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Front image 

The front cover shows the visualization of the precipitation classification for Sep­
tember, 23rd 1999, 17:24 UT. The left image shows the radar reflectivity observed 
from the BALTRAD network. The right image gives the result of the precipita­
tion classification, where the class I (risk/light precipitation) is assigned red, class 
2 (light/moderate) green, and class 3 (intensive precipitation) blue. Two differ­
ent precipitation areas can be observed. The southem part of the Baltic region is 
covered with a narrow band of intensive precipitation, whereas more widespread 
frontal precipitation is found in the northem part. Both the light and the intensive 
precipitation are picked up by the AMSU and their respective intensity can also be 
distinguished very clearly. 
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Abstract 

We describe a method to remotely sense precipitation and classify its in­
tensity over water, coast, and land surfaces. This method is intended to be 
used in a nowcasting environment. It is based on data obtained from the 
Advanced Microwave Sounding Unit (AMSU) onboard NOAA-15. Each 
observation is assigned a probability to belong to four different classes, 
namely precipitation-free, risk of precipitation, precipitation between 0.5 
and 5 mm/h and precipitation higher than 5 mm/h. Since the method is de­
signed to work over different surface types, it mainly relies on the scattering­
signal of precipitation-sized ice particles received at high frequencies. 

For the calibration and validation of the method we use an eight month 
dataset of combined radar and AMSU-data obtained over the Baltic area. 
We campare results for the AMSU-B channels at 89 GHz and 150 GHz and 
find that the high frequency channel at 150 GHz allows for a much bet­
ter discrimination of different types of precipitation than the 89 GHz chan­
nel. Whi]e precipitation-free areas as well as heavily precipitating areas 
(> 5mm/h) can be identified to a high accuracy, the intennediate classes 
are more ambiguous. This ambiguity stems from the ambiguity of the pas­
sive microwave observations as we11 as from the non-perfect matching of 
the different data sources and non-perfect radar adjustment. In addition to 
a statistical assessment of the method's accuracy, we present case studies to 
demonstrate its capabilities to classify different types of precipitation and to 
seemlessly work over highly structured, inhomogeneous surfaces. 
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1 Introduction 

At the Swedish Meteorological and Hydrological lnstitute (SMHI) methods 
and software to retrieve cloud and precipitation information from the data 
of the new generation of operational meteorological satellites is being de­
veloped. The work is carried out mainly in the framework of EUMETSAT's 
'Satellite Application Facility (SAF) to Support Nowcasting and Very Short 
Range Forecasting'. The Nowcasting SAF (SAFNWC) is scheduled to end 
in February 2002, with the delivery of an integrated software package for 
the processing of twelve analysis products, all thought to be essential for 
nowcasting applications, and based on data of the future Meteosat Second 
Generation (MSG) and European Polar System (EPS) satellites. 

The main delivery of SMHI will be new methods and software for the 
extraction of four high latitude (applicable north of 50N) cloud and precip­
itation products based on AVHRR and AMSU data. Karlsson et al. (1999) 
give a short overview of the four products and the AVHRR Cloud Mask is 
described in more detai) by Dybbroe et al. (] 999). 

In this paper we will describe a method to identify precipitation and clas­
sify its intensity over water, coast and land surfaces using AMSU data. The 
method is going to be an important part of the algorithm for the AVHRR/ 
AMSU Precipitating Clouds product of the SAFNWC. 

Satellite based precipitation analysis for nowcasting purposes impose 
specific requirements: 

• The spatial resolution of the product should be as high as possible. 
Therefore, the discrimination between precipitating and non- precipi­
tating clouds has to work on an individual pixel basis over both, land 
and water surfaces. In contrast, e. g. climate applications need an inte­
gral measure of precipitation's distribution over larger grid boxes and 
periods. Climate products might thus still be usefull, if a large amount 
of individual retrievals fail, as long as temporal and spatial averages 
are correct. 

• A high accuracy in determining the absolute amount of precipitation 
fora given pixel is not necessarily required for nowcasting. An opti­
mal interpretation of a nowcasting product would distinguish between 
a few classes of precipitation intensities ranging from precipitation­
free to intensive precipitation. The usefu11ness of climate products in 
contrast depends on their ability to derive precipitation intensity to a 
very high accuracy. 

Current operational satellites such as NOAA- 15 carry two different kinds 
of instruments which are of potential interest for the remote sensing of pre­
cipitation. Visible and infrared sensors such as the Advanced Very High 
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Resolution Radiometer (AVHRR) and microwave instruments such as the 
Advanced Microwave Sounding Unit (AMSU). While the AVHRR provides 
a high spatial resolution (in the order of 1 km at nadir), the observed radi­
ances in this spectral region are not sensitive to the precipitation itself and 
precipitation infonnation has to be derived from indirect measures such as 
the cloud optical properties, cloud top temperature or cloud type. A typical 
problem associated with visible and infrared methods is that they can not 
distinguish between cold thick clouds with and without precipitation and 
thus typically overestimate the areal extent of precipitation. 

Passive microwave instruments provide a more direct measure of pre­
cipitation, since precipitation directly influences the radiation field. To fully 
meet the above requirements and to obtain a high skill in correctly identi­
fying precipitation, the use of passive microwave infonnation is thus nec­
essary. The drawback of passive microwave instruments is their low spatial 
resolution of typically several 10th of kilometers. Previous studies have 
further shown that for instantaneous observations the assignment of pas­
sive microwave observations to rain rates is associated with large error bars. 
Therefore we introduce a new approach that distinguishes between differ­
ent classes of precipitation instead of deriving rain rates. To also allow the 
user to estimate the uncertainties associated with a given classification, we 
derive the results in tenns of probabilities of a given observation belong­
ing to each class. These probabilities are derived from the co-located and 
gauge-adjusted radar data. 

In the follwing section we will give a short description of the here­
relevant features of the AMSU and of the dataset we used. In section 3 
we will describe the classification approach in detail and perform a statis­
tical evaluation of its accuracy with respect to the radar data. In section 4 
we provide case studies for different types of precipitation to highlight the 
capabilities of the method and identify possible error sources. 

2 Dataset 

2.1 The Advanced Microwave Sounding Unit (AMSU) 

The AMSU consists of two instruments, AMSU-A and AMSU-B. While 
the former is dedicated to derive temperature profile infonnation, the main 
purpose for AMSU-B is the retrieval of water vapour profile information. 
Both instruments are cross-track scanning, where the AMSU-A swath con­
sists of 30 measurements (step angle 3.3 degrees) and the AMSU-B swath 
of 90 measurements (step angle 1.1 degree). During one AMSU-A scan 
three AMSU-B seans are perfonned. Both instruments are synchronized 
via a pulse at the beginning of each AMSU-A scan. The spatial resolution 

5 





R. Bennartz et al. Precipitation Analysis from AMSU 

AMSU-A 
spatial resolution deg 3.3 

nadir effective field of view km2 50x50 
scan edge effective field of view km2 150x80 

channels used [GHz] 23.8, 31.4 

AMSU-B 
spatial resolution deg I.I 

nadir effective field of view km2 20x16 
scan edge effective field of view km2 64x52 

channels used [GHz] 89.0, 150.0 

Table 1: NOAA-15 satellite characteristics and AMSU-A and AMSU­
B instrument characteristics taken from the NOAA KLM User's Guide 
( Goodrum et al., 1999) and (Bennartz, 1999b ). 

of the AMSU-A varies between 50 x 50km2(3-db effective field of view) 
at the scan center to 150 x 80km2 at scan edge. AMSU-B hasa somewhat 
higher spatial resolution of 20 x 16km2at scan center and 64 x 52km2at 
scan edge. Details on the spatial resolution and observation geometry of the 
AMSU can be found in ( Goodrum et al., 1999) and (Bennartz, 1999b) (see 
also Table 1 ). 

Both AMSU-A and AMSU-B have window channels, the AMSU-A at 
23.8, 31.4, and 89.0 GHz, whereas the AMSU-B at 89.0 and 150.0 GHz. 
These channels are most suitable to obtain information about precipitation 
since they are least affected by water vapour or oxygen absorption. 

The response of the AMSU window channels to precipitation is quali­
tatively well known Smith et al. ( 1998), while an exact quantitative relation 
between surface rain rate and observed brightness temperatures is difficult 
to establish. 

Considering the microwave response to precipitation two different sig­
nals have to be distinguished. First, liquid precipitation acts as an almost un­
polarized emitter, so that the over cold, polarized targets (i. e. ocean surface) 
liquid precipitation tends to brighten and depolarize the satellite-observed 
temperatures . This effect can especially be observed at low frequencies 
(AMSU-A 23.8 and 31.4 GHz) and its use is limited to open water surfaces, 
since most land surfaces exhibit a too high and variable surface emissivity. 

The second effect is a depression of the observed brightness tempera­
tures which is largely caused by precipitation-sized ice particles (Spencer 
et al., 1989; Grody, 1991; Adler et al., 1993). At high frequencies these 
large ice particles act as scatterers and scatter cold radiation from above the 
cloud back to the satellite. While only indirectly linked with surface precip­
itation, the scattering signal can be observed both over land and water sur-
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faces. For the special case of the AMSU the usage of the higher AMSU-B 
frequencies is advantageous because of its approximately three times higher 
spatial resolution. AMSU-B will therefore have a more dynamic response 
to precipitation features, especially, if the areal extent of the precipitation is 
small. 

2.2 Combined satellite and radar dataset 

In the framework of the SAFNWC SMHI has been building a database for 
validating satellite retrievals of precipitation at high latitudes. As of Novem­
ber 1999 this dataset consists of 140 NOAA-15 overpasses received at Nor­
rköping along with coinciding weather radar data (see section 2.3). The 
dataset is currently operationally extended on a daily basis and will at least 
be extended until one year of data coverage is obtained. The locally re­
ceived NOAA-15 data is processed using the Advanced ATOVS Processing 
Package (AAPP, Klaes ( 1997)). 

Since the weather radar data are available at a much higher spatial reso­
lution as the AMSU-data, we convolved the high-resolution datasets to the 
spatial resolution of the AMSU-A respective AMSU-B. This degradation 
allows to intercompare the radar and AMSU data on an instantaneous basis 
and at a common spatial scale. The principal strategy for degrading high­
resol ution datasets to the resolution of passive microwave sensors is outlined 
in Bennartz ( 1999a) and Bennartz and Michelson (1999). Subsequently we 
give a short descripition of the weather radar dataset. 

2.3 BALTRAD radar data 

The Baltic Sea Experiment (BALTEX) is the European regional project 
within the Global Energy and Water Cycle Experiment (GEWEX), with 
contributions from 10 countries in the Baltic Sea's drainage basin. GEWEX 
is part of the World Climate Research Programme. The BALTEX Main 
Experiment commenced its so-called Pilot Phase on April 1, 1999. The 
BRIDGE Base-Line Period commenced on October 1, 1999 and is presently 
scheduled to last until February 28, 2002 (BALTEX, 1997). 

Within the framework of BALTEX, a Radar Data Centre (BRDC) has 
been established at SMHI for collecting data from as many radars in or prox­
imate to the BALTEX Region as possible, deriving homogenous data sets, 
distributing the datasets to BALTEX data users, and archiving the datasets. 
During the BRIDGE Pilot Phase, data was available from 25 radars in six 
countries. Most of these radars operate at C-band (5 cm), while two operate 
at X-band (3 cm). The majority of the radars have Doppler capability. Their 
maximum operational ranges are 200-250 km and the horizontal resolution 
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of the data is commonly 2 km. With the exception of four radars which pro­
duce reduced depth data, reflectivity factor data (dBZ) is available in 8-bit 
depth. More information on the radars targeted for use in BALTEX can be 
found in Brandt et al. ( 1996). 

Those products being produced at the BRDC are outlined in Michelson 
et al. ( 1999) and presented in detail in Michelson (2000). Among them is a 
12-hour accumulated precipitation product based on gauge-adjusted radar. 
The gauge-adjustment technique is based on that presented by Koistinen 
and Puhakka ( 1981 ), with a few modifications. Gauge observations from 
SYNOP were used for 6 and 18 UTC each day. Based on 15 minute Pseudo­
CAPPI images, twelve hour radar sums for each radar were derived for the 
corresponding integration periods and these were composited; a compos­
ite of images containing surface distances from each radar's location for 
each radar was also created. A second order polynomial was then fitted 
for log(Gauge sum/Radar sum) as a function of distance. In order to avoid 
overfitting, this relation was derived using a moving one-week window com­
prising all gauge-radar pairs along with their corresponding distances. This 
was conducted with every new 12-hour SYNOP term. This relation was 
used as a first guess in a Bames' analys is which generated an adjustment 
field which was applied to the original radar accumulation composite. The 
coefficients for the polynomials were written to a log file for later use. The 
gauge-adjustment technique has the effect of minimizing the range depen­
dency on the radar sum 's accuracy while marginalizing the bias between 
radar and gauge accumulations on the whole (Michelson, 2000). The poly­
nomial coefficients can be used to perform a simpler adjustment of radar 
data for arbitrary temporal integrations periods between SYNOP tenns. 

For the purposes of this study, single composite images containing radar 
reflectivity factor ( dBZ) were converted to rain rate (mm/h) using a static 
Z-R relation Z = 200R1.5 and then adjusted using the corresponding set 
of polynomial coefficients and information on the distance from each pixel 
to the nearest radar. While the composites themselves are not created us­
ing a closest radar algorithm, the effects on the radar data accuracy can be 
considered marginal, especially in light of the difference in their resolution 
compared with the AMSU data. 

3 Algorithm description 

3.1 General 

Figure 1 outlines the general data flow of the precipitation retrieval. Since 
land and water surfaces exhibit an entirely different emissivity and also the 
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response of passiv~ microwave brightness temperatures to precipitation dif­
fers considerably, the first step is to discriminate between land and water 
surfaces. As the spatial distribution of land and water is highly inhomoge­
neous in the Baltic region an accurate detennination of the viewed scene 
is of crucial importance to avoid a large amount of falsely classified pixels 
in coastal areas. Since the spatial resolution of the AMSU is very low, it is 
further necessary to define a particular surface type for coastal observations, 
which are partly covered by land and water. The subsequent processing of 
the AMSU-data depends on the type of surface. Correspondingly, the pre­
cipitation identification is different for the different surface types. 

AMSU-data 

Land :and/water Water 
discrimination 

Mixed 
Snow/ice Sea ice 

Calculate 
back round 

Merge 
roducts 

Figure 1: Algorithm overview. 

Instead of deriving precipitation rates, the final product of the here­
described method are probabilities that a given observation falls within cer­
tain, predefined ranges of rain rates. Table 2 shows the different classes 
which we use. A given pixel will not be assigned a certain value, it will 
rather be assigned a set of probabilities with which it belongs to each of 
the four classes, where the sum of these probabilities adds up to 100%. 
Although a larger number of precipitation classes would be usefull the val­
idation results presented below indicate that on an instantaneous basis and 
overall different surface types the algorithms accuracy does not allow to 
discriminate more classes. 

Our approach to derive the probabilities associated with different classes 
of precipitation is strictly empirical. We use the convolved radar data to 
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I class I type of precipitation I minium rain rate I maximum rain rate 

[mm/h] [mm/h] 
1 N o precipitation 0.0 0.1 
2 Risk for/light precipitation 0.1 0.5 
3 Light/moderate precipitation 0.5 5.0 
4 Intensive precipitation 5.0 CX) 

Table 2: Classes of different precipitation intensities used in this investiga­
tion. 

discriminate between the different classes of precipitation and investigate 
the skills of different combinations of AMSU-channels to discriminate be­
tween those classes (note, that all algorithms are outlined in Appendix A). 
We chose this approach instead of e. g. an inverse modelling approach since 
the microwave response to e. g. frozen precipitation as well as the cloud 
microphysics is not yet well understood and may introduce large system­
atic deviations in algorithm development especially in the here-presented 
case, where surface characteristics are highly heterogeneous. Fora detailed 
discussion on the response of passive microwave sensors to frozen precip­
itation see Bennartz and Petty ( 1999). While in principle straight forward, 
the empirical approach has several ]imitations: 

1. The so-derived thresholds and probabilities may not be valid for other 
climate regions than those for which they have been derived. It might 
thus be difficult to transfer the here-derived technique without adjust­
ment to other climate regions. This might especially be the case for 
the algorithms which are derived over water, since the response of 
passive microwave sensors to other atmospheric parameters is stronger 
over ocean than over land. For land surfaces problems could arise in 
regions with significantly different surface emissivity characteristics, 
such as desert areas. 

2. If the number of observations is limited the results may not be sta­
tistically significant or may be biased towards a non-representative 
sample of data. In the present investigation we used data collected 
over a period of eight month (April-November 1999), so that for most 
seasons a good coverage is obtained. However, as outlined below, the 
dataset will be extended to cover at least one year of data to include a 
larger amount of winter time situations as well. 

3. The usage of radar as ground truth introduces additional errors in the 
comparison. First, because a perfect alignment intime of the weather 
radar data with the passive microwave data can not be obtained. Al­
though the time difference between radar data and AMSU-data was 
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7 .5 minutes at maximum, rapidly developing thunderstorms may have 
significantly changed their state within this time frame. Secondly, 
the navigation of the satellite may introduce errors in the spatial co­
location of the radar and AMSU-data. Thirdly, the radar data itself 
may not always represent the actual surface rain rate, neither will it be 
completely free of artefacts, such as anomalous propagation or ground 
clutter. Illustrations of all of these problems can be found in the case 
studies (section 4 ). Despite these problems radar remains the only 
source to intercompare with passive microwave data on a pixel-by­
pixel basis, since other observing systems as e. g. rain gauges are not 
capable to resolve the spatial and temporal distribution of the precip­
itation. 

3.2 Land/water discrimination 

The land water discrimination is done using the method outlined in Bennartz 
( 1999a). The fraction of water surfaces within each passive microwave foot­
print is derived by degrading a high-resolution land/sea mask to the actual 
resolution of the pass i ve microwave sensor. Bennartz ( 1999a) shows that 
the accuracy with which the fraction of land surfaces can be determined 
mainly depends on the navigation errors of the satellite data. If the naviga­
tion of the satellite data is not correct, systematic errors in the determnation 
of the fraction of land in the pixel might be introduced. Figure 2 shows 
the dependence of the AMSU-A brightness temperatures on the fraction 
of land surface within the microwave footprint. To highlight the issue of 
land/sea discrimination Figure 2 shows results of an overpass, where only 
little precipitation occurred (as outlined below precipitation identification 
over coastal areas can be thought of as interpreting the deviations from the 
relation between the land fraction and the observed brightness temperatures 
shown in Figure 2). The observed variability for homogeneous land sur­
faces (i. e. land fraction equal one) is caused by variations in land surface 
temperature and surface emissivity, while the variability for homogeneous 
water surfaces is mainly caused by variations in atmospheric parameters, 
namely columnar water vapour, cloud liquid water, and surface wind speed. 
For mixed land/water pixels the variability is caused by an overlap of both, 
the atmospheric and land surface parameters. Note, that on the scale of the 
AMSU-A no homogeneous land surfaces are found in the Baltic region, and 
only very few homogeneous water pixels in the center of the Baltic proper. 
For the AMSU-B this statement holds as well although toa lesserextend, so 
that for both the handling of coastal observations is of crucial importance. 

To delineate between homogeneous water surfaces, land surfaces and 
coastal zones, we set thresholds on the fraction of land which is allowed to 
occur within a given footprint. Measurements were labeled homogeneous 
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Figure 2: Dependence of the AMSU-A birghtness temperatures at 23.8 GHz 
on the fraction of land surface in the footprint. 

water, if the fraction of land was less than I%. This threshold corresponds 
to a maximum systematic contamination of the observed brightness temper­
ature at 23.8 GHz of 0.9 K, given the sensitivity of 0.9 K/percent which can 
be observed in Figure 2. 

For the high frequency channels, where the contrast between land and 
water is smaller, the deviation is smaller. For land surfaces we chose a less 
conservative threshold of 95%, so that all pixels with a land fraction higher 
than 95% where considered homogeneous land. The remaining pixels be­
tween I% and 95% land fraction are considered coastal. Table 3 gives the 
total number of AMSU-A and AMSU-B observations within the BALTRAD 
coverage area and the relative number of water, coast, and land pixels ac­
cording to the above classification. 

3.3 Land surfaces 

Over high emissivity land surfaces the impact of the signal of atmospheric 
emitters such as water vapour, cloud Iiquid water and liquid precipitation 
on the observed brightness temperatures is very small. Precipitation identi-
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I Total pixels I Land I Coast I Water I 
I I [%] I [%] I [%] I 

AMSU-A 115165 43.8 50.0 6.2 
AMSU-B 1046797 50.5 37.9 11.6 

Table 3: Total amount of data used in this investigation. 

fication thus solely relies on the scattering signal of precipitation-sized ice 
particles. 

3.3.1 Snow and ice screening 

Snow cover or glacial ice on land surfaces causes a signal at high frequen­
cies similar to that of frozen precipitation and may thus result in consistent 
mis-classifications. In winter time conditions it is therefore of major im­
portance to first screen for snow/ice cover before precipitation information 
is retrieved. We currently employ the scheme described in Grody et al. 
( 1999) to screen for snow and ice covered surfaces. However, since our 
current validation dataset only covers very few cases (four overpasses in 
April 1999) with significant amount of snow-covered surfaces, we were not 
able to validate the scheme with statistical significance. Figure 3 shows 
one of the overpasses where the northem most parts of Scandinavia and the 
Norwegian mountains were covered with snow. The left image shows the 
complete rgb-image, where the snow-covered parts can be identified as blue 
areas over land surf aces. The right image displays the result of the snow 
identification, where except for very few pixels all the snow-covered areas 
were removed. 

Besides the use of the aforementioned tests defined by Grody et al. 
( 1999), work of Bauer and Grody ( 1995) suggests that the additional use 
of water vapour sounding channels might enhance the discrimination snow 
cover and rainfall. These results are indeed supported by our observations 
(e. g. Figure 3), where snow-covered areas exhibit a higher brightness tem­
perature at 183±7GH z than at 150 GHz, since the emission of water vapour 
tends to brighten the absorption channel more than the window channel. 
Since the discrimination of snow-covered surfaces from precipitation is of 
major importance for mid- and high-latitude winter conditions, we will re­
visit this issue as soon as we have collected a Iarge enough dataset of co­
located radar and AMSU data for winter time conditions. 

3.3.2 Precipitation identification 

Over land surfaces the isolation of the scattering signal is simply performed 
using the difference between a low-frequency channel (AMSU-A 23.8 GHz) 
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Figure 3: Example for the ice detection over land. The left panel shows an 
rgb-composite of the AMSU-B channels at 89 GHz (red), 150 GHz (green), 
and 183±7 GHz blue and the right panel shows the same image with sea 
and snow-cver removed. 

and a high frequency channel (89 GHz or 150 GHz), we refer to these dif­
ference as the scattering index at 89 GHz respective 150 GHz (see Equation 
(2)). For non-precipitating situations this difference will be around zero, 
whereas for precipitating situations it will increase to values of higher than 
50 K, dependent on the total amount of precipitation-sized ice in the field of 
view. 

The likelihood with which a given observation belongs to one of the 
above defined four different classes (see Table 2) may be derived by using 
the radar data to sub-divide the complete data.set into four classes accord­
ing to their respective thresholds in rain rates. From these data we derived 
histograms of the distribution of the scattering index for each of the four 
classes. Figure 4 (upper panel) shows the histograms normalized to a peak 
value of 100 for the 89-GHz scattering index. From the histograms we de­
rived the likelihood for which a given scattering index belongs to a certain 
class under the constraint that for each scattering index the total probability 
has to be 100%. The resulting likelihood estimates are shown in Figure 4 
(lower panel). While the classes 1 (no precipitation) and 4 (precipitation 
greater than 5mm/h) can be separated, the classes 2 and 3 overlap strongly 
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with each other and with classes I and 4. Only for scattering indices be­
tween zero and 2 K class 2 has slightly higher probabilities than class 3. 
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Figure 4: The upper panel shows histograms (nonnalized to a peak value of 
1) of the distribution of the scattering index at 89 GHz for the four classes. 
The observations were classified according to the radar-derived, convo)ved 
rain rate. The )ower image give the probabilities with which a given scatter­
ing index belongs to a certain dass. These are derived from nonnalizing the 
histograms (upper panel) to add up to 100% for a each scattering index. 

The separation of the four classes can be enhanced if the 150 GHz chan­
nel is used instead of the 89 GHz channel. Figure 5 shows the histograms 
and corresponding likelihoods for the I 50 GHz scattering index. One can 
see that the separation between the classes 1 and 4 has now increased from 1 
K (Figure 4 (lower panel)) to 6 K. Also the Jikelihood of classifying a given 
observation as class 2 or 3 has increased in the range between zero and 7 K 
scattering index. 

To further evaluate the benefit of using the 150 GHz scattering index and 
also to highlight the problems in the identification of light precipitation, we 
perfonned a hard clustering on the maximum likelihood estimates derived 
for the entire dataset over land. Hard clustering in this context means that we 
assign each pixel the class which has the maximum likelihood of occurence 

15 





R. Bennartz et al. Precipitation Analysis from AMSU 

100 J 
L -- CIOSS 1 .J 

~ 80 :- .. -- cross 2 -i 
.......... ... ,,__ closs J j ... 
.?;- 60 CIOSS 4 

..c ...... :_ .. 
0 40 _:B 

..c 

~ 0 
\.. 20 a. .. 

0 
-10 0 10 20 30 40 50 

Scattering index 150 GHz [K] 

100 
,......, -- closs, 

~ 80 -- CI055 2 

-- closs J 

.?;- 60 ........... closs 4 

:.ö 
0 40 ..c 
0 
I... 20 a. 

0 
-10 0 10 20 30 40 50 

Scattering index 150 GHz [K] 

Figure 5: As Figure 4 but for the I 50 GHz scattering signal over land. 

(i. e. discriminating between the classes using fixed thresholds). From this 
hard clustering results we derived contingency tables for both the 89 and 
I 50 GHz scattering indices. Table 4 summarizes the results. 

Note, that the results given in this and the following contingency tables 
can not be seen as a validation or quality assessment of the passive mi­
crowave remote sensing techniques, since they are deteriorated by the above 
described problems with navigation, radar adjustment, clutter removal etc. 
Despite this, we find it usefull to provide this information since it reflect the 
degree of agreement between two independent, though non-perfect, obser­
vation techniques without having the possibility to give an absolute measure 
on the accuracy of either one. Further the relative benefits of different pas­
sive microwave channel approaches may be evaluated. The use of 150 GHz 
especially allows a much more unambiguous identification of precipitation­
free areas than the 89 GHz based method. While for 89 GHz about 15% of 
the precipitation-free areas are falsely classified as precipitation (14.8% in 
class 3 and 0.4% in class 3), this occurs only for about 2.6% (2.4% class 3 
and 0.4% class 4) when using 150 GHz. The ambiguous results for classes 
2 and 3 for both indices highlight the necessity to associate an uncertainty 
estimate with any given observation. This is indeed the main reason why 
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classified as/ measurements class I class 2 class 3 class4 
belongs to in class [%] [%] [%] [%] 

class 1 42943 51.0 33.8 14.8 0.4 
class 2 3526 28.0 25.5 40.6 5.9 
class 3 2516 12.0 12.9 45.4 29.7 
class4 129 0.7 1.6 14.0 83.7 

classified as/ measurements class 1 class 2 class 3 class4 
belongs to in class [%] [%] [%] [%] 

class 1 42943 76.6 20.8 2.4 0.2 
class 2 3526 31.1 33.9 26.7 8.3 
class 3 2516 9.9 22.1 36.1 31.9 
class4 129 0.9 3.6 12.7 82.8 

Table 4: Contingency table for the four different classes over land. The 
upper table gives the results for the 89 GHz scattering index, the lower table 
those for the 150 GHz scattering index. 

our final product is the Iikelihood for each pixel to belong toa certain class 
instead of a hard clustering. It is obvious that unambiguous decision on 
whether light precipitation occurs in a certain area can not be taken from 
the scattering index alone. Therefore we feel this ambiguity has to be re­
sembled in the product which is delivered to the user who then can use 
the likelihoods together with other data sources available in e. g. mesoscale 
analysis systems. 

3.4 Water surfaces 

At high latitudes over water surfaces a screening for possible sea ice has to 
be performed. We currently employ the sea ice screening of Grody et al. 
( 1999). Since our current validation dataset does not cover sea ice, a com­
plete validation of this scheme has to be postponed until a sufficiently ]arge 
dataset including sea ice is collected. We can however say that the screen­
ing does not produce any false sea ice signatures in our current (sea-ice-free) 
dataset. 

Two commonly used ways to identify precipitation over ocean are tested 
based on the aforementioned emission and scattering signals. 

3.4.1 Emission signal 

Cloud liquid water derived from the Iow frequency channels of the AMSU­
A may be used to identify situations where Iiquid water path exceeds a cer­
tain threshold. Since large rain droplets Iead to a strong increase in optical 
depth, liquid water path increases rapidly in presence of a significant amount 
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of liquid precipitation. We adapt this technique for the AMSU-A using the 
liquid water retrieval algorithms specified in Bennartz et al. ( 1997). The 
drawback of this algorithm is that it can only be applied to AMSU-A and 
the coarse spatial resolution of the AMSU-A hampers both, the application 
and the verification. On the scale of the AMSU-A the retrieval becomes 
more problematic, since the precipitation intensity is much smaller on a 
50 x 50km2scale than on AMSU-B's 15 x 20km2scale. Figure 6 illustrates 
this problem. It shows the radar-derived rain rates convolved to the reso­
lution of AMSU-b against the same data convolved to the resolution of the 
AMSU-A for all pixels over sea. 
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Figure 6: Radar-derived precipitation intensity convolved to the spatial res­
olution of AMSU-B versus the same convovled to the spatial resolution of 
theAMSU-B 

The maximum rain rate that occurs at AMSU-A resolution is about 
4mm/h, whereas at AMSU-B maximum rain rates exceed l Omm/h. A val­
idation of the emission based algorithm is further complicated by the fäet 
that only 6% of the validation dataset can be considered as homogeneous 
water surface at the spatial scale of AMSU-A (see Table 3). The obvious 
conclusion from this is that we do not have any measurements that fall into 
the above defined class 4 (see Table 2). We can therefore only derive infor-
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mation about the classes 1 to 3. 
The histograms derived for the emission signal are presented in Figure 

7. Since the number of points in the dataset is much small er than for the 
above discussed screening over land, the histograms (Figure 7, upper panel) 
are much more noisy than those derived for land. The transition between 
class 1 and class 2 occurs fora liquid water path of 0.05kg/m2 , whereas 
fora threshold around 0.3kg /m2class 3 becomes most likely. lnterestingly, 
the latter is identical with the threshold value given in Grody et al. ( 1999) 
to discriminate between rain and no rain, although both, the retrieval algo­
rithms for cloud liquid water and the approach to derive the threshold are 
different. 
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Figure 7: As Figure 4 but for emission signal over sea. 

3.4.2 Scattering signal 

As for land surfaces the different window channels of the AMSU-A and 
AMSU-B may be used in different combinations to obtain scattering in­
dices. For the work presented here, we tried the combination T23 - Tag, 
T23 - T1so, and Tag - T1so- Although, both the 89 GHz channel and the 
150 GHz channel are affected by scattering, the latter one tumed out to give 
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classified as/ measurements class 1 class 2 class 3 class4 
belongs to in class [%] [%] [%] [%] 

class 1 34176 82.8 15.8 1.4 0.0 
class 2 3503 15.6 54.0 28.4 2.0 
class 3 2295 3.7 31.2 48.2 16.9 
class4 94 1.3 6.7 25.3 66.7 

Table 5: As Table 4, but for sea. 

the best results. Another advantage of the latter channel combination is of 
course that both channels are on the AMSU-B resolution, whereas for all 
other cases including the above discussed emission type algorithm the low­
frequency channe1s of AMSU-A are included. 

Figure 8 visualizes the distribution of the observed scattering index ( de­
rived from Equation (3)) in the upper panel and the resulting probabilities 
asssigned to a given scattering index in the lower panel. It can be seen that 
the dynamic range of scattering indices over water surfaces is much Iarger 
than over land surface, which also leads to better results, if a hard clustering 
is performed (Table 5). 
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Figure 8: As Figure 4 but for 150 GHz scattering signal over sea. 
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classi fied as/ measurements class I dass 2 dass 3 dass4 
belongs to in class [%] [%] [%] [%] 

class 1 130242 70.2 25.9 3.7 0.2 
class 2 13860 24.0 42.4 28.4 5.2 
dass 3 9298 9.0 26.3 44.3 20.4 
class4 354 5.1 8.1 25.6 61.2 

Table 6: As Table 4, but for coastal observations. 

3.5 Coast 

Coastal pixels consist of a mixed land/water signal. This influences both the 
observed brightness temperature, and its sensitivity to precipitation. Our 
approach is to explicitely account for this mixing by weighting the observed 
scattering index as well as the derived probabilities with the fraction of land 
in the footprint (see Equation (4)). Since the dependence of brightness tem­
peratures on the fraction of land is linear (because of the validity of the 
Rayleigh-Jeans approximation), the linear combination of land and sea parts 
eliminate the dependence of the scattering index on the the fraction of land 
in the footprint. Figure 9 illustrates the approach. For 10% (15000 pixels) 
of the coastal pixels in the dataset we plotted the scattering index derived 
from Equation (4) against the fraction of ]and surface in the footprint. The 
lines indicate the regions where the different classes of precipitation prevail. 
Every observation below the lowest line would thus have a high probabil­
ity to be precipitation-free and every observation above the uppennost line 
wou]d have the highest probability to belong to class 4. To allow for an 
estimate of the accuracy of the algorithm in coastal regions we give the con­
tingency tables for the coastal pixels of the dataset in Table 6. As could 
be expceted, the accuracy of the classification over coast is somewhere in 
between that for land surfaces and for water surfaces. Note however, that as 
for sea and land pixels our final product does not consist of hard-clustered 
classes, rather it consists of probabilities. 

4 Case studies 

Subsequently we show three cases of different precipitation events of the 
combined radar and AMSU-dataset (Figures 10, 11, and 12). For all cases 
we display four different images. The upper left image shows the radar re­
flectivity obtained from the BALTRAD radar data. For day1ight overpasses 
the upper right images shows an rgb-composite of AVHRR channel I (red), 
2 (green) and 4 (blue) and for night time a greyscale image of AVHRR 
channel 4. The lower Ieft images give an rgb-composite of the AMSU-B 
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Figure 9: Visualization of the precipitation classification for coastal pixels. 
Shown are the scattering index derived from Equation ( 4) against the frac­
tion of land observed at AMSU-B scale for 10% (15000 pxiels) of the total 
observation over coast. The lines give the threshold values, between which 
the respective precipitation classes have the highest probability (e. g. below 
the lowermost line all observations are most likely to be precipitation-free) 

channels at 89 GHz (red), 150 GHz (green) and 183±7 GHz (blue). The 
lower right image presents the results of the precipitation classification as 
an rgb-image. We assigned the probabilities of the class 2 (risk for precipi­
tation) the color red, class 3 (precipitation) green and class 4 blue. Therefore 
black areas indicate no precipitation whereas bright blue, green, or red ar­
eas indicate a high probability for the precipitation to fall into the associated 
class. 

4.1 Case 1 

Case I (Figure 10) was obtained at the 28th of June 1999, 17:45 UT. The 
AVHRR-imagery shows a band of intensive convective cells which extends 
from western Poland in the south into the Norwegian Sea in the west. The 
radar identifies very narrow, intensive bands of precipitation associated with 
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the convection. Over the western part of the Baltic Sea three separate bands 
of precipitation can be identified. These bands are resembled in the pas­
sive microwave precipitation classification product (Figure 10, lower right 
panel). Although the resolution of the AMSU is much lower than the radar's 
resolution the narrow band of intensive precipitation with its northem tip 
at Öland is identified quite accurately. The westermost band is also quite 
nicely resembled, however the middle band is only assigned a risk for pre­
cipitation (reddish colors). 

Comparing the areal extend of the precipitation derived from passive 
microwave (or radar) with that of the convective clouds shown in the up­
per right panel, it can clearly be seen that only parts of the convective 
cells exhibit intensive precipitation, whereas large parts of the clouds are 
precipitation-free. Although the spatial resolution of the AVHRR is much 
higher than that of AMSU, non-precipitating and precipitating areas within 
thick possibly precpitating clouds may not be distinguished from AVHRR-
imagery. 

>From the AMSU-RGB-image (Figure 10, lower left panel) one can 
identify a navigation offset of the AMSU as compared to the contours of 
land mask (see for example the position of the island of Gotland). This 
navigation offset causes the likelihood for light precipitation at the eastem 
coast of Sweden to be non-zero, although from the A VHRR-imagery the 
area can be identified to be entirely cloud-free. This is the direct result 
of the mis-navigation, where especially pixels which are falsely assigned 
towards more open water surfaces are assigned a too high probability of 
precipitation. However, note that the associated probability that these pix­
els are precipitating (dass 3) does never exceed 20% and most pixels are 
assigned to be most likely precipitation-free (class 1). Interestingly the mis­
navigation is not apparent in the AVHRR-imagery, which indicates that in 
this case it may be a problem associated with the AMSU processing rather 
than with the spacecraft location or orientation. 

4.2 Case 2 
Case 2 (Figure 11) shows a wide-spread frontal precipitation event. It was 
observed on September 22nd, 1999 at 17:24 UT. Over the Baltic Sea the pre­
cipitation is again organised in bands, which are resembled in the AMSU­
data as well. Comparing Figure 11 with Figure 10 only very few blue areas 
can be identified. Most of the precipitating areas have a highest probabil­
ity to belong to class 2, and thus precipitation intensity might not exceed 
5 mm/h. This is consistent with what is expected for widespread frontal 
precipitation events. 

Another interesting feature are the false precipitation signals received 
from some of the Finnish radars which origin from a non-optimal quality 

23 





R. Bennartz et al. Precipitation Analysis from AMSU 

Figure 10: Visualization of the precipitation classification for June, 28th 
1999, 17 :45 UT. The upper left image shows the radar reflectivity ob­
served from the BALTRAD network. The upper right image shows an rgb­
composite of the AVHRR channels 1 (red), 2 (green), and 4 (blue). The 
lower left image shows an rgb-composite of the AMSU-B channels at 89 
GHz (red), 150 GHz (green), and 183±7 GHz blue. The lower right image 
gives the result of the precipitation classification, where the class 1 (risk for 
precipitation) is assigned red, class 2 green, and class 3 blue. 

control of the Finnish radars. While for such obvious cases we excluded 
the false data from the data analysis in section 3, it highlights the problems 
associated with the use of radar data as ground trnth for passive microwave 
remote sensing. 
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Figure 11: As Figure 10, but for the 22rd of September 1999, 17 :46 UT. 

In Figure 11 Denmark, Germany, and the southern part of Sweden ap­
pear to be almost precipitation-free with the exception of very few isolated 
precipitation events to be seen in the radar data. Although some of them are 
identified as such from the passive microwave, especially in the vicinity of 
coastlines it appears to be impossible to distinguish actual small-scale pre­
cipitation features from those of e. g. the above discussed false navigation. 
When compa1ing the scale of a few kilometers of those precipitation events 
to the much larger spatial scale of the passive microwave observations it is 
clear that a few percent of sub-pixel coverage with precipitation may result 
in ambiguities. 
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4.3 Case 3 

Case 3 (Figure 12) was observed on September 23rd, I 999 17:46 UT, thus 
a day later than case 2. Two different precipitation areas can be observed 
for this day. The southern part of the Baltic region is covered with a narrow 
band of intensive precipitation, whereas more widespread frontal precipi­
tation is found in the northern part. Both the light and the intensive pre­
cipitation are picked up by the AMSU and can also be distinguished very 
clearly. 

The small convective cells observed in the AVHRR-imagery over the 
North Sea are apparently also associated with light precipitation. In the very 
northen part of the area, west of Norway, a large region is assigned to have a 
risk of precipitation (class 1), although the AVHRR-imagery suggests there 
might only be low clouds, if any. Surface observations taken from weather 
maps show overcast conditions with drizzle starting at approximately 68 de­
grees north, while between 66 degrees and 68 degrees only very few clouds 
were reported. It is thus likely that the extend of the area with risk for pre­
cipitation is over-estimated by the AMSU. 
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Figure 12: As Figure 10, but for the 23rd of September 1999, 17:24 UT. 
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5 Summary and conclusions 

We describe a set of algorithms to identify precipitation and classify it ac­
cordi ng to its intensity. This product is designed for nowcasting applica­
tions. To account for the ambiguities in precipitation retrieval for instanta­
neous observations, we assign each observation a set of four probabilities 
associated with the likelihood of a given precipitation intensity. This ap­
proach allows the user to identify precipitation at different intensities and at 
the same time gives an estimate of the degree of accuracy of the classifica­
tion. 

The method is based on an eight month dataset of combined radar and 
AMSU data, which has been collected for the Baltic region during the pe­
riod April to November 1999. While the extend of this area is quite limited, 
the Baltic region poses many specific requirements on algorithm develop­
ment. First, the inhomogeneity of the surface has to be accounted for in 
algorithm development. In our algorithm this is solved using explicit in­
formation about the land/water distribution within the AMSU field of view. 
Second, the usually low precipitation intensities observed at high latitudes 
require a high accuracy of the identification algorithms. In this context we 
found that the AMSU-B channel at 150 GHz is advantageous since it allows 
to identify precipitation to a significantly higher accuracy than the channel 
at 89 GHz. 

While the product is derived on a comparably large dataset, the entirely 
statistical approach used in this investigation of course requires further mon­
itoring of the products. Especially the following issues have to be addressed. 

• The identification of snow and/or sea ice could not yet be verified on 
a statistically significant basis from the current dataset. Although the 
results for the few cases with snow cover were quite promising, an 
extension of the development and validation data~ase to winter cases 
is considered necessary. 

• The transfer of the here-presented algorithms to other climate areas 
might need some adjustment. This, however, can be done straight for­
ward, since as a first step only the corrections of the scattering index 
toa zero mean for precipitation-free areas are to be adjusted. In a sec­
ond step the likelihood functions of different precipitation intensities 
might be adjusted as well. 

In future work we will address both of these topics. The dataset will be 
extended to cover at least one year of data and for the winter time con­
ditions the accuracy in delineating ice and snow covered surfaces will be 
investigated. To further investigate the methods capabilities under different 

28 





R. Bennartz et al. Precipitation Analysis from AMSU 

climate conditions it is planned to transfer it to Spain, where both, precip­
itation type and land surface characteristics are different from those in the 
Baltic region. 
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A Algorithm description for scattering-based pre-
cipitation identification 

A.1 Land 

Over land surfaces two different algorithms are employed, dependent on 
whether only the AMSU-B footprint can be considered as homogeneous 
land, or also the surrounding AMSU-A footprint. 

A.1.1 AMSU-A water or coast, AMSU-B land: 

sn = (Tag - T150) - (0. 158 + 0.01630) (1) 

where 0, given in degrees, is the zenith angle of the observation. The last 
term corrects for the weak dependence of the difference of the brightness 
temperatures on zenith angle. We found it empirica11y by regressing s for 
all precipitation-free observations against the local zenith angle. 

A.1.2 AMSU-A land (and AMSU-B land): 

s12 = (T2a - T1so) - (-1.7428 + 0.07760) (2) 

where 0, given in degrees, is the zenith angle of the observation. As 
before, the last tenn corrects for the weak dependence of the difference of 
the brightness temperatures on zenith angle. 

A.2 Sea 

A.2.1 AMSU-A land or coast, AMSU-B water: 

Ss1 = (Tag - T1so) - (-39.2010 + 0.11040) (3) 

where 0, given in degrees, is the zenith angle of the observation. The last 
tenn corrects for the dependence of the difference of the brightness temper­
atures on zenith angle. Note, that there is a considerable offset between 
T8gand T150 over water which is also corrected for. This correction is prob­
ably the least general part of the set of algorithms, since it is supposed to be 
strongly dependent on e. g. the water vapour path and atmospheric temper­
ature and may thus not be valid for other regions with completely different 
atmospheric conditions, such as the tropics. It can, however, easily be gen­
eralized by adjusting the offset to the observed mean difference between 
Tsgand T15o fora given area. 

31 





R. Bennartz et al. Precipitation Analysis from AMSU 

A.3 Coast 

The algorithm we use for coast is a mixture of the land (Eqn. I) and sea 
(Eqn. 3) algorithms: 

(4) 

where lis the fraction of land in the AMSU-B footprint, s51 is the scatter­
ing index derived from Equation (3) and s51 is the scattering index derived 
from Equation (I). The weighted average according to the fraction of land 
in the footprint also automatically weights the zenith angle and offset cor­
rections for the land and sea parts, so regardless of the fraction of land in 
the footprint, a precipitation-free scene has an average scattering index of 0 
K. 

B Software and data formats 

This section holds a short description of the software which was developed 
during the visiting scientist stay and of the output data formats of the re­
trieval. The software can be divided into two parts, one which handles the 
spatial degradation and convolution of a land/sea-mask to the AMSU's res­
olution to discriminate between different surface types. The other part is the 
retrieval itself. 

B.1 Convolution of land/sea-mask 

Convolved land/sea-masks are used in the retrieval to separate different sur­
face types. The convolution is done for both, AMSU-A and AMSU-N sepa­
rately. The convolution is performed by the following void functions which 
are coded in convol ve. c: 

void convolve_lsm_b( 
AMSU_B_lC_header *amsu_b, 
float **lsm_b) 
void convolve_lsm_a( 
AMSU_A_lC_header *amsu_a, 
float **lsm_a) 
where the input structures amsu_a and amsu_b are defined in the ahamap 

software of the SMHI. The output fields * * lsm_a respective * * lsm_b are 
two-dimensional fields of the size of the input brightness temperatures in 
the ahamap amsu structures. Note, that the input structures have to be pro­
vided from the calling program. The output fields lsm_a and lsm_b have 
to be allocated and freed in the calling program. A sample program to use 
the convolution is provided in conv_test. c. 
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Name Type/Dimension Explanation 
amsu_a ahamap structure AMSU-Adata 
amsu_b ahamap structure AMSU-B data 
pulse 1D, AMSU-B scanlines holds 

closest_a_x 20: holds closest AMSU-A scan position 
AMSU-B field size for all AMSU-B pixels 

closest_a_y 2D: holds closest AMSU-A scan line 
AMSU-B field size for all AMSU-B pixels 

tbconv 3D: channelsx holds convolved AMSU-B data 
AMSU-A field size 

flag_b 2D Flag, see Table 9 
AMSU-B field size 

Table 7: Input and output data for Backus-Gilbert convolution 

The convolution relies on a land/sea-mask which is provided in the same 
directory as the above programs. It is currently restricted to Europe, north of 
40 degrees north. Correctly convolved pixels are assigned values between 
zero (homogeneous water surface ) and one (homogeneous land surface). 
Pixels outside the area of the land/sea-mask are assigned a value of -1. 

B.2 Backus-Gilbert convolution of AMSU-B to AMSU-A 

A fast method to convolve AMSU-B to AMSU-A is provided. This method 
is documented in detail in Bennartz (1999b). Although not used in the pre­
cipitation retrieval itself, it has been used for quality control of the AMSU­
B data before the radio frequency interference problems on NOAA-15 have 
been solved (before September 1999). The Backus-Gilbert convolution is 
implemented in bg_amsu_b. c: 

void get_sync_pulse( 
AMSU_A_lC_header *amsu_a, 
AMSU_B_lC_header *amsu_b, 
int *pulse, 
int **closest_a_x, 
int **closest_a_y) 
void convolve{ 
AMSU_A_lC_header *amsu_a, 
AMSU_B_lC_header *amsu_b, 
int *pulse, 
float ***tbconv, 
unsigned char **flag_b) 
All input and output fields are listed in Table 7. 
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All input and output fields have to be allocated, provided and freed by 
the calling program. For an example see ret_test. c. 

B.3 Retrieval software 

The following four void functions are used for retrieval: 
void retrieve_wvp( 
AMSU_A_lC_header *amsu_a, 
float **wvp, 
unsigned char **flag_a) 
Retrieves columnar water vapour path over water surfaces from AMSU­

A 23.8 and 31.4 GHz. Additional input (regression coefficients) is pro­
vided in wvpcoeffs. dat. Structure amsu_a input, 2d-fields wvp output, 
flag_a input/output, both fields have the size of the AMSU-A images. 

void retrieve_1wp( 
AMSU_A_lC_header * amsu_a, 
float **lwp, 
unsigned char **flag_a) 
Retrieves columnar water vapour path over water surfaces from AMSU­

A 23.8 and 31.4 GHz. Additional input (regression coefficients) is pro­
vided in lwpcoeffs. dat. Structure amsu_a input, 2d-fields lwp output, 
f lag_a input/output, both fields have the size of the AMSU-A images. 

void retrieve_si_new( 
AMSU_A_lC_header *amsu_a, 
AMSU_B_lC_header *amsu_b, 
float **lsm_a, 
float **lsm_b, 
float **si_b, 
unsigned char **flag_a, 
unsigned char **flag_b) 

Retrieves scattering index at AMSU-B resolution. Except si_b all fields 
are input. The flags flag_a and f lag_b are both, input and output. 

void classify_hist( 
AMSU_B_lC_header *amsu_b, 
float **si_b, 
float **lsm_b, 
unsigned char **flag_b, 
float **mO, 
float **ml, 
float **m2, 
float **m3) 
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I Variable I Description Unit Dimension 
wvp Water vapour path [kg/m2

] AMSU-A field 
lwp Liquid water path [kg/m2

] AMSU-A field 
si scattering index [K] AMSU-B field 

flaga Flags, see Table 9 AMSU-A field 
flag_b Flags, see Table 9 AMSU-B field 
lsm_a convolved land/sea-mask [1] AMSU-A field 
Ism b convolved land/sea-mask [1] AMSU-B field 

mO probability dass l (Table 2) [1] AMSU-B field 
ml probability class2 (Table 2) [1] AMSU-B field 
m2 probability class3 (Table 2) [1] AMSU-B field 
m3 probability class 4 (Table 2) [1] AMSU-B field 

Table 8: 

The program classifies the retrieved sattering index according to the 
above Table 2 in classes, which are on output found in m0-m3 , where mo 

holds the probabilities for dass I, ml that of class 2 and so forth. 
As before all input and output fields have to be provided from the calling 

program. A sample program that performs the retrieval can be found in 
ret_test.c. 

Table 8 lists the results of the retrieval 

B.4 Flags 

Besides the retrieval results a set of flags are produced for both the AMSU­
A and the AMSU-B products. These flags are used intemally to handle 
different exceptions. 
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I Flag I Value I Explanation 
F_OCEAN 1 pixel is over ocean 
F_COAST 2 mixed surface 
F_LAND 4 pixel is over land 
F_WVP_FAIL 8 water vapour retrieval failed (ocean) 
F_LWP_FAIL 16 liquid water retrieval failed ( ocean) 
F_SI_FAIL 32 scattering index failed 

Flag I Value I Explanation 

F_OCEAN I pixel is over ocean 
F_COAST 2 mixed surf ace 
F_LAND 4 pixel is over land 

F_BG_FAIL 8 Backus-Gilbert convolution failed 
F_ICE 16 ice surface detected 

F_SI_FAIL 32 scattering index failed 
F_SI_INCLUDES_A 64 scattering index includes 

AMSU-A observations 

Table 9: Flags for AMSU-A products (upperTable) and AMSU-B products 
(lower Table) 
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