This is the submitted version of a paper presented at 20th International Congress of Parkinson's Disease and Movement Disorders.

Citation for the original published paper:

Minimizing levodopa titration period for Parkinson’s disease.
In: Movement Disorders Society (pp. S633-S633). Berlin

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:du-22627
Minimizing levodopa infusion titration period for Parkinson’s disease, using simulated data.

Ilias Thomas¹, Moudud Alam¹, Marina Senek², Dag Nyholm¹ and Jerker Westin¹
¹Dalarna University, Sweden, ²Uppsala University Hospital, Sweden
*Presenter of this poster, e-mail: ith@du.se

Aim
The aim is to reduce the number of dose titration days, using an optimization algorithm that individualizes pharmacokinetics-pharmacodynamics (PKPD) models, when initiating levodopa-carbidopa intestinal infusion.

Models and Methods

Individual model fitting
Mathematical optimization was used to fit individual PKPD models. The PKPD model calculated an effect, given a dose. The effect was reported in a 7 point scale, ranging from bradykinesia at lower values to dyskinesia at higher values of the scale. Certain parameter values of the PKPD model were fixed to population mean values whereas others were altered (decided upon sensitivity analysis) in order to minimize a distance function. The altered parameter values together with the fixed parameters described the individual model. The input to the distance function were the observations from the dose titration days. Multiple algorithms were applied to the minimization process and showed similar performance. An example of a fitted model can be seen in figure 1.

Dosing optimization algorithm
An optimization algorithm derived the optimal dosing regimen for each fitted model. The algorithm simulated the optimal maintenance dose in terms of mg/h and the optimal morning dose for the patient. Simulations were carried out in a 16 hour interval and optimal regimens were defined as the ones that maximize the “on-state” of patients. This was accomplished by minimizing the time where the patient was either over medicated or under medicated when receiving the morning dose. The maintenance dose stabilized the patient at “on-state” throughout the day.

Applying the algorithms to the simulated dataset

Simulated dataset
A dataset of 100 patients was generated based on the population parameters of the PKPD model. For all patients, a baseline morning dose and maintenance dose was simulated on the first day. For the ones that appropriate individual models could not be fitted on day 1, an increased or decreased dose was given on day 2 (based on the first day’s observations), and so on until day 3. More titration days were deemed unnecessary, because of the performance of the method. For all simulated titration days, only one observation per hour was considered and used for the computations.

Results

For each patient the simulated optimal dose regimen was obtained using the known individual parameters. Running the optimization and simulation procedures, dosing suggestions were calculated for each patient through their individual fitted models. The suggestions were then compared to the optimal regimen to check for agreement with a 5% error tolerance. The maintenance dose prediction has better performance (the majority of the observations are when the patient is “stable”) and two days of titration is enough to approximate the optimal maintenance dose in 96% of the cases.

<table>
<thead>
<tr>
<th>Morning Dose</th>
<th>Maintenance Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day I 46%</td>
<td>55%</td>
</tr>
<tr>
<td>Day II 74%</td>
<td>96%</td>
</tr>
<tr>
<td>Day III 85%</td>
<td>99%</td>
</tr>
</tbody>
</table>

Table 1: Accuracy of morning and maintenance dose predictions, with a 5% error tolerance, compared with the simulated optimal doses, presented as the percentage of patients with the correctly predicted dose for each day of observation.

Three days of dose titration provides enough information to fit individual models, that yield dosing suggestions very similar to the optimal ones for the morning dose. A great improvement can be noted between day 1 and 2. Correlation between optimal morning dose and suggested morning dose is shown in table 2.

<table>
<thead>
<tr>
<th>Correlation Relative Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day I 0.89 11%</td>
</tr>
<tr>
<td>Day II 0.94 5%</td>
</tr>
<tr>
<td>Day III 0.95 5%</td>
</tr>
</tbody>
</table>

Table 2: Correlation between the optimal morning dose and the suggested morning dose when using different number of days in the model fitting algorithm. On the right column the prediction error is shown.

Conclusions
- Two dose-titration days, with one observation per hour, are sufficient to approximate the optimal morning and maintenance dose for the vast majority of the cases. This is shorter compared with previous results from clinical trials, where the mean dose-titration duration was reported to be 7.6 and 7.1 days (Lew et al. 2015).
- Adding more observations after the patient receives the morning dose (an observation every 15-20 minutes for the first 2 hours), would further improve the performance of the method when predicting the morning dose.

References