study period. The profile was dominated by 
PFSAs followed by PFCAs, and precursors only made a minor contribu-
tion. Overall, precursor compounds were found in the general population 
at low levels close to LOD. 8:2 FTSA was found in a majority of the sam-
ples. 6:2 FTSA, 6:2 diPAP, and 8:2 diPAP were less frequently detected. 
There is no known production of PAPs in Australia, hence the results indi-
cate exposure from direct use of commercial products to the general Aus-
tralian population. In 2011, the mean value for adults (>15 years) was 
0.09 ng/mL for 6:2 diPAP, and 0.02 ng/mL for 8:2 diPAP, when assigned 
a value of zero to samples <LOD. These levels are similar or somewhat 
higher than what previously has been observed in serum samples global 
(D'eon et al. 2009, Lee and Mabury 2011, Yeung et al. 2013, Gebbink et 
al. 2015b).  

 
As PAPs are known precursor compounds to PFCAs, long-chain homo-
logues of PAPs are expected to be phased out according to the Voluntary 
Stewardship program. This infers that 8:2 diPAP is included in the phase-
out, but not 6:2 diPAP. It can be noted that 6:2 diPAP was more frequent-
ly detected (69%) than 8:2 diPAP (25%) in the Australian adult serum 
samples from 2011 compared to previous years. 

 
In samples from adults (>15 years) in 2011, 8:2 FTSA was detected in 
88% of the samples with a mean value of 0.01 ng/mL, while 6:2 FTSA 
was detected in only 13% of the samples. This could be due to differences 
in bioaccumulation however precursor compounds of 6:2 FTSA has be-
come one of the major replacement compounds for PFOS after the phase-
out in 2000  (Willson 2010).  

 
It could be presumed that these low levels may imply a negligible contribu-
tion from precursor compounds to ∑PFAS in humans. However, precur-
sors have shown to be readily biodegraded, therefore even low levels could 
be evidence of substantial exposure. 
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4. 3. 1. Ongoing exposure 
The presence of PFCA precursors in the serum samples reported in Paper 
II indicates an ongoing exposure. Analyzing the precursor compounds in 
serum provides a qualitative measure of recent exposure, while the quanti-
tative contribution is more difficult to obtain. Precursor compounds are 
readily degraded in humans and have short half-times. Half-times of 8:2 
diPAP in humans have shown to be 0.9 – 1.4 days at high serum concen-
trations, and then slow down to 5.7 – 15.4 days at low serum concentra-
tions (Trier and Numata 2015). For the persistent PFAS though, with 
comparable longer half-lifes, ongoing exposure can be quantified. While 
decreasing trends were observed for most PFASs in Paper II, the rate of 
decline do not equal intrinsic half-times. In order to distinguish between 
ongoing exposure and historical exposure, halving and doubling times 
were calculated for compounds with decreasing and increasing temporal 
trend, respectively, using the data for age group 0-15 years, and compared 
to their intrinsic half-lives (table 2).   

 
Table 2. Halving time and doubling time of PFASs in serum samples compared to 
intrinsic half-times. 
 Time period Half-time 

female 
(years) 

Half-time 
male 
(years) 

Halving time in 
this study 
(years) 

Doubling time 
in this study (years) 

PFHpA 
2006 – 
2013 

1.5a 1.2a 
7.8  

PFOA 
2002 – 
2013 

1.8 - 
2.3a,b 

1.7 - 
2.3a,b 5.3  

PFNA 
2006 – 
2013 

2.5a 4.3a 
13.5  

PFDA 
2006 – 
2013 

4.5a 12a 
32.2  

PFUnDA 
2006 – 
2013 

4.5a 12a 
29.0  

PFDoDA 
2002 – 
2013 

  
 17.2 

PFHxS 
2002 - 
2013 

7.7a 35a 
4.6  

PFHpS 
2002 – 
2013 

  
5.3  

PFOS 
2002 – 
2013 

6.7a 34a 
4.2  

8:2 FTSA 
2002 – 
2013 

  
5.5  

a Zhang, Y. F., et al. (2013). 
b Bartell, S. M., et al. (2010) 
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The halving times for PFCAs were all longer than their intrinsic half-lives, 
while the halving times for PFSAs were all shorter than their intrinsic half-
lives. This suggest ongoing exposure for PFCAs to humans, from 2006 to 
2013. The discrepancy between the apparent halving times and the intrin-
sic half-time for the PFSAs could be due to the fact that different individu-
als were compared in the temporal trend data. The temporal trends were 
assessed for the age group 0-15 years, and concentrations in infants are 
affected by mother-child exposure during pregnancy and lactation. Trans-
fer across the placenta of PFASs from mother to fetus are suggested to be 
dependent on chain-length and active head group (Manzano-Salgado et al. 
2015). The more hydrophobic long-chain PFASs have been shown to be 
transferred at a lower ratio than their short-chain analogues. Additionally, 
sulfonates have been shown to be transferred at a lower ratio compared to 
carboxylates.  

4. 3. 2. Daily intake 
Using the serum data from Paper II as input parameters, and a first-order 
pharmacokinetic (PK) model, the daily intake of PFOA in Australia was 
calculated to be 183 pg/day/kg b.w. at a non-steady state. This could be 
compared to the exposure assessment of ingested dust in Paper I. In a low 
exposure scenario, the direct PFOA intake from dust for a 3-6 year child 
was 29 pg/day/kg b.w., and the indirect intake 30 pg/day/kg b.w., in total 
58 pg/day/kg b.w.. In a high exposure scenario, intake from dust for a 3-6 
year child was 43 pg/day/kg b.w., and the indirect intake 449 pg/day/kg 
b.w., in total 492 pg/day/kg b.w.. In relation to the results from the Aus-
tralian serum samples, it seems as the low exposure scenario is more prob-
able for exposure from precursor compounds, i.e. diPAPs. Thus, the esti-
mations show that dust intake in comparison to Australian serum levels in 
children gives a contribution from diPAPs of 16 -100% to total PFOA 
exposure. 

 
Exposure from drinking water in Australia has previously been assessed 
(Thompson et al. 2011). In Queensland, where the Australian serum ana-
lyzed in Paper II were sampled, no PFOA above limit of detection was 
found in the drinking water. Using the limit of detection of 0.5 ng/L as a 
lower bound, and 9.66 ng/L for the highest PFOA water concentration 
found in Australia as a upper bound, the intake from water for a 3-6 year 
child can be calculated to 10 - 184 pg/day/kg b.w, This imply that dust 
may be an equal or even more important exposure source as drinking 
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water for children in Australia. There are currently no data available 
about levels of PFAS in the Australian diet. Food consumption patterns 
can vary substantially between regions, hence no comparison with food 
can be made with the PFAS levels in dust.  

4. 4. Waste water treatment plants 
Municipal waste provides a snapshot of contaminants that are used and 
released from the urban community, both from households through usage 
of commercial products and through industrial activities. The composition 
profile of PFAS can be altered during waste water treatment, due to differ-
ent properties of PFASs, such as sorption capacity, water solubility, and 
persistency. Especially, precursor compounds can degrade to their persis-
tent analogues.  

 
In Paper III, PAPs, FTSAs, FOSA/FOSEs, FTCA/FTUCAs, PFCAs, PFSAs, 
and PFPA/PFPiAs were analyzed in water and sludge from three Swedish 
WWTPs. The influent consisted of municipal waste water but also water 
from additional sources such as hospitals (Umeå and Henriksdal), indus-
tries (Henriksdal) and specific chemical and textile industries (Gässlösa). 
PAPs, FTSAs, PFPAs, FTCA/FTUCAs, and PFPiAs were present in both 
sludge and water. The concentrations of PFAS in waste water are shown 
in table 3 and the concentrations of PFAS in sludge are shown in table 4. 

 
Table 3. Concentrations of detected PFAS classes in waste water (ng/L). 

 
Umeå Henriksdal Gässlösa 

 
Influent Effluent Influent Effluent Influent Effluent 

∑PFCA 19 22 23 33 18 66 

∑PFSA 4.6 4.8 7.2 7.7 3.9 4.8 

∑FTSA 2.9 2.5 6.0 5.1 2.6 2.0 

∑FTCA/FTUCA 0.5 0.4 1.4 <LOD 3.5 n.q. 

∑monoPAP <LOD n.q. <LOD <LOD n.q. n.q. 

∑diPAP 58 n.q. n.q. <LOD n.q. <LOD 

∑PFPA 11 1.3 1.8 0.6 20 3.0 

∑PFPiA 0.6 0.1 1.6 0.1 0.3 2.1 
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Table 4. Concentrations of detected PFAS classes in the sludge (ng/g). 

 
Henriksdal Gässlösa Umeå 

 
2012 2014 2015 2012 2014 2015 2012 2014 2015 

∑PFCA 6.2 6.2 4.7 13 12 7.3 2.4 1.7 2.5 

∑PFSA 10 5.7 3.9 3.5 3.3 3.6 6.3 3.1 1.9 

∑FTSA 1.8 1.3 0.9 0.9 1.6 1.2 1.0 1.0 0.8 
∑FTCA/ 
FTUCA 15 13 8.9 65 78 51 4.0 5.5 4.1 

∑mPAP 17 12 11 11 6.2 5.8 18 9.9 11 

∑diPAP 9.9 8.5 7.5 7.7 7.2 8.8 17 3.3a 9.1 

∑PFPiA <LOD <LOD <LOD 0.03 <LOD <LOD <LOD <LOD <LOD 
∑FOSA/ 
FOSE 3.8 2.9 <LOD 3.3 3.5 3.3 <LOD <LOD 1.3 
a8:2 diPAP not quantified. 
 

In the effluent waste water, PFCAs dominated the profile followed by 
PFSAs. Levels of ∑PFCAs were in the range 22 – 66 ng/L, and for ∑PFSAs 
4.8 – 7.7 ng/L. Highest PFCA levels were found in Gässlösa, the WWTP 
connected to the most industrial activities. A majority of the PFCAs found 
were the short-chained PFBA, PFPeA, and PFHxA (71 – 87%). The pre-
cursor compounds contributed only to a minor portion of all PFASs meas-
ured in the waste water. Analysis of PAPs in water was hampered by se-
vere matrix effects and only two effluents could be quantified, with ob-
served levels below limit of detection. The ∑FTSAs were in the range 2.0 – 
5.1 ng/L. Most abundant homologue was 6:2 FTSA, which was found in 
all effluents, while 8:2 FTSA was found in Umeå only. The 4:2 FTSA was 
not detected in any WWTP effluent. Intermediates, 5:3 FTCA, 6:2 
FTUCA, and 8:2 FTUCA, were detected in the effluent of Umeå, at a total 
level of 0.4 ng/L. The ∑PFPA/PFPiAs were present at lower levels than 
PFCA/PFSAs, in the range 0.7 – 5.1 ng/L. Industrial activities might con-
tribute to enhanced levels of PFBA, PFPeA, PFHxA, PFDPA, C6 PFPiA, 
and C6/C8 PFPiA in effluent from Gässlösa, compared to other two 
WWTPs.  

 
In the sludge samples from 2015, precursors and intermediates were the 
predominant compound groups with a contribution of 75 – 86% to 
∑PFAS. The PAPs were found in all sludge samples. The 8:2 FTSA was the 
most abundant FTSA in the sludge, detected in all WWTPs at levels of 0.6 
– 0.8 ng/g. The 6:2 FTSA was only found in Henriksdal (0.3 ng/g) and 
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Gässlösa (0.7 ng/g), the two WWTPs with industrial activities. All 
FTCA/FTUCAs analyzed were detected in the sludge, with highest levels 
found for 5:3 FTCA (1.3 – 45 ng/g) and 7:3 FTCA (2.0 – 5.0 ng/g). At 
Gässlösa, the level of 5:3 FTCA was one order of magnitude higher than 
Umeå and Henriksdal. The 5:3 FTCA is a degradation product of 6:2 
fluorotelomer-based compounds, and has shown to further degrade to 
PFPeA (5.9%) and PFBA (0.8%) in sludge (Wang et al. 2012).    

4. 4. 1. Emission from WWTPs to the environment  
The emission of PFASs from WWTPs through sludge and effluent water is 
described in Paper III. Persistent PFASs and selected precursor compounds 
were found in influent water, effluent water, and sludge. For several 
PFSAs and PFCAs, a net increase was observed in the waste water treat-
ment plants (fig. 11). Highest increase was observed for short-chain and 
even-numbered homologues. In one of the WWTPs (Umeå), the contribu-
tion from the precursor compounds to the net increase of PFCAs, and the 
contribution from the precursor compounds to the total amount of PFCAs 
were estimated. Transformation yields from degradation studies of diPAPs 
and FTSAs in sludge and soil were used as parameters in the calculations 
of amounts of PFCAs degrading from precursors. It was estimated that 2.1 
– 41% of the net increase of PFHxA and 19% of the net increase of PFOA 
could be attributed to precursor compounds. Though a fairly high propor-
tion of the net increase can be related to degradation of diPAPs and 
FTSAs, the remaining amount (59 – 99%) is of unknown origin. 
 
Of total amount released, 0.7 – 13% of PFHxA, and 5.5% of PFOA could 
be attributed to degradation from precursor compounds analyzed in the 
WWTPs. A large uncertainty factor in these estimations is the degradation 
yield of precursors to PFCAs. Nevertheless, these values represent a lower 
bound of precursor contribution, as an unknown proportion of the PFCAs 
could originate from precursor degraded before entering the WWTP. This 
can be due to both recent degradation and degradation in the past. A pro-
portion of PFASs in the influent water may originate from tap water, thus 
recirculated amounts of PFASs can contribute to the total load (Filipovic 
and Berger 2015). 
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Figure 11. Levels of PFCAs and PFSAs in influent, effluent, and sludge in Swedish 
WWTPs, µg/day/person. Note the different scales on the x-axis. 
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4. 5. Levels of PFCA precursors in wild-life 
Levels and homologue patterns of PFASs can differ substantially between 
wildlife and humans. Other sources, routes of exposure, bioaccumulation 
factors, and environmental conditions are factors all have an impact on 
the levels in the wildlife.  

 
In Paper IV, levels of PFASs in the terrestrial and the freshwater environ-
ment were assessed in raptor bird eggs. Three species were examined in 
the study, osprey (Pandion haliaetus), tawny owl (Strix aluco), and com-
mon kestrel (Falco tinnunculus). The tawny owl and common kestrel are 
terrestrial species, while osprey is an aquatic specie. Stable isotopes of 
carbon and nitrogen were analyzed as tracers for diet and trophic level. It 
was revealed by the δ13C, ranging between -25.2‰ and -30.4‰, that the 
ospreys in the study fed on a freshwater diet rather than a marine diet. 
This excludes influence from long-range transport of PFASs with ocean 
currents. The tawny owl samples were collected in 2014 (n=40), the com-
mon kestrel samples were collected in 2014 (n=10), and the osprey egg 
samples were collected in 1997 – 2001 (n=10), 2007 – 2008 (n=10), and 
2013 (n=10). PFCAs, PFSAs, FTSA, FTCAs, FTUCAs, and diPAPs were all 
found in the bird eggs.  

 
The PFAS profiles in the bird eggs were dominated by PFCAs and PFSAs, 
where PFOS was the single most abundant PFAS homologue. The diPAPs 
were found in eggs from two of the three species, osprey and common 
kestrel, thus both in the terrestrial and the freshwater environment. In 
general, they had a low frequency of detection and were found at low ppt 
levels. Homologues detected were 6:2 diPAP, 6:2/8:2 diPAP, 8:2 diPAP, 
6:2/10:2 diPAP, 8:2/10:2 diPAP, 10:2 diPAP, and 8:2/12:2 diPAP. The 
highest level of 6:2 diPAP (0.4 ng/g) was found in one osprey egg from 
1999, and the highest level of 8:2 diPAP (2.4 ng/g) was found in one os-
prey egg from 2008. PAP levels and homologue distribution in wild life 
are not well characterized and have only been reported in a limited num-
ber of studies. Previously, diPAPs have been detected in fish, zooplankton, 
benthic worm, and monoPAPs have been detected in mussels (Guo et al. 
2012, Loi et al. 2013, Zabaleta et al. 2015, Gebbink et al. 2016a). Gener-
ally, levels of PAPs in wildlife have been in the low picogram per gram 
range, with exception of tuna from Indian Ocean, where levels of 11.4 – 
11.5 ng/g were observed (Zabaleta et al. 2015).  
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The 6:2 FTSA were detected in a majority (63%) of the osprey eggs, while 
only one bird egg from the terrestrial environment had detectable concen-
trations. While only a few studies have reported FTSAs in wildlife, high 
levels of 6:2 FTSA have been found in soil, water, and sediment in con-
taminated areas (Karrman et al. 2011, Boiteux et al. 2016). 

4. 6. Contribution of precursors to PFCA  
What significance do precursor compounds have to the total amount of 
PFAS in humans and the environment? The composition profiles of pre-
cursor compounds (∑diPAPs and ∑FTSAs), together with ∑PFCAs and 
∑PFSAs in in dust (Paper I), serum (Paper II), sludge (Paper III) and bird 
eggs (Paper IV) are shown in figure 12. 
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Figure 12. The profiles of ∑diPAPs, ∑FTSAs, ∑PFCAs, and ∑PFSAs in different 
matrices, percentage contribution. The bird eggs were sampled in 1997 – 2014, the 
sludge samples in 2012 – 2015, the dust samples in 2008 – 2013, and the serum 
samples in 2002 – 2013. 

There are large differences in the profiles between different compartments. 
The contribution of ∑diPAPs to the total amount of the analyzed PFASs is 
much higher in abiotic matrices compared to biotic matrices. These differ-
ences are a result of the character of the compartments and the various 
properties of PFAS compounds such as bioaccumulation potential, volatili-
ty, stability, and sorption behavior.  
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In both dust and sludge samples, diPAPs were the major contributor (59% 
and 42%, respectively). Consumer products that may contain PFASs such 
as papers, carpets, clothes, furniture, food packaging, cleaning products, 
and personal care products are widely present in the indoor environment 
of private households. Therefore, dust can be seen as a fingerprint of con-
taminants in these products, and represent recent exposure from current 
industrial PFAS production. The high proportion of diPAPs found in the 
dust suggest that diPAPs is a significant indirect PFCA source to human 
exposure. It is also possible that a proportion of the PFCAs detected in the 
dust is derived from degraded PAPs, or other fluorotelomer precursors.  

 
In the sludge samples, sources from both private household and industrial 
activities were combined. The sludge PFAS profile is similar to that of the 
dust, where diPAPs is the dominant PFAS, followed by PFCAs, PFSAs, and 
FTSAs (fig. 12). Different proportion of diPAPs in sludge (42%) and dust 
(59%) was observed. It is possible that microbial degradation alter the 
profiles in sludge and dust. 

 
During abiotic conditions, diPAPs are extremely stable and have halftimes 
of at least decades (D'eon and Mabury 2007). In organisms on the other 
hand, phosphate esters are dephosphorylated by phosphatase enzymes in 
intestinal tracts, and are thereafter readily degraded (Jackson and Mabury 
2012). This could explain the minor contributions of diPAPs in the human 
serum and the bird eggs.  

 
The FTSAs are only a minor contributor to ∑PFASs in dust (2%), while 
the contribution is comparable higher in sludge (6%). It is possible that 
FTSAs are more related to industrial activities than use of commercial 
products in private households. The contribution of FTSAs is also much 
higher in bird eggs (9%) compared to human serum (1%). FTSAs can be a 
degradation product from other FTSA-based precursors, and will also 
further degrade into PFCAs (Weiner et al. 2013). In case of degradation of 
FTSA-based precursors, this could contribute to the amount of FTSAs 
found in sludge and bird eggs. 

 
The contribution from PFSAs to ∑PFASs is much higher in human serum 
and bird eggs compared to sludge and dust, of which the majority can be 
attributed to PFOS. Though the major PFOS production is ceased, the 
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proportion of PFOS to ∑PFAS continues to be relatively high, due to its 
long half-life and recirculated levels in the environment.   

 
Overall, the contrasting PFAS profiles in biotic and abiotic compartments 
implicate that substances included in human and environmental monitor-
ing needs to be carefully chosen. The exclusion of abundant PFAS classes 
such as diPAPs in monitoring studies, especially abiotic matrices, will give 
a distorted picture of the relative importance of different exposure sources. 

 
Sources of exposure, emissions and pathways can be tracked by examining 
the PFCA homologue profiles. Fluorotelomer-based compounds produced 
are almost exclusive even-numbered, and biodegradation of n:2 fluorote-
lomer precursors, where n= 8 and higher, will yield preferentially even-
numbered homologues (Cn PFCA) (Dinglasan et al. 2004, Liu et al. 2010, 
Kim et al. 2014a). Atmospheric degradation of n:2 fluorotelomer precur-
sors on the other hand will result in Cn PFCA and Cn+1 PFCA at similar 
yield, followed by an increased proportion of Cn+1 PFCA, due to compa-
rable higher bioaccumulation factor (Ellis et al. 2004, Martin et al. 2004, 
Bossi et al. 2005). In figure 13, the profiles of PFCAs in different matrices 
are shown. 
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Figure 13. Percentage distribution of PFCAs in dust and sludge. The bird eggs are 
sampled in 1997 – 2014, the sludge samples in 2012 – 2015, the dust samples in 
2008 – 2013, and the serum samples in 2002 – 2013. 

The dust and sludge matrices have some similarities in PFCA homologue 
distribution. However, PFDA, PFUnDA, and PFDoDA are more prevalent 
in the sludge, which probably is due to increasing sorption capacity with 
chain length.  

Another difference is the higher contribution of PFHxA in the sludge 
samples compared to the dust. This could possibly be an effect of degrada-
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tion of PFHxA precursors in the waste water treatment plants. The non-
bioaccumulating short-chain PFCAs are absent in the biotic matrices. 
Shorter PFCA homologues like PFHxA have a faster elimination rate than 
those of the long-chain PFCAs in humans. In birds, PFOA and shorter 
homologues do not bioaccumulate. 

 
The proportion between PFNA and PFDA is similar in dust and serum, 
while the contribution of PFOA is much higher in serum compared to 
dust. This indicates that sources other than dust are important for human 
PFOA exposure. These sources could be from other exposure pathways, 
such as drinking water or food, or PAPs-intake through dust, with subse-
quent degradation in the human body. 

 
As discussed in Paper IV, exposure pathways may differ between terrestri-
al and freshwater environment, where atmospheric sources are suggested 
to be of higher importance in the terrestrial environment compared to the 
freshwater environment. In the freshwater environment, other sources 
such as emissions from waste water treatment plants can be of more im-
portance compared to the atmospheric pathway. The relative importance 
of exposure pathways has been hypothesized to be reflected by the homo-
logue pattern, where a typical odd-even pattern indicate that the atmos-
pheric transport and degradation of precursors is the dominant pathway 
for PFASs exposure. In the bird eggs, even-numbered PFCAs contributed 
more to ∑PFCAs in the freshwater environment (49%), compared to the 
terrestrial environment (39%) (fig. 14).   
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Figure 14. Percentage distribution of PFCAs in raptor bird eggs from the terrestrial 
and the freshwater enviornment. The terrestrial bird eggs are sampled in 2014, and 
the freshwater bird eggs are sampled in 2013. 

Even-numbered PFCAs contribute more to ∑PFCAs in the freshwater envi-
ronment (47%), compared to the terrestrial environment (32%). The hy-
pothesis that major exposure pathway in the terrestrial environment is 
from degradation of atmospheric transported precursors imply that a typi-
cal odd-even pattern can be observed. Atmospheric degradation of n:2 
fluorotelomer precursors will result in Cn PFCA and Cn+1 PFCA at similar 
yield, followed by an increased proportion of Cn+1 PFCA, due to compara-
ble higher bioaccumulation factor. When other sources such as release 
from waste water treatment plants are of more importance, PFCAs formed 
from biodegradation of fluorotelomer precursors will yield mainly even-
numbered PFCAs.  

 
The profile of diPAPs in dust and sludge, the matrices where diPAPs pre-
dominated the profile, are shown in figure 15.  
 



ULRIKA ERIKSSON  Contribution of precursors to PFCAs in humans and environment   71 
  

  

Figure 15. Percentage distribution of 6:2 diPAP, 6:2/8:2 diPAP, 8:2 diPAP, 
6:2/10:2 diPAP, 8:2/10:2 diPAP, 6:2/12:2 diPAP, 10:2 diPAP, 8:2/12:2 diPAP, 
6:2/14:2 diPAP in dust and sludge. The sludge samples in 2012 – 2015, and the 
dust samples in 2008 – 2013. 

The homologue distributions of diPAPs in dust and sludge are relatively 
similar. The profiles are dominated by C6 – C10 homologues, with small-
er contribution from C12 and C14 homologues. In the sludge samples, 
there is a tendency of higher proportion of 8:2/10:2 diPAP and 10:2 diPAP 
and their structural isomers, which could be explained by higher sorption 
capacity compared to 8:2 diPAP and shorter homologues. This pattern is 
typical for the fluorotelomer production process, as discussed in Paper I. It 
seems like long-chain diPAPs still are ubiquitous, either in diPAP produc-
tion or in consumer products.  

 
The fluorotelomerization process generally generates mixtures of homo-
logues. Therefore, homologues of other chain lengths than the targeted 
ones can be left as residuals. The PFAS manufacturers are moving towards 
C6 chemistry (3M Company 2002, Daikin 2007, DuPont 2008, AGC 
2016), and it is possible that 8:2 diPAP and longer homologues will be 
present as residuals in 6:2 diPAP products.  
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4. 6. 1. Temporal trends 
Is regulations and/or voluntary restrictions effective tools to reduce PFAS 
contamination? Temporal trends is a way to evaluate the effects of imple-
mented regulation.  

 
In Paper II, Australian serum samples from 2002 to 2013 were analyzed 
for PFASs, stratified into gender and age groups. However, low frequency 
of detection of precursor compounds hampered the assessments, and suffi-
cient data to evaluate changes over time for precursor exposure was only 
obtained for 8:2 FTSA. For 8:2 FTSA, a declining trend was observed 
between 2002 and 2013. It was interesting to note that the highest single 
levels of 6:2 diPAP were observed more frequently in recent years.  

 
Temporal trends were evaluated for osprey eggs in Paper IV. Similarly to 
the serum samples, temporal trends of precursor compounds could not be 
assessed due to low frequency of detection. However, the diPAPs, 6:2 
FTSA, and FTCAs could be detected throughout the entire study period 
from 1997 – 2001 to 2013, suggesting that biota were still exposed to 
precursor compounds.  

 
As precursor compounds generally are present at low picogram per gram 
levels in biotic sample, their contribution to PFAS exposure over time is 
difficult to assess. Evaluating their degradation products can provide an 
indirect measurement of their impact on exposure. In figure 16, the tem-
poral trends of ∑PFCAs and the proportional contribution of ∑PFCA to 
∑PFASs in human serum from Paper II and bird eggs of osprey from Paper 
IV are shown. 
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Figure 16. The temporal trend of ∑PFCAs in human serum and bird eggs (ng/g), 
and the temporal trend of the relative contribution of PFCAs to ∑PFAS in human 
serum and bird eggs (%). 

Contrasting trends are observed in serum and bird eggs. The total amount 
of PFCAs in serum has decreased from the early 2000s to 2013, while the 
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PFCA levels have increased in bird eggs. A major contributor of the de-
crease in human serum is the decreasing PFOA levels. Levels of the long-
chain PFCAs (C10 – C14) are of higher importance to ∑PFCAs for bird 
eggs, however no decrease of these neither in humans nor birds was ob-
served. During the same time span, the contribution of PFCAs to ∑PFASs 
has become more important. This is both an effect of decreasing PFSA 
levels, and for birds, increasing PFCA levels. 

In the sludge samples, the proportion of 8:2 diPAP compared to 6:2 di-
PAP was decreased between 2012 and 2015. Additonally, the 8:2 
monoPAP levels were lower in 2015 compared to 2012. The tendency of 
higher proportion of C6 compared to C8 in 2015 compared to previous 
years could indicate a shift towards more shorter-chain PFASs. 

Overall, the switch in industry towards short-chain PFASs is reflected 
by the patterns and trends in humans and environment. While some PFASs 
have been phased out of production, replacement compounds have taken 
their place, as can be seen by the high levels of PAPs in abiotic matrices. 
Precursor compounds will eventually degrade into persistent PFCAs. It has 
been argued that the short-chain PFASs do not bioaccumulate and do not 
fulfil the vPvB (very persistent, very bioaccumulative) criteria set for regu-
lations of chemicals. Though less bioaccumulative than their longer-
chained analogues, short-chain PFASs are as persistent as the long-chained 
PFASs, and do not degrade in humans and environment.  
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5. Conclusions 
In this thesis, the contribution of precursors to the total amount of PFCAs 
exposure in humans and environment was assessed, by analyzing PAPs 
together with a wide range of other PFASs in dust, human serum, sludge, 
water, and raptor bird eggs. The broad approach of this thesis made it 
possible to characterize the differences between levels and profiles of both 
PFCAs precursors and other PFAS compound classes in different com-
partments.  

Mono-, di-, and triPAPs were found to be globally abundant in indoor 
dust, at levels exceeding those of persistent PFAS classes. The high level 
imply that PAPs in dust might be a significant source for exposure, espe-
cially for children.  

Detection of low levels of precursors in serum from men, women, and 
children in Australia revealed direct exposure from consumer products. 
Slow declining trends further supported the hypothesis of ongoing PFCAs 
exposure. 

During waste water treatment, levels of PFCAs increased in the effluent 
water compared to the influent water. Precursors were detected in the 
sludge and in the waste water, and the levels of diPAPs were higher in the 
influent water compared to the effluent water. One waste water treatment 
plant showed an estimated contribution of 19% from diPAPs to the net 
increase of PFOA. This supports the hypothesis that degradation of pre-
cursor compounds is a significant contributor to PFAS contamination in 
the environment. A significant proportion of PFCAs released in the efflu-
ent waste water is probably from unknown precursor compounds. Though 
FTSAs are known to degrade in sludge, they were not observed to decrease 
substantially in the Swedish waste water treatment plants. This suggest 
that FTSA precursors might be present in the waste water and sludge.   

Precursor compounds were detected in raptor wild birds. No decline of 
PFASs was observed during the years following the regulations and volun-
tary phase-out of PFOS and PFCAs. This demonstrate the vulnerability of 
endangered species that are exposed to both historic and recent PFAS 
sources.   

Current regulations have not yet fulfilled their aim to protect humans 
and the environment from PFAS exposure.  
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The major conclusions in this thesis can be summarized as: 
 

• PAPs in indoor dust is a global source of human exposure 
 

• There is an ongoing exposure of PFCAs to humans 
 

• Degradation of precursors is a significant contributor to environ-
mental contamination 

 
• PFASs emissions lead to long-term effect in the environment 
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6. Future perspective 
For future monitoring studies, the monoPAPs, diPAPs, and FTSAs should 
be included, especially in abiotic matrices. For regular monitoring 6:2 
monoPAP, 8:2 monoPAP, 6:2 diPAP, 6:2/8:2 diPAP, 8:2 diPAP, 6:2 FTSA, 
and 8:2 FTSA are most important homologues and are suggested to be 
selected as indicator compounds. Levels of these and ratios between select-
ed PAPs homologues provides information useful for total PAPs exposure 
estimation and changes in commercial PAPs mixtures compositions. For 
in-depth evaluation of changes in manufacturing applications, complete 
analysis of PAPs profile including C4-C18, mono- di- and tri-substituted 
PAPs is recommended. 

The source for FTSAs in wild birds needs to be further investigated. 
Precursors of FTSAs need to be analyzed together with FTSAs in both 
wildlife and potential sources, such as in freshwater, sediment, fish, waste 
water, and sludge. 

Little is known about the contribution from polymer degradation and 
more studies are needed for assessment to what extent they might contrib-
ute to the total amount of PFAS.  

The number of compounds that need to be monitored is increasing. 
New PFAS compounds constantly enter the market. Directives such as 
trade secrets hamper the possibilities for scientists to use straightforward 
strategies in the analysis of PFASs. The current legal frameworks always 
leave scientists one step behind, and the scientific community should aim 
to reduce the gap using the most effective tools available. Both qualitative 
and quantitative data are needed. 

When compositions and formulas of PFAS are constantly changed by 
the industry, it is important to ensure that the most relevant substances are 
being monitored. The use of extractable organofluorine (EOF) and total 
organofluorine combustion ion chromatography (TOF-CIC) are important 
tools in the assessment of how much of the total PFAS amount is covered 
in quantitative analysis of individual compounds. Analysis of total EOF 
content should be included in monitoring studies in order to assess the 
coverage of identified and quantified PFASs to the total amount of PFASs. 
The unknown proportion of PFAS needs to be identified, using methods as 
untargeted screening using liquid chromatography mass spectrometry 
time-of-flight analysis (LC–MS–TOF) for qualification. 
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