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A Simulated Maximum Likelihood Method for
Estimation of Stochastic Wiener Systems

Mohamed Rasheed Abdalmoaty and Håkan Hjalmarsson

Abstract— This paper introduces a simulation-based method
for maximum likelihood estimation of stochastic Wiener sys-
tems. It is well known that the likelihood function of the
observed outputs for the general class of stochastic Wiener
systems is analytically intractable. However, when the distri-
butions of the process disturbance and the measurement noise
are available, the likelihood can be approximated by running
a Monte-Carlo simulation on the model. We suggest the use
of Laplace importance sampling techniques for the likelihood
approximation. The algorithm is tested on a simple first order
linear example which is excited only by the process disturbance.
Furthermore, we demonstrate the algorithm on an FIR system
with a cubic nonlinearity. The performance of the algorithm is
compared to the maximum likelihood method and other recent
techniques.

I. INTRODUCTION

Stochastic Wiener models is a subclass of the general class
of nonlinear state-space dynamical systems. A Wiener sys-
tem is formed by two building blocks as shown in Figure 1.
The first part is a linear dynamical system and the second
part is a general static nonlinear function. Although this
subclass might seem limited, it is flexible enough to describe
many interesting physical systems where the nonlinearity is
at the output. This might be as simple as a linear system
with a nonlinear measurement sensor or more complicated
processes such as those considered in [27], [11], and [9].
It has also been recognized in [2] that if the two building
blocks of the Wiener model are multivariable, then the class
can be used to approximate fairly general nonlinear models
with arbitrary accuracy.
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Fig. 1: Stochastic Wiener model

In this paper, we focus on single-input single-output
parametric models.

The interest in the class of Wiener models within the
system identification community is apparent by the number
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of available identification methods. An approach that was
suggested in several contributions, see [1], [23], and [24] for
example, disregards the process noise (sets wk = 0 for all k)
and tries to adapt classical methods such as the prediction-
error method and subspace identification techniques [12].
Most of such approaches come with assumptions that can not
handle common nonlinearities such as dead-zones and satu-
ration. Nonparametric techniques that disregard the process
noise or the process disturbance have also been considered
as in [7] and [16].

It is known, as shown in [8], that ignoring the process
disturbance leads to biased estimates. Instead, [8] tried to
construct the maximum-likelihood estimator. Under the as-
sumption that the disturbance and noise processes are white,
the problem is approached by approximating a number of
independent integrals over the reals using Simpson’s rule.
If the whiteness assumption is relaxed, the integrals are not
independent anymore. A solution has been suggested in [26]
using the celebrated Expectation-Maximization algorithm in
combination with particle smoothers. The particle smoother
is required to approximate the Q-step of the EM algorithm.
Such an approach is an example of the recent development
that employs nonlinear filtering techniques for identification
of nonlinear systems as in [20] and [14]. These are filtering
methods based on sequential Monte Carlo approximations.
Markov Chains Monte Carlo (MCMC) methods has also
been used. The recent survey paper [19] describes the
available approaches in a common framework.

More recently, in [22] a simulation-based method known
as indirect inference was used for the identification of Wiener
models. This method is an instance of a large family of
simulation-based techniques that are developed and used in
econometrics, see for example the survey paper [5] or the
book [6]. Simulation-based methods are techniques that only
require the possibility of simulating data from the model
once a parameter is fixed. They can be used for parameter
estimation in fairly general statistical dynamical models.
The role of these methods is to approximate cost functions
in which some intractable integral appears, by arguments
involving a version of the law of large numbers. When
applied to approximate the likelihood function, the method is
known as Simulated Maximum-Likelihood (SML). Perhaps
the first appearance of such an idea was in [15] in which an
analytically intractable log-likelihood function was approxi-
mated by simulations. Several contributions in econometrics
have suggested the simulated-maximum likelihood method
for models with latent variables such as [4], [10], [13] and
[3].



In this paper, we investigate the simulated maximum-
likelihood method for estimation of Wiener models with
process disturbances. The method is to be seen as an al-
ternative to the MCMC methods when the main goal is
parameter estimation. The latent variables in this case are
considered nuisance parameters. The outline of the paper
goes as follows. In Section II, the estimation problem is
defined. In Section III, the simulated maximum-likelihood
method is introduced. First, in Section III-A we consider
models with white disturbance process. Then, in Section III-
B we describe the method for the more general case of col-
ored disturbance process. In Section IV, some computational
issues are discussed. Section V evaluates the performance of
the method on several numerical examples. Finally, the paper
is concluded in Section VI.

II. THE PROBLEM

Consider the following stochastic Wiener model

M(θ)


xk+1(θ) = A(θ)xk(θ) +B(θ)uk

zk(θ) = C(θ)xk(θ) +H(q, θ)wk

yk(θ) = f(zk(θ), θ) + ek

x0 = 0, u0 = 0

(1)

For some fixed finite integer N , assume that for each k =
1, . . . , N the input sequence {uk} is known, and both {ek}
and {wk} are independent stochastic processes with known
probability density functions

ek ∼ pe(·), and wk ∼ pw(·), k = 1, . . . , N

defined on the appropriate spaces according to the dimen-
sions of the signals. Both processes are assumed to be white
and stationary. The parameter θ is a finite dimentional vec-
tor parameterizing the linear dynamical system state-space
matrices, A, B, and C. The disturbance process is modelled
by the transfer operator H(q, θ) which is also parameterized
by θ. If the disturbance process model H(q, θ) = 1, the
process disturbance is white and coincides with {wk}. The
symbol q denotes the forward shift operator that acts on
time sequences. The function f(·, θ) represents the static
nonlinearity at the output and can be parameterized by θ.
Furthermore, we assume that the measurement is collected
in open-loop so that the input {uk} is independent of both
the disturbance and noise processes. Let

Y =
[
y1 y2 . . . yN

]T
be a vector of observations. For simplicity, we assume here
yk to be scalar. The maximum-likelihood estimation method
requires the evaluation of the likelihood function, denoted
p(Y ; θ), of the observations. The maximum-likelihood esti-
mate (MLE) is defined by the maximization problem

θ̂N := arg max
θ∈Θ

p(Y ; θ).

Unfortunatelly, for the general stochastic Wiener model, the
joint likelihood function of the observations is not analyt-
ically tractable. In the following section, we introduce a
simulation-based technique for the likelihood approximation.

III. SIMULATED MAXIMUM-LIKELIHOOD

We first consider the cases in which the process distur-
bance is known to be white, i.e. H(q, θ) = 1. In this case, one
can directly write the joint likelihood of the observations as
a product of the likelihood functions for a single observation.

A. Direct sampling for white disturbance

Under the assumptions that the noise and disturbance
processes are white, {yk} is a sequence of independent
random variables. The joint likelihood of Y is then given
by

p(Y ; θ) =

N∏
k=1

p(yk; θ).

Therefore, it is enough to find the likelihood function for
a single observation yk. It is more convenient from the
numerical point of view to work with the negative log-
likelihood function defined by

− log(p(Y ; θ)) = −
N∑
k=1

log(p(yk; θ)) (2)

in which log(·) is the logarithmic function. The MLE is
then defined as the global minimizer of the negative log-
likelihood.

Assume that θ is fixed and wk is given. Then an expression
for the likelihood of yk at θ can easily be obtained by
conditioning on the unobserved random variable wk. If wk
is given, the observation yk has a simple computable density
function p(yk|wk; θ) = pe (yk − f(zwk (θ), θ)). Furthermore,
the likelihood can be written

p(yk; θ) =

∫
R
p(yk|wk; θ)pw(wk)dwk

=

∫
R
pe (yk − f(zwk (θ), θ)) pw(wk)dwk

=

∫
R
pe (yk − f(C(θ)xk(θ) + wk, θ)) pw(wk)dwk

= Ewk
[pe (yk − f(zwk (θ), θ))]

(3)
Here, zwk (θ) denotes a simulated version of the unobserved
signal zk using the first row in (1), the known input sequence
{uj} with j = 1, . . . , k and the given wk. The expression in
(3) suggests that it is possible to approximate the negative
log-likelihood (2) by a Monte-Carlo sum

− log(p(Y ; θ))̂ = −
N∑
k=1

log(p̂(yk; θ)) (4)

in which yk are the observations and

p̂(yk; θ) =
1

M

M∑
m=1

pe (yk − f(C(θ)xk(θ) + wmk , θ)) ,

xk+1(θ) = A(θ)xk(θ) +B(θ)uk,

and wmk are samples drawn according to the distribution of
the disturbance process

{wmk }
iid over m∼ pw



At this point, there exist two possibilities. First, it is
possible to use the same values {wm} for all k in the
Monte-Carlo sum (4). We will refer to this approxima-
tion by SML(fixed) which stands for Simulated Maximum-
Likelihood with fixed samples. The second possibility is to
generate an independent sequence {wmk } for each different
k. We will refer to this approximation by SML(indpt) which
stands for Simulated Maximum-Likelihood with independent
samples. A comparison between the two possibilities is made
in Section V.

Under the assumption that p(yk|wk; θ) has a finite variance
under pw dw, the variance of p̂ is

var(p̂(yk; θ)) =
1

M
Ewk

[
(p(yk|wk; θ)−Ewk

[p(yk|wk; θ)])
2
]
.

The observation to be made here is that, for each fixed θ,
the variance depends only on M . A direct application of the
strong law of large numbers implies that

p̂(yk; θ)
a.s.→ Ewk

[p(yk|wk; θ)] as M →∞.
The central limit theorem gives the asymptotic distribution.
For large M and given yk we have p̂(yk; θ) approximately

N (Ewk
[p(yk|wk; θ)] , var(p̂(yk; θ))) .

This can be used to develop an expression for the accuracy
of the likelihood approximation.

The suggested Simulated Maximum Likelihood (SML)
method amounts to the minimization of the expression in (4)
with respect to θ to get an approximation of the maximum
likelihood estimate.

B. Laplace importance sampling for colored disturbance

If the process disturbance is not white, the observations
{yk} cannot be assumed independent, and we are forced
to approximate the joint likelihood function directly in RN .
Again, assuming that the model can be simulated for each
fixed θ, we can condition on the vector

W =
[
w1 w2 . . . wN

]T
.

The joint likelihood of the output is given by

p(Y ; θ) =

∫
RN

p(Y |W ; θ)pW (W )dW

=

∫
RN

(
N∏
k=1

pe(yk − f(zwk (θ), θ))

)
pW (W )dW

= EW [p(Y |W ; θ)]

(5)

This is a multidimensional integral over RN . It is possible
to use the model (1) to simulate the output M times, and
approximate the above integrals by a Monte-Carlo sum. First,
generate M sequences {Wm}Mm=1 each of length N using
the known density pW (W ), then generate the corresponding
output. The joint likelihood (5) is approximated directly by

p̂(Y ; θ) =
1

M

M∑
m=1

(
N∏
k=1

pe
(
yk − ysk,m(θ)

))
Here, ysk,m(θ) denotes the simulated output at time k.

As the theory suggests, using the above approximation for
the likelihood function will give a consistent estimator of θ
as both M and N approach infinity. However, in practice this
approximation would be (computationally) inefficient and it
would require a prohibitively large M . To see this, observe
that in high dimensional spaces small local perturbations lead
to large global errors. More importantly, any distribution that
does not depend on the observation will not be concentrated.
This means that most of the draws will have 0 contribution
to the likelihood function. This behavior is demonstrated by
a numerical example in the simulation study in Section V.

The solution to this issue is to make a change of measure
and use instead an “efficient” sampling density. The word ef-
ficient here is used in the sense of minimizing the variability
in the estimates and the required samples M . This method
of changing the measure is known as importance sampling
and it is used here to increase the computational efficiency.

To use importance sampling we first write the likelihood
in the following form

p(Y ; θ) =

∫
RN

p(Y |W ; θ)
pW (W )

p̃W (W |Y ; θ)
p̃W (W |Y ; θ)dW

with an arbitrary density function p̃W (W |Y, θ) for W which
may depend on the observation Y and the parameter θ.
The likelihood approximation is then given by generating M
sequences {Wm}Mm=1 each of length N using the importance
sampling density p̃W (W |Y ; θ), and calculate

p̂(Y ; θ) =
1

M

M∑
m=1

(
N∏
k=1

pe
(
yk − ysk,m(θ)

)) pW (Wm)

p̃W (Wm|Y ; θ)
.

This approximation is then minimized with respect to θ by a
numerical iterative algorithm. In iteration j of the algorithm,
ysk,m(θj) and p̃W (Wm|Y ; θj) are to be evaluated for the
current available value θj .

It is easy to see that if we choose p̃W (W |Y ; θ) =
pW (W |Y ; θ), the conditional density of W given Y , then
only one sample is needed to recover p(Y ; θ). This follows
since

p(Y |W ; θ)pW (W )

pW (W |Y ; θ)
= p(Y ; θ), (6)

does not depend on W and
∫
pW (W |Y ; θ)dW = 1

This suggests that a “good” choice for the importance
sampling density should be close (in some sense) to the
unknown conditional density pW (W |Y ; θ). The expression
in (6) also shows that the computation of pW (W |Y ; θ)
is essentially equivalent to computing p(Y ; θ) (recall that
computing p(Y |W ; θ) is simple). It is therefore clear that the
real challenge lies in the choice of the importance sampling
density.

One method for choosing the importance sampling density
is based on the Laplace approximation. The idea behind the
Laplace approximation is simple. The method aims at finding
an importance sampling density with mean and variance
matching the mode and curvature of the unknown conditional
density of W . Laplace approximation of the importance



sampling density has been used in the context of simulation-
based methods in different ways, see for example [4], [3].

To arrive at the approximation, we start by the expression
of the likelihood function

p(Y ; θ) =

∫
RN

p(Y,W ; θ)dW,

and assume that the density p(Y,W ; θ) is twice differentiable
in W and that for a given observation vector Y and a
parameter θ, it has a peak at Ws

Ws(θ) := arg max
W

p(Y,W ; θ)

= arg max
W

p(W |Y ; θ)p(Y ; θ).

Observe that this is the Maximum a Posteriori (MAP)
estimate of W given Y , considering θ as a fixed known
value. Then, a Taylor expansion of the log of the joint density
around Ws reads

log p(Y,W ; θ) ≈ log p(Y,Ws(θ); θ)

+
1

2
(W −Ws(θ))

T ∂
2 log p(Y,Ws(θ))

∂W∂WT
(W −Ws(θ)).

(7)

This shows that p(Y,W ; θ) = exp(log(p(Y,W ; θ)) is ap-
proximately given by the exponential of the second term of
the right hand side of (7). This is indeed a normal distribution
centered around Ws(θ) and with the covariance matrix

Σ(θ) := −
[
∂2 log p(Y,Ws(θ);θ)

∂W∂WT

]−1

. This suggests using the
importance sampling density

p̃(W |Y ; θ) = N (Ws(θ),Σ(θ))

for a given Y and θ. The reader is refered to Theorem
7.108 in [18] for a rigorous justification of the Laplace
approximation.

IV. COMPUTATIONAL ISSUES

In this section, we discuss some computational issues
related to the suggested methods.

A. Fixed vs. Independent samples

Consider again the situation of Section III-A where the
disturbance process is white. It is clear that using fixed
samples {wm} for all k to calculate the approximation

p̂(Y ; θ) =

N∏
k=1

p̂(yk; θ)

requires shorter computational time than when using inde-
pendent samples over k. However, doing this will lead to
a correlation between the estimates p̂(yk; θ). On the other
hand, independent samples over k leads to independent
estimates p̂(yk; θ). In this case,

EW [p̂(Y ; θ)] = EW

N∏
k=1

p̂(yk; θ) =

N∏
k=1

Ewk
[p̂(yk; θ)]

=

N∏
k=1

p̂(yk; θ) = p(Y ; θ)

B. Computation of the likelihood approximation in high
dimension

We now describe a solution for a numerical problem that
arises when the method in Section III-B is implemented.
Assume that both ek and wk are Gaussians with variances
λe and λw respectively. For a given θ, and a corresponding
importance sampling density, the likelihood approximation is
evaluated by calculating p(Y |W ; θ)pW (W )/p̃W (W |Y ; θ) =

c1 exp(− 1
2λe
‖Y − YW (θ)‖2)c2 exp(− 1

2λw
‖W‖2)

c3(θ) exp( 1
2‖W −Ws(θ)‖2

), (8)

with c1 =
1

(2πλe)
N
2

, c1 =
1

(2πλw)
N
2

c3(θ) =
1

(2π)
N
2 det Σ(θ)−1

For large values of N , a direct calulation of this expression
is not possible. First, the value det Σ(θ)−1 will be a very
small number. Second, the constants c1 and c2 will be very
large. Furthermore, it is likely that the arguments of the
exponential function will be too large making the exponential
function equal to zero for any computer with finite precision.
This issue can be solved by first taking the logarithm of the
fraction in (8) and then applying the exponential function
to the result. The logarithm transforms products into sums
and exponents into scaling factors, which makes the numbers
more tractable. In addition, notice that the whole expression
can be normalized by any constant that is independent of θ.

V. SIMULATION STUDY

All the numerical examples were implemented in MAT-
LAB 2015b on an Intel-based laptop with a 2.7 GHz
processor and 8 Gbyte RAM. The function fminsearch
was used to find the minimizer of the negative log of the
likelihood approximation. For the optimization step of the
Laplace importance sampling, the Matlab package IPOPT
[21] was used. This is a software package for large-scale
nonlinear optimization based on interior-point algorithms. It
is designed to find (local) solutions of constrained nonlinear
optimization problems. IPOPT requires the gradient and the
Hessain of the objective functions to be calculated analyti-
cally and provided to the solver as function handles.

A. First order stochastic Wiener system with direct sampling

We first consider the following FIR model with cubic
nonlinearity at the output

zk = θuk + uk−1 + wk,

yk = z3
k + ek, u0 = 0

uk ∼ N (0, λu) ∀k, E[ukuj ] = 0 ∀k 6= j,

ek ∼ N (0, λe) ∀k, E[ekej ] = 0 ∀k 6= j,

wk ∼ N (0, λw) ∀k, E[wkwj ] = 0 ∀k 6= j,

ek ⊥ wj ⊥ ul ∀k, j, l ∈ {1, 2, 3, . . . }
this example is taken from [22] where the authors compare
the MLE and an indirect inference method based on a best
linear approximation model. The process disturbance here is



white. Therefore, we can apply the direct sampling method
from section III-A. The suggested simulated-maximum like-
lihood was implemented for a model with

θ = 0.5, λu =
1

3
, λe = 0.1 λw = 0.2

and compared to the ML estimated calculated with Gauss-
Hermite approximation as suggested in [22]. The number of
observations N = 1000, and the number of Monte-Carlo
samples M = 5000 and the number of points for the Gauss-
Hermite approximation is taken to be the same as M . The
Output-Error estimate (OE) (considering W = 0) is also
calculated. The average results over 1000 disturbance, noise
and input realizations are summarized in the following table

Mean std MSE
ML: 0.4991 0.0311 0.0010

SML(fixed): 0.5071 0.0507 0.0026
OE: 0.6246 0.0709 0.0205

It is clear that the simulated maximum-likelihood estimate
is unbiased but worse than the maximum-likelihood estimate
given by the Gauss-Hermite quadrature. On the other hand,
the OE estimate that ignores the process disturbance is
clearly biased.

If we increase M to 50000, and use independent samples
for each k as explained in section III-A, we get the following
average result over 100 Monte-Carlo iterations

Mean std MSE
ML: 0.4988 0.0310 9.53× 10−4

SML(indpt): 0.4985 0.0319 0.0010
OE: 0.6129 0.0722 0.0179

We see a clear improvement in the resulting estimate as
suggested by the theory. Comparing this result to the results
obtained in [22] for the same example, we see that by
increasing the number of Monte-Carlo samples used for the
approximation, we can achieve better accuracy compared to
the indirect inference method with optimal weighting.

We repeat the last experiment and compare the case of
fixed sample for all k against independent samples over k.
First, for M = 5000, we get the following average result
over 500 Monte-Carlo iterations

Mean std MSE
ML: 0.5008 0.0320 0.0010

SML(fixed): 0.5061 0.0517 0.0027
SML(indpt): 0.5060 0.0535 0.0029

OE: 0.6295 0.0698 0.0192

Both cases with fixed and independent samples have com-
parable performance. On the other hand, for M = 50000,
we get the following average result over 100 Monte-Carlo
iterations we get

Mean std MSE
ML: 0.5011 0.0315 9.82× 10−4

SML (fixed): 0.5034 0.0374 0.0014
SML (indpt): 0.5003 0.0321 0.0010

OE: 0.6215 0.0695 0.0195
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Fig. 2: Illustration of Importance Sampling

From this we see that using a fixed sample gives a slightly
worse result, as was discussed in Section IV-A.

B. First order linear system

Consider the linear-time invariant state-space model struc-
ture

xk+1 = θxk + wk,

yk = xk + ek, x0 = 0

ek ∼ N (0, λe) ∀k, E[ekej ] = 0 ∀k 6= j,

wk ∼ N (0, λw) ∀k, E[wkwj ] = 0 ∀k 6= j,

ek ⊥ wj ∀k, j, l ∈ {1, 2, 3, . . . }
Here we did not apply a nonlinearity at the ouput. However,
doing this is straightforward. The motivation for considering
a linear system is to be able to calculate the MLE analytically
for comparison. Observe that adding a nonlinearity at the
output results in a blind identification problem similar to the
one considered in [25]. Such a problem has attracted some
attention; however usually the proposed solutions require
stringent assumptions.

For a first experiment we fix N = 200 and generate data
using the above linear system with the following parameters

θ = 0.7, λw = 1.5, and λe = 1

Since we have a linear model with Gaussian disturbance and
measurements noise, the likelihood function has a known
analytical form. The MLE can be computed directly using the
analytical likelihood function and is to be used as a reference
for performance evaluation.

We start by showing the effect of importance sampling. We
simulated the estimator over 1000 realizations for each M =
1000 : 1000 : 10000 using different importance sampling
densities.

Figure 2 shows the result for the MLE and different
sampling densities. The MLE is denoted by ml, and is of
course independent of M .
sml denotes direct sampling using pW (W ).
sml+is denotes sampling using N (Ws, λwIN ),
sml+is2 denotes sampling using N (Ws,

λw

2 IN ),



sml+is3 denotes sampling using N (Ws,
λw

3 IN ),
sml+is4 denotes sampling using N (Ws,

λw

4 IN ),
Finally, sml+is4p denotes sampling from
N (Ws + ε, λw

4 IN ) with ε = ((−1 + 2 ∗ rand(N, 1)) ∗ 0.1)

It is clear from this result that naı̈ve sampling using the
distribution of the process disturbance is extremely ineffi-
cient. Using any sampling density centered at the maximizer
Ws and with variance less than λw decreases the MSE
considerably. It also seems that the performance is not very
sensitive to the used mean and variance as long as the
resulting p̃ is a reasonable representation of p(W |Y ; θ)

By applying the Laplace importance sampling method, we
can achieve good results. To demonstrate this, we fix N =
1000 and generate data using the above linear system with
the same choice for the parameters. We choose M = 1000
and simulate the method over 100 disturbance and noise
realizations. We get the following

Mean std MSE
ML: 0.6963 0.0280 7.88× 10−4

SML+IS: 0.6963 0.0280 7.88× 10−4

The result shows that the simulated likelihood method with
the importance sampling is exact for linear systems (only
one sample was actually needed).

C. First order stochastic Wiener system with Importance
Sampling

In this last experiment, we evaluate the behavior of the
simulated maximum-likelihood method on the same Wiener
model as in Section V-A. Again, the number of observa-
tions N = 1000, and the number of Monte-Carlo samples
M = 5000 and the number of points for the Gauss-Hermite
approximation is taken to be the same as M . The average
result over 100 Monte-Carlo iterations are as follows

Mean std MSE
ML: 0.4944 0.0319 0.0010

SML: 0.5151 0.0469 0.0024
OE: 0.6234 0.0701 0.0201

The result shows that using the importance sampling in high
dimension (N=1000) gives almost the same result as the
direct sampling with the whiteness assumption.

VI. CONCLUSIONS
We have introduced a simulated maximum likelihood

method that can be used for stochastic Wiener systems iden-
tification. The initial simulation study shows that the method
has a good performance compared to known analytical and
other approximate methods.

The computation time for all the presented examples is in
the order of minutes. However, the required time increases
with the number of estimated parameters. For example,
estimating a system with 8 unknown parameters using 500
input-output samples and 104 Monte-Carlo samples and the
true parameters as initial value takes about 3.5 hours. Nev-
ertheless, in this preliminary study, computational speed has
not been addressed, and the implementation is not optimized
in any way.
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