
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2016

Data Analysis of Minimally-
Structured Heterogeneous
Logs
An experimental study of log template extraction
and anomaly detection based on Recurrent
Neural Network and Naive Bayes.

CHANG LIU

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION

Data Analysis of Minimally-Structured
Heterogeneous Logs

An experimental study of log template extraction and anomaly detection based on
Recurrent Neural Network and Naive Bayes.

CHANG LIU

Master’s Thesis at CSC
Supervisor: Anders Holst

Examiner: Anders Lansner

Abstract
Nowadays, the ideas of continuous integration and continu-
ous delivery are under heavy usage in order to achieve rapid
software development speed and quick product delivery to
the customers with good quality. During the process of
modern software development, the testing stage has always
been with great significance so that the delivered software
is meeting all the requirements and with high quality, main-
tainability, sustainability, scalability, etc. The key assign-
ment of software testing is to find bugs from every test and
solve them.

The developers and test engineers at Ericsson, who are
working on a large scale software architecture, are mainly
relying on the logs generated during the testing, which con-
tains important information regarding the system behavior
and software status, to debug the software. However, the
volume of the data is too big and the variety is too complex
and unpredictable, therefore, it is very time consuming and
with great efforts for them to manually locate and resolve
the bugs from such vast amount of log data.

The objective of this thesis project is to explore a way
to conduct log analysis efficiently and effectively by apply-
ing relevant machine learning algorithms in order to help
people quickly detect the test failure and its possible causal-
ities. In this project, a method of preprocessing and clus-
tering original logs is designed and implemented in order
to obtain useful data which can be fed to machine learning
algorithms. The comparable log analysis, based on two ma-
chine learning algorithms - Recurrent Neural Network and
Naive Bayes, is conducted for detecting the place of sys-
tem failures and anomalies. Finally, relevant experimental
results are provided and analyzed.

Contents

1 Introduction 1

2 Background 5
2.1 Log Data Description . 5

2.1.1 Minimally-structured Logs . 7
2.1.2 Heterogeneous Logs . 8

2.2 Challenges and Limitations of Scope 12

3 Literature Study on Log Analysis 13
3.1 Related Works . 13

4 Machine Learning 19
4.1 Naive Bayes . 19

4.1.1 Bayes’ Theorem and Naive Bayes Model 20
4.2 Artificial Neural Network (ANN) . 21

4.2.1 Activation Function . 22
4.2.2 Feed-forward Neural Networks 24
4.2.3 Loss Function . 27
4.2.4 Back-propagation Algorithm 27

4.3 Recurrent Neural Network (RNN) 31
4.3.1 Recurrent Model . 32
4.3.2 Backpropagation Through Time (BPTT) 34
4.3.3 Why RNN is Difficult to Train? 35
4.3.4 Long Short Term Memory (LSTM) 36
4.3.5 Regularization and Dropout 38

5 Design and Implementation 41
5.1 Log Template Extractor . 41
5.2 Naive Bayes Model . 47

5.2.1 Training . 49
5.2.2 Evaluation . 50

5.3 Recurrent Neural Networks . 52
5.3.1 Model and Layers . 53
5.3.2 Many-to-one and Many-to-many 55

5.3.3 Build the Model . 56
5.3.4 Training and Validation . 58
5.3.5 Evaluation . 58

6 Experiments and Results 61
6.1 Log Template Extractor . 61
6.2 Machine Learning . 65

6.2.1 RNN Training and Validation 66
6.2.2 RNN vs. Naive Bayes . 71
6.2.3 Anomaly Detection . 74

7 Conclusions and Further Discussion 81

Bibliography 83

Chapter 1

Introduction

At Ericsson, the concept of Component Based Architecture (CBA) focuses on the
implementation, integration and reuse of multiple appropriate off-the-shelf indepen-
dent components into a well-defined software system [1] in order to meet certain
design requirements for different applications. The primitive idea is the decomposi-
tion of the software design into individual functional or logical components, which
are modularized and further interconnected via communication channels and ap-
plication programming interfaces (APIs). Different components are designed and
tested by separate development teams before being integrated together as a whole.
The overall development flow is based on the idea of Continuous Integration (CI)
[2], where all pieces are automatically built, compiled and merged without wasting
additional time and efforts. Even though the build, development, testing and log
collection of the CBA system are all easily automated, log analysis is still requir-
ing huge human efforts and plenty of time, especially when engineers are trying
to identify the implied causes of the system failures. With the scaling-up of the
architecture and speeding-up of the software updates and testing, the logs contain-
ing significant information may often be ignored and too hard for test engineers to
analyze.

Usually, when performing a log analysis, the test engineer consults log data from
the test cases, the system under the test, as well as other tools and instruments
such as traffic generators, vulnerability scanners, etc. They will consider the time-
stamp of the failed test cases, and look into the different log files around this time-
stamp (normally half-hour before it, depending on specific cases). Counting on their
prior experiences, the system logs (logs generated by system controllers instead of
individual components) messages are examined for finding the unexpected behaviors
which might reveal the cause of the failure. If the actual reason for the error is
found out, a trouble report will be created and sent to component design team for
debugging. Otherwise, the test engineers will inspect deeper into the components’
logs, and communicate with or sit together with the design team attempting to fix
the problem. However, in many situations, just for a single test suite (i.e., a set
of test cases), such manual log analysis by human takes lots of time just aiming

1

CHAPTER 1. INTRODUCTION

to get the possible cause of the failure, let alone after tens of times of speed-up
on the test service’s execution in the future. At that time, they will very likely be
facing with more than one hundred test runs per day. Moreover, the log messages
marked by ERROR may not offer enough information for debugging besides of its
severity level. Even though there are some lists of known recurrent faults which
can be referred to during analyzing, it is obviously not enough and very superficial
since the recorded faults are limited but the variation and variety of the failure
are considerable. Additionally, generally only the test cases which are failed are
considered to be analyzed, and all the green ones (passed tests) are ignored even
though they may contain some hidden errors which lead to the test failure.

By using machine learning methods plus a specifically designed raw log data an-
alyzer, we could understand and analyze unstructured logs with multi-formity and
huge volumes generated during the test service from various sources of the CBA
system, in order to reduce human efforts on manually analysis on massive text files,
detect faults’ causes, and even provide deeper and clearer understanding of such
massive log data. However, several major issues are stopping us from immediately
implementing machine learning algorithms, understanding the log data and obtain-
ing helpful information. First of all, every software component is independently
designed, developed and tested by an individual team. After being composed as a
entire software architecture, each of them will generate their own log files recording
the execution of the same test service running on them. The difficulty lies in the
proper comprehension of such a mixture model among different parallel processes
for the same execution. Second, due to such separation of components’ develop-
ment, the log messages are heterogeneous because, under such independent unit
development, different developers have different preferences when recording the ex-
ecutions using log messages. Third, the log messages are not fully structured, not
well formatted and very complex so that simply parsing techniques will not work
out extracting helpful information and further conducting complex analysis.

Consequently, the primary research questions are defined as following:

• How to represent the minimally-structured heterogeneous log data into decent
formats in order to conduct learning process? More specifically, when faced
with such log messages, how to identify the logs sharing the same template
and further group them into a template group?

• What the statistical or machine learning models can be used in order to obtain
the spatial/temporal patterns [3] of log messages? The spatial property is
due to the different sources of the logs; the temporal feature is due to the
chronological order of the logs.

• Based on the statistical superposition model [3] of the logs, how to evaluate
the relationship between logs and detect anomalies for debugging?

The corresponding objective of this research is to answer these questions and provide
usable prototyping for testing and log analyzing. Since the entire thesis project

2

is actually based on a very open topic, there is no exact correct answers to this
question. Consequently, the purpose of this project is to explore such area and
conduct experimental assignments in order to find the suitable and feasible methods
to address such practical problems in real life. The results of this project could
provide different view to the practical log data generated from large scale software
testing and valuable experience for the following work.

In this thesis project, a Log Extractor is designed to preprocess the collected raw
log data, cluster them based on their similarity, extract the log template of each of
the cluster, label the grouped clusters by unique identifications, and finally feed the
labels as input to the next stage. In the second stage, Recurrent Neural Networks are
constructed, trained and experimented in order to learn the sequential patterns from
the label sequence obtained from previous stage. Meanwhile, a Naive Bayes model
is built as a baseline for the comparison study. Finally, the experimental results
from both models are analyzed. The general objective is to be able to identify the
error causes and anomalies causing the test failures given new logs based on the
learning obtained from previous logs.

The remaining part of this thesis is organized as the following: Chapter 2 de-
scribes the major problems in details in terms of the characteristics of the log data
and how to tackle them. Additionally, several terminologies are defined. Chapter
3 offers the background study and literature review regarding the existing works
about log analysis in general. In Chapter 4, the Machine Learning algorithms uti-
lized to solve the problems are discussed in details, which are the Naive Bayes and
Recurrent Neural Networks. The implementation and prototyping specifications
are given in Chapter 5. And the experiments results and corresponding analysis are
given in Chapter 6. Chapter 7 finalize this thesis report with conclusions, further
discussions and future work.

3

Chapter 2

Background

First of all, several definitions of the terminologies regarding logs are offered in order
to conveniently explain the ideas and the understand the log characteristics in the
following of this report.

Definition 2.0.1. Log Entry (or Entry) is a single line of log message between
two Carriage Returns . It may consist of a Time-stamp, a Description and other
possible elements (like Server-name for system logs and Severity-level for some other
specific logs from different components), such as Figures 2.6, 2.5, 2.2 and 2.3. It
may only contain some free text without any Time-stamp such as Figure 2.4.

Definition 2.0.2. Log Template (or Template) is the common format of a group of
log entries, which are sharing the same layout but filled with different parameters.

Definition 2.0.3. Event is defined as the basic element of the program executions,
representing a single behavior or action of the program.

Remark 2.0.1. Test Case (TC) is an individual application running on the plat-
form designed to test a certain aspect or requirement (like, traffic load or network
connection) of the system.

Remark 2.0.2. Test Suite (TS) is a set of test cases integrated together for testing
a group of relevant requirements which the system should meet.

For avoiding leaking Ericsson’s data, it is better to only demonstrate a few log
examples here as long as they are sufficient enough to illustrate my ideas. Same
consideration is taken into account in Chapter 6. Experiments and Results.

2.1 Log Data Description

How to select the proper data sets for the data mining and analyzing process?

Figure 2.1 represents the structure of the set of log files belonging to a single test

5

CHAPTER 2. BACKGROUND

Figure 2.1: Log File Structure.

suite, which consists of a set of different test cases, each of which is executed for
testing specific system aspects and requirements.

A test suite is released and run on a cluster of servers composing of several
system controllers (SCs) and system payloads (PLs). Figure 2.1 shows an example
of a system cluster with 10 servers, where there are two SCs (i.e., SC1 and SC2)
and eight PLs (i.e., PL3 ~PL10). The system logs, keeping tracks of the system
behaviors during entire execution of the test suite, are generated at SCs. The logs
for specific components are generated at different SCs and PLs (single server or
a group of servers, depending on the system configurations) for the recording of
various software components’ behaviors. For conducting the data analysis, certain
data set should be chosen for comparable and continuous analysis, in terms of
different test cases and different components.

Since there are many kinds of components and different components are respon-
sible for different functionalities, properly choosing a certain set of log files could
make more sense in order to obtain the most significant information. Some of the
components only create a single log file. Some of them, on the other hand, generate
more than one type of log files. Since considering many components’ logs would
significantly increase the complexity of the work and go far beyond of the mas-
ter thesis’s scope, in this thesis project, only the system logs are considered. The

6

2.1. LOG DATA DESCRIPTION

detailed reasons are given in the following part of this chapter.
Additionally, there are several testing services running on the platforms, which

are called “Trains” in Ericsson, such as Green Train, Red Train, Blue Train or
Nightly Train. The “Trains” mentioned here represent the different test services
in terms of different software development flows. For instance, the Green Train is
the test service of the latest released version of the CBA components. The Blue
Train is the latest CBA component versions waiting to be released. The Red Train is
used to test and maintain the older versions. The Nightly Train is executed for daily
testing in order to make sure a certain version is always ready and working well. For
instance, Nightly Blue Train is running every night for testing the latest shipment
of the software. Different services are executed periodically but in different scope
and system configurations. The purpose is to get complete, sufficient and usable
data for analysis. Nightly train might be the proper choice since it is executed more
frequently so that the logs are easier to obtain and it is less frequently changed
compared to other tests.

In future work, we could obviously scale it up by including more logs from
different sources or having a larger data set. This data set plan is not fixed and will
be varied based on the developing stage and analysis requirements.

2.1.1 Minimally-structured Logs
How to interpret the log messages with various types of formats into concrete rep-
resentations (i.e., log templates)?

The system log entry is mainly minimally-structured as following:

Time-stamp Sever-name Description

Table 2.1: Message structure of syslog.

The Time-stamp indicates when this log message is generated, the Sever-name is the
source server where this log is printed out, and, more importantly, the Description
contains the most useful information for debugging but are with multiformities and
hard to be interpreted. There are several different types of system log examples
shown in Figure 2.6.

Most of the Descriptions related to system controllers are starting with a process
name and its process id (PID) represented as process-name[PID] followed by a
colon. However, most of the Descriptions generated from components written into
the system logs are not with such format. They are starting with their component
name or software module name, instead of process name, and without PID, like the
examples shown in Figure 2.5. The first log entry in Figure 2.5 is from component
com. And there are others from components or modules like CoreMW, SMF and
lde-brf-cmw.

However, the log files of software components may be differed from the system log
files in terms of the overall format, and they are even different from the component

7

CHAPTER 2. BACKGROUND

logs inside of system log files. For example, the messages presented in Figure 2.2
belongs to the component CoreMW ’s log file. There is no Sever-name indicated
in these log entries since, for the logs generated from different servers, they are
stored within different folders under different server names, respectively. However,
the thread numbers and severity level (such as NOTIFY in Figure 2.2) are shown in
these log entries. Therefore, they are following the format as:

Time-stamp Number Severity Description

Table 2.2: Message structure of CoreMW ’s log.

Even further, the Description part of CoreMW ’s logs are totally different from the
Descriptions of system logs. For instance, instead of starting with a process name
and PID like process-name[PID] in system logs, they start their Descriptions with
|MDTM and |BEGIN as headers. The above structure of CoreMW is still different from
the logs of component vDicos shown as the following:

Time-stamp Description

Table 2.3: Message structure of vDicos’s log.

where only Time-stamp and Description are printed out. Such log message examples
are shown in the Figure 2.3, where, for being properly displayed in this report, the
message’s Time-stamp is ignored and replaced by the wildcard symbol *. As shown
in the graph, the difference is not only remaining in a single log entry but also
reflected from a certain suite of logs.

Some log messages do not even have the corresponding Time-stamp. As shown
in Figure 2.4, only the first line contains the Time-stamp whereas the following lines
do not have any Time-stamp but rather belong to the save event associated with
the first log entry. Even though the first line does have the Time-stamp, the time
format is different from the Time-stamp within Figures 2.6, 2.5 and 2.2.

2.1.2 Heterogeneous Logs

No matter how the messages are structured, there is always a Description part
existing in each of the log entries. However, the Description is neither uniformly
well-formatted nor following a certain set of rules. The problem here is to under-
stand this heterogeneous descriptive part and extract features and templates from
it, in order to make the massive log messages well-regulated, since it contains most of
the useful information needed for diagnosis. Even though the Description is indeed
generated based on some formats rather than totally free text, their formats are
totally different from each other depending on different programmers’ preferences
and purposes.

They are heterogeneous due to several reasons: (i) these messages are generated
from different software components and different components are responsible for

8

2.1. LOG DATA DESCRIPTION

Aug 14 17:12:47.956342 <1843003472> NOTIFY |MDTM: svc up event for SVCid
=25, subscri. by SVCid =26 p

we_id=1 adest=0002010f6d6c000d
Aug 14 17:12:47.966866 <1843003472> NOTIFY |MDTM: uninstall_tipc : svc i

d=26,vdest id=65535
Aug 14 17:12:47.966873 <1835794445> NOTIFY |MDTM: svc down event for SVC

id =26, subscri. by SVCid =25
pwe_id=1 adest=0002010f6dda0
050

Aug 14 17:12:47.976793 <1843134544> NOTIFY |BEGIN MDS LOGGING| PID=17341
|ARCH=0|64bit=1

Aug 14 17:12:47.976951 <1843134544> NOTIFY |MDTM: install_tipc : svc id=
26, vdest=65535

Figure 2.2: Log examples of component - CoreMW

* CdsvDirector::healthcheckCallback()
*
* ----------------------- CDSvDirector status report ----------------
* Running on node: safAmfNode=SC-1,safAmfCluster=myAmfCluster
* Active instance: SC-2
* Standby instance: SC-1
*
* Controller status:
* Instance is STANDBY.
*
* Cluster is idle.
* ---

Figure 2.3: Log examples of component - vDicos.

2016-02-15 10:16:45.505 IN initComponents
Start order for passive components:
- MafMgmtSpiThreadContextService
- MafOamSpiEventService
- MafOamSpiCmRouterService
- MafOamSpiTransactionService
- VisibilityControllerComponent

Figure 2.4: Log examples of component - com.

different functionalities. Therefore, the log messages are more likely to present the
information related to their corresponding components, with specific formats or

9

CHAPTER 2. BACKGROUND

Aug 6 19:42:26 SC-1 com: COM_SA WARNING Received IMM relative distinguis
hed name to not existing IMM object <LicServer=.*>

...
Aug 6 19:42:47 SC-1 2015-08-06 19:42:47,492 ait:INFO ait_plugin_adapter:

184: install.sh >>> ERIC-IspC-CXP9022351_1-R3A02 imp
orted (type=Bundle)

Aug 6 19:42:47 SC-1 CMW: Invoked: [cmw-sdp-import /home/ait/repo/unpack/
plugin/CXP9022352-1_R3A02_depl/ERIC-ISP-C-I1-TEMPLAT
E-CXP9022352_1-R3A02/ERIC-ISP-C-I1-TEMPLATE-CXP90223
52_1-R3A02.sdp]

Aug 6 19:42:47 SC-1 SMF: smfBundleCheckCmd: [smfBundleCheckCmd --sdp=/tm
p/TEMP_SDP_lpN28w]

...
Aug 6 19:42:49 SC-1 lde-brf-cmw: admin operation, operationid: 0 (0)
Aug 6 19:42:49 SC-1 lde-brf-cmw: Handling operation 0
Aug 6 19:42:49 SC-1 lde-brf-cmw: reportActionResult: resultCode: 0

Figure 2.5: Examples of system logs

software module names; (ii) since different components are developed by different
teams and different developers may have their own preferences when recording logs.
For instance, some developer set label NOTIFY as Notification but some others may
regard NO as Notification, whereas certain people see NO only as the English word
“No”; (iii) like the log examples of component vDicos, some of the Description
means nothing but a dotted line or a blank line, which are used for being properly
displayed on the terminal; nevertheless, other Descriptions may contain important
information. Furthermore, there is no doubt that it is barely possible to collect all
the template of Description from the developers from a dozen of design teams.

The task is to group the same type of messages together and label them with
unique ID representing same template of messages. Therefore, it can be the mes-
sages with same format expressing same meaning but filled with different parameters
(like, IP address or some numerical values) grouped together. It can also be an in-
dividual type of message without any parameter. Or it can be a set of messages
composing as a template group referring to a single event. Moreover, in the Figure
2.4, these logs will be merged together into a single line of log with the unique
time-stamp.

10

2.1. LOG DATA DESCRIPTION

Jan 31 01:33:01 SC-1 /usr/sbin/cron[17718]: (root) CMD (test -x /etc/cro
n.*/logrotate && /etc/cron.*/logrotate > /dev/null
2>&1)

Jan 31 01:33:26 SC-1 osafimmnd[9146]: NO Ccb 595465 COMMITTED (BRFC)
Jan 31 01:33:26 SC-1 osafimmnd[9146]: NO Ccb 595466 COMMITTED (BRFC)
Jan 31 01:33:26 SC-1 osafimmnd[9146]: NO Ccb 595467 COMMITTED (BRFC)
Jan 31 01:33:54 SC-1 syslog-ng[6844]: Log statistics; dropped='udp(AF_IN

ET(192.168.0.2:514))=0', dropped='tcp(AF_INET(192.1
68.0.2:5140))=0', processed='center(queued)=7071818
6', processed='center(received)=56572886', processe
d='destination(d_external)=699966', processed='dest
ination(d_mmas_oam_instance1_appserver)=1326', proc
essed='destination(d_mmas_oam_instance0_log)=134437
56', processed='destination(d_mmas_oam_instance1_lo
g)=13443756', processed='destination(d_mmas_oam_ins
tance0_appserver)=1337', processed='destination(d_m
mas_traffic_instance1_log)=13443564', processed='de
stination(d_mmas_traffic_instance0_log)=13443598',
processed='destination(d_mmas_traffic_instance1_app
server)=1381', processed='destination(d_auth)=20404
', processed='destination(d_kernel)=241', processed
='destination(d_mmas_external)=13445093', processed
='destination(d_mmas_traffic_instance0_appserver)=1
373', processed='destination(d_messages)=2772391',
processed='source(s_mmas_external)=40334998', proce
ssed='source(s_local)=699966', processed='source(s_
external)=2092829', processed='source(s_mmas_oam_in
stance0_log)=13443756', processed='source(s_mmas_oa
m_instance0_appserver)=1337'

...
Jan 31 01:34:38 SC-1 TGC-4302[9496]: [I] Total Statistics: start=08:34:

19.340 stop=01:00:00.000 sessions=0 duration=-
1442298880.00 sec send-rate=-0.00 req/sec

Jan 31 01:34:38 SC-1 TGC-4302[9496]: [I] label=TOTAL id=N/A
protocol=N/A send=0 send-failed=0

recv=0 fail=0 timeout=0 re
cv-unknown=0 active-sessions=0

Jan 31 01:34:38 SC-1 TGC-4302[9496]: [I] TGC Memory Usage: [Allocated
135168B (132.00KiB)] [In Use 101296B (98.92KiB)
] [Free 33872B (33.08KiB)]

Figure 2.6: Examples of system logs

11

CHAPTER 2. BACKGROUND

2.2 Challenges and Limitations of Scope
As stated above in this chapter, several challenges and limitations of this thesis
work are identified in the following:

• There are more than 20 software components running on the platform and
each of them is logging its behavior independently. It is very unrealistic, in
this master thesis project to consider them all or build a complex mixture
model. Therefore, only the system logs are taken into account. It is the logs
that contain most of the significant information about the system’s behavior
and it also gathers most of the valuable logs from the components.

• The logs are unstructured and heterogeneous as mentioned in the previous
sections. It is mainly because they are generated from diverse software compo-
nents, which serve various functionalities, are developed from different teams
and are logging their behaviors in different ways.

• Due to the parallel running of multiple components on the platform, the logs
generated from each of them could also be written into the final, single, serial
system log in a randomly intervened manner. This brings a very big difficulty
for machine learning methods to handle such complexity with limited amount
of data.

• The amount of data available is also one of the major concerns and I have
tried my best to obtain as much data as possible in order to train the machine
learning model. This issue is further addressed in Chapter 5: Design and
Implementation.

• The relevant machine learning algorithms, instead of rule based methods, are
selected in this thesis project mainly for the reasons that: (i) there are already
several existing works which are conducted based on rule-based methods for
solving various log analysis problems; (ii) for the issues with such complexity,
rule-based methods may not be capable of solving it and machine learning
algorithms are worth of trying. There are so much to be explored in this area.

• What have been explored, discussed and analyzed in this thesis project is
just a small part of Recurrent Neural Network (RNN) and the deep learning
library Keras. There are much more in this area, which needs every relevant
researchers and developers’ knowledge and skills. RNN and Keras are very
sophisticated and further exploration within this area could a very valuable
future work to this thesis project.

12

Chapter 3

Literature Study on Log Analysis

In the this section, literature studies regarding the problems mentioned in previous
section are conducted based on existing works. Their strengths and weaknesses
under different usage cases are discussed. Possible solutions of our specific problems
and their feasibility are proposed for further implementation.

3.1 Related Works

To some extent, the idea of extracting the log templates is to scan the alike log mes-
sages and inspect the similarities among them. The goal is to achieve the clusters,
the greatest and reasonable extent, where the logs are similar to the ones within
same cluster but dissimilar to the ones belonging to other clusters. Some people
design the specific similarity functions in order to measure the similarity degree
between two strings (i.e., two log messages). Some others apply the clustering al-
gorithms by extracting and analyzing various features of the log messages in a data
space and merge homogeneous logs into one template. Additionally, some people
construct different hierarchical structures (e.g., tree data structure) and regard the
templates as structuralized organizations, which means the logs are following certain
structural formats. These techniques will be discussed in detail in the following.

One technique that could be implemented as a similarity function to detect the sim-
ilarities between two strings is measuring their Levenshtein distance [4]. It repre-
sents the minimum number of single character edits (i.e., insertions, deletions and/or
substitutions) required to change one string into another. In [5], Damerau improves
the Levenshtein distance by including the transpositions of two adjacent symbols
and produced a better distance detector, known as the Damerau-Levenshtein
distance. In information theory, the Hamming distance [6] is the number of
different characters between two strings with equal length. In other words, it rep-
resents the minimum number of substitutions required to change one string into
another. However, by only implementing traditional distance measurement, it is
hard to set the threshold for distinguishing whether two messages are similar or

13

CHAPTER 3. LITERATURE STUDY ON LOG ANALYSIS

different on the basis of low-dimensional single characters, since messages are rep-
resented by a bunch of high-dimensional words. And there are still many other
considerations (e.g., the term frequency, the type of a word indicating the tendency
to belong to a template, the total length of a log message, the abstraction level of
a log template, etc.) are ignored but having significant impact on the final results.

In [7], Kimura et al. classify the words (i.e., the term between two whitespaces) into
five classes representing five levels of the tendency to belong to the log template,
and give each of the class a weight value indicating its tendency. Then, a specific
similarity function called LogSimilarity between a cluster C and a message X is
defined as following:

LogSimilarity(C,X) = wtx/wtcx (3.1)

where, w = [wi] for (i = 1, 2, ..., 5) is the weight vector of the tendency level to
become a log template for each predefined class i. The x = [xi] represents the
number of words of class i in X and cx = [cx,i] represents the number of class-i’s
words appeared in both C and X. If the calculated highest log similarity is less than
a predefined threshold E, a new template cluster Cnew is created from X ; otherwise,
the message X is put into current cluster C. One shortcoming of Kimura et al.’s
method is the ignorance of word’s position information since the word’s position
does matter when considered to be part of a log template. A specific word normally
has its unique position in one template but has different position in others.

In [8], Vaarandi presents an experimental clustering tool called SLCT (Simple
Logfile Clustering Tool) for log data analysis. It can help the test engineers de-
tect frequent formats from log files, to build log file profiles and to identify anomalies
within log files. SLCT brings the notion of dense data space into discussion, which
is assumed to contain the data points, each of which represents a log entry with
categorical (non-numeric) attributes (i.e., the words of each log entry). One data
point is n-dimensional if it contains n words, and the position information is taken
into account. Instead of relying on the traditional distance based approaches, SLCT
uses a density based method for clustering. It is because defining an appropriate
distance function for categorical data is complicated, and the such concept becomes
meaningless in a high-dimensional data space (please refer to [8] for details). SLCT,
consequently, focuses on the dense regions in the data space and identifies the sig-
nificant clusters, each of which is corresponding to a certain frequently occurring log
template. SLCT is also able to detect the outliers, which are the data points dissim-
ilar to these clustered log templates. However, the outlier defined here as infrequent
log format do not necessarily be the anomalies or faults. Therefore, the outliers de-
tected maybe irrelevant to the real failures. For demonstrating the concept of dense
region, the log examples from [9] is given as Figure 3.1. For the sensitivity of 10%,
the dense region of logs in Figure 3.1 is (Server,1),(myserverl,2), (service,3),
(down,5) [9]. SLCT relies on the words’ frequency too much but loses the sight of
each word’s class as indicated by Kimura et al. in [7].

14

3.1. RELATED WORKS

Server myserver1 service XYZ down
Server myserver1 service ABC down
Server myserver1 service 123 down

Figure 3.1: Log examples for demonstrating dense region.

Several examples of SLCT’s utilization can be found at [10], [11] and [12]. A visual-
ization tool called LogView is developed in [13] in order to visualize the hierarchical
structure of the clusters produced by SLCT applying treemaps. In [14], Reide-
meister et al. applies Vaarandi’s algorithm and text clustering to obtain features
as clusters of similar patterns. However, even though the performance was signif-
icant, and the approach is robust and flexible with various attributes of the logs,
preserving the features and matching them against log files encounter great over-
head. Therefore, in [9], for clustering the extracted patterns, they use a variant of
Levenshtein distance [4] as follows:

Ln(x1, x2) = 1 − L(x1, x2)
max(|x1|, |x2|)

(3.2)

where x1 and x2 are two dense regions, which is originally proposed by Vaarandi in
[8] as sets of frequent tokens with their absolute positions in the logs. Reidemeister
et al. modifies it by using relative scales and heuristic parameter approximations.
The notation |x1| represents the number of tokens in the region x1. The function
L(x1, x2) calculates the distance on the basis of token-granularity between two re-
gions x1 and x2, then is normalized by max(|x1|, |x2|). In summary, the Equation
3.2 represents the similarity between two regions in terms of tokens.

In Vaarandi’s work [15], the SLCT was compared with another data mining utility
called LogHound [16], [17]. LogHound employs a frequent itemset mining algo-
rithm (i.e., an Apriori-like breadth-first approach) by utilizing itemset trie data
structure [18], [19] for discovering frequent patterns (templates) from event logs.
The itemset is defined as the set of m word-position pairs of a certain log entry.
For example, the log entry Router * interface * down can be represented as the
following itemset: {(Router,1), (interface,3), (down,5)} [8]. The wildcards
* are indicating the parameters within a template. According to [16], the trie is
a memory-resident tree data structure which is guaranteed to contain all frequent
itemsets. Each edge on the tree is labeled with the name of a certain frequent
item, and each node contains a counter. Each path from root node to a leaf node
represents a log template.

According to [12], both SLCT and LogHound are incorporated into Sisyphus log
mining toolkit [20] developed at Sandia National Labs. Sisyphus is a collection of
third-party software components providing three following distinct capabilities: “au-
tomated generation of message types, automated grouping of time-correlated mes-

15

CHAPTER 3. LITERATURE STUDY ON LOG ANALYSIS

sages, and interactive review of these results” [12]. However, currently, it is not
available to download online anymore. Some shortages of SLCT and LogHound are
still remaining. For instance, SLCT and LogHound rely on the words’ frequency
too much but have no considerations of words’ type. Additionally, the outputted
templates only appear more than N times, which is the tricky value to set and
leaves the outliers disregarded.

Makanju et al. presents an another event log clustering tool called IPLoM (It-
erative Partitioning Log Mining) [21], [22] by implementing three steps of
hierarchical partitioning process, iteratively. Different from SLCT and LogHound,
IPLoM does not rely on the Apriori algorithm, which is not efficient in computation
for mining longer patterns [23] since it is mainly based on the frequent item set
mining for finding association rules over transactional databases. However, IPLoM
is able to find the clusters regardless of its instances appearing frequency. The
three steps of partitioning are successively based on token count, token position,
and searching for bijections, which are the bijective relationships between the set
of unique tokens in two token positions selected (please refer to [21] for detailed
algorithms).

In [12], Stearley proposes a novel use of the bioinformatic-inspired Teiresias al-
gorithm [24], [25], [26] to automatically classify syslog messages and compares it
with SLCT. It discovers all rigid patterns (called motifs, i.e., log templates in our
definition) in categorical (non-numeric) data. More explicitly, Teiresias can find all
the motifs M formed by characters within set C and don’t-care wildcards * from a
given set of strings X. There is at least a specificity of L = W occurring at lowest K
times in X, where K is a predefined value, L is the number of fixed characters within
C, and W is the total width of the motif including wildcards. However, Teiresias
algorithm is based on the character’s level instead of the words, which may lead
to the over-granularity issue due to the lack of sufficient abstraction. A usage of
Teiresias algorithm is presented in [27] for intrusion detection system.

After experimental implementation and results analysis, Stearley concludes the com-
parison between Teiresias algorithm and SLCT in [12]. The Teiresias is shown to be
more effective in automatically generating word-granular log templates and its care-
ful sort order provides a near-optimal categorization of messages. Whereas requiring
large memory space prevents it from scaling up to very large data set, analysis of
logs under 10,000 lines would be more reasonable and acceptable. Even though
SLCT’s results is less-effective, it is not suffering from considerable memory usage.
Taking a step back, Teiresias could potentially be modified to not include infrequent
words in candidate motifs in order release the memory pains. However, compared
with SLCT, it does not use word’s position values, which are considered as very
important information in forming log templates. In [21] and [22], Makanju et al.
also conduct experiments and compare the outputs of IPLoM, SLCT, LogHound,
and Teiresias on seven different event log files with over 1 million log events. Results

16

3.1. RELATED WORKS

show that IPLoM consistently outperforms the other algorithms.

In [28], a SyslogDigest system that can automatically transform and compress
low-level minimally-structured syslog messages into meaningful and prioritized high-
level network events. This system is designed with the combinational ideas of offline
and online components. The offline domain knowledge learning component auto-
matically extracts relevant domain knowledge from raw syslog data. Based on such
acquired domain knowledge and other available information (e.g., temporal close-
ness of messages), the online processing component groups related messages into
high-level events and present the prioritized results. In the first online step, the
messages are decomposed into words separated by whitespace. For each type of
messages, by following breath-first search tree traversal, a corresponding tree struc-
ture is constructed to express the template hierarchy. The top level message type
is set as the root of the tree and all messages are associated with this message type.
The most frequent combination of words is searched and associated with the parent
as child, iteratively, until all messages have been checked. By following such tree
structure, each branch from the root to one of the leaves represents one single log
template.

In [29], the first version of FDiag is developed to extract the templates of log entries.
The statistical correlation analysis is conducted after to establish probable causes
and effect relationships for the interested faults. There are two types of tokens (i.e.,
words between whitespaces) are defined – Constants and Variables. A Constant is
the sequence of tokens that comprise of English letters and punctuations while a
Variable is the sequence of tokens comprising of English letters, punctuations and
at least one digital number. The Message Template Extractor component [29] is
used to extract all the Constants and Variables from the messages and create a
standard data format based on them for further analyzing. The second generation
of FDiag is introduced in [30], where a new workflow called Space-R is developed
and added, which identifies the event pattern across a multi-node cluster system.

In the above literature study, several techniques for log template extraction from
un- or minimally-structured log data are discussed. Each of them has its own
strengths and weaknesses or usage limitations as well. The following points should
be considered and balanced:

• Threshold: In many methods, a threshold value is needed to be decided but
rather tricky. It can lead to different granularity and abstraction level of the
final template results.

• Word frequency: The frequency of the words are always considered but it does
not mean that the infrequent words are not parts of a log template.

• Word classification: The word classification is aiming to determine the level
of tendency of a word to belong to the template. However, some methods

17

CHAPTER 3. LITERATURE STUDY ON LOG ANALYSIS

regard every word equally.

• Delimiter: Some works divide a log message into words based on whites-
pace whereas the separation level is too generic to extract meaningful tem-
plates. For example, in Figure 5.1, within the log message “osafimmnd[9147]:
NO Ccb 595467 COMMITTED (BRFC)”, if it is divided based on whitespace,
osafimmnd[9147] is regarded as a word then the PID 9147 will not be ex-
tracted; in contrast, if “[” and “]” are included as delimiter, such number
can also be highlighted and treated individually without messed up with non-
contextual symbols.

• Time-stamp: When considering the log template, we are aiming to decide the
type of a log. However, logs with different time-stamp should not be consid-
ered as different logs. For example, the logs as “Dec 18 * osafimmnd[*]:
NO Ccb * COMMITTED (BRFC)” and “Dec 19 *osafimmnd[*]: NO Ccb *
COMMITTED (BRFC)” appearing in two different days are actually belong to a
same template.

• Partition based on length: One observation is that “the log messages that have
the same line format are likely to have the same token length” [21]. Initial
partitioning of the log data set based on the token length is quite reasonable
and will reduce the computational time and memory cost.

Among these existing works, many of the authors also continuously conduct fur-
ther statistical analysis and pattern extraction based on the templates obtained. In
the next chapter, two machine learning algorithms (i.e., Naive Bayes and Recurrent
Neural Networks) are discussed.

18

Chapter 4

Machine Learning

In this chapter, the two major machine learning algorithms (Naive Bayes and Re-
current Neural Network) applied in this project are studied and discussed, mainly
for the usage of sequence pattern learning and sequence prediction.

4.1 Naive Bayes

Naive Bayes is considered to be a simple technique for solving classification prob-
lems. It has been studied and widely used for several decades and has been used
to deliver great achievements. By applying the Bayes’ theorem, also known as the
conditional probability, Naive Bayes is based an assumption that the value of a
particular feature is independent of the value of any other feature, given the class
variable. For solving different types of problems, the Naive Bayes actually includes
some popular-used mechanisms are Gaussian Naive Bayes [31], Multinomial Naive
Bayes [32], Bernoulli Naive Bayes [33], etc. Therefore, these techniques have been
used widely in various applications such as image recognition, natural language
processing, and information retrieval [34], [35], [36], [37].

Despite the naive design, Naive Bayes classifiers are working very well for solving
many complex practical problems. The article [38], mainly focusing on illustrating
the optimality of Naive Bayes, states that the true reasons for the surprisingly good
performance of Naive Bayes classifiers are found. It is concluded that, even though
there are strong dependences existing among attributes, Naive Bayes can still be
optimal if the dependences distribute evenly in classes, or if the dependences cancel
each other out [38]. Even though, according to [39], Naive Bayes are not as good as
some other approaches, Naive Bayes classifiers can still be trained very efficiently
based on some supervised learning. An advantage of Naive Bayes is that it could
lead to the promising results by only requiring a small amount of training data,
which makes it a good choice in our classification problem since the data samples
available is considered to be insufficient.

The problem-specific Bayesian model will be given in the Chapter 5. In this
section, we only discuss the theories and some applications.

19

CHAPTER 4. MACHINE LEARNING

4.1.1 Bayes’ Theorem and Naive Bayes Model
In probabilistic theory and statistics, the Bayes’ theorem, named after Reverend
Thomas Bayes, describes the conditional probability of an event given another pos-
sible event that has happened. It was published by Pierre-Simon Laplace in a
modern mathematical formulation [40], and further developed by Harold Jeffreys,
who axiomatically combined Bayes’ algorithm and Laplace’s formulation [41]. Gen-
erally, a simple form of Bayes’ theorem is represented as the following equation,
mathematically:

P (Y |X) = P (Y)P (X|Y)
P (X)

(4.1)

where

• Y and X are two different events and P (X) ̸= 0.

• P (Y) and P (X) are the probabilities of observing the event Y and X, respec-
tively, without regard to each other.

• P (Y |X), a conditional probability, is the probability of observing event Y
given that X is true.

• P (X|Y) is the (conditional) probability of observing event X given that Y is
true.

An alternative form using Bayesian probability terminology can be represented
as following:

posterior = prior × likelihood
evidence

(4.2)

In many cases, for instance in Naive Bayes Model, the probability of event X,
which is evidence in Equation 4.2, is a constant. Therefore, we wish to consider
the impact of its having been observed on our belief in various possibilities of event
Y. In such a situation the denominator of Equation 4.1, i.e., the probability of the
given evidence X, is fixed. And the event Y is the actual variable. Bayes’ theorem
then shows that the posterior probabilities are proportional to the numerator as:

P (Y |X) ∝ P (Y)P (X|Y) (4.3)
After translating the above Equation 4.3 into English terms, the posterior is

proportional to prior times likelihood [42], formulated as:

posterior ∝ prior × likelihood (4.4)

For a more general Naive Bayes Model problem, imagine that instead of repre-
senting a single variable, X can be a vector representing n features (independent
variables) as X = (X1, X2, ..., Xn). Our task becomes

P (Y = y|X1 = x1, X2 = x2, ...Xd = xd)

= P (Y = y)P (X1 = x1, X2 = x2, ...Xd = xd|Y = y)
P (X1 = x1, X2 = x2, ...Xd = xd)

(4.5)

20

4.2. ARTIFICIAL NEURAL NETWORK (ANN)

where y ∈ {y1, y2, ..., yk} . And k is an integer specifying the number of classes in
the problem

Considering
∏n

i=1 P (Xi = xi) = P (X1 = x1, X2 = x2, ...Xd = xd) is fixed, we
obtain the following equation:

P (Y = y|X1 = x1, X2 = x2, ...Xd = xd)
∝ P (Y = y)P (X1 = x1, X2 = x2, ...Xd = xd|Y = y)

∝ P (Y = y)
n∏

i=1
P (Xi = xi|Y = y)

(4.6)

Given Naive Bayes Statistical Model in Equation 4.7, the parameters can be
estimated from training examples in order to obtain the maximum posteriori prob-
ability. In other words, given a new test example x = (x1, x2, ..., xn), the output of
the Naive Bayes classifier is

arg max
j∈{1...k}

P (Y = yj |X1 = x1, X2 = x2, ...Xd = xd)

= arg max
j∈{1...k}

(
P (Y = yj)

n∏
i=1

P (Xi = xi|Y = y)
) (4.7)

In our problem, it is with discrete probability distribution and discrete finite
parameter space, which will be further illustrated in Section 5.2 of Chapter 5.

4.2 Artificial Neural Network (ANN)

Artificial Neural Networks (or ANNs) are generally regarded as a family of algo-
rithms, modeled loosely after and inspired by the biological neural networks (in
particular, the human brain) which are used to estimate or approximate (especially
non-linear) functions. By having the advantage of absorbing a large number of un-
known inputs, it is designed to recognize patterns. ANNs are generally represented
as network of interconnected computational unit - “neurons”. Neurons are capa-
ble of receiving input data either from external world or from previous neurons,
process them and finally fire outputs to the next neurons or to the external world
. The computations inside a neuron might be very simple (such as simple sum-
ming up of weighted inputs), or quite complex (each node might contain another
complex model/network, such as LSTM, which will be discussed in Section 4.3.4).
The connections between neurons have numeric weights that can be tuned based on
experience (training data), making the neural networks adaptive to the inputs and
capable of learning.

According to [43], the concept of perceptron was originally proposed by Warren
McCulloch and Walter Pitts in their work published at 1943 [44] and further de-
veloped, in the 1950s and 1960s, by the scientist Frank Rosenblatt [45]. The most
basic perceptron can be represented as following Figure 4.1.

21

CHAPTER 4. MACHINE LEARNING

Figure 4.1: A single perceptron. Source: [46].

Mathematically speaking,

y = ϕ

(
m∑

i=1
wixi + b

)
= ϕ(w · x + b) (4.8)

where ϕ(·) is the activation function, xi for i ∈ [1,m] are the inputs (x is the input
vector), ωi for i ∈ [1,m] are the weights (w is the weight vector), and b = w0 is the
bias unit. In other words, each neuron performs a dot product with the inputs and
the corresponding weights, adds the bias, applies the non-linearity (or activation
function), and finally fires the output [47]. This can be regarded as the simplest
decision making process.

4.2.1 Activation Function

The activation function describes the rate/frequency of the firing of the neuron.
The simplest form of it is a binary one, i.e., either the neuron is firing or not, where
Heaviside step function is the representative with linear transformation. However,
it is the nonlinear activation function that allows neural networks to handle much
more complex problems with accurate approximation of the desired function. There
are several commonly used activation functions [47]:

• Sigmoid non-linearity is represented in the Equation 4.9 and is shown in
Figure 4.2. It takes real numbers and maps them into the range of (0, 1). With
the input going to a very large negative number or large positive number,
the sigmoid function will be saturated to 0 (tends not to fire) or 1 (tends
to fire), respectively. This also leads to a near-zero gradient. In following
Section 4.3.3, a problem called vanishing gradient will be discussed regarding

22

4.2. ARTIFICIAL NEURAL NETWORK (ANN)

how the multiplication of small gradients makes neural network hard to train.
Additionally, sigmoid outputs are not zero-centered.

σ(x) = 1
1 + e−x

(4.9)

Figure 4.2: Sigmoid function.

• Tanh maps the real number input into the range of (−1, 1), which is zero-
centered as shown in Figure 4.3. Therefore, in practice, tanh non-linearity is
always preferred to the sigmoid non-linearity [47]. In other parts, tanh, like
the sigmoid, is also saturated and is just a scaled version of sigmoid.

tanh(x) = ex − e−x

ex + e−x
= 2

1 + e−2x
− 1 = 2σ(2x) − 1 (4.10)

• Softmax, in Equation 4.11, is normally taken as the activation function for
the output layer in multi-class classification problem. It is linked to the cross-
entropy loss. Given a K-dimensional vector x of arbitrary real values, softmax
function will map every value of them to another real value in the range of
(0, 1), where all of them will be added up to 1.

softmax(xi) = exi∑K
c=1 e

xc
for i = 1, 2, ...,K (4.11)

Some other activation functions that could be encountered in practices are ReLU
(i.e., Rectified Linear Unit), Leaky ReLU [48], [49], Maxout [50], etc.

23

CHAPTER 4. MACHINE LEARNING

Figure 4.3: Tanh function.

4.2.2 Feed-forward Neural Networks

Feed-forward neural network, also often called Multi-Layer Perceptrons (MLP), is
with the goal of approximating a function f : X → Y , which is done by, for example,
learning the value of the parameters W and b of the function y = f(x, y; W, b). It
is called feed-forward because the data flows from inputs x, through the intermediate
computations defined by f , and finally to the output y [51]. Instead of having one
perceptron as in Figure 4.1, it is typically composed by several layers and there
are no loops in the feed-forward network, which means information is always fed
forward, never fed back. Some other networks contain loops, such as Recurrent
Neural Network, which will be discussed in Section 4.3.

As one example of feed-forward neural network shown in Figure 4.4 [52], it is
having three layers: (i) a n-unit input layer, (ii) a m-unit hidden layer, and (iii)
a u-unit output layer. In previous example of a single perceptron, one perceptron
is making its own decision based on its own input weighted by the parameters,
and then generates a single output after further processed through activation non-
linearity. In this example, perceptrons are lined-up together to form a layer, and
different layers are stacked one by one forming a network. On each of the layer,
every perceptron is making a decision depending on the inputs coming from the
previous layer and its weights. In this way, layer by layer, perceptrons in the
descendant layers are capable of making more complex decisions at more abstract
level. Iteratively, the MLP can engage in very sophisticated problems and make
much more hard decisions instead of just binary option.

24

4.2. ARTIFICIAL NEURAL NETWORK (ANN)

Remark 4.2.1. The bias units are not shown in Figure 4.4.

Figure 4.4: Feed-forward neural network (Multi-Layer Perceptrons). Source: [52].

For conveniently illustrating the feed-forward neural network mathematically, some
remarks are given.
Remark 4.2.2. L(i) - the ith layer in the network. For example, in Figure 4.4, L(1)

is the input layer, L(2) is the hidden layer, and L(3) is the output layer.
Remark 4.2.3. s(i) - the number of units (not counting bias unit) in layer L(i). For
example, in Figure 4.4, s(2) is equal to m, which is the number of units in L(2).
Remark 4.2.4. W (j) - the matrix of parameters controlling the function mapping
from layer j−1 to layer j. If network has s(j−1) units in L(j−1) and s(j) units in L(j),
the weight matrix W (j) will be with dimensions of [s(j) × s(j−1)]. W

(j)
i ∈ R1×s(j−1)

is the vector of parameters controlling the function mapping from layer j− 1 to the
unit i of layer L(j). W (j)

ir ∈ R is the parameter from the unit r in layer j − 1 to the
unit i in layer L(j). For example, in Figure 4.4, W (2) is with space of Rm×n, W

(2)
1

is with space of R1×n, and W
(2)
11 is with space of R.

Remark 4.2.5. b(j) ∈ Rs(j)×1 - the bias associated with the units in layer L(j),
i.e., it will be associated with W (j) during calculation. And b

(j)
i ∈ R is the bias

contributing to the unit i in layer L(j). Bias units do not have inputs or connections
going into them, since they always output the value +1.
Remark 4.2.6. ϕ(·) - the activation function applied. Please refer to the Section
4.2.1 for more details.
Remark 4.2.7. z(j)

i ∈ R - the total weighted sum of inputs to unit i in L(j). Then
z(j) ∈ Rs(j)×1 is the weighted sum matrix in L(j) for all units.

25

CHAPTER 4. MACHINE LEARNING

Remark 4.2.8. a(j) ∈ Rs(j)×1 - the activation vector at L(j) for all units in the
layer. Then a

(j)
i ∈ R is the activation of unit i in layer j. For example, a(2)

1 is the
activation of the first unit in the second layer. By activation, we mean the value
which is computed and output by that node. As the output of Lj , a(j) is also the
input of its next layer - Lj+1.

Remark 4.2.9. a(1) = x - the activations of input layer is actually the input itself.
Additionally, the activations of the last layer in the network are the outputs, i.e.,
a(l) = ŷ where l is the index of the last layer of a network with l layers.

By applying the notations given in Remarks 4.2.1 to 4.2.9, we could have the
following representations of the neural network shown in Figure 4.4.

z
(2)
i =

n∑
k=1

W
(2)
ik xk + b

(2)
i for i ∈ {1, 2, ...,m} (4.12)

a
(2)
i = ϕ

(
z

(2)
i

)
for i ∈ {1, 2, ...,m} (4.13)

z
(3)
i =

m∑
p=1

W
(3)
ip a(2)

p + b
(3)
i for i ∈ {1, 2, ..., u} (4.14)

a
(3)
i = ϕ

(
z

(3)
i

)
for i ∈ {1, 2, ..., u} (4.15)

Remark 4.2.10. ã(j) - the extended input for layer Lj+1, which is the activation a(j)

at layer Lj plus the bias +1.

ã(j) =
[
a(j)

1

]
and x̃ =

[
x
1

]
(4.16)

Remark 4.2.11. W̃
(j) - the extended weight matrix for layer Lj , which is the original

matrix W (j) plus the bias unit b(j).

W̃
(j) =

[
W (j)

b(j)

]
(4.17)

Then, by applying the Remarks 4.2.10 and 4.2.11, the more compact representations
in matrix calculation of Equations 4.12 - 4.15 are:

z(2) = W (2) · x + b(2) = W̃
(2) · x̃ (4.18)

a(2) = ϕ
(
z(2)

)
(4.19)

z(3) = W (3) · a(2) + b(3) = W̃
(3) · ã(2) (4.20)

a(3) = ϕ
(
z(3)

)
(4.21)

26

4.2. ARTIFICIAL NEURAL NETWORK (ANN)

which is called as forward propagation. In general, based on Remark 4.2.9, the
feed-forward neural network are summarized as:

z(j) = W (j) · a(j−1) + b(j) = W̃
(j) · ã(j−1) (4.22)

a(j) = ϕ
(
z(j)

)
(4.23)

for the network layer Lj .
By having the Equations 4.22 - 4.23, given an input vector x ∈ Rn×1, it is easy

to obtain the output of the network: y ∈ Ru×1. However, the task of neural network
is to approximate a function, which is a mapping from given X to Y . How can we
make sure that the outputted value is the actually true values wanted? In order
to output the correct value, we should first understand how much difference there
is between the network estimation and the ground truth. This is where the loss
function is introduced.

4.2.3 Loss Function

Loss function (also referred to as the cost function or the objective function) repre-
sents the level of inaccuracy (difference) of our network prediction as to the ground
truth. Intuitively, the loss will be low if the network is quite good at estimating
the function mapping x to y, otherwise, it will be high. Therefore, our task is to
minimize the loss function in order to obtain a good estimation.

Given a set of training data set with N samples {(x(1), y(1)), ..., (x(N), y(N))}
and the corresponding network estimation output ŷ(i) for i ∈ {1, 2, ..., N}, based
on the various of practical problem cases, there are different types of optional loss
functions. The loss function used in this project is called Categorical Cross-entropy
(CCE) as shown in Equation 4.24.

CCE = − 1
N

N∑
i=1

K∑
c=1

y(i)
c log ŷ(i)

c (4.24)

where K is the number of output classes.

4.2.4 Back-propagation Algorithm

By having the loss function defined above, the desired function estimation can be
done by adjusting weights in the network through back-propagation algorithm. The
general idea of back-propagation algorithm can be represented, in abstraction, as
the following three equations [46]:

estimation = input ∗ weight (4.25)
error = ground truth − estimation (4.26)

adjustment = error ∗ weight′s contribution to error (4.27)

27

CHAPTER 4. MACHINE LEARNING

Equation 4.25 refers to the Equations 4.22 - 4.23 in Section 4.2.2, which is used
to obtain the network estimation using feed-forward computation. By utilizing the
proper loss function mentioned in Section 4.2.3, the output error can be calculated
and then used in Equation 4.26. Furthermore, Gradient Descent is introduced in
order to obtain the errors based on each of the previous layers within the network
based on the partial derivative of loss function in current layer, which is also the
major procedure of back-propagation.

Gradient Descent, in neural network, is designed to find a local minimum of the
loss function, which is parameterized by the network model’s parameters W and
b, by applying the first-order optimization. The first partial derivatives of a loss
function J(W, b;x, y) with respect to the weight matrix W and bias matrix b are
called the gradient of J . By updating the parameters in the opposite direction of
the gradient, the loss function is gradually minimized and the network estimation
will gradually converge to the ground truth value.

Notice: in the following analysis, the Remarks 4.2.2 - 4.2.11 are taken for
granted. We also assume that the neural network has the layer L(j) for j ∈
{1, 2, ..., l}.

In this section, the loss function CCE, in Equation 4.24, is taken as an example
for explaining the gradient descent, since this thesis project is actually a multi-class
classification problem in specification. Considering the following loss function, in
terms of one data point among N samples, which is one term of the total N terms
summation of Equation 4.24:

J = −
K∑

i=1
yi log ŷi (4.28)

where K is the number of output classes. Additionally, softmax function shown
in Equation 4.11 is chosen as the output activation for multi-class classification
problems, i.e.,

a
(j=l)
i = ŷi = ez

(l)
i∑K

c=1 e
z

(l)
c

for i = 1, 2, ...,K (4.29)

where a
(l)
i is the activation of the unit i in the last layer L(l), which is also the

output of ith unit in the last layer. z(l)
i is the weighted sum at unit i in layer L(l),

i.e., a(l)
i = ϕ(z(l)

i). The gradient of the loss J over weight W (j)
ir is computed based

on the chain rule, which is stated as following:

∂J

∂W̃
(j)
ir

= ∂J

∂z
(j)
i

∂z
(j)
i

∂W̃
(j)
ir

= δ
(j)
i ã(j−1)

r (4.30)

28

4.2. ARTIFICIAL NEURAL NETWORK (ANN)

where

δ
(j)
i = ∂J

∂z
(j)
i

=
s(j+1)∑
h=1

∂J

∂z
(j+1)
h

∂z
(j+1)
h

∂z
(j)
i

=
s(j+1)∑
h=1

∂J

∂z
(j+1)
h

∂z
(j+1)
h

∂ã
(j)
i

∂ã
(j)
i

∂z
(j)
i

= ϕ′
(
z

(j)
i

) s(j+1)∑
h=1

W̃
(j+1)
hi δ

(j+1)
h

(4.31)

is known as the error term. It is assumed that all units in layer Lj+1 are connected
to the unit i in layer Lj . For all hidden layers, the activation function is given as
tanh as in Equation 4.10. Then, we have

ϕ′
(
z

(j)
i

)
= tanh′

(
z

(j)
i

)
= 1 − tanh2

(
z

(j)
i

)
= 1 −

(
a

(j)
i

)2
(4.32)

Substituting the Equation 4.32 into Equation 4.31, we have

δ
(j)
i =

(
1 −

(
a

(j)
i

)2
)

s(j+1)∑
h=1

W̃
(j+1)
hi δ

(j+1)
h (4.33)

and

∂J

∂W̃
(j)
ir

= ã(j−1)
r

(
1 −

(
a

(j)
i

)2
)

s(j+1)∑
h=1

W̃
(j+1)
hi δ

(j+1)
h (4.34)

In particular, the gradient of the last output layer is computed in the following
process, given the output activation function in Equation 4.29 [53]:

∂J

∂ŷi
= −yi

ŷi
(4.35)

∂ŷi

∂z
(l)
q

=


e

z
(l)
i∑K

c=1 ez
(l)
c

−
(

e
z

(l)
i∑K

c=1 ez
(l)
c

)2

i = q

− e
z

(l)
i e

z
(l)
q(∑K

c=1 ez
(l)
c

)2 i ̸= q

=
{
ŷi(1 − ŷi) i = q

−ŷiŷq i ̸= q

(4.36)

29

CHAPTER 4. MACHINE LEARNING

Combining Equations 4.35 and 4.36, we have the δ(l):

δ
(l)
i = ∂J

∂z
(l)
i

=
K∑

c=1

∂J

∂ŷc

∂ŷc

∂z
(l)
i

= ∂J

∂ŷi

∂ŷi

∂z
(l)
i

+
∑
c ̸=i

∂J

∂ŷc

∂ŷc

∂z
(l)
i

= − yi(1 − ŷi) +
∑
c̸=i

ycŷi

= − yi + ŷi

K∑
c=1

yc

= ŷi − yi

(4.37)

The gradient for the weights in the layer Ll is:

∂J

∂W̃
(l)
ir

= ∂J

∂z
(l)
i

∂z
(l)
i

∂W̃
(l)
ir

(4.38)

where W̃ (l) is the weight matrix from the second last layer L(l−1) to the last layer
L(l). Substituting the first-order derivative, with respective of W̃ , of Equation 4.22
into Equation 4.38, we obtain:

∂J

∂W̃
(l)
ir

= (ŷi − yi)a(l−1)
r (4.39)

For simplicity, the previous back-propagation process can be represented in matrix
formulations as:

∂J

∂W̃
(j) = δ(j)ã(j−1) (4.40)

where
δ(j) = ∂J

∂z(j) = ∂J

∂z(j+1)
∂z(j+1)

∂z(j)

= ∂z(j+1)

∂a(j)
∂a(j)

∂z(j) δ(j+1)

= Λ(j)W (j+1)δ(j+1)

(4.41)

The activation derivative matrix Λ(j) is defined as:

Λ(j) = ∂a(j)

∂z(j) =



∂a
(j)
1

∂z
(j)
1

∂a
(j)
2

∂z
(j)
1

· · · ∂a
(j)
N

∂z
(j)
1

∂a
(j)
1

∂z
(j)
2

∂a
(j)
2

∂z
(j)
2

· · · ∂a
(j)
N

∂z
(j)
2...

...
∂a

(j)
1

∂z
(j)
N

∂a
(j)
2

∂z
(j)
N

· · · ∂a
(j)
N

∂z
(j)
N


=



ϕ′
(
z

(j)
1

)
0 · · · 0

0 ϕ′
(
z

(j)
2

)
· · · 0

...
...

0 0 · · · ϕ′
(
z

(j)
N

)


(4.42)

30

4.3. RECURRENT NEURAL NETWORK (RNN)

where N = s(j) is the number of units in the layer Lj . For the output layer Ll, the
δ(l) is given as:

δ(l) = ∂J

∂z(l) = ∂J

∂ŷ

∂ŷ

∂z(l) = ŷ − y (4.43)

To summarize the back-propagation algorithm, there are four major steps:

Step 1. Perform the feed-forward pass and compute the activations from the second
layer L(2) to the last layer L(l) in order to obtain the predicted output.

Step 2. Compute the output error based on the predicted output and the ground
truth value.

Step 3. Back-propagate the error from the last layer to the layer L(2).

Step 4. Compute the desired partial derivative, i.e., gradients, for each of the layer
and update the weights.

W (k) = W (k) − η
∂J

∂W (k) (4.44)

where η is the learning rate. The higher the learning rate, the faster the
learning process can be.

4.3 Recurrent Neural Network (RNN)
Traditionally, as what have been discussed in previous sections, the feed-forward
neural networks do not contain any cycles. The information flows directly from
input through hidden layers to the output, no backwards. Therefore, the number
of computations performed through the feed-forward network is fixed, which only
depends on the number of layers (and the number of units each layer) in the model.
However, it has its own limitations when is is applied for solving many specific tasks.
For example, if the task is to predict the next word in a sentence it is better to know
which words came before it. However, in traditional network, it is assumed that all
inputs are independent of each other. In this section, Recurrent Neural Network
(RNN) is introduced for the idea of making use of sequential information.

RNNs are a particular branch of ANNs specially designed to recognize patterns
in sequences of data or times series. It is because it has the capability of “memoriza-
tion” which can be used to store the temporary information about what has been
calculated. Ideally, arbitrarily long sequences could be remembered and utilized
but, in practice, due to the restriction on the network complexity, computational
resources and time, only a certain amount of steps (i.e., so called window size)
can be looked back. Unlike within feed-forward networks, loops are formed within
RNN, where internal states of the network can be created in order to store temporal
memory.

31

CHAPTER 4. MACHINE LEARNING

By utilizing such memorizing advantage, the networks are capable of making
more reasonable decisions based on previous observation and its own memory. For
instance, in speech recognition, based on its memory during training and the given
previous data or context, the network is able to predict the following content. More
RNN applications can be in the post [54].

4.3.1 Recurrent Model
The Figure 4.5 shows how a simple RNN model, which contains a loop, is unfolded
into a full (chain-like) network. The input x is weighted by the matrix U into hidden
states s. Then, the hidden states s is iteratively calculated, through time, by weight
W for certain time steps within the loop. The loop allows information to be passed
from one step of the network to the next. Finally, the state s is transferred through
V into output state y.

Figure 4.5: Simple example of unfolding RNN model.

• x(t) is the input at time t.

• s(t) is the hidden state at time t, which can be regarded as the place where
“memory” is stored. s(t) is calculated based on the previous hidden state and
the current input, i.e.:

s(t) = ϕ
(
nets(t)

)
(4.45)

where
nets(t) = Ux(t) +Ws(t− 1) + bin (4.46)

and ϕ it the hidden layer activation function, which is usually tanh or sigmoid,
and the bj is the bias on hidden states. The first hidden state s(−1) is typically
initialized to all zeroes.

• y(t) is the output at time t and, for classification or symbolic data, generally,
the output activation function is softmax function, i.e.:

y(t) = ψ
(
nety(t)

)
(4.47)

32

4.3. RECURRENT NEURAL NETWORK (RNN)

where, ψ is the output layer activation function, which is normally Softmax,
and

nety(t) = V s(t) + bout (4.48)

where bk is the bias unit on output units.

Simply speaking, a recurrent neural network can be thought of as multiple duplicates
of the same network components folded together. Every fold is able to pass the data
to the descendant states step by step based on time, like the chain-like network
after unfolded from the loop, as shown in Figure 4.5. This is how RNN is capable of
having temporal memory in Equation 4.45. Since it cannot have infinite loop and
the unfolded length cannot be arbitrary as well, in practice, the network cannot
remember the information from too many time steps ago.

For all the hidden states on the same layer but different time steps, same weight
matrices U, V,W are shared. Therefore, on the same layer, the computations per-
formed iteratively are the same between time steps. This greatly reduces the amount
of parameters needed to be tuned [55]. Furthermore, one cell could be more com-
plex than a single node. Consequently, Long Short Term Memory (LSTM), which
is used for long-term time dependency, is discussed in Section 4.3.4.

Figure 4.6: RNN models with various input and output. Source: [54].

The Figure 4.6 reveals how different practical problems can be mapped onto
various structural RNN, where the pink cells represent input data (x in Figure 4.5),
green cells represent hidden states (s in Figure 4.5), and blue cells represent output
states (y in Figure 4.5). For example, when predicting the next word of a sentence,
the input data would be a sequence of words and the output would be a single word
to be predicted. The model selected could be the many to one. Another example
is the translation model, where the input data is a sequence of words in source
language (such as English) and the output data is a sequence of words (such as
Swedish) in the target language. The model to be used could be many to many,
where the input length and output length could be different as well.

33

CHAPTER 4. MACHINE LEARNING

4.3.2 Backpropagation Through Time (BPTT)

In Section 4.2.4, the back-propagation algorithm of error and gradient descent for
traditional feed-forward neural network is discussed. However, the same approach
cannot be directly applied on RNN model since the loop contained in the network
based on time. In this section, the algorithm of Backpropagation Through Time
(BPTT) [56] is introduced as an extension of normal back-propagation approach.

Figure 4.7: Demonstration of Backpropagation Through Time.

Take the RNN model in Figure 4.5 as an example, the BPTT process is demon-
strated in Figure 4.7. As stated in Equation 4.28, the original loss function is given
as the categorical cross entropy expression over all classes. However, this equation
is not taking time into account. Therefore, the particular cross entropy loss function
based on time is given as:

J(t) = −
K∑

k=1
yk(t) log ŷk(t) (4.49)

where yk(t) is the ground truth at time step t for class k, ŷk(t) is the network
prediction for class k, and K is the number of classes. The loss function J(t) is also
based on time step t. Then, the total loss is given as the sum of every losses at each
of the time steps.

J =
T∑

t=1
J(t)

= −
T∑

t=1

K∑
k=1

yk(t) log ŷk(t)
(4.50)

where T is the number of time steps to be back-propagated. The gradient of loss
J(t) at time t over the weight V , which is the weight on the connection from hidden

34

4.3. RECURRENT NEURAL NETWORK (RNN)

layer to output layer, is given as:

∂J(t)
∂V

= ∂J(t)
∂ŷ(t)

∂ŷ(t)
∂nety(t)

∂nety(t)
∂V

= δ(y)(t)s(t)
(4.51)

where δ(y)(t) = ŷ(t) − y(t) for the output layer. For the weight W, the gradient is
calculated as:

∂J(t)
∂W

= ∂J(t)
∂ŷ(t)

∂ŷ(t)
∂nety(t)

∂nety(t)
∂s(t)

∂s(t)
∂nets(t)

∂nets(t)
∂W

=
t∑

τ=0

∂J(t)
∂ŷ(t)

∂ŷ(t)
∂nety(t)

∂nety(t)
∂s(t)

∂s(t)
∂s(τ)

∂s(τ)
∂nets(τ)

∂nets(τ)
∂W

=
t∑

τ=0
δ(h)(τ)s(τ − 1)

(4.52)

where, for ∂s(t)
∂s(τ) =

∏t
j=τ+1

∂s(j)
∂s(j−1) after applying chain rule,

δ(h)(τ) = ∂J(t)
∂ŷ(t)

∂ŷ(t)
∂nety(t)

∂nety(t)
∂s(t)

(
t∏

j=τ+1

∂s(j)
∂s(j − 1)

)
∂s(τ)

∂nets(τ)

= δ(h)(τ + 1)Wϕ′
(
nets(t)

) (4.53)

Similarly, we can have the gradient of J over U as:

∂J(t)
∂U

=
t∑

τ=0
δ(h)(τ)x(τ) (4.54)

where δ(h)(τ) is defined as same as Equation 4.53.
By having Equations 4.51, 4.54 and 4.54, the process of BPTT is essentially

similar to the four steps described in Section 4.2.4 but with time taken into account.

4.3.3 Why RNN is Difficult to Train?
As stated in [57] by Pascanu et al. in 2012, there are two widely known issues causing
the difficulty of training recurrent neural networks, i.e., the vanishing gradient and
the exploding gradient problems.

In the work of Hochreiter’s diploma thesis in 1991 [58], the reason of vanishing
gradient problem is formally identified, which does not only affect deep feed-forward
networks, but also the RNN. The major reason is that the RNN is trained and back-
propagated based on time, where a very deep network is created with each of the
layers representing one time step on the sequence [57]. In methods of gradient
descent learning and BPTT as discussed in the Section 4.3.2, the back-propagation
is created based on the chain rule of partial derivatives from the current time step

35

CHAPTER 4. MACHINE LEARNING

back to the start time step. The gradient of each step is based on the activation
function as shown in Section 4.2.1, which is normally ranging at (−1, 1) or [0, 1).
Subsequently, the final output of back-propagation will be the multiplication of
many small numbers of gradients from current layer to the front layers [57]. It means
that the gradient will decrease exponentially with the number of layers during the
process, and, consequently, the front layers will be trained very slowly.

Exploding gradient problem could be easier to solve compared to vanishing
gradient problem. Instead of having very small values of gradients, the derivatives
could also be a larger number, which leads to an exponentially large outcome after
multiplication, i.e., exploding. The solution could simply be truncating or squashing
these large values.

Literally speaking, traditional RNN, in practice, is struggling with remembering
the long term dependencies. Take the sequence prediction as an example, given the
following sentence “I have been living in China for a long time. I can speak good
...”, the RNN could easily predict that “Chinese” might have a high probability as
the next word. However, when there are plenty of sentences or even paragraphs and
chapters existing between the two contents, it will be incredibly hard for RNN to
make the reasonable prediction. More detailed calculation and analysis regarding
Why RNN is difficult to train? or Why long term dependency is hard with gradient
descent? can be found in [59], [60] and [57].

4.3.4 Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM) is originally published by Sepp Hochreiter and
Jürgen Schmidhuber in their work at 1997 [61]. It is an explicitly designed novel,
efficient and gradient based method aiming to solve the problems of vanishing gra-
dient, and also importantly, to remember the long-term dependency. The model
shown in Figure 4.8 is a modified version of original LSTM, where the so-called
peephole connections are added, meaning that all gate layers are taking the cell
state into account. This is proposed by Felix A. Gers et al. in 2000 [62], [63].

From outside of the LSTM, it can be regarded as a black box, which is replacing a
single tanh activation function in traditional RNN. However, from inside, it is very
sophisticated and well-designed. In the Figure 4.8, the first gate after a sigmoid
function is called forget gate, i.e., ft at time t:

ft = σ
(
W f · [Ct−1, ht−1, xt] + b0

)
(4.55)

The input of the forget gate ft is the piece-wise summation (concatenation) of the
following data-flow: the output of the previous LSTM block ht−1, the input for
the current LSTM block xt, the memory Ct−1 of the previous block and finally a
bias vector b0. The ft is ranging between 0 and 1 and will be multiplied with the
previous memory Ct−1. The higher the value of ft is, the more the previous memory
will be kept. Therefore, the value of 1 means “all remembered” while 0 represents
“all forgotten”.

36

4.3. RECURRENT NEURAL NETWORK (RNN)

Figure 4.8: Model of Long Short Term Memory (LSTM) [61]. Source: [64].

The next component is representing the new memory to be updated, which is
the multiplication between the results of input gate it in Equation 4.56 and a new
candidate CEt in Equation 4.57.

it = σ
(
W i · [Ct−1, ht−1, xt] + b1

)
(4.56)

CEt = tanh
(
W C · [ht−1, xt] + b2

)
(4.57)

The input gate it is a sigmoid layer, which has the same formulation as the forget
gate, and CEt is a tanh function layer.

Equation 4.58 shows how the new cell stated Ct is updated from the old cell
state Ct−1.

Ct = ft ∗ Ct−1 + it ∗ CEt (4.58)

The output memory cell of this network is the sum of old memory through forget
gate and the new memory through input gate.

37

CHAPTER 4. MACHINE LEARNING

Now, the output gate is represented as Equation 4.59.

ot = σ
(
W o · [Ct, ht−1, xt] + b3

)
(4.59)

The output unit is controlled by updated memory Ct instead of old memory. Addi-
tionally, it takes the current input xt, previous output ht−1 and a bias unit b3 into
account.

ht = ot ∗ tanh(Ct) (4.60)
Figure 4.8 shows a single LSTM block. In a RNN layer, every LSTM unit is

also connected by utilizing the chain structure, where the previous cell state will be
connected to the cell input of the next block and previous output will be connected
to the next block as well. The way of how LSTM is controlling the information flow
is just like how the pipes are piping the water. The gate layers in LSTM are just
like the valves on the pipe, which controls how much water can pass through.

There are some more modified versions based on original LSTM having been
developed in the past decades. A full comparison study can be found in [65].

4.3.5 Regularization and Dropout
Not enough training data or overtraining always lead to the problem of overfitting.
The typical case of overfitting is: during the training process, the error on training
data is gradually decreasing but the error on validation set turns to increase since
the trained model is over fitting the training set but hardly working on the data
beyond training set. There are several ways of avoiding overfitting such as early
stopping, L1/L2 regularization (or, so called weight decay), and dropout.

L2 regularization is perhaps the most common form of regularization. It can be
implemented by simply adding the sum term λ

2n

∑
w w

2 of every weight w to the
objective function, where λ is the regularization strength and n is the number of
training data. It is common to see the factor of 1

2 because the gradient of this square
term with respect to the parameter w is simply λw instead of 2λw, where 2 and 1

2
are compensated by each other. During parameter update step of gradient descent,
using the L2 regularization introduces another term −λ ∗ w to the equation. Its
effect is reducing the weight linearly, which is why such regularization is also called
weight decay. What is avoided with weight decay is the dramatically different size
orders of weights. Now, introducing the regularization which prevents extremely
high weights among all weights, the network is thus forced to learn the general
patterns rather than the exceptions.

L1 regularization is another common form of regularization, where the term
λ
n

∑
w |w| is added to the cost function. However, in practice, L2 regularization

is outperforming L1 to a great extent. It is also possible to combine the L1 regu-
larization with the L2 regularization: λ1

n

∑
w |w| + λ2

2n

∑
w w

2, which is called Elastic
net regularization [66].

38

4.3. RECURRENT NEURAL NETWORK (RNN)

Figure 4.9: Dropout Demonstration. Source: [67].

Dropout is an extremely effective and simple regularization technique introduced
by Srivastava et al. in [67]. Different from previous L1/L2 regularization methods,
which is based on revising the objective function, dropout is realized by modifying
the neural network itself. As shown in Figure 4.9, this technique will randomly
drop units from the neural network during training, which prevents units from co-
adapting too much [67]. During training, dropout can be interpreted as a sampled
“thinned” neural network from the fully connected network, and only updating
the parameters of the sampled network based on the input data. Thus, a neural
network with n units could yield 2n possible thinned neural networks. During
testing, there is no dropout applied since it is hard to directly obtain the average
of that exponentially many thinned models [67]. However, instead of applying
dropout, a simple approximate averaging method is working very well, where a
single neural network is used with each of the weight multiplied by the probability
used during dropout of training. It is shown in [67] that dropout significantly
improves the performance of neural networks on various supervised learning tasks
in vision, speech recognition, document classification, etc.

39

Chapter 5

Design and Implementation

In this chapter, the system design for log template extraction, sequence generation
and machine learning models are described. The very tricky issues of model training
and evaluation techniques are analyzed. The system limitations are also provided
for clarity.

5.1 Log Template Extractor

From above literature study and analysis of existing tools conducted in Chapter 3,
it is making more sense to not consider the similarity at the character level but at
the word (term) level. And we will make use of several ideas or notions together,
and compare two to three methods mentioned above.

We define the string within a sentence between two adjacent delimiters as one
token and the Description of one log entry is formed with multiple tokens, sepa-
rated by the delimiters pre-defined. The delimiters are defined characters such as
whitespace, symbols and certain punctuations (like [,], (,), =, :, |, etc.). This
will bring the Description to a higher level of understanding, not in terms of single
meaningless character but words. For better understanding our concepts regarding
tokens, considering the log messages in Figure 5.1. For simplicity, the Time-stamp

osafimmnd[9146]: NO Ccb 595465 COMMITTED (BRFC)
osafimmnd[9146]: NO Ccb 595466 COMMITTED (BRFC)
osafimmnd[9147]: NO Ccb 595467 COMMITTED (BRFC)

Figure 5.1: Log examples.

and Server-name are ignored, and only the Description is provided. After being
divided by the predefined delimiters, each of them contains seven tokens. For in-
stance, the seven tokens of the first line of log entry are osafimmnd, 9146, NO, Ccb,
595465, COMMITTED, and BRFC. The template of these three lines of messages could
be the Figure 5.2. where the tokens 9146 and 595465 are considered as variables

41

CHAPTER 5. DESIGN AND IMPLEMENTATION

osafimmnd[*]: NO Ccb * COMMITTED (BRFC)

Figure 5.2: Log template example.

which are replaced be the wildcard symbol * in the template, and osafimmnd, NO,
Ccb, COMMITTED and BRFC are the constant tokens. And the most possible corre-
sponding Java code for printing our such logs are likely to be the following:
System.out.printf("osafimmnd [%d]: NO Ccb %d COMMITTED

(BRFC)", pid , num);

In [7], Kimura et al. offer an optional way of how to define different word class
as shown in Table 5.1. The higher the class number is, the higher its tendency
to belong to the template is. For different requirements of the abstraction and

class definition examples
1 only numbers or numbers and symbols 1, 0/0, 10.1.1.1
2 numbers and letters host-01, IPv4, L2TP, vty0, Fa0/0
3 symbols and letters class-a, udp-port, aaa.cfg, line-protocol
4 only letters linkdown, state, interface
5 only symbols <, >, =, :

Table 5.1: Classes of Words defined in [7]

granularity level, the detailed definition of variables and constants will be varying.
Since the log files are generated from diverse sources, the structures of them are
heterogeneous (see Tables 2.2, 2.1 and 2.3) and it is also unwise to set regular
expression for each of them for extracting their Time-stamp, Description and/or
Severity, Server-name, etc. However, none of above methods are designed for such
heterogeneous log packages. The machine learning algorithms will be applied to
classify them (the categorical attributes of each of the log messages) into different
classes (i.e., Time-stamp, Severity, Server-name or just free text of Descriptions).

As discussed in previous section, there are logs like the examples shown in Figure
2.4, where a fixed group of different templates of messages gathering together as
a whole expressing one event. For such logs, each of the single log template is
less interesting to us however one log entry is making more sense to be considered
and abstracted as a whole for further log utilization and evaluation. The relevant
examples are logs with multi-lines, logs represented as tables, etc.

The log template extractor is designed in two major stages: log clustering, tem-
plate extraction and sequence generation. Generally speaking, the log clustering
is process where similar logs are grouped together based on their editing distance.
After the log clusters having been obtained, every single log template is extracted
from each of the clusters gathered and then labeled by a unique identification for
further usage. Now, a search dictionary is created as a key-value mapping, where
the values are the log templates and the keys are the labels assigned to each of the

42

5.1. LOG TEMPLATE EXTRACTOR

templates. When a new set of log files are needed to be analyzed, each line of the
logs will be fed into the search dictionary looking for corresponding label. Finally,
a new sequence of labels is generated based on the new logs, where every ID is
matching one log entry. In the following of this section, every step is discussed in
detail.

Pre-processing is the step where the token types are identified and the less relevant
tokens are tagged as wildcard symbol *. In this case, the less relevant tokens are the
ones which are considered with lower possibility to be a part of the final template,
such as numeric strings (integer, real number, float, hex), IPv4, IPv6, PCI
address, On the contrary, they are more likely to be the variables. Also the
logs like what Figure 2.4 is showing will be merged together treated as a single log
entry sharing the same time stamp.

Tokenization is the step when every log entry string is divided based on the pre-
defined delimiters. The delimiters are given, as regular expression in Python, in the
Figure 5.3.

r'([*\s,:()\[\]=|/\\{}\'\"<>\._\-])'

Figure 5.3: Delimiters.

Most of the delimiters are given based on the observations of the log data and the
experiences. For example, the white space ‘ ’ is given naturally as a delimiter as
it is taken as granted as a separator in natural language as well. The chars like
colon ‘:’, different quotations ‘‘’"’, comma ‘,’, dot ‘.’, vertical line ‘|’ and
various kinds of brackets ‘[]()<>’ are considered as delimiters also for the reason
that they are more naturally being a token divider. The equal mark ‘=’ is regarded
as a delimiter since in many logs, such as Figure 2.2, 2.5 and 2.6, the expression like
variable=value appears, where the left side of the equal sign is the name of the
variable and the right side is the corresponding value. The slash ‘/’ is commonly
used within the file or command path. The underscore ‘_’ and dash sign ‘-’ is
widely used in the new variable, instance or component naming.

One thing to remember is that the more relevant chars included as the delimiters,
the more granular the tokenization would be. The reason is that it is tending to
divide “big” tokens into “small” ones. This is having great impact on the following
log clustering process since the more tokens there are within one log message, the
more delicate the comparison it could be when detecting the editing similarities
between two log messages simply because there are more tokens to be considered.
However, it is over-considered if every char is regarded as a single token. This will
greatly increase the computational time during similarity detection. Additionally,
there is no need for judging the log similarity on the basis of each char when most
of the tokens are consisted of fixed combination of chars.

43

CHAPTER 5. DESIGN AND IMPLEMENTATION

Partitioning is a very helpful step, before the real log clustering, partitioning the
original logs into several partitions based on their command type (i.e., the name of
the process or component) and the length of each log (i.e., the number of tokens
contained in the line of log).

It will dramatically reduce the computational time, especially plenty of time
spent on detecting the Levenshtein distance and following log clustering. If you
would like to find out a certain type of template among all templates, previously,
the new log will be compared with all templates from every log cluster. However, if
the middle class of hierarchical partitions are added, the system will first check which
partition the new log belongs to based on the process name or component name of
the log and the log length in terms of tokens. After the partition is identified, the
log will be searched only within the clusters of this partition.

Generally speaking, we could just consider that clustering logs starting with
different command (process) names into different clusters is naturally reasonable.
The reason is that, intrinsically, the logs generated from the different process is
normally having and should be considered with different log template. In this
process, the hash table created is the mapping from the tuple (command, length)
as the key to another hash table , where the logs are sharing the same command
and log length. This hash table is described in the following. Therefore, there are
actually two levels of hash tables, which is shown in Figure 5.4.

Log clustering is the process, given the new log message, after it has been assigned
to a certain partition, it will be compared with every clusters in this partition and
be grouped into the cluster which is having the minimal editing distance to the
new log. If the minimal editing distance is less than a pre-defined threshold, the
new log will be clustered into the corresponding group; otherwise, a new cluster
will be created and the new log will be the representative log of this cluster. The
problem of how to set a proper threshold value will be discussed in the Chapter 6:
Experiments and Results, where the threshold is analyzed based on real results. In
this process, the hash table created is actually the mapping from ID to a set of logs,
which is similar to each other. The IDs are given as integers starting from 1, 2,
3, ..., and whenever a new cluster is created, a new continous integer is given.
Besides this, the integer 0 is kept for labeling unseen logs in the future.

In this project, the editing distance is based on the Levenshtein algorithms,
which could be mathematically given as the Equation 5.1.

LevA,B(i, j) =



max (i, j) if min (i, j) = 0

min


LevA,B(i− 1, j) + 1
LevA,B(i, j − 1) + 1
LevA,B(i− 1, j − 1) + 1(Ai ̸=Bj)

otherwise
(5.1)

As discussed earlier in this report, the Levenshtein editing distance LevA,B(|A|, |B|)
is the minimal actions it will take to change string A to string B in terms of the

44

5.1. LOG TEMPLATE EXTRACTOR

Figure 5.4: Two-level hash table.

insertions, deletions, substitutions (and transpositions). In our case, instead of
actions on char level, the editing actions are on the basis of word tokens. It can
be solved in many difference ways such as recursion, iteration with full matrix
or iteration with two simple vectors. Considering the efficiency of the algorithm,
the existing tool called editdistance [68] is utilized in this thesis project, which
is originally written in C++ and based on the work of [69]. According to the
benchmark of [68], editdistance is outperforming most of other tools and also
supporting token-based detection besides of char-based one.

Template extraction is just the step where a single log template representation
is extracted from each of the log clusters. The way of doing this is considering
the cardinality of the tokens (number of unique tokens) at each position of the log
with certain length. Based on the previous partitioning step, it is sure that the logs
within a same cluster is having the same length. By counting the unique tokens
at each position of the logs within a cluster, it is easy to just simply replace the
content with the position, where more than one unique tokens are appearing, by
wildcard symbol *. Finally, the template representation for this cluster is generated

45

CHAPTER 5. DESIGN AND IMPLEMENTATION

with original unique tokens and replaced wildcard symbols. For example, in Figure
5.5, the positions of A, B and D are having more than one unique tokens whereas
the C, E, F are having only one unique token. Then the template obtained is * *
C * E F G.

A1 B1 C D2 E F G
A2 B1 C D1 E F G
A1 B2 C D1 E F G

Figure 5.5: Delimiters.

In this process, the previous hash table, mapping IDs to the log set, is transfered
to the mapping from IDs to their corresponding log template.

Search dictionary generation is the process, during the log clustering and tem-
plate extraction, where a search dictionary is also created for matching the new
logs and labeling them in the future. It is a hierarchical hash table, where there are
two mappings. The first mapping is from the tuple key (command, length) to the
specific partition, which is another hash table. This hash table is the second level
of the hierarchy, where the key is the ID labeled on each of the templates and the
value is the corresponding template representation. The purpose of the dictionary
is that, when a new log is fed into the system, the program will match the log
with the most similar template in the system and output this template’s ID for the
following sequence generation. The new log will be firstly mapped to a partition
then to the specific log template.

Log matching is the process, where new logs are matched with the obtained
template representation stored in the search dictionary for obtaining their own IDs.
The log matching is actually divided into two steps. First, the command token
of the new log extracted together with the log length in order to create a tuple
(command, length). Using this tuple as the key, a partition of templates referring
different clusters will be found for further matching. Then, the log will be compared
with each of the template representations for similarity check. If there is a match,
the new log will be given with the corresponding key ID of the value template;
otherwise, the ID 0 will be given meaning that this is an unknown log. The log
matching process is demonstrated in the Figure 5.6.

Sequence generation is the process, where a new sequence of labels (IDs) is gener-
ated based on the new set of logs. This is done by previously discussed log matching
function based on the search dictionary created. The generated ID sequences are
regarded as the input to the machine learning models for sequence learning.

46

5.2. NAIVE BAYES MODEL

Figure 5.6: Log Matching Process.

5.2 Naive Bayes Model
First of all, several remarks and definitions are given for better explanation of the
machine learning problem and demonstration of the training and validation data
set.

Remark 5.2.1. K - the maximal class label and all class labels are given as integers
equal or less than K.

Remark 5.2.2. ID n - the nth ID on the sequence ID 1, ID 2, ID 3, ..., ID N
with length of N , where n ∈ {1, 2, ..., N}. The ID n is belonging to the set of ID
classes {0, 1, 2, ..., K},

Remark 5.2.3. sentence - the subset of a sequence. It is used to train the model
as the input data of each of the single data sample. For a sequence with length of
N , we defined M as the length of sentence, where M is less than N . The length of
sentence is also called as window size.

Remark 5.2.4. X_train ∈ ZS×M - the input data in the training data set for Naive
Bayes model. It is with the dimension of [S,M], where S is the number of samples
in the training data set and M is the length of sentence, i.e., the window size. In
other words, X_train is a set of sentences.

Remark 5.2.5. y_train ∈ ZS - the output data in the training data set for Naive
Bayes model. It is a S-length vector, where S is the number of samples in the

47

CHAPTER 5. DESIGN AND IMPLEMENTATION

training data set and S is also equal to the number of samples in X_train. In
other words, each data of y_train, as the target data, is matching each input data
of X_train.
The X_train and y_train are shown in Figure 5.7. In this project, the problem

Figure 5.7: X_train and y_train.

of sequence learning and sequence detection is demonstrated in Figure 5.8. Given

Figure 5.8: Sequence Prediction Demonstration.

an ID sentence ID 1, ID 2, ID 3, ..., ID M, the machine learning model, after
training, should be able to predict the next correct ID, i.e., ID M+1. The number M
is defined as window size in Remark 5.2.3. The problem, in other words, is actually
the problem of calculating what is the ID among K classes with highest probability
at the position of ID M+1, given its previous M IDs are ID 1, ID 2, ID 3, ..., ID
M. Applying the Naive Bayes theory described in Section 4.1, the following Equation
5.2 is obtained by rewriting the Equation 4.7.

P
(
IDM+1 = idk

∣∣∣ ID1 = idi1 , ID2 = idi2 , ... IDM = idiM

)
∝ P (IDM+1 = idk)P

(
ID1 = idi1 , ID2 = idi2 , ... IDM = idiM

∣∣∣ IDM+1 = idk

)
∝ P (IDM+1 = idk)

M∏
j=1

P
(
IDj = idij

∣∣∣ IDM+1 = idk

) (5.2)

48

5.2. NAIVE BAYES MODEL

where
k, ij ∈ {1, 2, ...,K}.

The task now is to obtain the idk for k ∈ {1, 2, ...,K} so that the value of Equation
5.2 will be maximized. In order to obtain the maximal value of posterior as Equation
5.2, the values of prior P (IDM+1 = idk) and likelihood P

(
IDj = idij

∣∣∣ IDM+1 = idk

)
should be obtained, for k, ij ∈ {1, 2, ...,K} and j ∈ {1, 2, ...,M}.

The major class NaiveBayes is defined. There are two major steps of Naive
Bayes model: learning and evaluation. And the details of both of them will be
discussed and illustrated in the following of this section. The full code including
model building, training and evaluating can be found in my Github repository:
https://github.com/fluency03/sequence-rnn-py/blob/master/naive_bayes.py.

5.2.1 Training

In the learning process, two matrices are created for computing the above proba-
bilities: (i) ny ∈ ZK is the vector representing the number of appearance for each
different class in y_train, where K is the number of classes; (ii) nx_y ∈ ZM×K×K

is the matrix representing the number of different classes appearing in X_train,
at each position of m ∈ {1, 2, ...,M}, given certain data in y_train. The values
of the two matrices are initialized with zeros and added up during the training
process, which will be used in the evaluation process for calculating the probability
distributions.

Figure 5.9: ny and nx_y.

The calculation of these two matrices is shown in Listing 1 in Python code. Given
the training data sets X_train and y_train, the number of samples S is obtained
first. For each of the sample i in S, the value of ny[y_train[i]] is increased

49

https://github.com/fluency03/sequence-rnn-py/blob/master/naive_bayes.py

CHAPTER 5. DESIGN AND IMPLEMENTATION

------------------- Likelihood -------------------
px_y = np.zeros((self.nb_classes, self.window_size))
for p in xrange(self.nb_classes):

for k in xrange(self.window_size):
px_y[p, k] = ((self.nx_y[k, X_eval[i, k], p] +

self.alpha) /
(self.ny[p] +
self.alpha * self.nb_classes))

Listing 1: Train Naive Bayes Model.

by 1 when the certain ID class y_train[i] appears once. For each of the target
value y_train[i], the matrix nx_y is calculated based on every position i within
the window_size which is M mentioned in previous section. The value of nx_y[j,
X_train[i, j], y_train[i]] is increase by 1 when the ID X_train[i, j] is
discovered at position j within window of size - window_size, for the corresponding
target data y_train[i]. X_train[i, j] is the ID at the position j of the sentence
i within the input data set X_train.

5.2.2 Evaluation

In the evaluation process, based on the two numeric matrices obtained previously,
three relevant probability matrices can be obtained: (i) the prior py ∈ RK , (ii) the
likelihood px_y ∈ RK×M , and (iii) the posterior py_x ∈ RK . The probabilities
are calculated for each of the data sample within the evaluation data set (X_eval,
y_eval). X_eval and y_eval are sharing the same space dimension with X_train and
y_train mentioned before, respectively, but with different number of data samples.

Additionally, a value α ≥ 0 is defined as the smoothing prior, which is used
for taking features not present in the learning samples into account. It is capable
of preventing zero probabilities so that, in future computation, no previous zero
probabilities could lead to a final zero probability after multiplied together. When
α = 1, the method is called Laplace smoothing; while α < 1, it is called Lidstone
smoothing [70]. The usage of α is demonstrated in the following part.

The Python code in Listing 2 shows the process of prior calculation. The prior

total_y = np.sum(self.ny)
--------------------- Prior ----------------------
py = np.zeros(self.nb_classes)
for c in xrange(self.nb_classes):

py[c] = ((self.ny[c] + self.alpha) /
(total_y + self.alpha * self.nb_classes))

Listing 2: Evaluate the Naive Bayes Model - Prior Calculation.

50

5.2. NAIVE BAYES MODEL

can be represented as Equation 5.3 for each ID class c ∈ {1, 2, ...,K}, where the
smoothing parameter α is utilized. In this equation, without α, if the number of
certain class in target data, i.e. ny[c], is equal to zero, the probability py[c] will
be zero as well. However, it is really unfair to say the chance of certain data’s
appearance is zero just because it is not in the training data. Therefore, a small
number is added on this probability even when ny[c] is zero in the training data.

py[c] = ny[c] + α

total_y + α ∗ nb_classes
(5.3)

In the following part of this section, the probabilities (likelihood and posterior)
are calculated based on the sample i for each of data pair (X_eval[i], y_eval[i]).
The Python code in Listing 3 shows the process of likelihood calculation. Given

------------------- Likelihood -------------------
px_y = np.zeros((self.nb_classes, self.window_size))
for p in xrange(self.nb_classes):

for k in xrange(self.window_size):
px_y[p, k] = ((self.nx_y[k, X_eval[i, k], p] +

self.alpha) /
(self.ny[p] +
self.alpha * self.nb_classes))

Listing 3: Evaluate the Naive Bayes Model - Likelihood Calculation.

certain data p in target output y, the probability of evaluation data X_eval[i, k]
at position k on the sentence X_eval[i] with length window_size is represented in
Equation 5.4.

px_y[p, k] =
nx_y

[
k,X_eval[i, k], p

]
+ α

ny[p] + α ∗ nb_classes
(5.4)

The Python code in Listing 4 shows the process of posterior calculation. In

------------------- Posterior -------------------
py_x = np.zeros(self.nb_classes)
for j in xrange(self.nb_classes):

py_x[j] = py[j] * np.prod(px_y[j])

Listing 4: Evaluate the Naive Bayes Model - Posterior Calculation.

Equation 5.5, the probability of class j given the evaluation data X_eval[i] of
sample i is calculated, based on the prior py[j] and the likelihood - the product of
each probability px_y[j, k] at each position k within the window.

py_x[j] = py[j] ∗
M∏

k=1
px_y[j, k] (5.5)

51

CHAPTER 5. DESIGN AND IMPLEMENTATION

For each data sample i, the predicted class is the one with highest probability
within the posterior py_x. And the ground truth (target value) is the y[i] for
sample i. This is shown as Python code in the Listing 5. The number of correct
predictions nb_correct is initialized as zero and adds 1 when the prediction is
correct for sample i, i.e., when y_true == y_pred.

------------------- Prediction -------------------
y_pred = np.argmax(py_x)
y_true = y_eval[i]
if y_true == y_pred:

nb_correct += 1

Listing 5: Evaluate the Naive Bayes Model - Prediction.

Finally, the accuracy is calculated from the number of correctnesses over the
overall predictions, i.e., accuracy = nb_correct / len(y_eval).

Regarding above computation process, a place that can be improved is remaining
in the Equation 5.5 and Listing 4. It is noticed that logarithms is not applied in
Equation 5.5 and, consequently, when there are many small numbers (less than
1.0) multiplied together, the product of them will become extremely small, which
could lead to the underflow problem. That means when the product is smaller than
the bottom range of the float number in Python, the result will become zero. The
logarithms of posterior py_x is given in Equation 5.6.

log
(
py_x[j]

)
= log

(
py[j]

)
+

M∑
k=1

log
(
px_y[j, k]

)
(5.6)

However, for this application it did not make any difference in the results, so
Equation 5.5 was used throughout. To be absolutely certain, I have tested at least
one NB case with both non-logarithms and logarithms just to make sure I get the
same result. 1

5.3 Recurrent Neural Networks
In this project, a deep learning library called Keras [71] is utilized for RNN modeling
and evaluation. According to its official documents, Keras is a minimalist, highly
modular neural networks library, written in Python and capable of running on top of
either TensorFlow or Theano. Due to the design principles of high level modularity,
minimalism and extensibility of Keras, it is very easy to quickly build up a neural
network prototype. Because of running on Theano (or TensorFlow), Keras is also
seamlessly supporting CPU and GPU. Thanks to the flexibility of network model-
ing, arbitrary connectivity scheme is supported, such as multi-input/multi-output

1Please refer to the Chapter 6. Experiments and Results.

52

5.3. RECURRENT NEURAL NETWORKS

training, sequential/graph model, convolutional and recurrent combined networks,
etc.

In this project work, the Keras RNN model is trained on the basis of Theano
and the GPU is also enabled. The simple Sequential model is chosen for the basic
structure instead of Graph model. The full code of Recurrent Neural Network includ-
ing model building, training and evaluating can be found in my Github repository:
https://github.com/fluency03/sequence-rnn-py/blob/master/rnn_sequence_analyzer.
py.

The data sets used for RNN training and validation are slightly different from
the ones used for Naive Bayes model. Based on Remarks 5.2.4 - 5.2.4, the data sets
are modified for RNN in the following remarks.
Remark 5.3.1. X_train ∈ ZS×M×K - the input data in the training data set for
RNN model. The difference of X_train for RNN from the one for Naive Bayes
model is that X_train for RNN has one more dimension in space - the number of
class K. In Naive Bayes, each ID is represented by a single integer; however, in
RNN, each ID is represented by a one-hot vector.
Remark 5.3.2. one-hot vector - the vector with length of K, which is equal to the
number of classes. In such vector, only one value is 1 and all the rest are 0s. For
the integer n, it is represented by the K-vector, where the n-th value is 1 and the
rest of them are 0s.
Remark 5.3.3. y_train ∈ ZS×K - the output data in the training data set for RNN
model. It has the same difference mentioned in Remark 5.3.1, i.e., it has one more
dimension - the number of classes K.

5.3.1 Model and Layers

In Keras, the Sequential model can be simply initialed as model = Sequential().
The LSTM layer is given in Listing 6, where most of the parameters are ignored.
Please refer to Keras’s official document [72] for detailed information. The param-

keras.layers.recurrent.LSTM(output_dim, ...)

Listing 6: LSTM Layer in Keras.

eter output_dim indicates the dimension of the internal projections (i.e., the length
the layer when it is a hidden layer) and the final output (i.e., the length the layer
when it is the output layer).

The class LSTM is inherited from the abstract class Recurrent shown in Listing
7. The paramter weights is the list of arrays to manually set the initial weights and
the default values are initialized as zeros when it is None. The return_sequences
is a Boolean value, which indicates whether to return the last output in the output
sequence, or the full sequence. The go_backwards (a Boolean value, default as
False) indicates whether to process the input sequence backwards, which is very

53

https://github.com/fluency03/sequence-rnn-py/blob/master/rnn_sequence_analyzer.py
https://github.com/fluency03/sequence-rnn-py/blob/master/rnn_sequence_analyzer.py

CHAPTER 5. DESIGN AND IMPLEMENTATION

keras.layers.recurrent.Recurrent(weights=None,
return_sequences=False,
go_backwards=False,
stateful=False,
...
input_dim=None,
input_length=None)

Listing 7: Recurrent Layer in Keras.

helpful in Bi-directional RNN model. The stateful: Boolean (default False). If
True, the last state for each sample at index i in a batch will be used as initial
state for the sample of index i in the following batch. Additionally, two parameters
input_dim and input_length define the dimension of the input data. They are
used only when th layer is the first layer of the model, and in practice, the compact
argument as input_shape=(input_length, input_dim) is applied. The input_dim
is the dimensionality of the input data, which is the length of one-hot vector, i.e.,
the number of classes. The input_length is the length of input sequences, i.e.,
the length of one single sentence. It is the number of time series steps, which the
model will be based on for recurrently processing the data. There are also other
parameters but kept non-explained in this report.

As an abstract class, Recurrent itself cannot be used to form any valid layer in a
model. And the child class LSTM (along with other children like GRU and SimpleRNN)
inherits the properties from Recurrent, such as the parameters, members and meth-
ods.

The Listing 8 shows how the dropout mechanism is applied, where the argument
p, as a float value ranging between [0, 1], indicates the fraction of the dropout
between the output of previous layer to the input of next layer. It is a powerful
regularization method and mainly used for avoiding overfitting.

keras.layers.core.Dropout(p)

Listing 8: Dropout Layer.

The Listing 9 shows how the activation function is applied to a layer, where the
argument activation is the function type, represented as string.

keras.layers.core.Activation(activation)

Listing 9: Activation Layer.

In Keras, the class TimeDistributed is defined as a layer wrapper, where the
input argument is a class of layer. When a layer is applied into the wrapper

54

5.3. RECURRENT NEURAL NETWORKS

TimeDistributed, the dense connection is based on the unit of each of the time
steps. Two sequence training schemes can be applied: many to one and many to

keras.layers.wrappers.TimeDistributed(layer)

Listing 10: Time Distributed Layer Wrapper.

many, which are mentioned in Figure 4.6.

5.3.2 Many-to-one and Many-to-many
In order to demonstrate these two approaches, a training sequence is given as fol-
lowing: ID 1, ID 2, ID 3, ..., ID N. In many-to-one case, the above sequence is
divided into the following set of data samples for training in Figure 5.10, where k

X_train y_train
ID 1, ID 2, ..., ID k ID k+1
ID 2, ID 3, ..., ID k+1 predict -> ID k+2
ID 3, ID 4, ..., ID k+2 ID k+3
...
ID N-k, ID N-k+1, ..., ID N-1 ID N

Figure 5.10: Many to One.

is the length of sentence related to the window size mentioned in Naive Bayes. The
length of each data sentence limits how much the gradients can propagate back-
wards in time. For example, if sentence length is 20, then the gradient signal will
never back-propagate more than 20 time steps, and the model might not find de-
pendencies beyond this length of IDs. This is actually the limitation of the model’s
long term memory. Thus, if difficulty relies on the dataset where there are a lot of
long-term dependencies, increasing the sentence length might be a proper choice.

For the many-to-many approach, the target data y_train is a subsequence in-
stead of a single ID shown in Figure 5.11. In this case, each sample in y_train is

X_train y_train
ID 1, ID 2, ..., ID k ID 2, ID 3, ..., ID k+1
ID 2, ID 3, ..., ID k+1 ID 3, ID 4, ..., ID k+2
ID 3, ID 4, ..., ID k+2 predict -> ID 4, ID 5, ..., ID k+3
...
ID N-k, ID N-k+1, ..., ID N-1 ID N-k+1, ID N-k+2, ..., ID N

Figure 5.11: Many to Many.

the exact next sentence to its corresponding data sample in X_train.

55

CHAPTER 5. DESIGN AND IMPLEMENTATION

• many to one - This approach is very specifically designed to learn the exact
next ID after certain subsequence. Other common applications, in this case,
would be the classification problems, where the features near to each other are
more independent. However, in the sequence learning and prediction problem,
the IDs near to each other are very closely related.

• many to many - This approach is more capable of learning the dominant
patterns among the whole sequence instead of only predicting the next ID.

In the many-to-one problems, the loss is calculated only based on the error (level
of difference) of the predicted next ID and ground truth. However, in the many-
to-many problems, the loss is calculated on each of the IDs among the sequence.
That means, given the sentence sample of the targeted training data y_train with
length of L, the total loss is obtained based on each of the L IDs. More targeted
data points needed to be fit makes the model weights harder to adjust, which leads
to a slower training process. On the contrast, it is a relatively reasonable choice
in the sequence learning and prediction problem, where there could be long term
dependencies.

Additionally, the many-to-many approach can be extended to unfixed, unequal
sentences’ lengths, both in input side and output side. The relevant applications are
the encoder-decoder or sequence to sequence learning. For example, the addition
application, where the input sequence is “535+61” with length 6 and the output
sequence is “596” with length 3. The Keras-based python code of application addi-
tion is given in the Github repository: https://github.com/fchollet/keras/blob/
master/examples/addition_rnn.py.

5.3.3 Build the Model

In Keras, constructing a neural network model is as easy as the method add is called
by the model for each of the layer. This brings the problem about the size of the
model:

• How many recurrent layers should be added to the model?

• How many units should each layer contain?

This is a very tricky problem to every neural network case. Many things should
be considered and experimented in order to determine the size of the network.
However, by conducting the approximate calculation of the total among of model’s
parameters and comparing it to the total data size, a general feeling of the model
size can be obtained. The following calculation inspired from [73] offers a simple
example about how to compute the number of parameters within a model.

Consider one layer of LSTM units, if it has the layer size of H=512 and if we
have the vocabulary size as C=3000 (the number of unique classes, i.e., the number
of unique IDs in our case), the LSTM layer will have three parameter matrix:

56

https://github.com/fchollet/keras/blob/master/examples/addition_rnn.py
https://github.com/fchollet/keras/blob/master/examples/addition_rnn.py

5.3. RECURRENT NEURAL NETWORKS

• U with dimension (H, C)=(512, 3000);

• V with dimension (C, H)=(3000, 512);

• W with dimension (H, H)=(512, 512).

Then, the total number of parameter for one layer will be 2HC + H2, which is
3, 334, 144 in this case. That is more than 3 million parameters for only one layer!
As indicated in [73], the approximate number of parameters (i.e., the model size)
in a neural network can be adjusted based on the amount of data. For example,
for a dataset with 100 million IDs (which represents 100 million logs), a model with
only 100 thousands parameters should be obviously insufficient. An underfitting
situation is very likely. On the contrast, if there are only 100 thousands IDs in
the dataset but the model is with size of millions of parameters, the overfitting
is also hardly avoidable. In addition, if it is a 1-million dataset running on a 1-
million-parameter model, it is still necessary to carefully monitor the training loss
and validation loss in order to avoid overfitting. One commonly used trick is to
increase the model size meanwhile set a higher dropout rate.

In a word, according to [73], these two factors, i.e., the number of parameters
and the amount of data, should be about the same order of magnitude. It is also
suggested that the number of layers will normally be 2 or 3.

Finally, in order to compile and build a neural network model, the function
compile defined in Listing 11 is called as following: model.compile(loss=’categorical
_crossentropy’, optimizer=’rmsprop’). In the compile method, the parameter

compile(self, optimizer, loss, metrics=[], sample_weight_mode=None)

Listing 11: Compile the Keras model.

optimizer indicates the different schemes of gradient descent optimization, such as
stochastic gradient descent (SGD), RMSprop, Adagrad, Adadelta, etc. For RNN
model, rmsprop is a good choice as recommended in Keras’s official document. It is
defined in Listing 12, where an important neural network influence factor learning
rate lr is applied. The loss represents the loss function utilized, which are men-

keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08)

Listing 12: RMSprop Optimizer.

tioned in Section 4.2.3. For our sequence prediction problem (which actually is the
problem of next ID classification), the categorical_crossentropy is chosen. The
parameter metrices is used for model evaluation during training and validation.
For example, the accuracy can be recorded by applying metrics=[’accuracy’].

57

CHAPTER 5. DESIGN AND IMPLEMENTATION

5.3.4 Training and Validation

The factor lr (learning rate) plays a great role on the speed (step of the gradient
descent) and quality of learning. The higher the learning rate is, the faster the
neuron trains. The lower it is, the more accurate the training is, especially when
the training process tends to converge. For example, if the learning rate is very large,
the neural network will not be able to converge to the a more optimized, minimal
place, because each step is too big, even though there are more training iterations.
According to [65], the learning rate is by far the most important hyperparameter.
The tricky part of learning rate is that it is very hard to select a proper value of
it, which differs from various amount and variance of data set, diverse usage cases,
etc. It is suggested that, in practice, it is sufficient to do a rough search by starting
with a high value (e.g. 1.0) and dividing it by ten every time until the performance
stops increasing or tends to converge [65].

In order to train the RNN model defined, compiled and built in previous section,
the method fit will be called by model. The method is given in Listing 13.

fit(self, x, y, batch_size=32, nb_epoch=10, verbose=1,
callbacks=[], validation_split=0.0, validation_data=None,
shuffle=True, class_weight=None, sample_weight=None)

Listing 13: Train the RNN model.

The parameters x and y are the input data for model training. The parameter
batch_size indicates the number of samples per gradient update during training
and gradient descent process. The larger the batch size is, the more data can be
trained in parallel. To some extent, this action could accelerate the training speed.
However, when the batch size exceeds a limitation, the computational resources are
also constrained by the amount of data so that the speeding-up will be saturated.
The nb_epoch is the number of epochs (i.e., iterations) to train the model. The
verbose decides whether the information will be printed out during training. The
validation_split is the fraction of validation data among the whole data set used
for model training. Normally, in practice, the fraction is around 5% to 10%. Addi-
tionally, the parameter validation_data can also be used to specifically indicates
the data for model validation.

5.3.5 Evaluation

For the evaluation of the model given a new set of data, the following method
predict in Listing 14 is called in order to obtain the neural network prediction,
which will be used to compare with the ground truth value. Similar arguments
applied in method fit are also given for method predict.

In the evaluation process, the number of correct predictions nb_correct is ini-
tialized as zero. Whenever the model predicted value y_next_pred is equal to the

58

5.3. RECURRENT NEURAL NETWORKS

predict(self, x, batch_size=32, verbose=0)

Listing 14: Evaluate the RNN model.

ground truth value y_next_true, nb_correct is increase by one. After all predic-
tions are finished, the accuracy is obtained as: nb_correct / nb_samples, where
nb_samples is the number of samples in the evaluation data set.

Additionally, from the predict method, the probability of each of the ID class
can be obtained as well. Therefore, the chance of the ground truth value for each of
the data sample can be collected and plotted. Based on such results, this project also
intend to find out the anomaly places, where the ground truth data are treated with
very low probabilities. Ideally, this is the place, we believe, where the unexpected
behavior of the system happens and the testers should pay more attention. The
relevant results will be given in the next chapter.

59

Chapter 6

Experiments and Results

In this chapter, the results of Log Template Extractor are demonstrated and illus-
trated. Several experiments are conducted in order to obtain deeper understanding
of the difficulties in RNN training. It also offers the reasons regarding certain de-
cisions made during the RNN training process. Finally, the RNN model is used to
attempt to solve the practical sequence prediction and anomaly detection problem,
with comparison of the results from Naive Bayes model.

6.1 Log Template Extractor

The Log Template Extractor is hardly numerically evaluated since there is no right
or wrong answer. There is no (pre-defined) targeted log clusters or specific template
representation. For different original raw log data, it is also not certain that how
many clusters will be formed and how many templates will be extracted from them.
With regard of one time of template extraction process, it is also not determined
which template is labeled by which ID integer.

In this section, I will present and analyze some statistics related to the log
template clustering and extraction. These experiments and results will demonstrate
how I made some decisions during this process.

Number of clusters vs. Number of logs.
#log files 1 2 3 4 5 6 7 8 9
#clusters 2906 2945 3057 3060 3100 3108 3127 3134 3156
#log files 10 12 14 16 18 20 24 28 32
#clusters 3161 3169 3183 3189 3208 3213 3302 3409 3546

Table 6.1: Number of clusters vs. Number of logs.

Table 6.1 shows the relationship between the number of clusters generated and
number of log files imported. Each log file contains at least 43,000 logs, which means
32 log files have more than 1,376,000 logs in total. As it is shown in the table, one log

61

CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.1: Number of clusters vs. Number of logs.

file with at least 43,000 logs will converge to 2906 clusters, each of which represents
a log template where the logs belonging to this cluster are similar to each other.
With the gradually increasing of the number of log files imported, the number of
clusters created is increased accordingly. Most of the clusters are contained within
each of the log files since there are more than 81% 1 clusters generated from all of
the 32 log files can be generated from a single file. However, it is still no doubt that
the more log files collected, the better the results could be since more previously
unseen templates will be extracted as well as it is shown in Figure 6.1.

In the above experiment, the threshold is set to 0.1. The threshold represents the
percentage of dissimilarity between two logs when they are compared and clustered.
When a new log is compared with all the created cluster representations, if the
obtained dissimilarity value is lower than or equal to the predefined threshold, that
means this log could belong to the cluster. If more than one cluster are meeting
this requirement, the new log will be grouped into the cluster with lowest result. If
all results are higher than the threshold, a new cluster will be created and the new
log will become the initial representation of this cluster. Now, another experiment
is conducted to evaluate the effect of this preset threshold.

Number of clusters vs. Threshold.
threshold 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6
#clusters 4655 3546 3226 3042 2626 2251 1919 1652

Table 6.2: Number of clusters vs. Threshold.

12906 ÷ 3546 × 100% ≈ 81.95%

62

6.1. LOG TEMPLATE EXTRACTOR

Figure 6.2: Number of clusters vs. Threshold.

Table 6.2 and Figure 6.2 show the relationship between the number of clusters
that can be obtained and the threshold value. This experiment is based on 32 log
files. With the increasing of the threshold value, the number of clusters created
is decreased accordingly since the system is tolerating bigger difference between
the logs within a cluster thus more logs will be grouped together into one cluster.
Based on the numbers given in Table 6.2, on one hand, it is shown that there is a
big difference from threshold = 0.05 to threshold = 0.1 2 since, when threshold
is equal to 0.05, it is too strict when detecting the difference and creating new
clusters. For example, for two logs with maximum length of 20 tokens, threshold
= 0.05 means only one-token-difference between them is allowed otherwise they
will be treated as different logs. This will generate too many classes (clusters)
for machine learning tasks however most of these classes only appear one or two
times. On the other hand, larger threshold means many logs, which should be
treated differently, are gathered together into the same cluster. This will lead to
the situation that many different logs are belonging to the same class, which is
also bad to the following machine learning tasks since these logs are, unfortunately
treated as same. Therefore, threshold = 0.1 should be a reasonable choice.

Finally, some typical examples of found templates are given as following:

24655 − 3546 = 1109

63

CHAPTER 6. EXPERIMENTS AND RESULTS

324
kernel: [*.*] smpboot: Total of * processors activated (*.* BogoMIPS)
325
kernel: [*.*] RTC time: *:*:*, date: */*/*
326
kernel: [*.*] PCI: MMCONFIG at [mem *-*] reserved in *
327
kernel: [*.*] ACPI: Executed * blocks of module-level executable AML code
328
kernel: [*.*] pci *:*:*.*: System wakeup disabled by ACPI
329
kernel: [*.*] pci *:*:*.*: PME# supported from * D0hot
330
kernel: [*.*] pci_bus *:*: root bus resource [bus *]
331
kernel: [*.*] system *:*: [mem *-*] has been reserved
332
kernel: [*.*] pci_bus *:*: resource * [mem *-*]
334
kernel: [*.*] pciehp: PCI Express Hot Plug Controller Driver version: *.*
335
kernel: [*.*] ERST: Error Record Serialization Table (ERST) support is initialized.
336
kernel: [*.*] PM: Hibernation image not present or could not * loaded.
337
kernel: [*.*] shpchp: Standard Hot Plug PCI Controller Driver version: *.*
338
kernel: [*.*] IPv0: ADDRCONF(NETDEV_UP): *: link is not ready
339
kernel: [*.*] IPv0: ADDRCONF(NETDEV_CHANGE): ***: link becomes ready
340
kernel: [*.*] block drbd0: drbd_bm_resize called with capacity == *
341
kernel: [*.*] block drbd0: resync bitmap: bits=* words=* pages=*
342
kernel: [*.*] block drbd0: * *:*:*:* bits:* flags:*
343
kernel: [*.*] IPVS: Connection hash table configured (size=*, memory=00Kbytes)
344
kernel: [*.*] nf_conntrack version *.*.* (* buckets, * max)
345
kernel: [*.*] 0000q: adding VLAN * to HW filter on device evip_macvlan0
346
kernel: [*.*] IPVS: Registered protocols (TCP, UDP, SCTP, AH, ESP)
347
mmas_syslog_control_setup.sh: Removing MMAS syslog configuration ...

Figure 6.3: Template Examples .

64

6.2. MACHINE LEARNING

In the template examples shown in Figure 6.3, one line is represented by an
integer indicating the ID of this template, another line is the full representation of
this template. The wildcard symbol * shows that either it is a numeric token or
there are more than one unique token at this place across the whole cluster’s logs.
For example, in the template 325 shown in Figure 6.3, first two wildcards of [*.*]
are due to the numeric values representing the time duration from starting, the
following three wildcards represent the real time clock, and the last two wildcards
represent the date. In the template 328, *:*:*.* represents PCI address here. The
last wildcard symbol in template 338 shows that there are different tokens, which
are eth0 and bond0 given in Figure 6.4.

kernel: [*.*] IPv0: ADDRCONF(NETDEV_UP): eth0: link is not ready
kernel: [*.*] IPv0: ADDRCONF(NETDEV_UP): bond0: link is not ready

Figure 6.4: Logs in Cluster 338.

For avoiding leaking Ericsson’s data, it is better to not show more log examples
here nor in Chapter 2. Background as long as they are sufficient enough to illustrate
my idea.

6.2 Machine Learning
In the following part of this section, we use Normal to represent the log data set
with no errors or failures. The term Failure refers to the logs from failed test cases.

In this section, the log data used is from the Blue Night Train test services,
as mentioned in Section 2.1, running over 60 days. Every day, one package of logs
collected from the running tested is stored on the server. It is found out that, among
these 60 log packages, almost one third of them are containing errors or even did not
finish the execution due to some early failure termination, which are the Failures
mentioned at the beginning of this section. In the rest roughly 40 Normal packages,
the most recent 13 packages, compared to previous ones, are having big difference in
the platform settings and test configurations so that they do not remain the same
comparability. Therefore, the exact log data utilized for training and evaluating
machine learning models are the system logs from the remaining 27 log packages.
Among these 27 packages, 25 of them are selected as training set, one of them is
validation set, the last one is chosen as evaluation set. This normal log set for
evaluation is referred as Normal 1. For the rest 26 normal logs utilized in fold
validation, they are named as Normal 2 to Normal 27.

The evaluation data is fixed but the validation set is not. For the 26 data sets
for both training and validation, the fold validation is also applied in order to avoid
the overfitting on validation set. For example, within the 26 data sets, every one of
them is labeled by number from 1 to 26. In the first time of train-and-validation
process, 1st log data set is chosen for validation and the rest are used for training.

65

CHAPTER 6. EXPERIMENTS AND RESULTS

However, in the second time of train-and-validation process, 2ed log data set is
chosen for validation and the rest are used for training. Technically speaking, each
of the 26 data sets will be the validation set once and consequently there will be 26
train-and-validation processes. This is called 26-fold validation.

Besides this, one additional log package, which previously is removed out due
to its erroneousness and failure, is also utilized here for the evaluation step. The
intention is to find out the difference between the failed ones and correct ones and,
furthermore, to identify the places of errors within the failed test cases. This failed
log set for evaluation is referred to Failure 1.

For each system log set, there are more than 45, 000 lines of logs. In total, 26
log sets contain more than 1.1 million lines of logs. This provides a good estimation
of the problem scale and model size that will be built.

All the machine learning experiments are running on Amazon Web Services
(AWS) with GPU support base 64-bit Linux system. The GPU instance - g2.2xlarge
model is utilized here. It contains 8 high frequency Intel Xeon E5-2670 (Sandy
Bridge) processors and one high-performance NVIDIA GPU with 1, 536 CUDA
cores and 4GB of video memory. Detailed information regarding the AWS G2 in-
stances can be found at: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
using_cluster_computing.html.

6.2.1 RNN Training and Validation

The experiments are conducted based on several modified variables. By monitoring
the relevant learning process, the influence of these impactors can be observed and
analyzed in order to obtain a better fitting model.

First of all, the sentence length of 20, 40, 60, and 80 are examined. The sentence
length, as discussed in Section 5.3, is an important factor having impact on how
much time steps the RNN can be back-propagated. It is as same as the term window
size mentioned in Section 5.2 for NB. The longer the sentence length is, the more
long-term dependency the RNN can learn. However, the training time could be
exponentially increasing.

In this experiment, a RNN model with two LSTM layers is built. Each of the
layer is having 512 LSTM units. The batch size is 128, which is the number of data
samples for each training and gradient descent. The base learning rate is set to
0.001, according to the previous experiments and the recommendation of Keras’s
official documents. The dropout rate is 0.2. A dropout rate of 0.2 will weaken the
effect of overfitting but only to some extent. The impact of dropout will be further
examined in the following experiments. Too high dropout rate could undermine the
learning capability of RNN as well.

For a certain number of original logs (number of IDs), with different values of
step, the number of data samples will also differ. The number of sample is calculated
based on Equation 6.1.

#sample = #ID
step

(6.1)

66

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html

6.2. MACHINE LEARNING

Figure 6.5: RNN Training and Validation - Sentence Length, Loss Curve.

Normally, the step is set as equal to the sentence length. For the set with value
less than the sentence length, the learning process of near data samples could be
overlapping and slowing down the speed. On the other hands, if the sample step
is larger than the sentence length, there must be certain patterns between steps
that cannot be learned. For 1.12 million IDs, given the sentence length is 20, the
number of samples will be 56, 000. If the sentence length is 80, there will be 14, 000
samples. Setting the batch size as 128 will make sure that there will be always
enough number of batch trainings for every epoch (iteration) so that the final loss
accuracy value will not be unstable when all values are averaged.

The loss curves are shown in Figure 6.5 and the accuracy curves are shown
in Figure 6.6. In these figures, the notion of “training 20” means it is the rel-
evant training curve based on the sentence length of 20. Similarly, the notion of
“validation 40” refers to the validation curve based on the sentence length of 40.
For convenience, we refer the term “experiment-sentence-x” as the experiment
with sentence length of x.

It is clear that, the trainings of experiment-sentence-40 and experiment-sentence-20
are converging faster than others with longer sample sentence. They are having

67

CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.6: RNN Training and Validation - Sentence Length, Accuracy Curve.

less number of epochs and each epoch is also faster. Furthermore, compared with
experiment-sentence-40, experiment-sentence-20 shows a worse case with regard
to the overfitting since the gap between its training curve and validation curve is
larger and happens very early. As indicated in Figures 6.5 and 6.6, with same
amount of time, the experiments with smaller sentence length can achieve quite
promising results loss and accuracy. However, given sufficient enough amount of
training time and iterations, experiments with larger sentence length could lead to
a better convergence value; whereas, this is the decision we have to make: whether
take incredibly much more time for obtaining a very small optimization. The trade-
off made here is to choose sentence length of 40 in the following experiments.

From the Figures 6.5 and 6.6, it is obvious that there is overfitting. The results of
experiment-sentence-40 is individually shown in Figures 6.7a, where the dropout
is set to 0.2. Now, the dropout is increased to 0.4 and 0.5, and the loss and accuracy
results are shown in Figures 6.7b and 6.7c, respectively. When the dropout is set to
0.5, the overfitting effect is not showing, at least within 200 number of iterations,
unlike before. Even though it is uncertain that what will happen after 250 or 300
iterations, there might be still overfitting after a long time training but it is not

68

6.2. MACHINE LEARNING

(a) Dropout = 0.2.

(b) Dropout = 0.4.

(c) Dropout = 0.5.

Figure 6.7: RNN Training and Validation - Dropout.

concerned in this case because: (i) it is not really necessary to train the model for
such as long time just for getting a very little more accuracy, even though the curves
have been converging for a while; (ii) it is always inevitable to have overfitting if a
RNN model is heavily trained based on certain sets of data and validated on another

69

CHAPTER 6. EXPERIMENTS AND RESULTS

data set.

Figure 6.8: RNN Training and Validation - Step=20.

Figure 6.9: RNN Training and Validation - Accuracy Curve, Step=20.

70

6.2. MACHINE LEARNING

In Figures 6.8 and 6.9, the sampling step is set to 20 instead of being equal
to the sentence length, which is 40. Additionally, the dropout rate is 0.5. The
overfitting effect is not showing but it is also interesting to see that the number
of iterations needed to reach the convergence is around 60 ∼ 65. This is because
that the number of data samples for each training and each epoch is doubled and
the model is further tuned during each epoch. However, even though the number
of iterations is decreased, the time of each iteration is increased accordingly, which
makes the total training time barely changed.

6.2.2 RNN vs. Naive Bayes

Since the RNN training and evaluation is incredibly time consuming, it is unre-
alistic to complete all the 26-fold trainings and validations. Only three fold are
conducted and, based on the results, we say that further running is not needed and
the conclusions could be offered.

The many-to-many approach demonstrated in Figure 5.11 is applied in this
section for the reason that it is more capable of learning consecutive sequence instead
of only learning the next symbol, which is illustrated in Section 5.3.2. This choice
is also based on some of my initial test, which shows that many-to-many approach
normally have 2 ∼ 3% more accuracy than many-to-one approach during prediction.

For saving the time consumed on model training, the sequence is not sampled
with step of each ID. The sample step is defined as the distance between each data
samples on the original sequence. If the sample step is equal to d, the Figure 5.11
can be represented as a new Figure 6.10. The n ∗ d+ k + 1 has to be less or equal

X_train y_train
ID 1, ID 2, ..., ID k ID 2, ID 3, ..., ID k+1
ID d+1, ID d+2, ..., ID d+k ID d+2, ID d+3, ..., ID d+k+1
ID 2d+1, ID 2d+2, ..., ID 2d+k -> ID 2d+2, ID 2d+3, ..., ID 2d+k+1
...
ID n*d+1, ID n*d+2, ..., ID n*d+k ID n*d+2, ID n*d+3, ..., ID n*d+k+1

Figure 6.10: Many to Many with Sample Step d.

than the length of the original sequence. The hopping sampling reduces the training
time of RNN model since the number of samples is d times decreased.

Because of the hopping sampling with step of d, another variable called offset
is further defined as the very first sample location. If the offset is equal to o, where
the offset should be less than the sample step o < d, each index of the IDs in Figure
6.10 should be added by o. In this case, the n ∗ d+ k+ 1 + o has to be less or equal
than the length of the original sequence. By having the offset selected randomly
during sampling, the whole original sequence can be covered with sufficient times
of training.

71

CHAPTER 6. EXPERIMENTS AND RESULTS

Nevertheless, the hopping sampling is only applied on RNN model. The NB
model is training on every sample step by step since the training and evaluation
time of NB is extremely lower than the time of RNN. Therefore, there is no need
to apply hopping sampling on NB.

To be more specific regarding the interpretation of accuracy, in this section, it
is not considered only based on a single prediction (the most probable output) but
also on the top-2 or top-3 options. For example, if the model makes the predictions
that the most probable ID A is with probability of 41% and the second one ID B
is with 40%, the model will make the final decision that the correct prediction is
ID A. However, it is really unfair to say that it is ID A if ID B is only slightly
unlikely compared to ID A. Therefore, a quota is defined so that a number of most
probable candidates are taken into account. As long as the ground truth is among
the several predicted candidates, it is reasonable to say that the model is able to
make the correct prediction. Normally, the number of predicted options is one, two
or three. Accepting several alternatives as correct predictions is because eventually
these predictions will be used to conduct anomaly detection, and only a very unlikely
message is relevant to detect.

In this experiment, a RNN model with three LSTM layers is built. Each of the
layer is having 512 LSTM units. The batch size is 128, which is the number of data
samples for each time of training and gradient descent. The length of sentence is
40, which is the length of each input data sample. The total number of training
samples is more than 28, 000 (i.e., more than 28, 000 ∗ 40 = 1, 120, 000 lines of
logs). The number of validation samples is 1170 (i.e., roughly 46,800 lines of logs,
which is equal to one single log data set). The step = 40 is equal to the sentence
length. If the sample step is larger than the sentence length, there must be certain
patterns between steps that cannot be learned. The base learning rate is set to
0.001, according to the previous experiments and the recommendation of Keras’s
official documents. The dropout rate is 0.5 according to previous experiments.

An overall conclusion can be derived from the results of two Tables 6.3 and 6.4: the
RNN is more capable than NB in terms of predicting the next ID given its previous
ID subsequence. RNN is obviously outperforming NB in every case: one, two or

Accuracy
#candidates RNN NB

1 88.2130% 76.1221%
2 93.7655% 86.1736%
3 95.7624% 89.9336%

Table 6.3: RNN vs. NB on Normal Log 2.

three candidates of predictions. The more candidates are taken into account, the
smaller the gap is between RNN and NB. For instance, in Table 6.3, the accuracy
of RNN is 12.0909%, 7.5919% and 5.8288% better than NB for one, two and three

72

6.2. MACHINE LEARNING

Accuracy
#candidates RNN NB

1 89.0287% 76.3373%
2 94.2405% 86.4293%
3 96.0785% 90.1067%

Table 6.4: RNN vs. NB on Normal Log 3.

predicted candidates, respectively.
For NB, based on a same group of training and validation data sets, a logarithms

version of it is also run and tested. It is proved that the obtained results (accuracies
for one, two and three candidates) are exactly same.

The Figures 6.11 and 6.12 show the learning curves (loss and accuracy) for
RNN model. The loss is converging to the level of 0.5 and the accuracy is tending
to 0.86%. Additionally, there is hardly sign of overfitting.

Figure 6.11: RNN Training and Fold Validations - Loss Curve, 3-Fold.

However, the training and evaluation time for RNN and NB are completely in
different level, which makes the problem a bit more tricky. Even though RNN is
much better than NB in terms of the performance, which is unsurprising, it takes

73

CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.12: RNN Training and Fold Validations - Accuracy Curve, 3-Fold.

more time to train as well. With regard of 25 training log data set, it normally
takes at least 7-8 hours to train RNN in order to obtain the convergence of loss and
stable accuracy; whereas, NB only needs several minutes to complete the training
process for the same amount of time. As to the evaluation time, both RNN and NB
could take 1.5 hour for evaluating one single log data set.

6.2.3 Anomaly Detection

From Table 6.5, it is found out that only based on the final results of accuracy, RNN
is quite similar for each of the three times of fold validation and for each of the log
data set within every fold validation. Therefore, it is quite unlikely to obtain some
interesting points for conducting anomaly detection only based on these results.

In order to pin-point the place where errors exactly happened, the probabilities
of each of the ID prediction is obtained and plotted on the basis of timeline. In
the following part of this section, the plotted figure analysis will be focused on the
fold-1. They results of other folds are actually similar.

The probabilities are converted to negative log scale so that the less likely the
prediction is, the more outstanding it will be plotted on the graph. The reasoning
behind this is that, in this case, it is quite logical to regard the prediction of 0.1

74

6.2. MACHINE LEARNING

#candidates Accuracy
fold-1 Normal 2 Normal 1 Failure 1

1 88.2130% 88.1612% 89.8608%
2 93.7655% 93.8259% 94.9804%
3 95.7624% 95.9041% 96.6546%

fold-2 Normal 3 Normal 1 Failure 1
1 89.0287% 88.8409% 90.3006%
2 94.2405% 94.2252% 95.1624%
3 96.0785% 96.1070% 96.7820%

fold-3 Normal 4 Normal 1 Failure 1
1 88.9451% 89.0459% 90.5237%
2 94.3576% 94.3784% 95.6495%
3 96.2300% 96.2321% 96.3316%

Table 6.5: RNN on several logs.

and 0.0001 probability is with more fundamental difference than there is between
probability 0.2 and 0.1. In this project, the number of unique classes to be classified
is around 3000 to 4000. Even the random selection could lead to the probability of
1/4000 ∼ 1/3000, which is 0.00025 ∼ 0.000333. This value will be more than 8 after
negative logarithmic transformation: 8.294 (0.00025) and 8.007 (0.000333). In the
extreme case, the actual probability of 1 is with value of 0 in negative logarithmic
scale.

The negative log probability distribution of fold-1 on time for Normal 1 are
shown in Figures 6.13. The horizontal axis represents each of the ID on the sequence,
which is normally containing more 45, 000 IDs. The vertical axis represents the
negative log value of the probability of each next ID prediction.

As discussed in the previous sections, the predictions are conducted by having
different number of candidates: one, two and three. Therefore, the figures are
also plotted based on different number of candidates. The top left one plots all
probabilities for each of the IDs. In the top right figure, the first prediction candidate
is set to zero. In the bottom left and the bottom right figures, the top-2 and top-3
candidates are set to zeros, respectively. The reason for doing this is to remove
the several the most probable ones and make the anomalies more obvious out of
others since the purpose of this experiment is to point out the logs representing
these anomalies.

In the last graph of Figures 6.13, the areas where lots of points gathered together
would indicate the places where most of the anomalies happen. It is because that the
logs (IDs) near each other are having very low probabilities. And many nearby logs
with low probability are more likely to show out the system unexpected behaviors
than only a few.

However, in these figures, many such places happen but they are not the anoma-
lies if we look back to review the original logs. These experiments are based on the

75

CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.13: Negative Log Probability of Each Next ID Prediction on Time - RNN,
Fold-1, Normal 1.

normal log sets and no actual failures exist. Therefore, the expected results are:
(i) in Figures 6.13 and 6.14, there should be rarely low probability points gathering
together since they are normals; whereas, (ii) in Figures 6.15, there should be one
or two certain places indicating the test terminations. After digging deeper into the
original logs and consulting the testers and developers at Ericsson, it is found out
that these unexpected places are happening during the time when several software
components are running in parallel and logging their behaviors in an interleaved
way. That means the logs generated from each of the different components are ran-
domly intervened into with each other, which makes the RNN learning much harder
and more complex. Theoretically, RNN is capable of handling such issues but with
sufficient enough amount of data. However, the combinations of intervened logs are
too much to learn and the amount of data we have is also far from sufficient, where
there are only less than 30 days of logs. Moreover, if it is essentially random that
which message goes before which (i.e., logs from parallel components are essentially
randomly intervened with each other), no method at all could deterministically pre-
dict the next symbol. It is only possible to tell which symbols are likely to come
soon around some time. Then, this is another area. This is actually the extra

76

6.2. MACHINE LEARNING

Figure 6.14: Negative Log Probability of Each Next ID Prediction on Time - RNN,
Fold-1, Normal 2.

reason for accepting the three first alternatives, but it only works for up to three
intertwined log streams.

A simple example of such problem can be demonstrated as in Figure 6.16. As
shown in the demonstration, just given three components with several logs for each,
the possible combinations could be hundreds, let along with dozens of components
each of which is with hundreds or even thousands of logs. 30 days of samples are
definitely not enough.

The same negative log probability distribution of fold-1 on time for other log
sets can be found in Figures 6.14 for Normal 2 and in Figures 6.15 for Failure 1.
The results in Figures 6.14 are very similar to the results in Figures 6.13. The
Figures 6.15 shows that the log sequence is much less than other figures since this
is based on log Failure 1, which terminated at certain time point. It has the same
problem discussed before for normal logs: the cluster of low probability logs does
not really indicate the failure or anomalies. Additionally, the Figures 6.17 for NB
model prediction look even worse and more mass than the results of RNN.

77

CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.15: Logarithmic Probability of Each Next ID Prediction on Time - RNN,
Fold-1, Failure 1.

Component A: A1, A2, A3, ...
Component B: B1, B2, B3, ...
Component C: C1, C2, C3, ...

Logs: A1, A2, A3, B1, B2, B3, C1, C2, C3, ...
Logs: A1, B1, C1, A2, B2, C2, A3, B3, C3, ...
...

Figure 6.16: Demonstration of the intervened logs.

78

6.2. MACHINE LEARNING

Figure 6.17: Negative Log Probability of Each Next ID Prediction on Time - NB,
Normal 2.

79

Chapter 7

Conclusions and Further Discussion

The objective of this thesis project is to explore a way to conduct log analysis effi-
ciently and effectively by applying relevant data analytics techniques and machine
learning algorithms in order to help people quickly detect the places of system fail-
ures and anomalies causing the failures. The major works are divided and finished
within the following two stages.

In the first stage, a Log Template Extractor is designed and implemented by
preprocessing and clustering original logs in order to obtain useful data which can be
fed to machine learning algorithms in the second stage. This extractor collects raw
log data, clusters them based on their similarity, extracts the log template of each of
the clusters, labels the grouped clusters by unique identifications, and finally feeds
the labels as input to the next stage. Having the result discussion given in Section
6.1, the achieved templates are satisfying and fulfilling the original expectations.
The value of threshold can also be adjusted in order to obtain various levels of log
representation abstractions and template extractions. Based on clustered logs, the
extractor is able to classify newly imported logs and deal with unknown logs.

In the second stage, RNN models are constructed, trained and experimented
in order to learn the sequential patterns from the label sequence obtained from
previous stage. Meanwhile, a Naive Bayes (NB) model is built as a baseline for the
comparison study. A comparable log analysis, based on these two machine learning
algorithms, is conducted for detecting the places of system failures and anomalies
causing the failures. An overall conclusion, based on the comparable experiment,
is: the RNN is more capable than NB in terms of predicting the next ID given its
previous ID subsequence. RNN is outperforming NB in every case: one, two or
three candidates of predictions. The more candidates are taken into account, the
smaller the gap is between RNN and NB.

In order to pin-point the places where errors exactly happened (i.e., anomaly
detection), the probabilities of each of the ID prediction is obtained and plotted on
the basis of timeline. Even though the accuracy results obtained are acceptable,
especially for the case of three prediction candidates, the models built and trained
are not sufficient to conduct anomaly detection for now. Some unexpected results

81

CHAPTER 7. CONCLUSIONS AND FURTHER DISCUSSION

are shown in the plotted figures. For example, some figures indicate the unusual
behaviors of the system but they are actually not the anomalies but are false pos-
itives. On the contrast, at the places where there should be anomalies, they are
overwhelmed by the false positives and messed up with each other. This could be
caused by insufficient amount of data or the randomly intervened logs from several
software components running in parallel. Moreover, anomaly detection intends to
identify the system behavior, of which the probability is very rare. However, our
models are not able to achieve such high accuracy of prediction. Therefore, even
for the achieved accuracy of 96%, there are still 4% incorrect predictions (which
are 2,000 incorrectnesses among 50,000 logs). It is really hard to tell the anomalies
from such 2,000 incorrectnesses. And it will lead to the disordered figures plotted
in Section 6.2.3.

Even though the final results for anomaly detection are not as what have been
expected, this thesis project still has its meaningful achievements. The Log Tem-
plate Extractor is created for log data processing and clustering. Several RNN and
NB models are researched and implemented for dealing with log sequence learning
and prediction. The comparable study is thus given for evaluating RNN and NB ac-
cordingly. During this process, many theories and practices of RNN, NB and other
relevant machine learning knowledges are deeply analyzed, particularly based on
our study case. Although the results of anomaly detection are not good, it explores
a new way of conducting log analysis.

In the future, the possible works could be increasing the amount of log data
available, resolving the problem of intervened logs, digging deeper into RNN in
order to train and evaluate the models in a better way, or even finding other suitable
machine learning algorithms.

82

Bibliography

[1] Xia Cai, Michael R. Lyu, Kam-Fai Wong, and Roy Ko. Component-based
software engineering: technologies, development frameworks, and quality as-
surance schemes. In Software Engineering Conference, 2000. APSEC 2000.
Proceedings. Seventh Asia-Pacific, pages 372–379. IEEE, 2000.

[2] Grady Booch. Object Oriented Design with Applications. Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA, 1991.

[3] Tomohiro Kimura, Koji Ishibashi, Takayoshi Mori, Hideyuki Sawada, Tsuyoshi
Toyono, Ken Nishimatsu, Atsuyori Watanabe, Akihiro Shimoda, and Kohei
Shiomoto. Spatio-temporal factorization of log data for understanding network
events. In INFOCOM, 2014 Proceedings IEEE, pages 610–618. IEEE, 2014.

[4] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[5] Fred J. Damerau. A technique for computer detection and correction of spelling
errors. Communications of the ACM, 7(3):171–176, 1964.

[6] Richard W. Hamming. Error detecting and error correcting codes. Bell System
technical journal, 29(2):147–160, 1950.

[7] Tatsuaki Kimura, Akio Watanabe, Tsuyoshi Toyono, and Keisuke Ishibashi.
Proactive failure detection learning generation patterns of large-scale network
logs. In Network and Service Management (CNSM), 2015 11th International
Conference on, pages 8–14. IEEE, 2015.

[8] Risto Vaarandi et al. A data clustering algorithm for mining patterns from
event logs. In Proceedings of the 2003 IEEE Workshop on IP Operations and
Management (IPOM), pages 119–126, 2003.

[9] Thomas Reidemeister, Miao Jiang, and Paul AS Ward. Mining unstructured
log files for recurrent fault diagnosis. In Integrated Network Management (IM),
2011 IFIP/IEEE International Symposium on, pages 377–384. IEEE, 2011.

[10] Risto Vaarandi and Kãrlis Podiņš. Network ids alert classification with fre-
quent itemset mining and data clustering. In Network and Service Management
(CNSM), 2010 International Conference on, pages 451–456. IEEE, 2010.

83

BIBLIOGRAPHY

[11] Leonardo Mariani and Fabrizio Pastore. Automated identification of failure
causes in system logs. In Software Reliability Engineering, 2008. ISSRE 2008.
19th International Symposium on, pages 117–126. IEEE, 2008.

[12] Jon Stearley. Towards informatic analysis of syslogs. In Cluster Computing,
2004 IEEE International Conference on, pages 309–318. IEEE, 2004.

[13] Adetokunbo Makanju, Stephen Brooks, A Nur Zincir-Heywood, and Evange-
los E Milios. Logview: Visualizing event log clusters. In Privacy, Security and
Trust, 2008. PST’08. Sixth Annual Conference on, pages 99–108. IEEE, 2008.

[14] Thomas Reidemeister, Mohammad A Munawar, and Paul AS Ward. Identifying
symptoms of recurrent faults in log files of distributed information systems. In
Network Operations and Management Symposium (NOMS), 2010 IEEE, pages
187–194. IEEE, 2010.

[15] Risto Vaarandi. Mining event logs with slct and loghound. In Network Op-
erations and Management Symposium, 2008. NOMS 2008. IEEE, pages 1071–
1074. IEEE, 2008.

[16] Risto Vaarandi. A breadth-first algorithm for mining frequent patterns from
event logs. In Intelligence in Communication Systems, pages 293–308. Springer,
2004.

[17] Risto Vaarandi. Tools and Techniques for Event Log Analysis. Tallinn Univer-
sity of Technology Press, 2005.

[18] Rene De La Briandais. File searching using variable length keys. In Papers
presented at the the March 3-5, 1959, western joint computer conference, pages
295–298. ACM, 1959.

[19] Peter Brass. Advanced data structures. Cambridge University Press Cambridge,
2008.

[20] Jon Stearley. Sisyphus log data mining toolkit. http://www.cs.sandia.gov/
sisyphus/, 2009. [Online; access permission needed].

[21] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E Milios.
Clustering event logs using iterative partitioning. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pages 1255–1264. ACM, 2009.

[22] Adetokunbo Makanju, A Nur Zincir-Heywood, and Evangelos E Milios. A
lightweight algorithm for message type extraction in system application logs.
Knowledge and Data Engineering, IEEE Transactions on, 24(11):1921–1936,
2012.

84

http://www.cs.sandia.gov/sisyphus/
http://www.cs.sandia.gov/sisyphus/

BIBLIOGRAPHY

[23] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candi-
date generation. In ACM Sigmod Record, volume 29, pages 1–12. ACM, 2000.

[24] Isidore Rigoutsos and Aris Floratos. Combinatorial pattern discovery in bio-
logical sequences: The teiresias algorithm. Bioinformatics, 14(1):55–67, 1998.

[25] Aris Floratos and Isidore Rigoutsos. On the time complexity of the teiresias
algorithm. IBM TJ Watson Research Center. Yorktown Heights. New York,
1998.

[26] Brona Brejová, Chrysanne DiMarco, Tomáš Vinar, Sandra Romero Hidalgo,
Gina Holguin, and Cheryl Patten. Finding patterns in biological sequences.
Unpublished project report for CS798G, University of Waterloo, Fall, 2000.

[27] Andreas Wespi, Marc Dacier, and Hervé Debar. An intrusion-detection system
based on the Teiresias pattern-discovery algorithm. IBM Thomas J. Watson
Research Division, 1999.

[28] Tongqing Qiu, Zihui Ge, Dan Pei, Jia Wang, and Jun Xu. What happened in
my network: mining network events from router syslogs. In Proceedings of the
10th ACM SIGCOMM conference on Internet measurement, pages 472–484.
ACM, 2010.

[29] Edward Chuah, Shyh-hao Kuo, Paul Hiew, William-Chandra Tjhi, Gary Lee,
John Hammond, Marek T Michalewicz, Terence Hung, and James C Browne.
Diagnosing the root-causes of failures from cluster log files. In High Per-
formance Computing (HiPC), 2010 International Conference on, pages 1–10.
IEEE, 2010.

[30] Edward Chuah, Gary Lee, William-Chandra Tjhi, Shyh-Hao Kuo, Terence
Hung, John Hammond, Tommy Minyard, and James C Browne. Establishing
hypothesis for recurrent system failures from cluster log files. In Dependable,
Autonomic and Secure Computing (DASC), 2011 IEEE Ninth International
Conference on, pages 15–22. IEEE, 2011.

[31] George H John and Pat Langley. Estimating continuous distributions in
bayesian classifiers. In Proceedings of the Eleventh conference on Uncertainty in
artificial intelligence, pages 338–345. Morgan Kaufmann Publishers Inc., 1995.

[32] Ashraf M Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey Holmes.
Multinomial naive bayes for text categorization revisited. In AI 2004: Advances
in Artificial Intelligence, pages 488–499. Springer, 2004.

[33] Andrew McCallum, Kamal Nigam, et al. A comparison of event models for
naive bayes text classification. In AAAI-98 workshop on learning for text cat-
egorization, volume 752, pages 41–48. Citeseer, 1998.

85

BIBLIOGRAPHY

[34] Kamal Nigam and Rayid Ghani. Analyzing the effectiveness and applicability of
co-training. In Proceedings of the ninth international conference on Information
and knowledge management, pages 86–93. ACM, 2000.

[35] David D Lewis. Naive (bayes) at forty: The independence assumption in in-
formation retrieval. In Machine learning: ECML-98, pages 4–15. Springer,
1998.

[36] Ted Pedersen. A simple approach to building ensembles of naive bayesian clas-
sifiers for word sense disambiguation. In Proceedings of the 1st North American
chapter of the Association for Computational Linguistics conference, pages 63–
69. Association for Computational Linguistics, 2000.

[37] Gerard Escudero, Lluís Màrquez, and German Rigau. Naive bayes and
exemplar-based approaches to word sense disambiguation revisited. arXiv
preprint cs/0007011, 2000.

[38] Harry Zhang. The optimality of naive bayes. AA, 1(2):3, 2004.

[39] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of
supervised learning algorithms. In Proceedings of the 23rd international con-
ference on Machine learning, pages 161–168. ACM, 2006.

[40] Pierre Simon marquis de Laplace. Théorie analytique des probabilités. V.
Courcier, 1820.

[41] Harold Jeffreys. The theory of probability. OUP Oxford, 1998.

[42] Mark Webster. Bayesian statistics. Journal of Applied Statistics, 40(12):2773–
2774, 2013.

[43] Michael Nielsen. Neural Networks and Deep Learning. Determination Press,
2015.

[44] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133,
1943.

[45] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of
brain mechanisms. Technical report, DTIC Document, 1961.

[46] Deeplearning4j. Introduction to deep neural networks. http://
deeplearning4j.org/neuralnet-overview.html, 2016. Online; accessed 7
June 2016.

[47] Stanford CS231n. Cs231n: Convolutional neural networks for visual recogni-
tion. http://cs231n.github.io/, 2016. Online; accessed 7 June 2016.

86

http://deeplearning4j.org/neuralnet-overview.html
http://deeplearning4j.org/neuralnet-overview.html
http://cs231n.github.io/

BIBLIOGRAPHY

[48] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 807–814, 2010.

[49] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities
improve neural network acoustic models. In Proc. ICML, volume 30, page 1,
2013.

[50] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and
Yoshua Bengio. Maxout networks. arXiv preprint arXiv:1302.4389, 2013.

[51] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Book in
preparation for MIT Press, 2016.

[52] Chun-tian Cheng, Wen-jing Niu, Zhong-kai Feng, Jian-jian Shen, and Kwok-
wing Chau. Daily reservoir runoff forecasting method using artificial neu-
ral network based on quantum-behaved particle swarm optimization. Water,
7(8):4232–4246, 2015.

[53] Peter Sadowski. Notes on backpropagation. https://www.ics.uci.edu/
~pjsadows/notes.pdf, 2016. Online; accessed 11 June 2016.

[54] Andrej Karpathy. The unreasonable effectiveness of recurrent neural networks.
http://karpathy.github.io/2015/05/21/rnn-effectiveness/, 2015. Online;
accessed 13 June 2016.

[55] Denny Britz. Recurrent neural networks
tutorial. http://www.wildml.com/2015/09/
recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/,
2015. Online; accessed 13 June 2016.

[56] Paul J Werbos. Backpropagation through time: what it does and how to do
it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[57] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. arXiv preprint arXiv:1211.5063, 2012.

[58] incomplete PROVISIONAL and SUPPLEMENT TO SHARE LECTURE. Ma-
chine learning and bio-inspired optimization.

[59] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber.
Gradient flow in recurrent nets: the difficulty of learning long-term dependen-
cies, 2001.

[60] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. Neural Networks, IEEE Transactions
on, 5(2):157–166, 1994.

87

https://www.ics.uci.edu/~pjsadows/notes.pdf
https://www.ics.uci.edu/~pjsadows/notes.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

BIBLIOGRAPHY

[61] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[62] Felix A Gers and Jürgen Schmidhuber. Recurrent nets that time and count.
In Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS
International Joint Conference on, volume 3, pages 189–194. IEEE, 2000.

[63] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget:
Continual prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

[64] Christopher Olah. Understanding lstm networks. http://colah.github.io/
posts/2015-08-Understanding-LSTMs/, 2015. Online; accessed 13 June 2016.

[65] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R Steunebrink,
and Jürgen Schmidhuber. Lstm: A search space odyssey. arXiv preprint
arXiv:1503.04069, 2015.

[66] Zou Hui and Hastie Trevor. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society, 67(2):301–320, 2005.

[67] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[68] Hiroyuki Tanaka. editdistance. https://github.com/aflc/editdistance,
2013.

[69] Heikki Hyyrö. Explaining and extending the bit-parallel approximate string
matching algorithm of myers. Technical report, Citeseer, 2001.

[70] Stanley F Chen and Joshua Goodman. An empirical study of smoothing tech-
niques for language modeling. In Proceedings of the 34th annual meeting on As-
sociation for Computational Linguistics, pages 310–318. Association for Com-
putational Linguistics, 1996.

[71] François Chollet. Keras. https://github.com/fchollet/keras, 2015.

[72] François Chollet. Keras official document. http://keras.io/, 2015.

[73] Andrej Karpathy. Multi-layer recurrent neural networks (lstm, gru, rnn)
for character-level language models in torch. https://github.com/karpathy/
char-rnn, 2015. Online; accessed 30 June 2016.

88

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://github.com/aflc/editdistance
https://github.com/fchollet/keras
http://keras.io/
https://github.com/karpathy/char-rnn
https://github.com/karpathy/char-rnn

www.kth.se

	Introduction
	Background
	Log Data Description
	Minimally-structured Logs
	Heterogeneous Logs

	Challenges and Limitations of Scope

	Literature Study on Log Analysis
	Related Works

	Machine Learning
	Naive Bayes
	Bayes' Theorem and Naive Bayes Model

	Artificial Neural Network (ANN)
	Activation Function
	Feed-forward Neural Networks
	Loss Function
	Back-propagation Algorithm

	Recurrent Neural Network (RNN)
	Recurrent Model
	Backpropagation Through Time (BPTT)
	Why RNN is Difficult to Train?
	Long Short Term Memory (LSTM)
	Regularization and Dropout

	Design and Implementation
	Log Template Extractor
	Naive Bayes Model
	Training
	Evaluation

	Recurrent Neural Networks
	Model and Layers
	Many-to-one and Many-to-many
	Build the Model
	Training and Validation
	Evaluation

	Experiments and Results
	Log Template Extractor
	Machine Learning
	RNN Training and Validation
	RNN vs. Naive Bayes
	Anomaly Detection

	Conclusions and Further Discussion
	Bibliography

