LEDTIDSREDUKTION GENOM
FÖRÄNDRAD MATERIALFÖRSÖRJNING
VID TILLVERKNING AV
KUNDORDERSPECIFIKA PRODUKTER

LEAD TIME REDUCTION BY CHANGING MATERIALS
SUPPLY IN MANUFACTURING OF CUSTOMER-
ORDER-UNIQUE PRODUCTS

Jakob Wallenhammar
Linus Ålebring

EXAMENSARBETE 2016
Industriell Organisation och Ekonomi med
inriktning mot Logistik och Ledning
Detta examensarbete är utfört vid Tekniska Högskolan i Jönköping inom Industriell organisation och ekonomi med inriktning mot logistik och ledning. Författarna svarar själva för framförda åsikter, slutsatser och resultat.

Examinator: Nina Edh-Mirzai
Handledare: Eva Johansson
Omfattning: 15 hp (grundnivå)
Datum: 2016-06-02
Abstract

Purpose - The purpose of this study is to investigate potential for and cost related impact of internal lead time reduction through coordination between materials supply and a production activity of customer-order-unique products. In order to achieve the purpose two questions are answered:

1. How can with respect to sourcing strategy, coordination between materials supply and production activity of customer-order-unique products be achieved?

2. How does a coordination affect cost items in related areas of the business?

Method – Based on literature in the area of materials supply a theoretical framework for the study was established. The company JELD-WEN, an industrial manufacturer with customer-order-unique-production of fire- and safety-doors was used for a case study. Data collection was performed through interviews, observations and document studies. A comparison between the theoretical framework and empirical data generated the final results.

Findings – Using a hybrid sourcing strategy, changes in materials supply through an internal call-off together with the materials feeding method kitting proves potential to reduce the internal lead time in the manufacturing process. An economic impact of such coordination with a production activity has been found for three cost items; handling cost (increase), administrative order cost (increase/decrease) and inventory carrying cost (increase/decrease).

Implications – The study does not contribute to new theory in the field. Instead existing theory and relations defined in the theoretical framework have been verified by the case study. Internal lead time reduction identified in the study may be used in other ways than by the means of an improved customer offer. This can be done through sharing time to other time-exposed activities in the manufacturing process or as additional safety time for finished products to secure company's delivery accuracy. Therefore, in a decision situation for change affected cost items should be assessed in contrast to the more indirect value of a lead time reduction.

Limitations – Modifications of materials supply occurs in a context where conditions outside the unit of analysis plays a crucial role and thereby limits the possible usage of the potential lead time reduction. The study handles impact of cost items in a general direction (increase or decrease). Absolute terms contribute to more precise consequences and are probably necessary to support a company's final financial decision of using an alternative approach in materials supply.

Keywords – Materials supply, Customer-order-unique, Lead time reduction, Sourcing strategy, Call-off, Kitting.
Sammanfattning

Syfte – Syftet med studien är att undersöka potential för, och kostnadsmässig påverkan av, intern ledtidsreduktion genom samordning mellan materialförsörjning och produktionsaktivitet avseende kundorderspecifika produkter. För att uppnå syftet besvaras följande två frågeställningar;

1. Hur kan med hänsyn till försörjningsstrategi, en samordning mellan materialförsörjning och produktionsaktivitet avseende kundorderspecifika produkter uppnås?

2. Hur påverkar en samordning kostnadsposter i berörda delar av verksamheten?

Resultat – Det finns potential att reducera intern ledtid i tillverkningsprocessen via förändringar i materialförsörjning genom ett internt avrop och materialpåfyllnad med metoden kitning, detta vid försörjningstrategin hybrid sourcing. En ekonomisk påverkan av en sådan samordning med produktionsaktivitet har konstaterats i tre kostnadsposter; hanteringskostnad (ökning), administrativ orderkostnad (ökning/minskning) och lagerföringskostnad (ökning/minskning).

Begränsningar – Förändringarna i materialförsörjningen sker i en kontext där verksamhetsförutsättningar utanför analysenheten spelar en avgörande roll, och begränsar hur stor del av den faktiska ledtidsreduceringen som kan tillgodoses. Kostnadsposternas påverkan är uttryckt med en generell riktning (ökning eller minskning), mer precisa konsekvenser i absoluta termer är troligen nödvändigt som beslutunderlag för verksamhetens ekonomiska ställningstagande vid alternativt tillvägagångssätt i materialförsörjning.

Nyckelord – Materialförsörjning, Kundorderspecific, Ledtidsreduktion, Försörjningsstrategi, Avrop, Kittning
Innehållsförteckning

1 Introduktion
1.1 Bakgrund..1
1.2 Problembeskrivning..2
1.3 Syfte och frågeställningar....................................3
1.4 Omfång och avgränsningar....................................4
1.5 Disposition ...4

2 Metod och genomförande
2.1 Arbetssprocessen...5
2.2 Koppling mellan metod och frågeställningar..............5
2.3 Ansats..6
2.4 Förstudie ..6
2.5 Litteraturstudie ..6
2.6 Fallstudie ..7
 2.6.1 Intervjuer ..8
 2.6.2 Observationer ...9
 2.6.3 Dokumentation ..10
2.7 Dataanalys ...10
2.8 Trovårdighet ..11
 2.8.1 Reliabilitet ..11
 2.8.2 Validitet ..11

3 Teoretiskt ramverk
3.1 Koppling mellan frågeställningar och teori..............13
3.2 Försörjningsstrategier ..13
 3.2.1 Single sourcing ..14
 3.2.2 Multiple sourcing15
 3.2.3 Hybrid sourcing ...16
3.3 Produktionsflöde ..16
 3.3.1 Kundorderpunkt ...16
 3.3.2 V/Y profil och divergerande flöde17
 3.3.3 Avrop av material18
3.4 Materialhantering ...18
 3.4.1 Materialpåfyllnad och kitning19
3.5 Kostnadsposter ..20
 3.5.1 Hantering kostnad20
 3.5.2 Administrativ orderkostnad20
 3.5.3 Lagerföringskostnad21
3.6 Sammanfattande struktur23

4 Empiri
4.1 Verksamhetsbeskrivning25
4.2 Försörjning och inköp av glasruttor25
4.3 Förolsförutsättningar ..28
4.4 Avropets funktion och genomförande29
 4.4.1 Orderadministration30
 4.4.2 Förhållande till PIA31
4.5 Intern hantering - sortering av glasruttor32
 4.5.1 Lagerhållning av glasrutor33

5 Analys
5.1 Frågeställning 1: Samordning mellan materialförsörjning och produktionsaktivitet35
 5.1.1 Försörjningsstrategi35
 5.1.2 Produktionsflöde ...37
 5.1.3 Materialhantering ..38
5.2 Frågeställning 2: Kostnadsposters påverkan40
 5.2.1 Hantering kostnad40
Innehållsförteckning

5.2.2Administrativ orderkostnad ...41
5.2.3Lagerföringskostnad ..42

6 Diskussion och slutsatser ..45
6.1RESULTAT ..45
 6.1.1Frågeställning 1: Samordning mellan materialförsörjning och produktionsaktivitet45
 6.1.2Frågeställning 2: Kostnadsposters påverkan46
6.2IMPLIKATIONER ..47
6.3RESULTATBKRANSNING ...48
6.4METODDISKUSSION ..49
6.5SLUTSATSER OCH REKOMMENDATIONER ..50
6.6VIDARE FORSKNING ...50

Referenser ..51

Bilagor ..55

Figurförteckning

FIGUR 1. OMFÅNG OCH AVGRÄNSNINGAR. ..4
FIGUR 2. ARBETSPROCESSEN MED TIDSPERSPEKTIV5
FIGUR 3. KOPPLING MELLAN METOD OCH FRÅGESTÄLLNING.5
FIGUR 4. ENFALLSDESIGN OCH ANALYSEENHET ...8
FIGUR 5. STRUKTUR FÖR DATAANALYS ...10
FIGUR 6. KOPPLING MELLAN FRÅGESTÄLLNINGAR OCH TEORI13
FIGUR 7. SINGLE SOURCING (TV) RESPEKTIVE SINGLE GROUP SOURCING (TH) (ÖVERSÄTTNING FRÅN JONSSON, 2008, S. 167) ...14
FIGUR 8. HYBRID SOURCING (ÖVERSÄTTNING FRÅN JONSSON, 2008, S. 168)16
FIGUR 10. RAMVERKETS STRUKTUR ..23
FIGUR 11. ÖVERSIKT AV GLASDÖRRENS HANTERING I SLUTMONTERINGSHALL25
FIGUR 12. FÖRBrukning av glasrutor, relativ fördelning (%)27
FIGUR 13. FÖRBrukning av glasrutor, absolut fördelning (ST)27
FIGUR 14. Pågående hantering: PALL-ID skapas innan produktionsaktivitet Fräs30
FIGUR 15. PIA, GLASDÖRRAR PRODUKTTORG (ST)31
FIGUR 16. GLASRUTORNAS HANTERING I FÖRÄDDET32
FIGUR 17. FÖRFlyttning av glasrutor ..33
FIGUR 18. BULK-PALL AV STANDARDGLAS ...34
FIGUR 19. ANALYS AV JELD-WENs FÖRSÖRJNINGSSTRATEGI – HYBRID SOURCING36
FIGUR 20. FAKTISK LEDTIDSREDUCERING (%) ...40
FIGUR 21. RESTLSTANS ANDEL AV FÖRFlyTTAT SPECIALGLAS41
FIGUR 22. TEORETISKA IMPLIKATIONER – VERIFIERING AV RAMVERK47

Tabellförteckning

TABLE 1. SÖKORD ..7
TABLE 2. GENOMFÖRDA INTERVJUER ..8
TABLE 3. GENOMFÖRDA OBSERVATIONER ..9
TABLE 4. STUDERADE DOKUMENT ..10
TABLE 5. SINGLE SOURCING, FÖR- OCH NACKDELAR15
TABLE 6. MULTIPLE SOURCING, FÖR- OCH NACKDELAR15
TABLE 7. BEAKNINGSMETODER MPIAN/MLN & MPIAV/MLV (OSKARSSON ET AL., 2006)22
TABLE 8. PÅVERKAN KOSTNADSPOSTER ..47
1 Introduktion

I detta inledande kapitel beskrivs ledtidens betydelse vid kundorderspecifik tillverkning vilket leder vidare till problembeskrivning, syfte samt studiens två frågeställningar. Därefter redogörs för studiens omfång och avgränsningar. Avslutningsvis presenteras rapportens disposition.

1.1 Bakgrund

Till skillnad från standardprodukter upprättas kundorderspecifika produkter efter en rad individuella attribut och valmöjligheter, vilka i olika grad utformas efter kundens unika önskemål (Graca, Hendry & Kingsman, 1999). Dessa kundpreferenser styr verksamhetens framtagningsprocess samt bestämmer var den kundorderspecifika utformningen ska initieras (Olhager, 2003). Initieringen benämns ofta kundorderpunkt, denna fastställer i vilket skede av framtagningsprocessen som produkten upprättas utifrån kundorder (Olhager, 2003).

Introduktion

1.2 Problembeskrivning

1.3 Syfte och frågeställningar

Bakgrund och problembeskrivning har synliggjort ett affärsclimat där kunden får allt starkare ställning. Prioritering av ledtider är centralt för framtida konkurrensförmåga och i sin tur en förutsättning för att behålla eller förbättra verksamhetens marknadsposition. Detta ställer stora krav på upprättande av tidseffektiva interna processer i vilken materialförsörjning har en betydande roll. Utifrån detta avses att i syftet nedan precisera studiens faktiska ändamål;

Syftet är att undersöka potential för, och kostnadsmässig påverkan av, intern ledtidsreduktion genom samordning mellan materialförsörjning och produktionsaktivitet avseende kundorderspecifika produkter.

För att besvara syftet har två frågeställningar konkretiserats. I syfte och frågeställningar avser uttrycket samordning ett tillvägagångssätt i materialförsörjningen som minskar produktionsaktivitetens väntetid på ingående material.

1. Hur kan med hänsyn till försörjningsstrategi, en samordning mellan materialförsörjning och produktionsaktivitet avseende kundorderspecifika produkter uppnås?

2. Hur påverkar en samordning kostnadsposter i berörda delar av verksamheten?
1.4 Omfång och avgränsningar
Avgränsning har gjorts för att definiera och tydliggöra studiens problemområde där en illustration ges i Figur 1. För att erhålla ett djup och ge utrymme för att ingående undersöka frågeställningarna inriktas studien mot materialförsörjning av en enskild produktionsaktivitet. Denna avgränsning illustreras genom den röda boxen i Figur 1. En produktionsaktivitet återfinns i en tillverkningsprocess där produkter passerar multipla aktiviteter (1-.n). Avgränsningen till en produktionsaktivitet medför därmed att den studerade området begränsas till en del av den interna ledtiden i tillverkningsprocessen. Detta syns i Figur 1 genom den röda boxens förhållande till den överliggande blå pilen.

Figur 1. Omfång och avgränsningar.

1.5 Disposition

I kapitel fyra återges studiens empiriska underlag, vilket är en redogörelse av datainsamling genom fallstudie. I kapitel fem analyseras denna empiri i förhållande till innehållet i det teoretiska ramverket. I kapitel sex samt manfattas och diskuteras studiens resultat, och avslutningsvis ges förslag till vidare forskning.
2 Metod och genomförande

2.1 Arbetsprocessen

Avslutningsvis behandlas studiens trovärdighet.

Figur 2. Arbetsprocessen med tidsperspektiv.

Aktivitetera förstudie, litteraturstudie, fallstudie samt dataanalys motiveras och beskrivs mer utförligt i separata avsnitt i detta metodkapitel. Rapportskrivning har skett löpande under processen och avslutningsvis genomfördes presentation och framläggning av studien.

2.2 Koppling mellan metod och frågeställningar
Metoderna för datainsamling kan övergripande delas in i litteraturstudie samt fallstudie. Kopplingen mellan respektive metod och frågeställning visualiseras i Figur 3. Respektive metod och datainsamlingsteknik behandlas och motiveras i enskilda avsnitt, argumentation för att i fallstudien använda multipla datainsamlingstekniker återfinns även i trovärdighetsavsnittet, 2.8.2.

- LITTERATURSTUDIE
- FALLSTUDIE
 - Intervju
 - Observation
 - Dokumentation

1. Hur kan med hänsyn till försörjningsstrategi, en samordning mellan materialförsörjning och produktionsaktivitet avseende kundorderspecifika produkter uppnås?

- LITTERATURSTUDIE
- FALLSTUDIE
 - Intervju
 - Observation
 - Dokumentation

2. Hur påverkar en samordning kostnadsposter i berörda delar av verksamheten?
2.3 Ansats

2.4 Förstudie

2.5 Litteraturstudie
En litteraturstudie genomfördes med motivet att gå igenom befintlig teori i det studerade området. Detta för att senare kunna sammanställa relevanta delar i ett teoretiskt ramverk och därmed skapa ett underlag för dataanalys. Behovet av en litteraturstudie återfanns även för att erhålla ingångsvärden till att utforma underlag för datainsamling i fallstudien.

Urval av teori har främst skett från vetenskapliga artiklar och böcker. Tjänsten Primo, tillhandahållen av högskolebiblioteket vid Jönköping University har varit det inledande sökverktyget medan Scopus har använts i ett senare skede då en mer specifik inriktning för sökningen har kunnat uttryckas. Publikationer har varit tillgängliga via databaserna Sience Direct, ABI/INFORM (Pro Quest), Taylor & Francis och Emerald Insight. Sökorden som använts redovisas i Tabell 1.
Tabell 1. Sökord

<table>
<thead>
<tr>
<th>Engelska *</th>
<th>Svenska *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material/s supply</td>
<td>Materialförsörjning</td>
</tr>
<tr>
<td>Material/s handling</td>
<td>Materialhantering</td>
</tr>
<tr>
<td>Just in Time Purchasing, JIT Purchasing</td>
<td>-</td>
</tr>
<tr>
<td>Customer order decoupling point, CODP, Order penetration point, OPP</td>
<td>Kundorderpunkt, KOP</td>
</tr>
<tr>
<td>Work in Process, WIP</td>
<td>Produkter i arbete, PIA</td>
</tr>
<tr>
<td>Kitting</td>
<td>Kitting</td>
</tr>
<tr>
<td>Material/s feeding, Part/s feeding</td>
<td>Materialpåfyllnad</td>
</tr>
<tr>
<td>Single sourcing</td>
<td>Singelförsörjning</td>
</tr>
<tr>
<td>Multiple sourcing</td>
<td>Multiförsörjning</td>
</tr>
<tr>
<td>Hybrid sourcing</td>
<td>Hybridförsörjning</td>
</tr>
<tr>
<td>Handling cost</td>
<td>Hanteringskostnad</td>
</tr>
<tr>
<td>Order cost</td>
<td>Orderkostnad</td>
</tr>
<tr>
<td>Tied up capital</td>
<td>Kapitalbindning</td>
</tr>
<tr>
<td>Call-off, Suborder, Blanket order</td>
<td>Avrop, Avrutsorder</td>
</tr>
</tbody>
</table>

* Sökorden kombinerade med; customer unique/specif, manufacturing, make to order, MTO * Sökorden kombinerade med; kund(order)unik, kund(order)specifik, produktion, tillverkning mot kundorder

2.6 Fallstudie

Den genomförda fallstudien kan mer specifikt beskrivas med typen enfallsdesign. Denna design lämpade sig väl då fallet har kunnat studeras mer djupgående än vad som hade varit möjligt vid flerfallsdesign. Fallstudien har genomförts på JELD-WEN AB (vidare benämnd JELD-WEN). Vid företagets anläggning i Forserum, ca två mil sydost om Jönköping, tillverkas brand- och säkerhetsdörrar med kundorderspecifika produktlösningar. Företagets kunder är rikstäckande byggföretag och olika typer av återförsäljare, där merparten av produktmärkena har en slutkund i offentlig miljö. Fallföretagssvaret genom enfallsdesign motiveras med stöd av Yin (2007) som menar att designen är lämplig då det enskilt studerade fallet kan ses som ett representativt...

Figur 4. Enfallsdesign och analysenhet.

2.6.1 Intervjuer

Tabell 2. Genomförda intervjuer

<table>
<thead>
<tr>
<th>Datum</th>
<th>Tid (h)</th>
<th>Befattning respondent</th>
<th>Syfte/Omårde</th>
<th>Karaktär</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-03-10</td>
<td>1</td>
<td>Produktionsplanerare</td>
<td>Produktionsflöde & planering</td>
<td>Semi</td>
</tr>
<tr>
<td>2016-03-11</td>
<td>0,5</td>
<td>Produktionsstekniker</td>
<td>Produktionsflöde</td>
<td>Samtal/Öppen</td>
</tr>
<tr>
<td>2016-03-15</td>
<td>1</td>
<td>Lokal inköpare</td>
<td>Försörjningsstrategi & leverantörer</td>
<td>Semi</td>
</tr>
<tr>
<td>2016-03-16</td>
<td>0,5</td>
<td>Operatör slutmonteringshall</td>
<td>Avropsaktivitet</td>
<td>Samtal/Öppen</td>
</tr>
<tr>
<td>2016-03-17</td>
<td>1</td>
<td>Produktionsledare</td>
<td>Slutmonteringshall & avropsaktivitet</td>
<td>Semi</td>
</tr>
<tr>
<td>2016-03-22</td>
<td>0,5</td>
<td>Förrådsarbetare</td>
<td>Sorteringsaktivitet</td>
<td>Samtal/Öppen</td>
</tr>
<tr>
<td>2016-03-23</td>
<td>1</td>
<td>Materialplanerare</td>
<td>Anskaffning & avrop</td>
<td>Semi</td>
</tr>
</tbody>
</table>

Respondenter har valts utifrån kompetens och arbetsuppgifter, detta för att säkerställa en god kunskapsbas utifrån intervjuns syfte. Samtliga intervjuer har spelats in med hjälp av mobilapplikation. Då transkription och bearbetning av insamlad data genom detta kunde utföras efter intervju kunde intervjuerna lägga fullt fokus på dialogen med respondenten.

2.6.2 Observationer

Tabell 3. Genomförda observationer

<table>
<thead>
<tr>
<th>Datum</th>
<th>Tid (h)</th>
<th>Syfte/Omärke</th>
<th>Observatörer</th>
<th>Karaktär</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-03-09</td>
<td>0,5</td>
<td>Förrådsverksamhet</td>
<td>2 st</td>
<td>Ostrukturerad</td>
</tr>
<tr>
<td>2016-03-11</td>
<td>1</td>
<td>Produktionsflöde</td>
<td>2 st</td>
<td>Ostrukturerad</td>
</tr>
<tr>
<td>2016-03-14</td>
<td>0,5</td>
<td>Produktort</td>
<td>2 st</td>
<td>Ostrukturerad</td>
</tr>
<tr>
<td>2016-03-16</td>
<td>0,5</td>
<td>Avropsaktivitet</td>
<td>2 st</td>
<td>Strukturerad</td>
</tr>
<tr>
<td>2016-03-18</td>
<td>0,5</td>
<td>Förrådsverksamhet</td>
<td>2 st</td>
<td>Ostrukturerad</td>
</tr>
<tr>
<td>2016-03-22</td>
<td>1</td>
<td>Sorteringsaktivitet</td>
<td>2 st</td>
<td>Strukturerad</td>
</tr>
</tbody>
</table>

2.6.3 Dokumentation

Tabell 4. Studerade dokument

<table>
<thead>
<tr>
<th>Utskriftsdatum</th>
<th>Dokumenttyp</th>
<th>System/Källa</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-03-08</td>
<td>Arbetsinstruktion glasavrop</td>
<td>Ledningssystem</td>
</tr>
<tr>
<td>2016-03-10</td>
<td>Planeringsunderlag/rapportpunkter</td>
<td>Affärssystem</td>
</tr>
<tr>
<td>2016-03-15</td>
<td>Arbetsinstruktion sortering</td>
<td>Ledningssystem</td>
</tr>
<tr>
<td>2016-03-21</td>
<td>Leveranshistorik glasrutor</td>
<td>Affärssystem</td>
</tr>
<tr>
<td>2016-03-24</td>
<td>Pall-ID underlag</td>
<td>Affärssystem</td>
</tr>
<tr>
<td>2016-03-27</td>
<td>Pöljesedal glasleverantör</td>
<td>Dokumentarkiv</td>
</tr>
</tbody>
</table>

2.7 Dataanalys
Analys av data har genomförts utifrån den valda strukturen för datainsamling vilket övergripande illustreras i Figur 5. Med denna struktur genererade litteraturstudien data som låg till grund för upprättande av ett teoretiskt ramverk. Ramverket var även utgångspunkt för utformning av fallstudiens datainsamlingsmetoder från avseende intervjuunderlag och planering av observationer. Fallstudiens genomförande genererade innehåll av sin tur studiens empiri.

Figur 5. Struktur för dataanalys.

Den mer intensiva dataanalysen har genomförts efter färdigställande av teoretiskt ramverk och empiri, aktiviteten representeras i Figur 5 av den rödstreckade boxen. Denna analysaktivitet innebar att utifrån ramverket studera det empiriska underlaget med avsikt att beskriva och förklara förhållanden samt likheter och skillnader mellan dessa. Med denna dataanalys har frågeställningarna kunnat besvaras och studiens slutgiltiga resultat erhållas.
2.8 Trovädighet

2.8.1 Reliabilitet

2.8.2 Validitet

I den externa validiteten uttrycks i vilken grad studiens resultat är överförbara till andra verksamheter och därmed är relevant att applicera i ett generellt perspektiv (Merriam, 1994). Det finns en tydlig beskrivning av kontext och avgränsningar, såväl för studien i helhet som för den specifika fallstudien. I kombination med en deduktiv ansats där generella principer och befintlig teori använts som utgångsläge avser författarna att genom detta skapa förutsättningar för generaliserbarhet.
3 Teoretiskt ramverk
I detta kapitel sammanställs en teoretisk grund utifrån genomförd litteraturstudie. Inledningsvis presenteras frågeställningarnas koppling till vald teori, därefter redogörs för respektive teori i separata avsnitt. Avslutningsvis ges en sammanfattande struktur av ramverket.

3.1 Koppling mellan frågeställningar och teori
För vald teori finns en relation till studiens frågeställningar, en visualisering av detta förhållande ges i Figur 6. Ytterligare motivering och förståelse av teorirelationerna återfås genom det sammanfattande avsnittet 3.6.

![Figur 6. Koppling mellan frågeställningar och teori.](image)

I frågeställning ett används försörjningsstrategier som utgångspunkt där insikt i teorierna single, multiple samt hybrid sourcing blir relevant för att på en strategisk och taktisk nivå förstå de ingångsvärden som behöver beaktas vid materialförsörjning. Vidare krävs förståelse av de praktiska och fysiska förutsättningarna i tillverkningsprocessen, detta erhålls genom produktionsflödet där ingående delar spelar en viktig roll i materialförsörjningens utformning. I produktionsflödet sker den fysiska tillförseln av produktens ingående material vilket motiverar behovet av en teoretisk inblick i materialhantering, där teori avseende materialpåfyllnad belyser ett rationellt genomförande.

Frågeställning två tar sin utgångspunkt i resultatet från frågeställning ett, vilket i Figur 6 visualiseras med den gröna pilen. Denna struktur medför att teoretiskt innehåll från produktionsflöde och materialhantering till stor del underbygger valet av den avslutande frågeställningens teori. Ur dessa två avsnitt identifieras egenskaper och aspekter som motiverar hanteringskostnad, administrativ orderkostnad samt lagerföringskostnad som lämpliga teoretiska utgångspunkter för en kostnadsinsk hillad.

3.2 Försörjningsstrategier

3.2.1 Single sourcing

Faes och Matthyssens (2009, s. 246) definierar begreppet single sourcing enligt följande; “Single sourcing is an extreme form of source loyalty towards one single supplier within a range of acceptable sources”.

Strategin syftar därmed till att försörjning av en specifik artikel sker genom inköp från en enskild leverantör. Detta medför en inriktning där etablering och utveckling av partnerskap mellan leverantör och köpande företag är mycket vanligt (Kirytopoulos, Leopoulos, Mavrotas & Voulgaridou, 2010).

![Figur 7. Single sourcing (tv) respektive single group sourcing (th) (översättning från Jonsson, 2008, s. 167).](image)

Tabell 5. Single sourcing, för- och nackdelar

<table>
<thead>
<tr>
<th>Fördelar</th>
<th>nackdelar</th>
</tr>
</thead>
<tbody>
<tr>
<td>God kommunikation och förståelse mellan leverantör och köpare 1) 2) 3)</td>
<td>Låg konkurrensutsättning av leverantör 1)</td>
</tr>
<tr>
<td>Hög anpassning till köparens behov (partnerskap) 1) 2) 3)</td>
<td>Svårighet att utvärdera/jämföra leverantörens prestation 1) 2)</td>
</tr>
<tr>
<td>Effektiva leverans- och logistiklösningar 2) 3)</td>
<td>Risk för materialbrott 1) 3)</td>
</tr>
<tr>
<td>Möjlighet till integration av IT-system 1)</td>
<td>Begränsad insikt i marknadens utveckling 1) 2)</td>
</tr>
<tr>
<td>Lågt inköpspris på grund av stora ordervolymer 1) 2) 3)</td>
<td></td>
</tr>
<tr>
<td>Goda möjligheter till implementering av JIT koncept 1)</td>
<td></td>
</tr>
<tr>
<td>1) Ramsay & Wilson, 1990</td>
<td>2) Faes & Matthysens, 2009</td>
</tr>
</tbody>
</table>

3.2.2 Multiple sourcing

Vid multiple sourcing används flera olika leverantörer för att tillgodose materialbehovet av en specifik artikel (Ramsay & Wilson, 1990). Då materialförsörjningen upprätthålls med hjälp av flera leverantörer vilka är oberoende av varandra minskar risken för materialbrist (Kirytopoulos et al., 2010).

Tabell 6. Multiple sourcing, för- och nackdelar

<table>
<thead>
<tr>
<th>Fördelar</th>
<th>Nackdelar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konkurrens ger möjlighet till bättre leverantörsprestation 1) 2)</td>
<td>Resurskrävande administrativ hantering 1) 2) 3)</td>
</tr>
<tr>
<td>Lågt inköpspris kan erhållas genom konkurrens 1)</td>
<td>Flera separata logistiklösningar 2)</td>
</tr>
<tr>
<td>God insikt i marknadens utveckling 1)</td>
<td>Hög a lagerkostnader 1)</td>
</tr>
<tr>
<td>Möjlighet att jämföra leverantörsprestationer 1) 2)</td>
<td></td>
</tr>
<tr>
<td>Låg risk för materialbrott 1) 3)</td>
<td></td>
</tr>
<tr>
<td>1) Ramsay & Wilson, 1990</td>
<td>2) Faes & Matthysens, 2009</td>
</tr>
</tbody>
</table>
3.2.3 Hybrid sourcing

![Figur 8. Hybrid sourcing (översättning från Jonsson, 2008, s. 168).](image)

3.3 Produktionsflöde

Begreppet flöde inom ett produktionssystem beskriver vanligtvis någon form av förflyttning. Detta involverar kopplingar mellan en rad olika parametrar där ett generellt synsätt är att flöden studeras med avseende på material, information och människor (Bellgran & Säfsten, 2010). Kommande avsnitt belyser ett antal områden som har stor inverkan i denna kontext, inte minst med utgångspunkt i material.

3.3.1 Kundorderpunkt

Kundorderpunkten (KOP) är den position i framtagningsprocessen eller tillverkningens värdekedja där en produkt kan knytas till en specifik kundorder (Olhager 2010). Olika tillvägagångssätt såsom tillverkning mot lager, montering mot order, tillverkning mot order eller konstruktion mot order innebär skilda positioneringar av KOP och visualiseras i Figur 9.

![Figur 9. Positionering av KOP (översättning från Olhager, 2010, s. 864).](image)

3.3.2 V/Y-profil och divergerande flöde

Olhager (2000) motiverar nytan med att utföra denna typ av profil- och flödesanalys med att det underlag som erhålls kan ge central information för produktionsplanering och materialförsörjning. Här kan identifiering av variantspridningens position vara styrande för anskaffning och försörjning av det material som tillförs i den senare delen av flödet.
3.3.3 Avrop av material

3.4 Materialhantering

Materialhantering är ett generellt begrepp som omfattar flera interna aktiviteter vilka vanligtvis behandlar förflyttning, lagerhållning och kontroll av material inom en verksamhet (Tompkins, 2010). Med stöd av Coyle, Langley, Novack och Gibson (2013) kan materialhantering uttryckas i fyra dimensioner;

- **Kvantitet** - Materialhanteringen är en del i anpassningen av mängden produkter och råmaterial som hanteras i en verksamhet. Detta involverar inleveransnivåer av material såväl som mängden material förflyttad inom och mellan verksamhetens processer.

- **Utrymme** - Utrymme har stark anknytning till kvantitetsdimensionen, då det ger en grundläggande kapacitetsförutsättning. Denna dimension innefattar därmed att effektivt förvara och hantera material utifrån givna begränsningar.

- **Förflyttning** - Materialhantering involverar rörelse av material mellan olika positioner, denna dimension beaktar både personal och eventuella hjälpmedel som utför förflyttningen i verksamheten.
• **Tid** - Hanteringen av material resulterar i en faktisk tidsåtgång. Ett tidseffektivt tillvägagångssätt eftersträvas i hanteringsaktiviteten inte minst för att med kort varsel kunna understödja de verksamhetsprocesser som efterfrågar materialhanterings tjänster.

3.4.1 **Materialpåfyllnad och kittning**

Försörjning enligt principen kittning innebär att en individuell uppsättning material tillhörande en specifik produkt upprättas (Battini et al., 2009). I kitten sammanställs material från skilda lagerplatser till en ny gemensam lastbärare och transporteras till enskilda produktionsaktiviteter alternativt följer med slutprodukten längs hela eller delar av tillverkningsprocessen. I förhållande till en löpande försörjning är kittning en betydligt mer resurskrävande aktivitet, främst poängeras detta genom tidsåtgången för sammanställning av individuella kit (Hanson & Brolin, 2013). Samtidigt innebär denna typ av försörjning att minimal plock- och sorteringsaktivitet behöver utföras av personal vid produktionsaktiviteten. Hanson och Brolin (2013) menar att förberedelse av material ger goda förutsättningar till att montör eller operatör helt kan fokusera på sin aktivitet och därmed säkerställa rätt kvalitet i utförandet.

3.5 Kostnadsposter
Med kostnadspost avses kostnader som kan härledas till ett definierat område eller särskild aktivitet i en verksamhet och grupperas vanligtvis efter egenskaper eller någon form av resursutnyttjande (Owen & Law, 2010). I avsnitt 3.5.1-3.5.3 redogörs för tre kostnadsposter som har direkt koppling till materialförsörjning.

3.5.1 Hanteringskostnad

3.5.2 Administrativ orderkostnad

Den individuella kostnaden för en order ses som en konstant vilken är oberoende av antalet order som hanteras. Detta innebär att det återfinns ett linjärt förhållande mellan antalet order och den totala administrativa orderkostnaden (Coyle et al., 2013). Det linjära förhållandet innebär att administrativa orderkostnaden uppkommer först då en faktisk beställning initieras.

3.5.3 Lagerföringskostnad
Lagerföringskostnaden åskådliggör kostnaden för det kapital som finns bundet i lagerpunkter av råmaterial/komponenter, produkter i arbete (PIA) eller färdiga produkter (Oskarsson, Aronsson & Ekdahl, 2006; Waters, 2003). Kostnaden för kapitalbindning motsvarar den intäkt som det bundna kapitalet genererat vid alternativ användning, exempelvis genom bankränta. Detta förräntningskrav benämns vanligtvis kalkylränta och återfinns som komponent i den för en verksamhet enskilt upprättade lagerräntan. Denna interna lagerränta kan enligt Oskarsson et al. (2006) konstrueras på olika sätt, och består förutom av kalkylräntеunderlag normalt även av en komponent som avser riskkostnad för de produkter och material som lagerförs (Waters, 2003). Med hjälp av ovan nämnda komponenter kan lagerföringskostnaden beräknas genom nedanstående formler (Oskarsson et al., 2006);

\[\text{Lagerränta} \times \text{Medellagervärde (MLV)} \text{ Alt Lagerränta} \times \text{Medelpiavärde (MPIAV)} \]

Produkter i arbete

- **Kö** - Väntan på någon form av resurs, exempelvis människa, maskin eller transportutrustning.
- **Bearbetning** - Produkten behandlas (är i arbete) av en resurs.
- **Väntan på batch** - Produkten väntar in andra produkter med avsikt att formera ett större parti.
- **Förflyttning** - Produkten förflyttas mellan resurser.
- **Väntan på matchning** - Produkten står stilla i väntan på ingående material. Detta ska skiljas från statusen kö, i vilket allt material finns tillgängligt.

Beräkningar av mängden PIA kan utföras på olika sätt, här gör Oskarsson et al. (2006) främst en skillnad i om PIA bearbetas i en resurs (vilket innebär en värdeskapande aktivitet) alternativt om PIA ses som en lagerpunkt. Beräkning av medelpianivå (MPIAN) och MPIAV kan i fråga om lagerpunkt genomföras på motsvarande sätt som medellagernivå (MLN) och MLV (Oskarsson et al., 2006). En sammanställning för de olika situationerna återfinns i Tabell 7.

Tabell 7. Beräkningsmetoder MPIAN/MLN & MPIAV/MLV (Oskarsson et al., 2006)

<table>
<thead>
<tr>
<th>Beräkning av</th>
<th>Formel</th>
<th>Lämpliga kriterier</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPIAN alt MLN – Sågtandsprofil</td>
<td>$SL + \frac{Q}{2}$</td>
<td>Lagerpunkt, Fast Q, Uttag < Q, Jämn E</td>
</tr>
<tr>
<td>MPIAN alt MLN – Historisk beräkning</td>
<td>$(T1 + T2 + \ldots + Tn) / n$</td>
<td>Lagerpunkt, Fasta mätpunkter i återkommande cykel</td>
</tr>
<tr>
<td>MPIAN – Produktionssteg</td>
<td>$E \ast GLT$</td>
<td>Värdeskapande aktivitet</td>
</tr>
<tr>
<td>MPIAV alt MLN – Sågtandsprofil/ Historisk beräkning</td>
<td>$MPIAN alt MLN \ast P$</td>
<td>–</td>
</tr>
<tr>
<td>MPIAV – Produktionssteg</td>
<td>$MPIAV \ast P_m$</td>
<td>–</td>
</tr>
</tbody>
</table>

SL – Säkerhetslager | Q – Påfyllnadskvantitet | E – Efterfrågan | GLT – Genomloppstid |
n – Totalt antal tidpunkter | $T1$ – Kvantitet vid tidpunkt 1 | Tn – Kvantitet vid tidpunkt n |
P – Produktvärde i lagerpunkt | P_m – Produktens medelvärde i produktionssteg
3.6 Sammanfattande struktur
Kapitel tre har presenterat studiens teoretiska utgångspunkt och i Figur 10 visualiseras en sammanfattning av detta ramverks struktur. De sex gråna boxarna visualiserar övergripande delar i ramverket, vilka vidare används som rubriknivå i studiens analyskapitel.

Figur 10. Ramverkets struktur.
Ramverkets första del behandlar försörjningsstrategier där en kombination av de två försörjningsstrategierna single och multiple sourcing definierat en tredje strategi; hybrid sourcing. Försörjningsstrategier tillför centrala ingångsvärden för materialförsörjningen där heldragna gröna pilarna i Figur 10 illustrerar ett förhållande till produktionsflöde och materialhantering. I produktionsflöde identifieras viktiga parametrar i positionering av KOP och V/Y-profils divergerande flöde vilka inverkar på tekniker för att avropa material. Ur materialhanteringens fyra dimensioner ges ytterligare förutsättningar, inte minst för val och upprättade av en lämplig materialpåfyllnadsmetod.

4 Empiri
I detta kapitel ges först en för studien situationsinriktad beskrivning av fullföretagets verksamhet. Vidare återges insamlad empiri från genomförda fallstudier.

4.1 Verksamhetsbeskrivning
Vid JELD-WENs anläggning i Forserum produceras under normalförhållanden mellan 4500-5000 dörrar per vecka. Anläggningen är indelad i fyra övergripande produktionsavsnitt med stomhall, maskinhall, ytbehandlingshall och slutmonteringshall. Tillsammans med en förrådsverksamhet för ingående material samt lager av färdiga produkter utgör dessa grundstommen i anläggningens operativa verksamhet. Produktionstvisten av dörrar kan delas in i tre huvudsakliga kategorier; faner, laminat och målat. Kategorierna har sitt ursprung i dörens material och ytbehandling. I samtliga dörrtyper återfinns möjligheten att integrera en eller flera glasrutor. Genom slutmonteringshallen passerar samtliga dörrar men aktiviteter skiljer sig åt beroende på produktens utförande och här kan glasdörens hantering tydligt särskiljas från andra dörrtyper. En förenklad översikt av glasdörens hantering i slutmonteringshallen återfinns i Figur 11.

![Glädörs hantering i slutmonteringshall](image)

Figur 11. Översikt av glasdörens hantering i slutmonteringshall.

Den faktiska integrationen av glasruta sker i glasmonteringen som är den avslutande produktionsaktiviteten i avsnittet. En mer specifik förklaring och förståelse av Figur 11 skapas genom återkoppling senare i kapitlet.

4.2 Försörjning och inköp av glasrutor
Som del i en större organisation ges för anläggningen i Forserum styrning och riktlinjer för anskaffning av material från en koncerngemensam strategisk inköpsfunktion. Denna är placerad i Estland och då glas är ett material som används av flera koncernenheter återfinns där en category-manager som har det huvudsakliga ansvaret för inköp och leverantörsval. Genom löpande kontakt med en lokal inköpare stationerad i Forserum, sker ett informationsutbyte med avstämning av operativ funktionalitet och leverantörsprestation. För glasrutor finns kvartal ett (Q1) 2016 samarbete med två olika leverantörer, en inhemska leverantör lokaliserad i Småland samt en kinesisk leverantör. Som utgångspunkt används leverantörerna på separata artikelnummer men tillsammans försörjer dessa hela artikelkategorin glasrutor.

Inköp från Kina genomförs enligt materialplaneraren med stöd av prognos som främst baseras på historisk förbrukning, där JELD-WEN vid respektive inköp eftersträvar att fylla upp den container som används vid transport. Automatiserade beställningspunkter saknas och inköpsvolym av respektive artikel samt tidpunkt för beställning bereds manuellt. Materialplaneraren menar att JELD-WEN eftersträvar att genomföra inköp en gång i kvartalet, men under 2015 gjordes endast tre beställningar.

Enligt materialplaneraren skickas dagligen inköpsorder till den inhemska leverantören, ett genomförande som sker efter att JELD-WENs kundorder är fastställd och slutgiltig kontroll av orderberedare är genomförd. Genom detta förfarande meddelas leverantören om behovet, normalt cirka 15 dagar innan leverans ska ske till JELD-WEN. I vissa fall kan kortare framförhållning användas där möjligheten beror på glasegenskaper och måttsspecifikationer.

För de båda leverantörssamarbetena finns Q1 2016 inga fullständiga juridiska avtal. Istället återfinns enligt den lokala inköparen ett prisavtal i kombination med mer informella överenskommelser för beställningsrutiner, villkor och riktlinjer i samarbetet. Även om de två leverantörerna försörjer olika artiklar möjliggörs en prestationsjämförelse då artiklarna ingår i samma artikelprefen. Detta används enligt den lokala inköparen i viss mån för konkurrensutsättning där ökade krav kan ställas med utgångspunkt i den andra leverantörens prestation. Samtidigt ger kombinationen av de två leverantörerna en kontinuerlig inblick i förändringar och utveckling av glasmarknaden.
Den lokala inköparen uttryckte att nuvarande försörjning trots avsaknad av fullständiga juridiska avtal är ett statiskt förhållande; “Som det ser ut idag, så ser inte jag något annat alternativ än att fortsätta med de två leverantörer vi använder idag. Våra samarbeten fungerar bra.” Det finns i nuläget inte heller några planer på att flytta artiklar mellan de två leverantörerna. Samtidigt medger den lokala inköparen att det årligen sker en revision där samtliga inköpkostnader i företaget analyseras, något som gör att en mindre förändring inte kan uteslutas.

4.3 Flödesförutsättningar

De tre kategorierna faner, laminat och målat medför en tydlig differentiering i tillverkningsprocessen. Specifika produktionsaktiviteter som tillhör de olika ytbehandlingsalternativen innebär att glasdörrens fysiska våg genom anläggningen skiljer beroende på kategori. Trots att det genom tillverkningsprocessen finns ett antal systemmässiga rapportpunkter är det först när glasdörren anländer till slutmonteringshallen som en gemensam fysisk position för samtliga kategorier av glasdörrar kan upprättas.
4.4 Avropets funktion och genomförande
Monteringen av glasrutor är en produktionssammanhållning som kräver att varje dörr hanteras separat. Trots det individuella montaget hanteras ett multipelt antal glasdörrar på en och samma lastbärare, både före och efter montaget. Avrop av glasrutor används för att initiera materialbehov och möjliggöra att rätt glasruta/or finns på plats vid montering av den specifika dörren.

I avropssammanhanteringen beslutar en operatör i slutmonteringshallen vilka glasdörrar som ska hanteras på en gemensam lastbärare i glasmonteringen. Med hjälp av en handscanner och en streckkod med glasdörens TO-nummer skapas ett så kallat pall-ID. Pall-ID:t innebär att det skapas en elektronisk sammanställning av vilka dörrar som hanteras på lastbäran samtidigt som det på respektive dörr placeras en klisteretikett med pall-ID numret. Sammanställningen används till två funktioner; 1) Avropsunderlag för behov av ingående glasrutor. 2) Beställning för intern tillverkning av glasramar (en ram är en ingående komponent som behövs för att utföra montage av glasruta).

När operatören väljer dörr/ar till ett pall-ID är kriteriet att dörrarna ska ha samma planerade färdigdatum och om möjligt tillhöra samma kundorder, information som kan utläsas på dörrens kortsidan. Utöver detta finns enligt produktionssammanhållens avsikt att maximera lastbärens tillåtna höjd, 158 cm. Enligt ledningssystemets arbetsinstruktion ska pall-ID skapas efter produktionssammanhanteringen fräs. Detta då operatören efter fräsooperation (som sker i en robot) med individuell hantering genom ett lyftväskemedel flyttar varje glasdörr ur roboten. Därför kan glasdörren sorteras efter ovan nämnade kriterier och placeras på lämplig lastbärare som sedan sparas till ett pall-ID.

4.4.1 Orderadministration

Avropsunderlaget för behov av ingående glasrutor går via en automatisk mailfunktion direkt till ansvarig materialplanerare. Materialplaneraren verifierar underlaget och skickar delen av materialbehovet som avser specialglas till den inhemska leverantören. Enligt materialplaneraren skickas avropsunderlaget kontinuerligt under dagen beroende på antal pall-ID och tidpunkt för inrapportering av dessa, detta för att ge framförhållning och underlätta leverantörens arbete. I kontakten med leverantören finns en daglig deadline att förhålla sig till och de avropsunderlag som skickas efter denna tidpunkt levereras en dag senare. I relation till övriga arbetsuppgifter är inte avropet utmärktande som ett stressande moment för materialplaneraren, men denne uttrycker att deadline bidrar till en tvingande anpassning i arbetet: "Man måste vara med, annars tappar man en hel dag på det och arbetet förskjuts och ställer till med problem för dom där nere".

Utifrån initiala inköpsorder är den inhemska leverantören förberedd på materialbehovet men administration, packning och transport gör att det efter materialplanerarens verifiering av avropsunderlag tar två dagar från ovan nämnd deadline innan glasrutorna anländer till JELD-WEN. För att säkerställa att glasdörrar som av någon anledning är försenade i tillverkningsprocessen inte ska fördöjas ytterligare återfinns en funktion som två dagar innan färdigdatum i glasmonteringen indikerar materialplaneraren om behovet av glasutor till dessa dörrar. Förseningen innebär att dessa dörrar ännu inte har tilldelats något pall-ID, istället skapas en gemensam restlista med behovet av ingående glasutor vilken skickas till leverantören i samband med daglig deadline.

1Författarnas anmärkning; I citeringen avser "dom där nere" förrådsverksamheten och glasmonteringen.
4.4.2 Förhållande till PIA

Tiden från avrop tills att leverans från inhemska leverantören när JELD-WEN innebär att glasdörrarna väntar på ingående glasrutor i två dagar. Då avrop sker enligt arbetsinstruktion (efter produktionsaktiviteten fräs) innebär detta att dörrarna under väntetiden placeras på produkttorget visualiserat i Figur 11. Under de två dagarnas väntan utförs i anslutning till produkttorget en mindre förmonteringsaktivitet. Denna innehåller ett antal kortare sidomontage där dörrarna kan ligga kvar på lastbäaren. Förhållandet visualiseras med en dubbelriktad pil i Figur 11, då monteringen enligt produktionsstagen inte nämnvärt påverkar glasdörrens position och därmed produkttorgets funktion som lagerpunkt. En historisk beräkning av MPIAN i en lagerpunkt kan erhållas med hjälp av fasta mätpunkter i en återkommande cykel enligt nedanstående formel (Oskarsson et al. 2006).

\[
MPIAN = \frac{(T1 + T2 + \ldots + Tn)}{n}
\]

\(T1\) - Kvantitet vid tidpunkt 1 | \(Tn\) - Kvantitet vid tidpunkt n | \(n\) - Totalt antal tidpunkter

Historik från affärsystemets rapportpunkt i glasmonteringen möjliggör i denna mening en faktisk tillbakablick av antalet glasdörrar vid produkttorget. För att erhålla fasta mätpunkter används avrapporiteringshistorik hämtad vid dagsavslut för samtliga arbetsdagar under perioden september 2015 till mars 2016. Med fördjupningen på två dagar kan antalet glasdörrar, \(T_d\), på produkttorget vid start av en arbetsdag, \(d\), beräknas genom summan av glasmonteringsens rapportering arbetsdag \(d\) och arbetsdag \((d+1)\). Sammanställningen återfinns i Figur 15 där MPIAN för sexmånadersperioden är 201 glasdörrar. Den gulstreckade linjen illustrerar en glidande MPIAN med 15 dagars historik vilket synliggör den variation som återfinns i ett kortare tidsperspektiv.

Figuur 15. PIA, Glasdörrar produkttorg (st).
4.5 Intern hantering - sorterings av glasrutor

Förrådsverksamheten är den enhet på JELD-WEN som huvudsakligen ansvarar för hantering av glasrutor innan de efterfrågas i glasmonteringen. Detta innebär ett ansvarsområde från godsmottagning fram till att glasrutor finns tillgängliga för montage. Aktiviteter i denna hantering genomförs enligt förrådsarbetare med det huvudsakliga målet att upprätthålla en fungerande servicefunktion som bidrar till att minimera produktionsaktivitets inblandning i hantering av ingående material.

Figur 16. Glasrutornas hantering i förrådet.

Empiri

tidskrävande att hantera då strukturen medför att specialglas för ett stort antal TO-nummer levereras på samma lastbärare och försvårar spårbarheten. En sammanställning av förflyttningar baserat på följesedelsinformation från den inhemska leverantören och förrådets godsmottagningsverifiering återfinns i Bilaga 2.

Sammanställningen visar att i genomsnitt 83 procent av specialglasen (beställda med pall-ID alternativt restlista) flyttas i sorteringen. I tillägg till detta flyttas samtliga standardglas, detta sker från en bulk-pall till respektive lastbärare. Ett genomsnitt för den totala andelen förflyttade glasrutor kan beräknas till 86 procent. Detta värde erhålls genom viktning av standard respektive special utifrån fördelningen som presenterades i Figur 12. Ovan angivna förflyttningar redovisas i Figur 17.

![Diagram](image)

Figur 17. Förflyttning av glasrutor.

4.5.1 Lagerhållning av glasrutor

Då glasmontering sker enligt produktionsplanering beräknas en inleverans av specialglas att förbrukas under leveransdagen samt efterföljande dag. Detta innebär att lagerhållning av specialglas inte tydligt kan kopplas till en specifik lagerpunkt, utan glasrutorna har en löpande positionering vid sortering eller som färdigsorterade lastbärare tillgängliga för bearbetning av glasmonteringen. Observation visade att specialglas som avropsats på restlista alternativt tidigare än två dagar innan behovsdatum i glasmontering i vissa fall återfinns en längre tid i ovanstående positioner.
Figur 18. Bulk-pall av standardglas.
5 Analyser

För att besvara frågeställningar och uppfylla studiens syfte presenteras i detta kapitel en analys av empiri i förhållande till det teoretiska ramverket. Studiens två frågeställningar behandlas i separat avsnitt.

5.1 Frågeställning 1: Samordning mellan materialförsörjning och produktionsaktivitet

För att besvara frågeställningen jämförs inledningsvis JELD-WENs anskaffning av glasrutor utifrån försörjningsstrategier som återfinns i ramverket. Med dessa ingångsvärden analyseras förutsättningar och möjligheter i fallföretagets produktionsflöde och den teoretiskt identifierade kopplingen till materialförsörjningen. Slutfilen jämförs den i ramverket definierade materialhanteringsfunktionen med JELD-WENs situation och hur denna kan kombineras med förutsättningar i produktionsflödet för att uppnå eftersträvad samordning.

5.1.1 Försörjningsstrategi

Utöver den inhemska leverantören används en kinesisk leverantör vid försörjning av glastypen standardglas. Tillsammans med försörjningen av specialglas kan detta förhållande liknas med multiple sourcing och mer precist den form Faes och Matthyssens (2009) benämner dual sourcing. Här har två (varken fler eller färre) leverantörer anlitats av JELD-WEN för försörjning av artikelkategorin glasrutor. Enligt den lokala inköparen återfinns dessa två samarbeten för att minska inköpskostnader, skapa ökad marknadsinsikt och ge möjlighet till konkurrensutsättning mellan leverantörerna. Samtliga faktorer kännetecknar...

![Figur 19. Analys av JELD-WENs försörjningsstrategi – Hybrid sourcing.](image)

5.1.2 Produktionsflöde

(2008) menar är nödvändig vid integrering konstrueras efter JELD-WENs resurser i förrådsverksamheten samt ett beslut i vilken grad glasdörrar som kommer till slutmonteringshallen tidigare än planerat ska ges möjlighet att fortsätta genom tillverkningsprocessen.

5.1.3 Materialhantering

Tidsåtgången, eller responstiden i JELD-WENs förrådsverksamhet för att upprätta ett kit blir avgörande för hur snabbt glasmonteringen kan föras med material. Från tidpunkten att internt avrop genomförs behöver utöver kittning av glasrutor även tillverkning av ramar tillsammans med en mindre förmontering färdigställas innan glasmontaget är möjligt. Situationen innebär att det finns en viss begränsning i att uppnå den effektivitet Coyle et al. (2013) eftersträvar i tidsdimensionen. Detta medför att en alltför snabb responstid i JELD-WENs förrådsverksamhet inte självklart korresponderar med att glasmonteringen kan starta, varför övriga involverade aktiviteter i enlighet med Hua och Johnson (2010) måste anpassas och därmed tidsmässigt understiga förrådets responstid.

En exemplifierad responstid på en halv dag från genomförandet av ett internt avrop resulterar vid ett och en halv dag av de tidigare två dagarnas väntetid kan elimineras. Aktiviteter utförda av den inhemiska leverantören som tidigare stod för väntetiden kan frikopplas och responstid blir därmed en intern väntetid. I relation till tillverkningsprocessen medför detta för majoriteten av glasörrarna som har en intern ledtid på 15 dagar en faktisk reducering på 10 procent, medan ledtidsytterligheterna 13 och 17 dagar ger en faktisk reducering motsvarande 11,5 respektive 8,8 procent. Förhållandet mellan olika responsitider och faktisk ledtidsreduktion visualiseras i Figur 20. En viktig brytpunkt finns vid responstiden två dagar, vilket motsvarar nuvarande väntetid från inhemsk leverantör och därmed medför en oförändrad ledtid.
Begränsningar i JELD-WENs planeringssystem innebär att den systemmässigt implementerbara förändringen endast kan ske med hela dagar. I fallet med en exemplifierad responstid på en halv dag krävs då att tiden avrundas uppåt till en dag. Samtidigt finns en alternativ lösning där responstiden inkluderas i befintligt tidsatta aktiviteter i slutmonteringshallen, i ett sådant fall avrundas den exemplifierade responstiden nedåt till noll\(^2\). Dessa två scenarion innebär en systemmässig reducierung på minst 5,9 och maximalt 15,4 procent. Samtliga beräkningar för faktisk respektive systemmässig ledtidsreduktion återfinns i Bilaga 3.

5.2 Frågeställning 2: Kostnadsposters påverkan

För att besvara studiens andra frågeställning analyseras påverkan av de tre kostnadsposterna presenterade i ramverket. Detta med utgångspunkt i de förändringar som samordning genom ett alternativt tillvägagångssätt för materialförsörjning i form av ett internt avrop och kitning medför.

5.2.1 Hanteringskostnad

Måttillfällen redovisade i Bilaga 2 visar att antalet specialglas som levereras på restlista har stor inverkan på totala andelen förflyttat specialglas, Figur 21 illustrerar

\[^2\] Om det redan finns aktiviteter som avrundats uppåt (den verkliga tidsåtgången är mindre än vad som anges i systemet) kan planeringssystemet med en ”noll-tid” gruppera ihop flera aktiviteter i slutmonteringshallen. Systemmässig ledtidsreduktion uppgår då till två dagar.
Analys

detta förhållande där glasrutor på restlista motsvaras av det ljusare grön prickade området. För det de 10 mättillfällena uppgår den genomsnittliga nivån av specialglas avropade på restlista till 67 procent. Potentiella förflyttningssfördelar som Q1 2016 finns genom att inkludera Pall-ID information i avropet konstateras i det närmaste helt elimineras när verksamheten inte efterföljer produktionsplaneringen. Denna svaghet gör att materialförsörjningen Q1 2016 redan vid små produktionsstörningar påverkar sorteringsarbetet negativt och en övergång till kittning medför därav en relativt liten ökning av förflyttningar.

![Diagram](image.png)

Figur 21. Restlistans andel av förflyttat specialglas.

5.2.2 Administrativ orderkostnad

5.2.3 Lagerföringskostnad

Genomförande av avrop Q1 2016 bygger på att samtliga inlevererade specialglas förbruks relativt omgående och det säkerhetslager som enligt Oskarsson et al. (2006) påverkar MLN används uttryckligen inte. Genom förändrat inköp utifrån behovsdatum enligt Hopp och Spearman (2008) ger behovet av säkerhetsstid en direkt påverkan på säkerhetslagrets existens, där storleken i sin tur är beroende av JELD-WENs val av dagar för säkerhet. Det historiska genomsnittet för leverans av specialglas på 100 glasrutor per dag ger en viss indikation för förväntad MLN men ett mer precis läge är svårt att identifiera då kriteriet fast påfyllnadskvantitet (Oskarsson
et al., 2006) inte existerar. Detta förhållande innebär även att säkerhetslagrets nivå blir dynamisk som beror av en varierande beläggning i glasmonteringen. Ovanstående säkerhetslagerperspektiv kan användas för att säkerställa att respektive specialglas finns tillgängligt vid behovstidpunkt, men bidrar följaktligen inte till någon absolut säkerhet för individuella artiklar då specialglas alltid är kundorderspecifika.

6 Diskussion och slutsatser
Kapitlet inleds med en diskussion av studiens resultat. Vidare behandlas Implikationer, begränsningar och metoddiskussion. I den senare delen av kapitlet ges slutsatser & rekommendationer samt förslag till vidare forskning.

6.1 Resultat
Det resultat som tidigare presenterats i studiens analyskapitel diskuteras i nedanstående två avsnitt med utgångspunkt i respektive frågeställning.

6.1.1 Frågeställning 1: Samordning mellan materialförsörjning och produktionsaktivitet
I JELD-WENs anskaffningsprocess av artikelkategorin glasrutor har flera strategiska vägval identifierats där riktlinjer inte enbart upprättas efter en enskild produktionsanläggning. I detta konstateras ett statiskt förhållande med hybrid sourcing som övergripande försörjningsstrategi. En komplexitet bestående av flera nivåer har behandlats då klassificeringen av hybrid sourcing har föregått av att identifiera dual respektive single group sourcing. Möjliggörande av rätt material till rätt plats vid rätt tidpunkt (Harrisson & van Hoek, 2011) måste för JELD-WEN av denna anledning föregås av att anpassa anskaffning och hantering av material från två leverantörsamarbeten. Föreslaget tillvägagångssätt med ett internt avrop och materialpåfyllnad genom kitning är här ett förfarande som i en framtid situation även ger möjlighet att involvera fler leverantörer och därmed besitter potential för ytterligare synergier.

Då samtliga glasrutor som försörjs av den inhemska leverantören är direkt kopplade till en specifik produkt ställs förutom krav på tillräckligt utrymme i kitningsytan även krav på en god spårbarhet av material. I och med eventuell säkerhetsstid och ökat antal lagerhållna glasrutor finns ett behov av att utveckla en struktur alternativt använda systemstöd för att möjliggöra spårbarhet. En bristfällig spårbarhet riskerar att bidra till en ökad tidsåtgång för materialhantering och i värsta fall störningar för den materialevärdefrågande produktionsaktiviteten.
Vid en minskning i den tillverkade produktens interna ledtid och en fortsatt mälsättning att utnyttja kundordern är det av största vikt att först säkerställa den tilltänkta leverantörens möjlighet att möta de krav som uppstår i form av kortare leveranstid. Om leverantören inte har möjlighet att tillverka och leverera material innan den interna behovstidpunkten krävs enligt Wikner (2015) prognosunderbyggda beslut, vilket i en situation med stor variantspridning och kundorderspecifika produkter likt JELD-WENs, skulle bidra till onödig osäkerhet.

6.1.2 Frågeställning 2: Kostnadsposters påverkan
Det alternativa tillvägagångssätt som presenterades i den första frågeställningen har identifierat effekter för tre kostnadsposter. Lagerföringskostnaden ges en tvådelad påverkan där kompletterande produktvärdesinformation behövs för att klargöra ett fullständigt utfall. Minskningen av PIA kan estimeras utifrån ett fast historiskt genomsnitt, medan bundet kapital i lagerhållning av glasrutor är beroende av vilken säkerhetstid som väljs. Samtidigt är det troligt att produktvärdet för PIA av en glasdörr sent i tillverkningsprocessen är betydligt högre än produktvärdet för en ingående glasruta. Den ökade lagerhållningen har av denna anledning viss marginal innan den når en kostnadsnivå motsvarande den besparing som erhålls via minskning av PIA.

En del av hanteringskostnaden konstateras Q1 2016 bero av hur väl JELD-WENs produktionsplanering kan efterföljas, där förseningar bidrar till ett större antal förflyttningar och ökad komplexitet i administration och materialhantering. Denna brist i avropskonceptet har inte riktigt kommit upp till ytan eller tvingat JELD-WEN till förändring då mindre produktionsstörningar på grund av tidsbuffert för färdiga produkter normalt sett inte påverkar kundens utlovade leverans. Hanteringskostnadens påverkan blir genom detta mindre påtaglig i den fall den jämförs med ett utgångsläge innehållande frekventa produktionsstörningar. Vid förfarandet kittningsgång, som är mindre beroende av tidmässigt utfall i produktion, skapas en bättre förutsägbarhet i kostnaden där förseningar i verksamheten inte påverkar resursbehovet genom oplanerade och komplexa merarbeten.

Den ökning av hanteringskostnad som syns genom behovet av en avsatt yta för kittningsaktiviteten bör ses i relation till de fördelar som finns med en mer strukturerad förrådsverksamhet. För ytterligare arbetsmiljömässig hänsyn finns i en ny yta möjligheten att beakta ergonomiska aspekter och införande av hjälpmedel. Ett sådant val kan ge ytterligare påverkan på kostnadsposten, men är enligt författarna inte att se som en tvingande följd av det alternativa tillvägagångssättet utan snarare en hållbar förbättring av arbetsmiljömässiga och sociala förhållanden. Även förändringen av PIA
Diskussion och slutsatser

har en tänkbar påverkan på hanteringskostnad, då minskningen i bundet kapital även korresponderar med frigjord plats på produkttorget. Men utöver glasdörrar omfattar produkttorget till stor del även plats för icke-glasintegrerade dörrar. Trots ett mindre antal kvarvarande glasdörrar måste produkttorget av denna anledning sannolikt behållas i samma utförande och frigjord yta antas därmed inte ha någon tydlig alternativ användning.

6.2 Implikationer

Studien etablerar ingen ny teori utan belyser ett förhållande ur redan befintlig teori. De relationer som definierats mellan delarna i det teoretiska ramverket har verifieras genom fallstudien. I Figur 22 återges ramverkets struktur från avsnitt 3.6 där de verifierade relationerna har fetmarkerats.

Figur 22. Teoretiska implikationer – verifiering av ramverk.

Här har försörjningsstrategi (i fallstudien identifierad som hybrid sourcing) tydligt bekräftat centrala ingångsvärden till materialförsörjningen där strategins karaktärsdrag och tillhörande leverantörsval gett avgörande förutsättningar för anpassning av såväl produktflöde som materialhantering. Fallstudien verifierar utifrån olika orsaker de kostnadsmässiga relationer som i Figur 22 illustreras med streckade pilar. En sammanställning av kostnadsposternas påverkan ges i Tabell 8 där respektive påverkan i kostnadspost har en relation från produktionsflöde (P) eller materialhantering (M).

Tabell 8. Påverkan kostnadsposter

<table>
<thead>
<tr>
<th>Kostnadspost</th>
<th>Påverkan</th>
<th>Orsak</th>
<th>(Teoretisk relation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanteringskostnad</td>
<td>Ökning</td>
<td>Högre andel förflyttade glasrutor</td>
<td>(M)</td>
</tr>
<tr>
<td></td>
<td>Ökning</td>
<td>Separat yta i föräldersverksamhet</td>
<td>(M)</td>
</tr>
<tr>
<td>Administrativ</td>
<td>Ökning</td>
<td>Stöd för interna materialtransaktioner</td>
<td>(M)</td>
</tr>
<tr>
<td>orderkostnad</td>
<td>Minskning</td>
<td>Informationshantering extern leverantör</td>
<td>(P)</td>
</tr>
<tr>
<td>Lagerföringskostnad</td>
<td>Minskning</td>
<td>Lagerhållning specialglas</td>
<td>(M)</td>
</tr>
<tr>
<td></td>
<td>Minskning</td>
<td>Reducering PLA av glasdörrar</td>
<td>(P)</td>
</tr>
</tbody>
</table>

M – Materialhantering | P – Produktionsflöde

Ett ekonomiskt övervägande av kostnadsposternas påverkan bör därav ses i relation till en värdering av den frigjorda interna ledtiden. Värderingen blir sannolikt en subjektiv bedömning som beror av beslut hur den frigjorda tiden används. Innebörden av en subjektiv bedömning bör inte underskattas då det indirekta värdet bidrar till en faktisk tyngd av fördelar i vågskålen för att avgöra om förändring i materialförsörjning är berättigat och ekonomiskt hållbart.

6.3 Resultatbegränsning

Den tidseliminering som kan erhållas i tillverkningsprocessens väntan på ingående material har presenterats i en faktisk såväl som en systemmässig situation. Resultatet av tidselimineringen kan skilja (både i positiv och i negativ bemärkelse) beroende på om planeringssystem kommer behöva använda en avrundning alternativt utnyttja gemensam tidssättning. Detta belyser det faktum att förändringar i materialförsörjning sker i en större kontext där verksamhetsförutsättningar utanför analysenheten spelar en avgörande roll. I fallstudien blir detta också tydligt genom ett förhållande till tillverkning av glasramar och utförande av förmörkning. På vilket sätt resurser ges för anpassning av denna typ av närliggande beroenden kan en begränsning i ledtidsreduktionen uppstå.

I studien definieras inte kostnadsposternas påverkan i absoluta termer utan istället med en generell riktning för att kunna erhålla god extern validitet. Utan absoluta termer i riktningen försvaras möjligheten att värdera ökning eller minskning mot varandra, både inom och mellan kostnadsposter. För ett fullständigt ekonomiskt ställningstagande av en verksamhet som poängterats av Wikner (2015) krävs troligen mer precisa konsekvenser varför användningen av endast en generell riktning i ett sådant läge kan anses ge ett otillräckligt beslutsunderlag.

6.4 Metoddiskussion

Författarna har genom att efterfölja upprättad tidsplan tillsammans med en kontinuerlig kontakt med handledare kunnat erhålla ett strukturerat genomförande och ett väl avvägt innehåll i studien. En utförlig litterär sökprocess som innefattat både böcker och vetenskapliga artiklar har gett bredd till litteraturstudien och möjliggjort identifikation av lämpliga delar för det teoretiska ramverket. Då ramverket med ett deduktivt förhållningssätt legat till grund för datainsamling i fallstudien finns i genomförandet en medveten inriktning. Ett alternativt val av anspråk exempelvis genom induktion med mer öppenhet i fallstudien och mindre stöd av litteraturstudie hade eventuellt gett en annan neutralitet i datainsamlingen.

De semistrukturerade intervjuerna har genomförts med stöd av frågeunderlag, men tillvägagångssättet innebar att frågorna utvecklades och följdfrågor tillkom under intervjuernas gång. Detta har i datainsamlingen varit mycket effektivt för att utvinna ett relevant informationsinnehåll. Dock konstateras i detta förfarande ett visst avkall på reliabiliteten då den struktur och innehåll som det faktiska genomförandet gav är svår att återskapa, av denna anledning är underlag inte inkluderade som bilaga. Ån mer påtagligt blev detta förhållande i de samtalsinriktade intervjuerna.

De genomförda observationerna har varit av kvalitativ karaktär och bidragande till att skapa en god förståelse för det studerade området. En mer kvantitativ inriktning av observation i förrådsverksamheten, genom en kompletterande tidsmätning, hade kunnat bidra med ytterligare relevant data för hanteringskostnaderna. Dock indikerade den initiala ostrukturerade observationen skillnader i utförande av det aktuella momentet och innebar en svårighet att uppnå god reliabilitet vid en sådan datainsamling. Dokumentstudierna har till stor del bestått av företagsintern handlingar eller data. Då tillgång till dessa skett genom kontakt med medarbetare har en samtidig verifiering och därmed en god validitet i utvalda dokument kunnat erhållas.
6.5 Slutsatser och rekommendationer
Utifrån syftet; att undersöka potential för, och kostnadsäder påverkan av, intern ledtidsreduktion genom samordning mellan materialförsörjning och produktionsaktivitet avseende kundorderspecifika produkter kan nedanstående slutsatser konstateras.

Vid hybrid sourcing som försörjningsstrategi återfinns ett tillvägagångssätt i materialförsörjning som kan minska produktionsaktivitetens väntan på ingående material. Detta genom att kombinera;

- Införande av intern avropsaktivitet.
- Införande av materialpåfyllnad enligt metoden kitting.

Tillvägagångssätt föreslås till verksamheter med kundorderspecifik tillverkning där divergerande flöden försvårar tidsmässig anpassning av materialförsörjning och avrop till extern leverantör. Med detta återfinns en samordning mellan materialförsörjning och produktionsaktivitet som ger direkt potential för intern ledtidsreduktion. Utfallet är beroende av kittingsaktivitetens responstid från det att ett intern avrop initierats. Vid en relativ jämförelse av ledtidsreduktion finns en skillnad som beror av den tillverkade produktens ursprungliga ledtid. En kostnadsäder påverkan av ledtidsreduktion har urskilts genom;

- Hanteringokostnad (ökning)
- Administrativ orderkostnad (ökning/minskning)
- Lagerföringskostnad (ökning/minskning)

Kostnadsäder påverkan har uttryckts i en generell riktning där en sammanställning med tillhörande orsaker återfinns i Tabell 8. Vid ett ekonomiskt ställningstagande rekommenderas verksamheten att ställa kostnadsposter i relation till det indirekta värdet av frigjord tid.

6.6 Vidare forskning
Då fallstudien utförts med enfallsdesign finns intresse att med liknande inriktning undersöka ytterligare studieobjekt och utöka bidraget av förståelse för materialförsörjning vid kundorderspecifik tillverkning. En differentiering av branschinriktning skulle även ge ytterligare en dimension till problemet där andra perspektiv och förhållanden möjliggör utökad analys. Det finns även intresse av en mer kvantitativt inriktad studie där kostnadsstora påverkan kan utvecklas med beräkningsunderlag och skapa en djupare kostnadsanalys genom absoluta termer.

Referenser

Bilagor

Bilaga 1. Förbrukning glasrutor

<table>
<thead>
<tr>
<th>Månad</th>
<th>Specialglas</th>
<th>Standardglas</th>
<th>Total</th>
<th>Specialglas</th>
<th>Standardglas</th>
</tr>
</thead>
<tbody>
<tr>
<td>mar-15</td>
<td>2561</td>
<td>189</td>
<td>2750</td>
<td>93%</td>
<td>7%</td>
</tr>
<tr>
<td>apr-15</td>
<td>2420</td>
<td>373</td>
<td>2793</td>
<td>87%</td>
<td>13%</td>
</tr>
<tr>
<td>maj-15</td>
<td>2096</td>
<td>403</td>
<td>2499</td>
<td>84%</td>
<td>16%</td>
</tr>
<tr>
<td>jun-15</td>
<td>2561</td>
<td>629</td>
<td>3190</td>
<td>80%</td>
<td>20%</td>
</tr>
<tr>
<td>jul-15</td>
<td>314</td>
<td>45</td>
<td>359</td>
<td>87%</td>
<td>13%</td>
</tr>
<tr>
<td>aug-15</td>
<td>3133</td>
<td>403</td>
<td>3536</td>
<td>89%</td>
<td>11%</td>
</tr>
<tr>
<td>sep-15</td>
<td>2192</td>
<td>525</td>
<td>2717</td>
<td>81%</td>
<td>19%</td>
</tr>
<tr>
<td>okt-15</td>
<td>2419</td>
<td>627</td>
<td>3046</td>
<td>79%</td>
<td>21%</td>
</tr>
<tr>
<td>nov-15</td>
<td>2186</td>
<td>533</td>
<td>2719</td>
<td>80%</td>
<td>20%</td>
</tr>
<tr>
<td>dec-15</td>
<td>1588</td>
<td>436</td>
<td>2024</td>
<td>78%</td>
<td>22%</td>
</tr>
<tr>
<td>jan-16</td>
<td>1663</td>
<td>341</td>
<td>2004</td>
<td>83%</td>
<td>17%</td>
</tr>
<tr>
<td>feb-16</td>
<td>1991</td>
<td>484</td>
<td>2475</td>
<td>80%</td>
<td>20%</td>
</tr>
<tr>
<td>TOTALT</td>
<td>25124</td>
<td>4988</td>
<td>30112</td>
<td>84%</td>
<td>16%</td>
</tr>
</tbody>
</table>
Bilaga 2. Beräkningsunderlag förflyttning

<table>
<thead>
<tr>
<th>Måttillfälle</th>
<th>Datum</th>
<th>Totalt antal Lastbärare</th>
<th>Totalt antal glas</th>
<th>Lastbärare med flera ID</th>
<th>Antal ID:n</th>
<th>Antal flyttade</th>
<th>Andel flyttade</th>
<th>Lastbärare med rest</th>
<th>Antal restglas</th>
<th>Andel restglas</th>
<th>Totalt flyttat glas</th>
<th>Andel flyttat special</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2016-03-03</td>
<td>4</td>
<td>109</td>
<td>2</td>
<td>3,3</td>
<td>68</td>
<td>31</td>
<td>45,6%</td>
<td>2</td>
<td>41</td>
<td>72</td>
<td>66,1%</td>
</tr>
<tr>
<td>2</td>
<td>2016-03-04</td>
<td>4</td>
<td>98</td>
<td>2</td>
<td>3,3</td>
<td>43</td>
<td>23</td>
<td>53,5%</td>
<td>2</td>
<td>55</td>
<td>78</td>
<td>79,6%</td>
</tr>
<tr>
<td>3</td>
<td>2016-03-07</td>
<td>5</td>
<td>145</td>
<td>2</td>
<td>2,3</td>
<td>43</td>
<td>21</td>
<td>43,8%</td>
<td>4</td>
<td>97</td>
<td>118</td>
<td>81,4%</td>
</tr>
<tr>
<td>4</td>
<td>2016-03-08</td>
<td>4</td>
<td>119</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>100,0%</td>
<td>4</td>
<td>112</td>
<td>119</td>
<td>100,0%</td>
</tr>
<tr>
<td>5</td>
<td>2016-03-15</td>
<td>4</td>
<td>139</td>
<td>1</td>
<td>3</td>
<td>21</td>
<td>13</td>
<td>61,9%</td>
<td>4</td>
<td>118</td>
<td>131</td>
<td>94,2%</td>
</tr>
<tr>
<td>6</td>
<td>2016-03-16</td>
<td>4</td>
<td>103</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,0%</td>
<td>4</td>
<td>103</td>
<td>103</td>
<td>100,0%</td>
</tr>
<tr>
<td>7</td>
<td>2016-03-23</td>
<td>5</td>
<td>143</td>
<td>1</td>
<td>3</td>
<td>43</td>
<td>23</td>
<td>53,5%</td>
<td>4</td>
<td>100</td>
<td>123</td>
<td>86,0%</td>
</tr>
<tr>
<td>8</td>
<td>2016-03-30</td>
<td>6</td>
<td>173</td>
<td>3</td>
<td>3,3</td>
<td>81</td>
<td>33</td>
<td>40,7%</td>
<td>3</td>
<td>92</td>
<td>125</td>
<td>72,3%</td>
</tr>
<tr>
<td>9</td>
<td>2016-03-31</td>
<td>3</td>
<td>86</td>
<td>2</td>
<td>3,2</td>
<td>47</td>
<td>19</td>
<td>40,4%</td>
<td>1</td>
<td>39</td>
<td>58</td>
<td>67,4%</td>
</tr>
<tr>
<td>10</td>
<td>2016-04-01</td>
<td>3</td>
<td>82</td>
<td>2</td>
<td>4,4</td>
<td>42</td>
<td>28</td>
<td>66,7%</td>
<td>1</td>
<td>40</td>
<td>68</td>
<td>82,9%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>1197</td>
<td></td>
<td></td>
<td>400</td>
<td>198</td>
<td>49,5%</td>
<td>797</td>
<td>66,6%</td>
<td>995</td>
<td>83,1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Andel flyttat special</th>
<th>Vikt special</th>
<th>Andel flyttat standard</th>
<th>Vikt Standard</th>
<th>Total andel flyttat glas</th>
</tr>
</thead>
<tbody>
<tr>
<td>83,1%</td>
<td>0,84</td>
<td>100,0%</td>
<td>0,16</td>
<td>85,8%</td>
</tr>
</tbody>
</table>
Bilaga 3. Beräkning reducering total intern ledtid

<table>
<thead>
<tr>
<th>LEDTIDSPÅVERKAN</th>
<th>RESPONSTID (dagar)</th>
<th>RESPONSTID AVRUNDAS TILL</th>
<th>LEDTID GLASDÖRRAR (dagar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Faktisk A</td>
<td>0</td>
<td>-</td>
<td>-15,4%</td>
</tr>
<tr>
<td>Faktisk B</td>
<td>0,5</td>
<td>-</td>
<td>-11,5%</td>
</tr>
<tr>
<td>Faktisk C</td>
<td>1</td>
<td>-</td>
<td>-7,7%</td>
</tr>
<tr>
<td>Faktisk D</td>
<td>1,5</td>
<td>-</td>
<td>-3,8%</td>
</tr>
<tr>
<td>Faktisk E</td>
<td>2</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Systemmässig A</td>
<td>-</td>
<td>0</td>
<td>-15,4%</td>
</tr>
<tr>
<td>Systemmässig C</td>
<td>-</td>
<td>1</td>
<td>-7,7%</td>
</tr>
<tr>
<td>Systemmässig E</td>
<td>-</td>
<td>2</td>
<td>0%</td>
</tr>
</tbody>
</table>

Tidselimining ➔ A – 2 dagar B – 1,5 dagar C – 1 dag D – 0,5 dag E – 0 dagar