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A short introduction is given about direct variational methods and their relation to Galerkin and

moment methods, all flexible and powerful approaches for finding approximate solutions to difficult

physical equations. An application of these methods is given in the form of the variational problem of

minimizing the discomfort experienced during different journeys, between two fixed horizontal points

while keeping the travel time constant. The analysis is shown to provide simple, yet accurate,

approximate solutions of the problem and illustrates the usefulness and the power of direct variational

and moment methods. It also demonstrates the problem of a priori assessing the accuracy of the

approximate solutions and illustrates that the variational solution does not necessarily provide a more

accurate solution than that obtained by moment methods. VC 2016 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4955151]

I. INTRODUCTION

Variational calculus is a classical subject in mathematics
with many applications in physics and engineering.1–6

Although examples of variational problems were formulated
very early in the scientific history (a famous example being
Fermat’s principle of least time in optics), it is fair to say
that variational calculus appeared as a particular mathemati-
cal field approximately 300 years ago, when it was devel-
oped in order to solve the classical brachistochrone problem
by Bernoulli in 1696. It was then found that the optimal
function of a variational problem must satisfy a certain dif-
ferential equation—the Euler–Lagrange variational equa-
tion—directly determined by the integrand, the Lagrangian
density, of the functional to be optimized. In many cases,
however, the Euler–Lagrange equation constitutes a compli-
cated differential equation that does not allow an explicit
analytical solution. In such situations, direct variational
methods, e.g., the Rayleigh–Ritz method based on trial func-
tions, have been found very useful for finding approximate
solutions of the problems. A fact seldom emphasized is that
the Rayleigh–Ritz method is closely related to another tech-
nique for finding approximate solutions of differential equa-
tions, the Galerkin method, which is a particular example of
a moment method or the method of weighted residuals.

Although some applications of variational calculus, for
example Hamilton’s principle, are taught at the undergraduate
level, direct variational calculus and moment methods are usu-
ally considered subjects more suitable for the graduate level.
This is rather unfortunate because the direct variational methods
developed from variational calculus (such as the Rayleigh–Ritz
optimization), as well as moment methods, are widely used and
provide powerful means of obtaining approximate analytical
solutions. Many such problems can also be presented at the
undergraduate level and can be used to encourage the curiosity
and the creativity of the students. The purpose of the present
work is to demonstrate the formulation of a variational problem
and the application of the Rayleigh–Ritz and moment methods
to illustrate the power and flexibility of these methods.

To this end, the problem to be considered is the minimiza-
tion of the discomfort experienced during a journey along a

straight horizontal line from one point to another. Even if the
travel time is kept fixed, the distance may still be covered in
many different ways. Strong acceleration and deceleration
are clearly uncomfortable and as a model for the total dis-
comfort experienced during the journey, a discomfort func-
tional may be defined by integrating the acceleration/
deceleration squared (to avoid cancelation effects) over the
total journey. Minimizing this functional while keeping the
travel time constant leads to a variational problem that can
be solved analytically to give the optimal (i.e., least uncom-
fortable) velocity as a function of traveled distance. On the
other hand, it can be—and has been—argued that changes in
acceleration/deceleration, more specifically the time rate of
change of the acceleration (the so-called jerk7), gives rise to
even more discomfort than acceleration and deceleration,
and it is interesting to reexamine the above problem by
defining the discomfort functional in terms of the jerk
(squared) instead of the acceleration. The jerk plays an im-
portant role in a number of diverse technical applications,
such as in the design of a smooth gradual transition of the
curvature from a straight path to a circular one in railways
and highways, as well as to the generation of flow noise in
acoustics.7

Although the variational problem corresponding to the
acceleration-induced discomfort problem can be solved ana-
lytically, it is also interesting to compare with the approxi-
mate results obtained using the Rayleigh–Ritz and moment
methods. The approximate solutions are found to be in good
agreement with the exact solution. On the other hand, the
concomitant variational equation for the jerk-induced dis-
comfort is more complicated and it does not seem possible to
find an analytical solution. Again, the Rayleigh–Ritz optimi-
zation procedure and the moment method are used to find
simple approximate solutions. Based on trial functions simi-
lar to those used in the acceleration-discomfort problem, it is
found that the moment method gives a significantly better
result than that of the direct variational approach when com-
pared with the numerically obtained solution. The reason for
this somewhat surprising result is explained by the fact that
the trial function in the Rayleigh–Ritz approach gives rise to
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a discomfort integral that is close to a divergent limit,
whereas the moment approach avoids this problem by using
appropriate choices of weight functions.

II. THE DISCOMFORT FUNCTIONALS

Consider a journey along a straight and horizontal road
from point A to point B with neither speed limits nor fellow
travelers, in an ideal car being able to accelerate and deceler-
ate without bounds and to attain any velocities. The journey
starts from rest at A and ends with the car standing still at B.
The time T elapsed in going from A to B is given by

T ¼
ðT

0

dt ¼
ðþD

�D

dx

v xð Þ
; (1)

where v(x) denotes the velocity as a function of distance x.
Without loss of generality, we have introduced a coordinate
system such that point A corresponds to x ¼ �D and point B
corresponds to x ¼ þD, and consequently vð6DÞ ¼ 0. It is
evident that the variation of velocity with time (or distance)
may by chosen in many different ways while still giving rise
to the same travel time. However, the discomfort experi-
enced will depend on the chosen velocity variation. An
unpleasant feature of a journey is strong acceleration/decel-
eration and a natural measure of the total discomfort during
the journey is the discomfort functional

J v xð Þ½ � ¼
ðT

0

a2 dt ¼
ðþD

�D

v
dv

dx

� �2

dx; (2)

where a(t) denotes the acceleration, which can be expressed
in terms of the velocity as

a tð Þ ¼ dv

dt
¼ v

dv

dx
¼ 1

2

d v2ð Þ
dx

: (3)

The problem of minimizing J½vðxÞ� while keeping the
travel time constant leads to a variational problem that
involves a subsidiary condition (the constant travel time). It
can be formulated as

dJ v xð Þ½ � ¼ d
ðþD

�D

v
dv

dx

� �2

dx ¼ 0; (4)

subject to the subsidiary conditionðþD

�D

dx

v xð Þ ¼ T; (5)

or, equivalently,

d
ðþD

�D

Lðv; dv=dxÞ dx ¼ 0; (6)

where the Lagrangian Lðv; dv=dxÞ is given by

L v; dv=dxð Þ ¼ v
dv

dx

� �2

þ k
v
: (7)

Here, k plays the role of a Lagrange multiplier that can be
determined from the subsidiary condition. A similar,

mathematically equivalent problem was analyzed in Ref. 8.
However, the present analysis will pursue the new problem
formulation further than in Ref. 8, to obtain a simple exact
solution for the variation of distance with time, and also to
demonstrate how accurate approximate solutions of the prob-
lem can be found using moment methods.

The Euler–Lagrange equation corresponding to the varia-
tional problem reads

@L

@v
� d

dx

@L

@ dv=dxð Þ ¼ 0; (8)

which implies the differential equation

2v
d2v

dx2
þ dv

dx

� �2

þ k
v2
¼ 0; (9)

where vð0Þ ¼ vm (the unknown maximum value of the ve-
locity), vð6DÞ ¼ 0, and dvð0Þ=dx ¼ 0 (using the fact that
the velocity v(x) is symmetric around x¼ 0). The solution
of Eq. (9) can be found in implicit form, x ¼ xðvÞ, and is
given by8

ffiffiffiffi
K
p

x=Dð Þ ¼ 2

3
2þ v=vmð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vm

p
; 0 � x=D � 1;

(10)

where K � kD2=v4
m. It is enough to consider only the interval

0 � x=D � 1, with the function v(x) being even. The condi-
tion v(D)¼ 0 directly determines the normalized Lagrange
multiplier to be K ¼ 16=9. Finally, the integral in Eq. (1)
(the subsidiary condition) can be evaluated using the change
of variables determined by Eq. (10). The value of the maxi-
mum speed vm, in terms of travel distance 2D and time T, is
found to be vm ¼ 3D=T. It is interesting to note that Eq. (10)
can be inverted to yield

v=vm ¼ 2 cos
2

3
arcsin x=Dð Þ

� �
� 1; (11)

which can be integrated further (note that v ¼ dx=dtÞ to give

t=T ¼ 1

2
þ sin

1

3
arcsin x=Dð Þ

� �
: (12)

Finally, this expression can be inverted to give the distance x
as an explicit third-order polynomial in time t

x=D ¼ �1þ 6ðt=TÞ2 � 4ðt=TÞ3: (13)

Turning now to the jerk-induced discomfort, it is clear that
the corresponding discomfort functional can be defined anal-
ogously as

J v xð Þ½ � ¼
ðT

0

j2dt ¼
ðþD

�D

v

4

d2 v2ð Þ
dx2

� �2

dx; (14)

where the jerk j has been expressed as

j ¼ da

dt
¼ d

dt

1

2

d v2ð Þ
dx

� �
¼ v

2

d2 v2ð Þ
dx2

: (15)

The corresponding variational problem thus becomes
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d
ðþD

�D

v

4

d2 v2ð Þ
dx2

� �2

þ k
v

( )
dx ¼ 0: (16)

It is convenient to rewrite Eq. (16) using the variable V ¼ v2,
in terms of which the variational problem can be written

d
ðþD

�D

ffiffiffiffi
V
p

4

d2V

dx2

� �2

þ kffiffiffiffi
V
p

" #
dx ¼ 0: (17)

For Lagrangians of the form L ¼ Lðy; d2y=dx2Þ, the corre-
sponding variational derivative is

dL

dy
¼ @L

@y
þ d2

dx2

@L

@ d2y=dx2ð Þ ; (18)

which in the present case results in the following variational
equation for v(x):

d2

dx2

ffiffiffiffi
V
p d2V

dx2

� �
þ 1

4
ffiffiffiffi
V
p d2V

dx2

� �2

� k

V
ffiffiffiffi
V
p ¼ 0: (19)

This equation is equivalent to the Euler–Lagrange equation
obtained from Eq. (16) for v(x), but is algebraically simpler.
Necessary boundary conditions for Eq. (19) on the interval
0 � x � D are V(D)¼ 0, Vð0Þ ¼ v2

m, and dVð0Þ=dx
¼ d3Vð0Þ=dx3 ¼ 0. The last two boundary conditions,
requiring vanishing odd derivatives at x¼ 0, are due to the
fact that we are looking for an even function on the interval,
�D � x � þD. In addition, the journey must start and end
with the car at rest, which means that the initial acceleration/
deceleration must be zero in order to have finite jerk at the
beginning and end of the journey. This observation [cf. Eq.
(3)] provides the additional boundary condition of vanishing
acceleration at x¼D, i.e., dVðDÞ=dx ¼ 0. Together, these
constitute the five boundary conditions necessary to solve
the problem given by the fourth-order differential equation
in Eq. (19), including the unknown multiplier k. However,
Eq. (19) seems too difficult to permit an exact analytical so-
lution, and resort must be taken to approximate analytical
and/or numerical methods. Direct variational and moment
methods are very powerful, and are often used in situations
like this. These approaches and the relation between them
will be elaborated in some detail in Sec. III.

III. RELATION BETWEEN THE RAYLEIGH–RITZ

OPTIMIZATION AND THE MOMENT METHODS

In many variational problems, it turns out that the corre-
sponding Euler–Lagrange equations cannot be solved ana-
lytically. In such situations, direct variational methods (such
as the Rayleigh–Ritz method) have been found very useful
for obtaining approximate solutions of the problems. The ba-
sic idea in the Rayleigh–Ritz procedure is simple, but gen-
eral. Instead of allowing an arbitrary variation dyðxÞ in the
functional analysis, the optimum solution is sought among a
restricted sub-set of the allowable function space via trial
functions of given functional form, but with flexibility incor-
porated by dependence on a number of parameters ak, i.e.,
yðxÞ ! yTðx; a1; a2;…; anÞ. However, trial functions involv-
ing free parameters imply that the functional becomes an or-
dinary function of the parameters ak and the optimization of
the functional corresponds to the conditions

@hL yTð Þi
@ak

¼ 0; k ¼ 1; 2;…; n; (20)

where

hLðyTÞi ¼
ðb

a

LðyTÞ dx: (21)

Another way of writing the first variation of the functional
is suggestive, given by

d
ðb

a

L yTð Þdx ¼
ðb

a

dL yTð Þ
dyT

dyT dx

¼
Xn

k¼1

ðb

a

dL yTð Þ
dyT

@yT x; a1; a2;…; anð Þ
@ak

dx

 !

� dak ¼ 0:

(22)

Since the variations dak of the parameters ak are independent,
this implies that the restricted optimization condition becomesðb

a

dL yTð Þ
dyT

@yT x; a1; a2;…; anð Þ
@ak

dx ¼ 0;

k ¼ 1; 2;…; n; (23)

which is equivalent to Eq. (20), but has the advantage that it
can be written asðb

a

R½yT �wkðxÞ dx ¼ 0; k ¼ 1; 2;…; n; (24)

where R½yT � ¼ dLðyTÞ=dyT is the residual error function
obtained when inserting the trial function in the
Euler–Lagrange equation dLðyÞ=dy ¼ 0, and

wk xð Þ ¼
@yT x; a1; a2;…; anð Þ

@ak
; k ¼ 1; 2;…; n: (25)

Note that yT does not satisfy the equation R½yT � ¼ 0 since yT

is not a solution of R½y� ¼ 0. In this form, the optimization
condition implies the vanishing of certain weighted moments
of the Euler–Lagrange equation. This idea is closely related to
another, but even more general, approximation method known
as the Galerkin method. This method is a special case of the
more general moment method or the method of weighted resid-
uals.5,6 The first part of the Galerkin and moment methods is
equivalent to the Rayleigh–Ritz optimization procedure: an ap-
proximate solution of a given differential equation is sought in
the form of a trial function, of specified x-dependence, but with
flexibility allowed by including a number of parameters, i.e.,
yðxÞ ¼ yTðx; a1; a2;…; anÞ, where yTðx; a1; a2;…; anÞ satisfies
the boundary conditions for all parameters ak, k ¼ 1; 2;…; n.
Clearly, this ansatz function in general does not satisfy the con-
sidered differential equation R½y� ¼ 0, and rather gives rise to a
residual R½yTðxÞ� 6¼ 0. This residual can be made to vanish,
however, in a weighted averaged sense, by multiplying it with
certain weight functions wkðxÞ and integrating over the interval

ðb

a

R½yTðx; a1; a2;…; anÞ�wkðxÞ dx ¼ 0; k ¼ 1; 2;…; n:

(26)
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This equation provides n relations for determining the n
unknown parameters ak. In fact, if the original equation orig-
inates from a variational problem and the weight functions
are taken as wk ¼ @yT=@ak, the corresponding variational
and moment equations coincide.5,6 However, the moment
approach is more flexible than the variational approach,
being applicable to a broader range of problems, such as
those where a variational reformulation of the original equa-
tion is not possible. It also offers some freedom by allowing
an unrestricted choice of weight functions. However, in the
Galerkin method, the weight function is chosen to be equal
to the trial function.5,6

IV. SOLUTIONS OF THE DISCOMFORT PROBLEMS

It is instructive to begin by applying the approximation pro-
cedures to the first problem with the acceleration/deceleration-
based discomfort functional for which an explicit analytical
solution exists for easy comparison. A crucial step in the
application of the Rayleigh–Ritz optimization procedure, as
well as the moment methods, is the choice of trial function.
It requires an intuitive idea of what the functional depend-
ence of the solution should look like and should include
some flexibility allowed by free parameters. In the present
application, the optimal curve v(x), being zero at x ¼ 6D,
should be symmetric around x¼ 0 (meaning dvð0Þ=dx ¼ 0)
and should be smooth. A simple possible choice would be a
function of the form vTðxÞ ¼ vmð1� x2=D2Þa, containing the
two free parameters vm (which determines the maximum ve-
locity during the journey) and a (which determines the steep-
ness of the curve). However, variations with respect to a
would lead to a difficult transcendental equation and it is
simpler to make a reasonable choice for the value of a, leav-
ing only vm to be varied. When inserting a trial function of
the suggested form into the discomfort integral, one finds
that it only converges if aþ ð2a� 2Þ > �1 or if a > 1=3.
Furthermore, the second part of the variational functional,
which determines the travel time, converges only if a < 1.
Thus, it is inferred that 1=3 < a < 1. A reasonable compro-
mise is then a ¼ 1=2, which also holds the promise of giving
rise to simple calculations.

Inserting the trial function vTðxÞ ¼ vmð1� x2=D2Þ1=2
into

the Lagrangian given in Eq. (7) and integrating over the
interval ½�D;D�, one finds

hL vTð Þi ¼
pD

2

v3
m

D2
þ 2k

vm

� �
: (27)

Since hLi is now a function of vm alone, optimization with
respect to vm yields

@hL vTð Þi
@vm

¼ 0 ) kD2

v4
m

� K ¼ 3

2
¼ 1:5; (28)

to be compared with the exact value K ¼ 16=9 � 1:78, for
an absolute relative error of 16%. Finally, the problem is
closed by solving for vm from the subsidiary condition for
the travel time. This gives vm ¼ pD=T, in good agreement
with the exact solution vm ¼ 3D=T, the corresponding
absolute relative error being only 5%. It is interesting to
note that the exact solution gives rise to a smooth journey
in the sense that it also possesses finite acceleration at the
start and endpoints. In fact, it can be shown that
aðDÞ ¼ �12D=T2. Of the different trial functions of the

form vðxÞ ¼ vmð1� x2=D2Þa, only the one corresponding to
a ¼ 1=2 has finite and nonzero acceleration at x¼D. The
corresponding acceleration is aðDÞ ¼ �p2D=T2, the abso-
lute relative error being 18%.

The same result can also be obtained with the moment
equation in the form of Eq. (24). To this end, we use the var-
iational derivative dL=dv in Eq. (9) as the residual R½v� and
choose the weight function according to wðxÞ ¼ @vT=@vm

¼ ð1� x2=D2Þ1=2
, as specified by both the Galerkin method

and the Rayleigh–Ritz optimization procedure. This yields

ðþD

�D

R vT½ �w xð Þdx ¼
ðþD

�D

2vT
d2vT

dx2
þ dvT

dx

� �2

þ k
v2

T

 !

� @vT

@vm
dx ¼ pD

2

2k
v2

m

� 3v2
m

D2

 !
¼ 0;

(29)

which implies K ¼ 3=2 as before. However, although the
Galerkin method uses the trial function as weight function,
the general moment method approach does not restrict the
choice of weight function. By inspecting Eq. (9), it is
inferred that a suitable choice of weight function would be
w ¼ 1� x2=D2, which has the advantage that it leads to very
simple calculations. Indeed, a trivial calculation yields
K ¼ 5=3 ¼ 15=9 � 1:67, in good agreement with the exact
result for the Lagrange multiplier, the absolute relative error
being only 6%. Since the trial function is the same, the maxi-
mum speed vm remains the same. This illustrates the impor-
tant point that the accuracy of a direct variational
approximation is very difficult to predict a priori,9 and also
that the result of a moment method approximation might
well (for certain weight functions) be better than that of a
variational one, even though the same trial function is used.
Finally, we note that the differential equation implied by the
trial function v ¼ dx=dt ¼ vm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2=D2

p
can be solved to

give the distance x(t) in the explicit form

x=D ¼ sin p
t

T
� 1

2

� �� �
: (30)

A comparison between the exact and approximate solutions
is given in Fig. 1.

Turning finally to the jerk-induced discomfort functional,
only an approximate approach seems possible, the varia-
tional equation being a complicated fourth-order differential
equation. Again, a trial function of the form vðxÞ ¼ vmð1
�x2=D2Þa seems an appropriate choice. The requirement
of finite discomfort and time integrals implies that 3=5 < a
< 1. If again we require finite and non-zero initial value of
the jerk at x ¼ 6D, this implies a ¼ 2=3, clearly an admissi-
ble value of a, although this value is uncomfortably close to
the value a ¼ 3=5 at which the discomfort integral diverges.
As such, a small “error” in a may potentially lead to a large
error in the value of the discomfort integral and a concomi-
tant large error in the Lagrange multiplier k. Nevertheless,
using the trial function v ¼ vmð1� x2=D2Þ2=3

, the
Lagrangian becomes

hLi ¼ 32v5
m

9D3
I0 �

10

3
I2 þ

25

9
I4

� �
þ 2kDI0

vm
; (31)
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where

In �
ð1

0

xn 1� x2ð Þ�2=3
dx ¼

C
1

3

� �
C

nþ 1

2

� �

2C
nþ 1

2
þ 1

3

� � ; (32)

and CðxÞ denotes the Gamma function. Variation with
respect to vm gives

K � kD4

v6
m

¼ 80

9
1� 10I2

3I0

þ 25I4

9I0

� �
; (33)

and using the property that Cðxþ 1Þ ¼ xCðxÞ, this result can
be simplified to K ¼ 320=99 � 3:23.

Turning now to a moment analysis of Eq. (19) based on the
trial function vðxÞ ¼ Vmð1� x2=D2Þ4=3

, the Rayleigh–Ritz
procedure prescribes the weight function as wðxÞ ¼ @V=@Vm

¼ ð1� x2=D2Þ4=3
, which gives the same result as found above

and the same as that obtained using the Galerkin approach.
However, in a general moment analysis, we are free to choose

the weight function as we please and another possible choice
that leads to very simple calculations is wðxÞ / vðxÞ

ffiffiffiffiffiffiffiffi
vðxÞ

p
or

wðxÞ ¼ ð1� x2=D2Þ2. In fact, this choice reduces all inte-
grands in the weighted moment to polynomials, thus avoiding
the more complicated integrals that arise in the Rayleigh–Ritz
and Galerkin procedures. Straightforward calculations then
yield K ¼ 448=81 � 5:53. The maximum value of the veloc-
ity is determined directly from the travel time condition and is
found to be

vm ¼ 2I0

D

T
¼ 5

ffiffiffi
p
p

4

C 4=3ð Þ
C 11=6ð Þ � 4:21D=T: (34)

It is interesting to note that the use of the weight function
wðxÞ ¼ ð1� x2=D2Þ2 avoids the problem of the singularity
of the discomfort functional associated with the limit expo-
nent a ¼ 3=5. In fact, using instead this exponent, or the trial
function vðxÞ ¼ v2

mð1� x2=D2Þ6=5
, the moment method gives

K ¼ 36

25
5K0 �

42

5
K2 þ

21

5
K4

� �
; (35)

where

Kn ¼
ð1

0

xn 1� x2ð Þ�2=5
dx ¼

C
nþ 1

2

� �
C

3

5

� �

2C
nþ 1

2
þ 3

5

� � : (36)

This implies K � 5:10 and vm � 3:68D=T.
The question of the accuracy of the found solutions can

only be settled by a numerical solution of the variational
equation, which can be written in the form more suitable
for numerical calculations using the normalized variables
V=Vm ! V and x=D! x. This implies the equation

d2

dx2

ffiffiffiffi
V
p d2V

dx2

� �
þ 1

4
ffiffiffiffi
V
p d2V

dx2

� �2

� K

V
ffiffiffiffi
V
p ¼ 0; (37)

subject to the following five (normalized) boundary condi-
tions on the interval ½0; 1�: Vð1Þ ¼ dVð1Þ=dx ¼ 0; Vð0Þ ¼ 1,

and dVð0Þ=dx ¼ d3Vð0Þ=dx3 ¼ 0. A numerical solution
gives K � 5:18 and vm � 3:52D=T, in good agreement with
the approximate result obtained by the moment method using

the trial function vðxÞ ¼ v2
mð1� x2=D2Þ6=5

and the weight

function wT ¼ V
ffiffiffiffi
V
p

. This is significantly better than the
result of the Raleigh–Ritz and Galerkin methods based on

the weight function wðxÞ ¼ ð1� x2=D2Þ4=3
. A comparison

between the approximate solutions and the numerically
obtained solution is shown in Fig. 2 and it shows good agree-
ment over the entire interval.

At this point, it is appropriate to emphasize that the varia-
tional Eqs. (9) and (19), involving the Lagrange multiplier k,
from a purely mathematical point of view, can be considered
as eigenvalue problems, the multiplier playing the role of the
eigenvalue. However, in a variational problem involving a
subsidiary condition, the Lagrange multiplier has no physical
significance. On the other hand, eigenvalue problems are
commonly met in many physical and technical applications
where the actual eigenvalue contains important information
about the properties of the solution.

It can be argued in the present analysis, based on trial
functions involving only one parameter, that a solution could

Fig. 1. Comparison between the approximate and exact solutions. Left graph

(distance): Eqs. (30) and (13). Right graph (velocity): vðxÞ=vm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2=D2

p
and Eq. (11). The lower figures show the variations of the errors over the

interval.
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have been determined directly from the subsidiary condi-
tion, without even involving a variational formulation and a
Lagrange multiplier. However, this “degeneration of the
analysis” only occurs in the simplest case of a trial function
involving one free parameter and that the form of the trial
function be chosen based on properties of the variational
functional. Furthermore, an important aspect of our presen-
tation is to illustrate the use of direct variational and
moment methods, which may also be used for applications
involving eigenvalue problems, where the actual value of
the eigenvalue has physical and technical importance.
Thus, the determination of the Lagrange multiplier/eigen-
value value in the present problem provides an example of
the use of the Rayleigh–Ritz and moment methods for a
broad class of other problems. The comparison of the ap-
proximate and exact/numerical results for the eigenvalue
gives a good indication of the accuracy of the approximate
solutions.

Finally, we note that the chosen trial functions imply that
the corresponding maximum velocity is larger than that in
the first discomfort problem. The reason for this difference
becomes obvious when considering the variation of the

acceleration in two cases: aðxÞ ¼ �v2
mx=D2 and aðxÞ ¼

�ð4v2
mx=3D2Þð1� x2=D2Þ1=3

[using the trial function

vTðxÞ ¼ vmð1� x2=D2Þ2=3
]. Clearly, the journey in the sec-

ond problem starts out and ends more smoothly with

vanishing acceleration/deceleration in order to avoid an infi-
nite jerk at the start and endpoints. This feature has to be
compensated for by a higher maximum velocity in order to
reach the same travel time as in the first case, and conse-
quently results in a more peaked velocity profile.

V. CONCLUSION

The present work provides a short introduction to direct
variational methods and the further development to moment
methods. The approaches are illustrated by an application to
a “discomfort” problem, namely, the problem of minimizing
the discomfort experienced during a journey between two
points with the travel time held fixed. The approximate solu-
tions illustrate the usefulness of the variational and moment
methods and provide simple, yet accurate, approximations.
Both methods have the inherent weakness (common to most
approximation methods) that it is not possible, a priori, to
estimate the accuracy of the obtained approximate solutions.
The accuracy of the solutions can only be found by compari-
son with the exact solutions or with numerically obtained
solutions in cases where the investigated equation does not
allow an exact analytical solution. It is also demonstrated
that a variational result may not necessarily provide the most
accurate solution and the reason for this is discussed. The
shortcoming of the variational approach in the second prob-
lem is due to the fact that the value of the concomitant dis-
comfort functional is mainly determined by the velocity
variation at “start and landing,” and a small error here
strongly influences the total value.
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lower figure shows the variations of the errors. There is very good agree-

ment; in fact, the best of the trial functions is almost indistinguishable from

the numerical solution, except close to the start and end points.
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