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SHAPE-CHANGING L-SR1 TRUST-REGION METHODS

JOHANNES BRUST, OLEG BURDAKOV, JENNIFER B. ERWAY, ROUMMEL F. MARCIA,
AND YA-XIANG YUAN

Abstract. In this article, we propose a method for solving the trust-region
subproblem when a limited-memory symmetric rank-one matrix is used in place
of the true Hessian matrix. The method takes advantage of two shape-changing
norms to decompose the trust-region subproblem into two separate problems, one
of which has a closed-form solution and the other one is easy to solve. Sufficient
conditions for global solutions to both subproblems are given. The proposed
solver makes use of the structure of limited-memory symmetric rank-one matrices
to find solutions that satisfy these optimality conditions. Solutions to the trust-
region subproblem are computed to high-accuracy even in the so-called “hard
case”.

1. Introduction

In this article, we describe a method for minimizing a quadratic function de-
fined by a limited-memory symmetric rank-one (L-SR1) matrix subject to a norm
constraint; i.e., for a given xk,

minimize
p∈Rn

Q (p) △
= gTp+

1

2
pTBp subject to ‖p‖ ≤ δ, (1)

where g △
= ∇f (xk), B is an L-SR1 approximation to ∇2f (xk), δ is a positive con-

stant, and ‖ · ‖ is a given norm. At each iteration of a trust-region method, the
trust-region subproblem (1) must be solved to obtain a step direction. The norm
used in (1) not only defines the trust region shape but also determines the difficulty
of solving each subproblem. In large-scale optimization, solving (1) represents the
bulk of the computational effort in trust-region methods; thus, the choice of norm
has significant consequences for the overall trust-region method.

The most widely-used norm chosen to define the trust-region subproblem is the
two-norm. One reason for this choice of norm is that the necessary and suffi-
cient conditions for a global solution to the subproblem defined by the two-norm is
well-known [11, 18, 22]; many methods exploit these conditions to compute high-
accuracy solutions to the trust-region subproblem (see e.g., [7, 8, 9, 13, 1, 18]).
The infinity-norm is sometimes used to define the subproblem; however, when B is
indefinite, as can be the case when B is a L-SR1 matrix, the subproblem is an NP
hard [19, 25]. For more discussion on norms other than the infinity-norm we refer
the reader to [5].
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In this article, we consider the trust-region subproblem defined by a shape-
changing norm originally proposed in [3]. Generally speaking, shape-changing
norms are norms that depend on B; thus, in the quasi-Newton setting where the
quasi-Newton matrix B is updated each iteration, the shape of the trust region
changes each iteration. One of the earliest references to shape-changing norms is
found in [12] where a norm is implicitly defined by the product of a permutation
matrix and a unit lower triangular matrix that arise from a symmetric indefinite
factorization of B. Perhaps the most widely-used shape-changing norm is the so-
called “elliptic norm” given by ‖x‖B △

= xTBx, where B is a positive-definite matrix
(see, e.g., [6]). A well-known use of this norm is found in the Steihaug method [23],
and, more generally, truncated preconditioned conjugate-gradients (CG) [6]; these
methods reformulate a two-norm trust-region subproblem using an elliptic norm to
maintain the property that the iterates from preconditioned CG are increasing in
norm. Other examples of shape-changing norms include those defined by vectors
in the span of B (see, e.g., [6]).

1.1. Overview of the proposed method. The two shape-changing norms used
in this article were originally proposed in [3] (developed in [2]) to decompose the
(1) in such a way that global solutions can be computed efficiently. Specifically, the
shape-changing norms decouple the trust-region subproblem into two subproblems,
one of which has a closed-form solution while the other can be solved very efficiently
using techniques borrowed from [2, 1]. This work can be viewed as an extension
of [2] in the case when L-SR1 matrices are used to define the trust-region subprob-
lem, allowing high-accuracy subproblem solutions to be computed by exploiting the
structure of L-SR1 matrices.

This paper is organized as follows: In Section 2, we review L-SR1 matrices, in-
cluding the compact representation for these matrices and a method to efficiently
compute their eigenvalues and a partial eigenbasis. In Section 3, we demonstrate
how the shape-changing norms decouple the original trust-region subproblem into
two problems and describe the proposed solver for each subproblem. Finally, we
show how to construct a global solution to (1) from the solutions of the two decou-
pled subproblems. Optimality conditions are presented for each of these decoupled
subproblems in Section 4. In Section 5, we demonstrate the accuracy of the pro-
posed solver, and concluding remarks can be found in Section 6.

1.2. Notation. In this article, the identity matrix of dimension d is denoted by
Id = [e1| · · · |ed], and depending on the context the subscript d may be suppressed.
Finally, we assume that all L-SR1 updates are computed so that the L-SR1 matrix
is well defined.

2. L-SR1 matrices

Suppose f : Rn → R is a smooth objective function and {xi}, i = 0, . . . k, is
a sequence of iterates, then the symmetric rank-one (SR1) matrix is defined using
pairs (si, yi) where

si
△
= xi+1 − xi and yi

△
= ∇f(xi+1)−∇f(xi),
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and ∇f denotes the gradient of f . Specifically, given an initial matrix B0, Bk+1 is
defined recursively as

Bk+1
△
= Bk +

(yk −Bksk)(yk −Bksk)
T

(yk −Bksk)T sk
, (2)

provided (yk −Bksk)
T sk 6= 0. In practice, B0 is often taken to be scalar multiple

of the identity matrix; for the duration of this article we assume that B0 = γkI,
γk ∈ R. Limited-memory symmetric rank-one matrices (L-SR1) store and make use
of only the m most-recently computed pairs {(si,yi)}, where m ≪ n (for example,
Byrd et al. [4] suggest m ∈ [3, 7]).

The SR1 update is a member of the Broyden class of updates (see, e.g., [21]).
Unlike widely-used updates such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
and the Davidon-Fletcher-Powell (DFP) updates, this update can yield indefinite
matrices; that is, SR1 matrices can incorporate negative curvature information.
In fact, SR1 matrices have convergence properties superior to other widely-used
positive-definite quasi-Newton matrices such as BFGS [5]. (For more background
on the SR1 update formula, see, e.g., [14, 15, 16, 21, 24, 26].)

2.1. Compact representation. The compact representation of SR1 matrices can
be used to compute the eigenvalues and a partial eigenbasis of these matrices. In
this section, we review the compact formulation of SR1 matrices.

To begin, we define the following matrices:

Sk
△
= [ s0 s1 s2 · · · sk ] ∈ R

n×(k+1),

Yk
△
= [ y0 y1 y2 · · · yk ] ∈ R

n×(k+1).

The matrix ST
kYk ∈ R

(k+1)×(k+1) can be written as the sum of the following three
matrices:

ST
kYk = Lk +Dk +Rk,

where Lk is strictly lower triangular, Dk is diagonal, and Rk is strictly upper
triangular. Then, Bk+1 can be written as

Bk+1 = γkI+ΨkMkΨ
T
k , (3)

where Ψk ∈ R
n×(k+1) and Mk ∈ R

(k+1)×(k+1). In particular, Ψk and Mk are given
by

Ψk = Yk − γkSk and Mk = (Dk + Lk + LT
k − γkS

T
kSk)

−1.

The right side of equation (3) is the compact representation of Bk+1; this repre-
sentation is due to Byrd et al. [4, Theorem 5.1]. For the duration of this paper,
we assume that updates are only accepted when both the next SR1 matrix Bk+1 is
well-defined and Mk exists [4, Theorem 5.1]. For notational simplicity, we assume
Ψk has full column rank; when Ψk does not have full column rank, we refer to
reader to [2] for the modifications needed for computing the eigenvalues reviewed
in Section 2.2. Notice that the computation of Mk is computationally admissible
since it is a very small square matrix.
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2.2. Eigenvalues. In this subsection, we demonstrate how the eigenvalues and a
partial eigenbasis can be computed for SR1 matrices. In general, this derivation
can be done for any limited-memory quasi-Newton matrix that admits a compact
representation; in particular, it can be done for any member of the Broyden convex
class [10]. This discussion is based on [2].

Consider the problem of computing the eigenvalues of Bk+1, which is assumed
to be an L-SR1 matrix, obtained from performing (k + 1) rank-one updates to
B0 = γI. For notational simplicity, we drop subscripts and consider the compact
representation of B:

B = γI+ΨMΨT , (4)

The “thin” QR factorization can be written as Ψ = QR where Q ∈ R
n×(k+1) and

R ∈ R
(k+1)×(k+1) is invertible because, as it was assumed above, Ψ has full column

rank. Then,

B = γI+QRMRTQT . (5)

The matrix RMRT ∈ R
(k+1)×(k+1) is of a relatively small size, and thus, it is

computationally inexpensive to compute its spectral decomposition, i.e., RMRT =
UΛ̂UT , where U ∈ R

(k+1)×(k+1) is orthogonal and Λ̂ = diag(λ̂1, . . . , λ̂k+1).
Thus,

B = γI+QUΛ̂UTQT .

Since both Q and U have orthonormal columns, P‖
△
= QU ∈ R

n×(k+1) also has or-
thonormal columns. Let P⊥ denote the matrix whose columns form an orthonormal

basis for
(

P‖

)⊥
. Thus, the spectral decomposition of B is given by B = PΛγP

T ,

where

P △
=
[

P‖ P⊥

]

and Λγ
△
=

[

Λ 0
0 γIn−(k+1)

]

, (6)

with Λγ = diag(λ1, . . . , λn) and Λ = diag(λ1, . . . , λk+1) = Λ̂ + γI ∈ R
(k+1)×(k+1).

We emphasize three important properties of the eigendecomposition. First, all
eigenvalues of B are explicitly obtained and represented by Λγ. Second, only the
first (k + 1) eigenvectors of B can be explicitly computed, if needed; they are
represented by P‖. In particular, since Ψ = QR, then

P‖ = QU = ΨR−1U. (7)

If P‖ needs only be available to compute matrix-vector products then one can avoid
explicitly forming P‖ by storing Ψ, R, and U. Third, the eigenvalues given by the
parameter γ can be interpreted as an estimate of the curvature of f in the space
spanned by the columns of P⊥. While there is no reason to assume the function
f has negative curvature throughout the entire subspace P⊥, in this paper, we
consider the case γ ≤ 0 for the sake of completeness.

An alternative approach to computing the eigenvalues of B is presented in [17].
This method replaces the QR factorization of Ψ with the SVD and an eigendecom-
position of a (k+1)×(k+1) matrix and t×t matrix, respectively, where t ≤ (k+1).
For more details, see [17].

For the duration of this article, we assume the first (k+ 1) eigenvalues in Λγ are
ordered in increasing values, i.e., Λ = diag(λ1, . . . , λk+1) where λ1 ≤ λ2 ≤ . . . ≤
λk+1 and that r is the multiplicity of λ1, i.e., λ1 = λ2 = · · · = λr < λr+1. For
details on updating this partial spectral decomposition when a new quasi-Newton
pair is computed, see [10].
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3. Proposed method

The proposed method is able to solve the L-SR1 trust-region subproblem to high
accuracy, even when B is indefinite. The method makes use of the eigenvalues of
B and the factors of P‖. To describe the method, we first transform the trust-
region subproblem (1) so that the quadratic objective function becomes separable.
Then, we describe the shape-changing norms proposed in [3, 2] that decouples the
separable problem into two minimization problems, one of which has a closed-form
solution while the other can be solved very efficiently. Finally, we show how these
solutions can be used to construct a solution to the original trust-region subproblem.

3.1. Transforming the Trust-Region Subproblem. Let B = PΛγP
T be the

eigendecomposition of B described in Section 2.2. Letting v = PTp and gP = PTg,
the objective function Q(p) in (1) can be written as a function of v:

Q (p) = gTp+
1

2
pTBp = gT

Pv +
1

2
vTΛγv

△
= q (v) .

With P =
[

P‖ P⊥

]

, we partition v and gP as follows:

v = PTp =

[

PT
‖ p

PT
⊥p

]

=

[

v‖

v⊥

]

and gP =

[

PT
‖ g

PT
⊥g

]

=

[

g‖

g⊥

]

,

where v‖, g‖ ∈ R
(k+1) and v⊥, g⊥ ∈ R

n−(k+1). Then,

q (v) =
[

gT
‖ gT

⊥

]

[

v‖

v⊥

]

+
1

2

[

vT
‖ vT

⊥

]

[

Λ
γIn−(k+1)

] [

v‖

v⊥

]

= gT
‖ v‖ + gT

⊥v⊥ +
1

2

(

vT
‖ Λv‖ + γ ‖v⊥‖2

)

= q‖
(

v‖

)

+ q⊥ (v⊥) , (8)

where

q‖
(

v‖

)

△
= gT

‖ v‖ +
1

2
vT
‖ Λv‖ and q⊥ (v⊥)

△
= gT

⊥v⊥ +
γ

2
‖v⊥‖2 .

Thus, the trust-region subproblem (1) can be expressed as

minimize
‖Pv‖≤δ

q (v) = q‖
(

v‖

)

+ q⊥ (v⊥) . (9)

Note that the function q(v) is now separable in v‖ and v⊥. To completely decouple
(9) into two minimization problems, we use a shape-changing norm so that the
norm constraint ‖Pv‖ ≤ δ decouples into separate constraints, one involving v‖

and the other involving v⊥.

3.2. Shape-Changing Norms. Consider the following shape-changing norms pro-
posed in [3, 2]:

‖p‖P,2
△
= max

(

‖PT
‖ p‖2, ‖PT

⊥p‖2
)

= max
(

‖v‖‖2, ‖v⊥‖2
)

, (10)

‖p‖P,∞
△
= max

(

‖PT
‖ p‖∞, ‖PT

⊥p‖2
)

= max
(

‖v‖‖∞, ‖v⊥‖2
)

. (11)

We refer to them as the (P, 2) and the (P,∞) norms, respectively. Since p = Pv,
the trust-region constraint in (9) can be expressed in these norms as

‖Pv‖P,2 ≤ δ if and only if ‖v‖‖2 ≤ δ and ‖v⊥‖2 ≤ δ,

‖Pv‖P,∞ ≤ δ if and only if ‖v‖‖∞ ≤ δ and ‖v⊥‖2 ≤ δ.
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Thus, from (9), the trust-region subproblem is given for the (P, 2) norm by

minimize
‖Pv‖P,2≤δ

q (v) = minimize
‖v‖‖2≤δ

q‖
(

v‖

)

+minimize
‖v⊥‖2≤δ

q⊥ (v⊥) , (12)

and using the (P,∞) norm it is given by

minimize
‖Pv‖P,∞≤δ

q (v) = minimize
‖v‖‖∞≤δ

q‖
(

v‖

)

+minimize
‖v⊥‖2≤δ

q⊥ (v⊥) . (13)

As shown in [2], these norms are equivalent to the two-norm, i.e.,

1√
2
‖p‖2 ≤ ‖p‖P,2 ≤ ‖p‖2

1√
k + 1

‖p‖2 ≤ ‖p‖P,∞ ≤ ‖p‖2.

Note that the equivalence factors depend on the number of stored quasi-Newton
pairs (k + 1) and not on the number of variables (n).

We now show how to solve the decoupled subproblems.

3.3. Solving for the optimal v∗
⊥. The subproblem

minimize
‖v⊥‖2≤δ

q⊥ (v⊥) ≡ gT
⊥v⊥ +

γ

2
‖v⊥‖22 (14)

appears in both (12) and (13); its optimal solution can be computed by formula. For
the quadratic subproblem (14) the solution v∗

⊥ must satisfy the following optimality
conditions found in [11, 18, 22] associated with (14): For some σ∗

⊥ ∈ R
+,

(γ + σ∗
⊥)v

∗
⊥ = −g⊥, (15a)

σ∗
⊥ (‖v∗

⊥‖2 − δ) = 0, (15b)

‖v∗
⊥‖2 ≤ δ, (15c)

γ + σ∗
⊥ ≥ 0. (15d)

Note that the optimality conditions are satisfied by (v∗
⊥, σ

∗
⊥) given by

v∗
⊥ =











− 1
γ
g⊥ if γ > 0 and ‖g⊥‖2 ≤ δ|γ|,

δu if γ ≤ 0 and ‖g⊥‖2 = 0,

− δ
‖g⊥‖2

g⊥ otherwise,

(16)

and

σ∗
⊥ =

{

0 if γ ≥ 0 and ‖g⊥‖2 ≤ δ|γ|,
‖g⊥‖

2

δ
− γ otherwise,

(17)

where u ∈ R
n−(k+1) is any unit vector with respect to the two-norm.

3.4. Solving for the optimal v∗
‖. In this section, we detail how to solve for the

optimal v∗
‖ when either the (P,∞)-norm or the (P, 2)-norm is used to define the

trust-region subproblem.

(P,∞)-norm solution. If the shape-changing (P,∞)-norm is used in (9), then
the subproblem in v‖ is

minimize
‖v‖‖∞

≤δ

q‖
(

v‖

)

= gT
‖ v‖ +

1

2
vT
‖ Λv‖. (18)
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The solution to this problem is computed by separately minimizing (k + 1) scalar
quadratic problems of the form

minimize
|[v‖]i|≤δ

q‖,i([v‖]i) =
[

g‖

]

i

[

v‖

]

i
+

λi

2

([

v‖

]

i

)2
, 1 ≤ i ≤ (k + 1). (19)

The minimizer depends on the convexity of q‖,i, i.e., the sign of λi. The solution to
(19) is given as follows:

[v∗
||]i =







































− [g||]
i

λi
if

∣

∣

∣

∣

[g||]
i

λi

∣

∣

∣

∣

≤ δ and λi > 0,

c if
[

g‖

]

i
= 0, λi = 0,

−sgn(
[

g‖

]

i
)δ if

[

g‖

]

i
6= 0, λi = 0,

±δ if
[

g‖

]

i
= 0, λi < 0,

− δ

|[g||]
i
|
[

g||

]

i
otherwise,

(20)

where c is any real number in [−δ, δ] and “sgn” denotes the signum function (see [2]
for details).

(P, 2)-norm solution: If the shape-changing (P, 2)-norm is used in (9), then the
subproblem in v‖ is

minimize
‖v‖‖2≤δ

q‖
(

v‖

)

= gT
‖ v‖ +

1

2
vT
‖ Λv‖. (21)

The solution v∗
‖ must satisfy the following optimality conditions [11, 18, 22] asso-

ciated with (21): For some σ∗
‖ ∈ R

+,

(Λ + σ∗
‖I)v

∗
|| = −g||, (22a)

σ∗
‖

(

‖v∗
||‖2 − δ

)

= 0, (22b)

‖v∗
||‖2 ≤ δ, (22c)

λi + σ∗
‖ ≥ 0 for 1 ≤ i ≤ (k + 1). (22d)

A solution to the optimality conditions (22a)-(22d) can be computed using the
method found in [1]. For completeness, we outline the method here; this method
depends on the sign of λ1. Throughout these cases, we make use of the expression
of v‖ as a function of σ‖. That is, from the first optimality condition (22a), we
write

v‖

(

σ‖

)

= −
(

Λ + σ‖I
)−1

g‖, (23)

with σ‖ 6= −λi for 1 ≤ i ≤ (k + 1).

Case 1 (λ1 > 0). When λ1 > 0, the unconstrained minimizer is computed (setting
σ∗
‖ = 0):

v‖ (0) = −Λ−1g‖. (24)

If v‖(0) is feasible, i.e., ‖v‖ (0) ‖2 ≤ δ then v∗
‖ = v‖(0) is the global minimizer;

otherwise, σ∗
‖ is the solution to the secular equation (28) (discussed below). The

minimizer to the problem (21) is then given by

v∗
‖ = −

(

Λ + σ∗
‖I
)−1

g‖. (25)
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Case 2 (λ1 = 0). If g‖ is in the range of Λ, i.e., [g‖]i = 0 for 1 ≤ i ≤ r, then set
σ‖ = 0 and let

v‖ (0) = −Λ†g‖,

where † denotes the pseudo-inverse. If ‖v‖(0)‖2 ≤ δ, then

v∗
‖ = v‖ (0) = −Λ†g‖

satisfies all optimality conditions (with σ∗
‖ = 0). Otherwise, i.e., if either [g‖]i 6= 0

for some 1 ≤ i ≤ r or ‖Λ†g‖‖2 > δ, then v∗
‖ is computed using (25), where σ∗

‖ solves

the secular equation in (28) (discussed below).

Case 3 (λ1 < 0): If g‖ is in the range of Λ− λ1I, i.e., [g‖]i = 0 for 1 ≤ i ≤ r, then
we set σ‖ = −λ1 and

v‖ (−λ1) = − (Λ− λ1I)
† g‖.

If ‖v‖(−λ1)‖2 ≤ δ, then the solution is given by

v∗
‖ = v‖ (−λ1) + αe1, (26)

where α =
√

δ2 −
∥

∥v‖ (−λ1)
∥

∥

2

2
. (This case is referred to as the “hard case” [6, 18].)

Note that v∗‖ satisfies the first optimality condition (22a):

(Λ− λ1I)v
∗
‖ = (Λ− λ1I)

(

v‖ (−λ1) + αe1
)

= −g‖.

The second optimality condition (22b) is satisfied by observing that

‖v∗
‖‖22 = ‖v‖(−λ1)‖22 + α2 = δ2.

Finally, since σ∗
‖ = −λ1 > 0 the other optimality conditions are also satisfied.

On the other hand, if [g‖]i 6= 0 for some 1 ≤ i ≤ r or ‖(Λ − λ1I)
†g‖‖2 > δ, then

v∗
‖ is computed using (25), where σ∗

‖ solves the secular equation (28).

The secular equation. We now summarize how to find a solution of the so-called
secular equation. Note that from (23),

‖v‖(σ‖)‖22 =
k+1
∑

i=1

(g‖)
2
i

(λi + σ‖)2
.

If we combine the terms above that correspond to the same eigenvalues and remove
the terms with zero numerators, then for σ‖ 6= −λi, we have

‖v‖(σ‖)‖22 =
ℓ

∑

i=1

ā2i
(λ̄i + σ‖)2

,

where āi 6= 0 for i = 1, . . . , ℓ and λ̄i are distinct eigenvalues of B with λ̄1 < λ̄2 <

· · · < λ̄ℓ. Next, we define the function

φ‖

(

σ‖

)

=



























1
√

√

√

√

ℓ
∑

i=1

ā2i
(λ̄i + σ‖)2

− 1

δ
if σ‖ 6= −λ̄i where 1 ≤ i ≤ ℓ

−1

δ
otherwise.

(27)
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From the optimality conditions (22b) and (22d), if σ∗
‖ 6= 0, then σ∗

‖ solves the secular
equation

φ‖

(

σ‖

)

= 0, (28)

with σ‖ ≥ max{0,−λ1}. Note that φ‖ is monotonically increasing and concave
down on the interval [−λ1,∞); thus, Newton’s method can be used to efficiently
compute σ∗

‖ in (28).

More details on the solution method for subproblem (21) are given in [1].

3.5. Computing p∗. Given v∗ = [v∗
‖ v∗

⊥]
T , the solution to the trust-region sub-

problem (1) using either the (P, 2) or the (P,∞) norms is

p∗ = Pv∗ = P‖v
∗
‖ +P⊥v

∗
⊥. (29)

(Recall that using either of the two norms generates the same v∗⊥ but different v∗‖.)

It remains to show how to form p∗ in (29). Matrix-vector products involving P‖ are
possible using (7), and thus, P‖v

∗
‖ can be computed; however, an implicit formula

to compute products P⊥ is not available. To compute the second term, P⊥v
∗
⊥, we

observe that v∗
⊥, as given in (16), is a multiple of either g⊥ = PT

⊥g or a vector u

with unit length. In particular, define u =
PT

⊥ei

‖PT
⊥ei‖2

, where i ∈ {1, 2, . . . , k + 2} is the
first index such that

∥

∥PT
⊥ei

∥

∥

2
6= 0. (Such an ei exists since rank(P⊥) = n−(k+1).)

Thus, we obtain
p∗ = P‖v

∗
‖ +

(

I−P‖P
T
‖

)

w∗, (30)

where

w∗ =















− 1
γ
g if γ > 0 and ‖g⊥‖2 ≤ δ|γ|,
δ

‖PT
⊥ei‖

2

ei if γ ≤ 0 and ‖g⊥‖2 = 0,

− δ
‖g⊥‖2

g otherwise.

(31)

The quantities ‖g⊥‖2 and
∥

∥PT
⊥ei

∥

∥

2
are computed using the orthogonality of P ,

which implies
∥

∥g‖

∥

∥

2

2
+ ‖g⊥‖22 = ‖g‖22, and ‖PT

‖ ei‖22 + ‖PT
⊥ei‖22 = 1. (32)

Then ‖g⊥‖2 =
√

‖g‖22 − ‖g‖‖22 and ‖PT
⊥ei‖2 =

√

1− ‖PT
‖ ei‖22. Note that v∗

⊥ is

never explicitly computed.

3.6. Computational Complexity. We estimate the cost of one iteration using the
proposed method to solve the trust-region subproblem defined by shape-changing
norms (10) and (11). We make the practical assumption that γ > 0. Assuming
we have already obtained the Cholesky factorization of ΨTΨ associated with the
previously-stored limited-memory pairs, it is possible to update the Cholesky fac-
torization of the new ΨTΨ at a cost of O(k2). (Note that if γ is constant from one
iteration to the next, then Ψ is updated with O(2n) operations.) To form ΨTΨ,
we do not store Ψ. Instead, we store and update the small (k + 1)× (k + 1) ma-
trices YTY, STY, and STS. Similarly, we compute matrix-vector products with
Ψ = Y − γS by computing matrix-vector products with Y and S.

The eigendecomposition RMRT = UΛ̂UT costs O(k3) =
(

k2

n

)

O(kn), where

k ≪ n. To compute p∗ in (30), one needs to compute v∗ from Section 3.4 and w∗

from (31). The dominant cost for computing v∗ and w∗ is forming ΨTg, which
requires 4kn operations. (In practice, this quantity is computed while solving the
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previous trust-region subproblem and can be stored to avoid recomputing when
solving the current subproblem–see [2] for details.) Note that given PT

‖ g, the com-

putation of p∗ in (30) costs O(4kn). Finally, the dominant cost to update ΨTΨ is
4kn. Thus, dominant term in the total number of floating point operations is 4kn.
This is the same cost as for L-BFGS [20].

4. Numerical experiments

In this section, we report on numerical experiments with the proposed Shape-
Changing SR1 (SC-SR1) algorithm implemented inMATLAB to solve limited-memory
SR1 trust-region subproblems. The SC-SR1 algorithm was tested on randomly-
generated problems of size n = 103 to n = 107, organized as five experiments when
there is no closed-form solution to the shape-changing trust-region subproblem and
one experiment designed to test the SC-SR1 method in the so-called “hard case”.
These six cases only occur using the (P, 2)-norm trust region. (In the case of the
(P,∞) norm, v∗

‖ has the closed-form solution given by (20).) The six experiments
are outlined as follows:

(E1) B is positive definite with ‖v‖(0)‖2 ≥ δ.
(E2) B is positive semidefinite and singular with [g‖]i 6= 0 for some 1 ≤ i ≤ r.
(E3) B is positive semidefinite and singular with [g‖]i = 0 for 1 ≤ i ≤ r and

‖Λ†g‖‖2 > δ.
(E4) B is indefinite and [g‖]i = 0 for 1 ≤ i ≤ r with ‖(Λ− λ1I)

†g‖‖2 > δ.
(E5) B is indefinite and [g‖]i 6= 0 for some 1 ≤ i ≤ r .
(E6) B is indefinite and [g‖]i = 0 for 1 ≤ i ≤ r with ‖v‖(−λ1)‖2 ≤ δ (the “hard

case”).

For these experiments, S, Y, and g were randomly generated and then altered
to satisfy the requirements described above by each experiment. All randomly-
generated vectors and matrices were formed using the MATLAB randn command,
which draws from the standard normal distribution. The initial SR1 matrix was
set to B0 = γI, where γ = |10 ∗ randn(1)|. Finally, the number of limited-memory
updates (k + 1) was set to 5, and r was set to 2. In the five cases when there is no
closed-form solution, SC-SR1 uses Newton’s method to find a root of φ‖. We use
the same procedure as in [1, Algorithm 2] to initialize Newton’s method since it
guarantees monotonic and quadratic convergence to σ∗. The Newton iteration was
terminated when the ith iterate satisfied ‖φ‖(σ

i)‖ ≤ eps · ‖φ‖(σ
0)‖+√

eps, where
σ0 denotes the initial iterate for Newton’s method and eps is machine precision.
This stopping criteria is both a relative and absolute criteria, and it is the only
stopping criteria used by SC-SR1.

In order to report on the accuracy of the subproblem solves, we make use of the
following theorem, which is based on the optimality conditions for a global solution
to (1) defined by the two-norm [11, 18]. This theorem characterizes global solutions
for the trust-region subproblem defined by the (P, 2)-norm.

Theorem 1. A vector p∗ ∈ R
n such that

∥

∥

∥
PT

‖ p
∗
∥

∥

∥

2
≤ δ and

∥

∥PT
⊥p

∗
∥

∥

2
≤ δ, is a

global solution of (1) defined by the (P, 2)-norm if and only if there exists unique
σ∗
‖ ≥ 0 and σ∗

⊥ ≥ 0 such that

(

B+C‖

)

p∗ + g = 0, σ∗
‖

(

∥

∥PT
‖ p

∗
∥

∥

2
− δ

)

= 0, σ∗
⊥

(
∥

∥PT
⊥p

∗
∥

∥

2
− δ

)

= 0,
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where C‖
△
= σ∗

⊥I +
(

σ∗
‖ − σ∗

⊥

)

P‖P
T
‖ , the matrix B+C‖ is positive semi-definite,

and P = [P‖ P⊥] and Λ = diag(λ1, . . . , λk+1) = Λ̂ + γI are as in (6).

Thus, for each experiment, we report the following: (i) the norm of the residual
of the first optimality condition, opt 1 △

= ‖(B + C‖)p
∗ + g‖2, (ii) the combined

complementarity condition, opt 2 △
= |σ∗

‖(‖PT
‖ p

∗‖2 − δ)| + |σ∗
⊥(‖PT

⊥p
∗‖2 − δ)|, (iii)

σ∗
‖ +λ1, (iv) σ

∗
⊥+γ, (v) σ∗

‖, (vi) σ
∗
⊥, (vii) the number of Newton iterations (“itns”),

and (viii) time. The quantities (iii) and (iv) are reported since the optimality
condition that B+C‖ is a positive semidefinite matrix is equivalent to γ + σ∗

⊥ ≥ 0
and λi + σ∗

‖ ≥ 0, for 1 ≤ i ≤ (k + 1).

Table I. Experiment 1: B is positive definite with ‖v‖(0)‖2 ≥ δ.

n opt 1 opt 2 σ∗
‖ + λ1 σ∗

⊥ + γ σ∗
‖ σ∗

⊥ itns time

1.0e+03 1.80e-14 2.76e-14 1.69e+01 1.70e+02 4.23e+00 1.64e+02 2 6.74e-04

1.0e+04 1.26e-13 4.98e-14 4.04e+00 2.24e+02 1.03e+00 2.23e+02 2 1.27e-03

1.0e+05 1.39e-12 1.04e-12 3.77e+01 7.13e+03 9.43e+00 7.11e+03 2 1.29e-02

1.0e+06 2.09e-11 5.83e-12 3.83e+00 2.39e+03 9.60e-01 2.39e+03 2 1.39e-01

1.0e+07 6.13e-11 3.42e-11 4.77e+01 8.12e+04 1.19e+01 8.12e+04 1 1.48e+00

Table II. Experiment 2: B is positive semidefinite and singular
and [g‖]i 6= 0 for some 1 ≤ i ≤ r.

n opt 1 opt 2 σ∗
‖ + λ1 σ∗

⊥ + γ σ∗
‖ σ∗

⊥ itns time

1.0e+03 1.81e-14 1.55e-13 6.27e+00 1.03e+02 6.27e+00 9.61e+01 3 7.11e-04

1.0e+04 2.12e-13 2.25e-13 6.07e+01 3.23e+03 6.07e+01 3.19e+03 5 1.40e-03

1.0e+05 6.50e-13 4.62e-13 2.29e+00 3.25e+02 2.29e+00 3.18e+02 3 1.22e-02

1.0e+06 1.10e-11 1.11e-11 2.80e+00 3.28e+03 2.80e+00 3.27e+03 3 1.50e-01

1.0e+07 1.16e-10 7.28e-11 4.39e+00 1.12e+04 4.39e+00 1.12e+04 3 1.49e+00

Table III. Experiment 3: B is positive semidefinite and singular
with [g‖]i = 0 for 1 ≤ i ≤ r and ‖Λ†g‖‖2 > δ.

n opt 1 opt 2 σ∗
‖ + λ1 σ∗

⊥ + γ σ∗
‖ σ∗

⊥ itns time

1.0e+03 1.62e-14 6.12e-17 4.41e+00 4.56e+02 4.41e+00 4.49e+02 2 8.49e-04

1.0e+04 1.48e-13 1.07e-13 6.74e+00 2.20e+03 6.74e+00 2.19e+03 2 1.24e-03

1.0e+05 1.02e-12 8.36e-13 7.93e+00 1.15e+04 7.93e+00 1.15e+04 2 1.34e-02

1.0e+06 9.06e-12 2.26e-12 3.06e+00 7.42e+03 3.06e+00 7.41e+03 2 1.45e-01

1.0e+07 1.50e-10 1.09e-10 1.95e+00 9.48e+03 1.95e+00 9.48e+03 2 1.49e+00

Tables I-VI show the results of the experiments. In all tables, the residual of the
two optimality conditions opt 1 and opt 2 are on the order of 1e−10 or smaller.
Columns 4 and 5 in all the tables show that σ∗

‖+λ1 and σ∗
⊥+γ are nonnegative with

σ‖ ≥ 0 and σ⊥ ≥ 0 (Columns 6 and 7, respectively). Thus, the solutions obtained
by SC-SR1 for these experiments satisfy the optimality conditions to high accuracy.

Also reported in each table are the number of Newton iterations. In the first five
experiments no more than five Newton iterations were required to obtain σ‖ to high
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Table IV. Experiment 4: B is indefinite and [g‖]i = 0 for 1 ≤ i ≤ r

with ‖(Λ− λ1I)
†g‖‖2 > δ.

n opt 1 opt 2 σ∗
‖ + λ1 σ∗

⊥ + γ σ∗
‖ σ∗

⊥ itns time

1.0e+03 2.92e-14 1.75e-14 3.51e+00 3.15e+02 3.64e+00 3.10e+02 2 8.01e-04

1.0e+04 9.76e-14 1.17e-13 3.91e+00 1.41e+03 4.40e+00 1.40e+03 2 1.24e-03

1.0e+05 1.37e-12 9.57e-13 1.18e+00 7.48e+02 1.88e+00 7.47e+02 2 1.43e-02

1.0e+06 9.19e-12 8.00e-12 7.16e+00 1.48e+04 7.59e+00 1.48e+04 2 1.40e-01

1.0e+07 1.26e-10 2.60e-11 3.71e+00 1.23e+05 4.71e+00 1.23e+05 2 1.48e+00

accuracy (Column 8). In the hard case, no Newton iterations are required since
σ∗
‖ = −λ1. This is reflected in Table VI, where Column 4 shows that σ∗

‖ = −λ1 and

Column 8 reports no Newton iterations.)
The final column reports the time required by SC-SR1 to solve each subproblem.

Consistent with the best limited-memory methods, the time required to solve each
subproblem appears to grow linearly with n.

Additional experiments were run with g‖ → 0. In particular, the experiments
were rerun with g scaled by factors of 10−2, 10−4, 10−6, 10−8, and 10−10. All exper-
iments resulted in tables similar to those in Tables I-VI: the optimality conditions
were satisfied to high accuracy, no more than three Newton iterations were required
in any experiment to find σ∗

‖ , and the CPU times are similar to those found in the
tables.

Table V. Experiment 5: B is indefinite and [g‖]i 6= 0 for some
1 ≤ i ≤ r.

n opt 1 opt 2 σ∗
‖ + λ1 σ∗

⊥ + γ σ∗
‖ σ∗

⊥ itns time

1.0e+03 2.28e-14 6.05e-15 8.09e-01 5.70e+01 1.65e+00 5.12e+01 3 8.01e-04

1.0e+04 1.06e-13 3.18e-14 1.88e+00 1.74e+02 2.22e+00 1.68e+02 3 1.64e-03

1.0e+05 4.17e-13 5.96e-13 2.02e+00 4.16e+02 2.06e+00 4.12e+02 3 1.25e-02

1.0e+06 1.51e-11 6.98e-12 1.19e+00 1.38e+03 2.14e+00 1.36e+03 3 1.41e-01

1.0e+07 1.52e-10 4.36e-12 1.90e+00 4.90e+03 2.57e+00 4.90e+03 5 1.48e+00

Table VI. Experiment 6: B is indefinite and [g‖]i = 0 for 1 ≤ i ≤ r

with ‖v‖(−λ1)‖2 ≤ δ (the “hard case”).

n opt 1 opt 2 σ∗
‖ + λ1 σ∗

⊥ + γ σ∗
‖ σ∗

⊥ itns time

1.0e+03 2.60e-14 4.60e-15 0.00e+00 3.36e+02 9.78e-01 3.30e+02 0 7.63e-04

1.0e+04 1.57e-13 9.69e-14 0.00e+00 4.01e+03 6.84e-01 3.99e+03 0 1.44e-03

1.0e+05 1.39e-12 7.45e-13 0.00e+00 7.46e+02 1.06e-01 7.45e+02 0 1.54e-02

1.0e+06 1.14e-11 9.04e-13 0.00e+00 1.63e+03 5.81e-01 1.62e+03 0 1.57e-01

1.0e+07 9.00e-11 3.73e-11 0.00e+00 4.80e+04 3.40e-01 4.80e+04 0 1.68e+00

5. Concluding remarks

In this paper, we consider minimizing function f approximating a Hessian using
limited-memory SR1 matrix. Indefinite Hessian approxiamtions cannot be used in
a linesearch context.
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We presented a high-accuracy trust-region subproblem solver for when the Hes-
sian is approximated by L-SR1 matrices. The method makes use of special shape-
changing norms that decouple the original subproblem into two separate subprob-
lems, one of which has a closed-form solution. Numerical experiments verify that
solutions are computed to high accuracy in cases when there are no closed-form
solutions and also in the so-called “hard case”.
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