
Linköpings universitet
SE–581 83 Linköping

+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer Science
Master thesis, 30 ECTS | Datateknik

2016 | LIU-IDA/LITH-EX-A--16/020--SE

Sparse-Matrix support for the
SkePU library for portable
CPU/GPU programming
Stöd för Glesa Matriser i SkePU

Vishist Sharma

Supervisor : Lu Li
Examiner : Professor Dr Christoph Kessler

Upphovsrätt

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år
från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår.
Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka
kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för
undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta
tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För
att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och admin-
istrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt
samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sam-
manhang som är kränkande för upphovsmannenslitterära eller konstnärliga anseende eller
egenart. För ytterligare information om Linköping University Electronic Press se förlagets
hemsida http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet – or its possible replacement
– for a period of 25 years starting from the date of publication barring exceptional circum-
stances. The online availability of the document implies permanent permission for anyone to
read, to download, or to print out single copies for his/hers own use and to use it unchanged
for non-commercial research and educational purpose. Subsequent transfers of copyright
cannot revoke this permission. All other uses of the document are conditional upon the con-
sent of the copyright owner. The publisher has taken technical and administrative measures
to assure authenticity, security and accessibility. According to intellectual property law the
author has the right to be mentioned when his/her work is accessed as described above and
to be protected against infringement. For additional information about the Linköping Uni-
versity Electronic Press and its procedures for publication and for assurance of document
integrity, please refer to its www home page: http://www.ep.liu.se/.

c� Vishist Sharma

Abstract

In this thesis work we have extended the SkePU framework by designing a new
container data structure for the representation of generic two dimensional sparse
matrices. Computation on matrices is an integral part of many scientific and
engineering problems. Sometimes it is unnecessary to perform costly operations on
zero entries of the matrix. If the number of zeroes is relatively large then a requirement
for more efficient data structure arises. Beyond the sparse matrix representation, we
propose an algorithm to judge the condition where computation on sparse matrices
is more beneficial in terms of execution time for an ongoing computation and to
adapt a matrix’s state accordingly, which is the main concern of this thesis work.
We present and implement an approach to switch automatically between two data
container types dynamically inside the SkePU framework for a multi-core GPU-
based heterogeneous system. The new sparse matrix data container supports all
SkePU skeletons and nearly all SkePU operations. We provide compression and
decompression algorithms from dense matrix to sparse matrix and vice versa on CPU
and GPUs using SkePU data parallel skeletons. We have also implemented a context
aware switching mechanism in order to switch between two data container types on
the CPU or the GPU. A multi-state matrix representation, and selection on demand
is also made possible.

In order to evaluate and test effectiveness and efficiency of our extension to the
SkePU framework, we have considered Matrix-Vector Multiplication as our benchmark
program because iterative solvers like Conjugate Gradient and Generalized Minimum
Residual use Sparse Matrix-Vector Multiplication as their basic operation. Through
our benchmark program we have demonstrated adaptive switching between two
data container types, implementation selection between CUDA and OpenMP, and
converting the data structure depending on the density of non-zeroes in a matrix.
Our experiments on GPU-based architectures show that our automatic switching
mechanism adapts with the fastest SkePU implementation variant, and has a limited
training cost.

iii

Dedication

This thesis is dedicated to my parents, Linköping University and Sweden who have
given me this invaluable educational opportunity.

iv

Acknowledgments

First and foremost, I would like to express my deepest and sincere gratitude to my
examiner Professor Christoph Kessler for being so understanding. Without his kind
support and guidance this work would not have been possible. I have yet to meet
anyone with his patience. He has been always there to listen and give advice. I am
deeply thankful to him for all the time he spent in long random meetings with me
and providing various enlightening ideas and knowledge.

Special thanks to my supervisor Lu Li for his help and guidance.

I would like to thank all the faculty members, staff members and members of PELAB
at Linköping University. I would especially like to admire Åsa Kärrman for providing
me exjobb room at the University campus, where I could work peacefully. I am
grateful to Per Östlund for giving me access to the Fermi machine and solving any
technical issues I came across. And at this moment I cannot forget to mention Tomas
Otby from TFK department at Linköping University, who always had time to listen
to my all sorts of problems and solving them for me. He always encouraged me and
gave a lot of helpful advice.

A heartfelt thanks to the migration board of Sweden who have allowed me to stay in
Sweden and given enough time to finish off with my studies.

I owe special thanks to my brother Abhishek Sharma who financially supported my
studies abroad. I must express my very profound gratitude to my parents for always
being there for me. Yashu, you are my best friend and the love of my life, thank you
for your immense emotional support and faith in me. I could not have finished this
work without your emotional support.

Linköping 2016

Vishist Sharma

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis target . 3
1.3 Project approach . 4
1.4 Thesis outline . 4

2 Background 5
2.1 GPU programming . 5

2.1.1 History of GPUs . 5
2.1.2 CPU/GPU architecture . 6
2.1.3 GPU computing . 7
2.1.4 GPGPU computing and CUDA architecture 7
2.1.5 Some advantages and disadvantages of GPGPU computing . . 10

2.2 Skeleton programming . 11
2.2.1 Classification of algorithmic skeletons 11
2.2.2 Context aware implementation selection 12

2.3 SkePU . 12
2.3.1 SkePU smart containers . 13
2.3.2 User functions . 14
2.3.3 Skeletons . 14
2.3.4 Lazy memory copying . 20
2.3.5 Adaptive off-line tuning mechanism 20

3 Design and Implementation 21
3.1 Relevance of sparse matrix representations 21
3.2 Generic matrix class design . 22

3.2.1 Details of GMatrix class . 23
3.2.2 Details of DenseMatrix class 24
3.2.3 Short description of CSR format 25
3.2.4 Conversion function: DenseToSparse 26
3.2.5 Implementation of DenseToSparse function 27
3.2.6 Details of SparseMatrix class 29
3.2.7 Conversion function: SparseToDense 30
3.2.8 Implementation of SparseToDense function 31

3.3 Automatic selection mechanism . 33
3.3.1 Empirical cost estimation: Phase one 34
3.3.2 Dynamic selection: Phase two 35

vi

4 Evaluation 42
4.1 Experimental results . 42
4.2 Testing platform . 42
4.3 Methodology . 43
4.4 Evaluation . 43

4.4.1 Evaluating the first phase . 44
4.4.2 Evaluating the second phase 54
4.4.3 Test cases . 55

4.5 Chapter summary and limitations . 58

5 Related Work 59

6 Conclusion and Future Work 62
6.1 Conclusion . 62
6.2 Future work . 63

References 64

A Glossary 68
A.1 Terms and abbreviations . 68

B Miscellaneous Figures 70
B.1 . 70

C Source code for Automatic Switching Mechanism 71

D Source code to test Automatic Switching Mechanism 89

vii

List of Figures

2.1 CPU/GPU component organization. 7
2.2 A graphical representation of threads and blocks in CUDA program-

ming model. 9
2.3 Memory organization in CUDA programming model. 10

3.1 The hierarchical structure of GMatrix class. 23
3.2 Pictorial representation of CSR storage scheme. 25
3.3 Graphical representation for the implementation of SparseToDense

function. 33
3.4 Pictorial representation of GPU/CPU state machine. 35
3.5 Class diagram of the Toggle class, which acts as a mediator between

other classes. 37

4.1 3-dimensional plot of the data. Data generated by executing GeMV
on CPU. 45

4.2 3-dimensional plot of the data. Data generated by executing GeMV
on GPU. 46

4.3 3-dimensional plot of the data. Data generated by executing SpMV
on CPU. 47

4.4 3-dimensional plot of the data. Data generated by executing SpMV
on GPU. 48

4.5 3-dimensional plot of the collected data. Data generated by converting
DenseMatrix into SparseMatrix on CPU. 50

4.6 3-dimensional plot of the collected data. Data generated by converting
DenseMatrix into SparseMatrix on GPU. 50

4.7 3-dimensional plot of the collected data. Data generated by converting
SparseMatrix to DenseMatrix on CPU. 52

4.8 3-dimensional plot of the collected data. Data generated by converting
SparseMatrix to DenseMatrix on GPU. 53

4.9 2-dimensional plot of the collected data. Data generated by sending
data from the CPU to the GPU. 54

4.10 3-dimensional plot in (x-z) view for comparing computation time taken
on different nodes of our graph shown in Figure 3.4. Blue triangle
represents the computation time guided by our automatic switching
mechanism. 57

B.1 Improved class design intended for future use. 70

viii

Listings

2.1 Vector instantiation. 13
2.2 Matrix instantiation. 14
2.3 Map skeleton with + as operator. 15
2.4 Reduce skeleton with + as operator. 16
2.5 MapReduce skeleton with + and × as operators. 17
2.6 MapArray skeleton with vector × matrix. 18
2.7 MapOverlap skeleton overlaps 1 element. 19
2.8 Scan skeleton with plus-scan. 19
3.1 DenseMatrix instantiation. 24
3.2 SparseMatrix instantiation using direct constructor for CSR fomat. . 25
3.3 Conversion from dense matrix to sparse matrix using DenseToSparse()

function. 26
3.4 Implementation of DenseToSparse function. 27
3.5 Implementation of DenseToSparse function. 28
3.6 Implementation of DenseToSparse function. 28
3.7 Implementation of DenseToSparse function. 28
3.8 Implementation of DenseToSparse function. 29
3.9 SparseMatrix instantiation. 30
3.10 Conversion from sparse matrix to dense matrix using SparseToDense()

function. 30
3.11 Implementation of SparseToDense() function. 31
3.12 Implementation of refresh() function. 36
3.13 Code example to demonstrate automatic switching. 37
4.1 GMatrix instantiation. 42
C.1 Header file for the Toggle class. 71
C.2 C++ implementation of the Toggle class. 72
C.3 Header file for the Model class. 74
C.4 C++ implementation of the Model class. 75
C.5 Header file for the Graph class. 76
C.6 C++ implementation of the Graph class. 76
C.7 Header file for the Path class. 77
C.8 C++ implementation of the Path class. 78
C.9 Header file for the Switch class. 81
C.10 C++ implementation of the Switch class. 81
C.11 C++ implementation of helper functions. 86
D.1 Program to run test-cases. 89

ix

Chapter 1

Introduction

1.1 Motivation

Traditionally, computer programs have been written for serial computation, a problem
is divided into a discrete series of instructions which is executed sequentially one
after another on a single processor and only one instruction may execute at a time.
A faster microprocessor executes a relatively large number of instructions per unit of
time, which is largely determined by faster CPU clock and instruction pipeline.

Up to the end of the last century, computer architecture kept doubling clock fre-
quency almost every eighteen months in order to achieve higher performance without
changing the sequential programming model. In early 2000s, major microprocessor
manufacturing companies hit limits of scale-up with high clock speed and relatively
narrow pipeline. Initially this approach showed instant advantages because it was
easy to speed up single-threaded serial code and not much effort was required at
software side to parallelize instructions, thereby software industry realized immediate
benefits and appreciated this approach. Needless to say, this approach was not
flawless; designers could not increase clock speed any further, not because transistors
had stopped getting smaller and faster but running a billion transistors generates
lot of heat and it is difficult to keep all transistors cool. Power had emerged as a
primary factor in designing microprocessors [1].

Many low-power design techniques had been invented to deal with the power issues
that would not support high frequency micro-architecture. Two major low power
design approaches were clock-gating [40] and power-gating but these approaches
had very little to offer towards narrow pipe-lined processors [22]. Thus, from a
micro-architectural standpoint, high-frequency narrow pipe-lined designs were not
power-efficient, therefore the era of faster single processor systems came to an
end. However, to keep up with the demand for higher performance, a new era of
multi-processor and multi-core systems has emerged.

Virtually all stand-alone computers today are parallel from a hardware perspective and
often accompanied by more power efficient general-purpose programmable Graphic
Processing Units (GPGPUs) co-processors. Even today’s multi-core processors
cannot provide such a massive computation power to solve large-scale computational
problems in science and engineering, thus the need to connect multiple stand-alone

1

2 1.1. Motivation

computers together to form large parallel computer clusters. The implication of
having large processing power at our disposal has changed the way in which we
envisage the design and implementation of computer programs.

Decades of development in computer hardware has brought us at a point where it is
imperative to abandon the sequential-programming model. Software would have to be
written in a better paradigm, exposing parallelism to keep up with the pace of change
in computer architecture and to satisfy a never ending demand for performance in
the field of high-performance computing, computer-gaming, animation and image
processing.

Heterogeneous systems are getting popular in both the traditional as well as in the
high performance computing domain since multi-core CPU systems are complemented
by more power-efficient co-processors (GPUs) with a peak performance of hundreds of
GFLOPS which is often an order of magnitude higher than CPUs and that too at lower
price-performance ratio [3]. However, porting legacy code for parallel distributed
computing as well as writing new code that runs efficiently on heterogeneous system
is not an easy task because no single standard parallel programming model exists
that fully dominates these parallel distributed computing systems. This trend of
heterogeneity has brought new problems for the design, optimization and maintenance
of software which are deeply related to the problems of programmability, performance
and portability.

Existing programming models for heterogeneous computing rely on the programmer
to explicitly manage data transfer between CPU system-memory and GPU memory
and still it does not guarantee optimized code because optimization further requires
knowledge about cache hierarchy, interconnection and organization of compute units
in the system. This low-level platform specific detailing raises concerns over code
portability to new architectures. Even if the code adapts to a new architecture
completely, out-of-tune code get inflicted by degraded performance on machines that
do not share common architecture features; hence there exists a trade-off between
programmability, performance, and portability [23], and consequently compelled
computer scientists to bring skeleton programming out of the closet and to reconsider
what new techniques it can offer [8]. Algorithmic skeletons intend to make parallel
programming simple and provide a high level of abstraction by concealing low-
level parallelism inside higher order functions, which gets the detail of the specific
application problem as argument functions [6] and allows the programmer to easily
derive a platform-specific parallel program. Since programming frameworks based
on skeleton programming renders a unified interface with multiple backends, it is
possible to extend imperative languages such as C and C++ in order to achieve
greater efficiency [6, 5, 33, 26].

In a nutshell, we are drifting away from serial computing towards parallel distributed
computing. Furthermore, parallel programming is an abstract term since today’s
parallel computer systems span over a large variety of architectural designs; at
one end there exist clusters with distributed memory that are highly scalable and
at the other end are parallel shared memory multi-core processor systems. At
present many parallel programming models exists, each of them having their own
strengths and weaknesses but the absolute parallel programming model does not exist
that can completely accommodate diversity in parallel computer systems. Skeleton

1.2. Thesis target 3

programming is an effort towards implementing different parallel programming models
for complex applications; the idea behind skeleton-programming is that programmer
will use algorithmic skeleton by including skeleton-libraries in their sequential program
so as to address the parallel programming aspects of their application in a more
intuitive way and all sort of architecture-specific optimization, data-parallelization
or task-parallelization will be taken care of by the skeleton library itself.

1.2 Thesis target

In this master thesis we consider SkePU [18, 10], which is a generic, tunable skeleton
programming framework developed in C++ for single-GPU and multi-GPU based
systems. It currently implements several data-parallel skeletons including map,
reduce, map-reduce, map-overlap, map-array, scan and generate; SkePU provides
multiple implementations for each skeleton type (CUDA, OpenCL, OpenMP and
sequential C++). The SkePU skeletons accept SkePU generic containers (Vector,
Matrix) as its arguments, which implicitly manage the data transfers between host
and GPU memory and keep track of multiple copies of the data residing on different
memory units. SkePU provides higher programming abstraction while retaining
performance close to hand-written code for real-world applications [15].

In particular, our goal was to provide an abstraction to the user in choosing a suitable
matrix container type inside SkePU framework. It is an optimization problem because
decision of choosing the right matrix representation depends on many factors that
may not be known at compile time.

Our first requirement was to design a class hierarchy in order to unify dense and
sparse matrix classes under one common base-class in such a way that we can toggle
between sub-classes at run-time, that too without having to pay run-time overhead
for vtable 1 look-up.

A second requirement was to have conversion functions in place. Conversion func-
tions perform conversion from dense-matrix to sparse-matrix and other way round.
Conversion functions had to be implemented for conversion on CPU as well as on
GPUs.

In the earlier work [14] on SkePU many sophisticated optimization techniques
and algorithms have been implemented. Among other optimizations the memory
management mechanism is of great relevance, which is carried out by SkePU smart
container types, namely Matrix and Vector. The same sort of mechanism is needed to
be implemented for the sparse matrix data container type. We partially implemented
memory management, trace-ability and lookup-mechanism in order to demonstrate
automatic matrix selection.

Automatic switching was another requirement. Which matrix representation will be
used for ongoing computation should be decided at run-time. The switching decision
depends not only on the size and number of zeroes of a matrix but also where data
is currently stored, in which memory module and in which matrix representation
it exists; it may be possible that data exists in both matrix representations. A

1Vtables contain pointer to virtual functions and are used to resolve function calls at run-time.

4 1.3. Project approach

requirement was to implement a mechanism that could make a smart decision
of selecting the right matrix representation and if the matrix is not in the right
representation then to transform the matrix in the right format. This decision may
require selection, conversion, data-transfer from host (CPU) to device (GPU) or
from device (GPU) to host (CPU), or all-of-them. The devised mechanism should
be efficient in selecting the best SkePU backend implementation with low run-time
overhead.

The implementation of new hierarchical design, conversion function, switching mech-
anism, and maintenance inside the SkePU framework should be compatible with all
SkePU skeletons and ensure that the performance and portability of the framework
has been preserved.

1.3 Project approach

It was obligatory to acquire detailed knowledge of the SkePU nomenclature and
mechanism that is being used throughout the framework. Since development work
had to be done on nVIDIA GPU architecture, it was important to get acquainted with
CUDA technology. A thorough background study was done on skeleton programming
and it was exigent to know how the SkePU framework generates platform specific
parallel code by using its skeletons. Related work was also studied in order to
make aware ourselves about novel ideas that had been helpful in many ways for our
work.

Agile methodology was adopted throughout this project. Design and implementation
was reviewed, revised and reformed until the desired result was achieved, new features
of SkePU version 1.2 were also incorporated during this process.

1.4 Thesis outline

The rest of this document is organized as follows:

• Chapter 2 is intended to provide background knowledge related to our work,
which is necessary for understanding chapter 3 and 4.

• In-depth problem analysis and design-description have been put together in
chapter 3.

• In chapter 4 we include performance analysis and present the final outcome of
our work.

• A brief survey of related work and comparison with other approaches is included
in chapter 5.

• In chapter 6 we conclude our thesis and discuss possible future work on the
framework.

Chapter 2

Background

In this chapter we cover the technical background that may help reader in understand-
ing contents presented in other chapters. The chapter starts with an introduction of
nVIDIA CUDA architecture, advantages and disadvantages of GPGPU computing.
Next, it gives a short introduction to skeleton programming. Later in this chapter we
shall discuss SkePU (1.2) and try to cover important features of SkePU framework
by examples. In the rest of the thesis we are going to build upon this foundation to
cover most interesting part of our work.

2.1 GPU programming

Parallel computing used to be a niche technology used by exotic supercomputers,
but today, modern computing products have gone parallel and have hundreds of
processors that can each run a piece of problem in parallel. A high end GPU contains
over 3 thousand arithmetic units. GPUs can have tens of thousands of parallel pieces
of work all active at the same time, in CUDA terminology each parallel piece of work
is called thread. A modern GPU may be running upto 28,672 concurrent threads,
for example nVIDIA GTX Titan GPU.

2.1.1 History of GPUs

GPUs history is as old as that of video-games, since there was never ending demand
for higher quality smoother graphics in video-games. In early times GPUs were
confined to game consoles instead of being a more general-purpose microprocessor
that we are having today in modern graphics card. In the past, video controllers used
to be hard coded and could only output specific visuals for particular video-game they
were part of. It was not long though before CPUs started appearing in video-game
consoles and for years graphic processing was only handled by the CPU itself, both
in computers as well as in video-game consoles instead of having a separate GPU. It
was not until mid 1980s that the new concept of discrete GPU started to take shape,
for example, Amiga graphics subsystem that offloaded video task from the CPU, and
in year 1986 Texas Instruments launched TMS340 series which was among the first
of its kind and specially engineered to render graphics on its own.

5

6 2.1. GPU programming

PC-graphics accelerator on an expansion card really took off by the advent of GUI
based operating systems like Mac-OS-X and Microsoft Windows. One particularly
popular early video card was IBM8514/A which was launched in year 1987 that could
support 256 colors and took care of common 2D rendering task like drawing lines on
screen much faster than the regular CPU could handle. Its low cost paved the way for
further advancements in 2D graphics rendering. It was when ATI launched its first
consumer product that could handle multiple monitors and with the ability to switch
between number of different graphics mode and resolutions which was very new at
that time, but still these early cards would rely on the main CPU for quite a few tasks.
It was mid 1990s when we started seeing GPUs that could work more independently
of the CPUs, and with the emergence of open application programming interface
like GNU OpenGL or DirectX, computer programmers could write code that would
work on many different graphics adapters and helped gaming industry by providing
some of the standard software platform for games studios.

nVIDIA GPUs came into existence in 1999 with GeForce-256 that could process
complex visual effects, which was previously left to the CPU such as lightning effects
and transformation that maps 3D-images onto a regular 2D monitor. Time went by
and things continued to change and in year 2001 GeForce-3 was introduced with
pixel-shader that allowed much more granular details, since it could produce effects
on per pixel basis. Since graphics cards were getting faster and offered incremental
performance improvement each year; old PCI and AGP could not handle high-
bandwidth transmission and soon replaced by faster PCIe interface in year 2004.
Major development in GPU computing was yet to be seen and this happened in year
2006 when nVIDIA launched its GeForce-8000 series which was incredibly powerful
and power hungry that not only had a massive number of transistors but also a
unified shader, this series of GPUs could handle large number of effects at once
and run at a faster clock than the processing core. These GPUs had support for
many stream-processors, which allowed graphical tasks to be parallelized in order to
improve efficiency for greater performance in the game industry.

2.1.2 CPU/GPU architecture

Traditional CPUs have very complicated control hardware that allows flexibility
in performance but as control hardware gets more complicated, it is increasingly
expensive in terms of power and design complexity. As shown in Figure 2.1 how
CPU and a GPU utilizes chip area in organizing different components. CPU is a
multi-tasking, general purpose processor and in principle can do any computation
and uses much of its chip area for other circuitry than arithmetic. This helps in
performing sequential tasks relatively faster with low latency. Latency is the amount
of time to complete one task, and measures in units of time, like seconds. GPUs
on the other hand have many simple compute units that work together to perform
large amount of computation. GPUs are optimized for throughput and trade off
control for compute by choosing simpler control complexity and more compute power.
GPU uses much of the chip area for floating-point operations and provides high
throughput. Throughput is the number of tasks completed per unit time. This
makes GPU desirable for certain kind of problems, specially those that are more
compute-intensive and require less data movement [39].

2.1. GPU programming 7

Figure 2.1: CPU/GPU component organization.

2.1.3 GPU computing

In early times GPU computing was not as straight forward as it is today because
standard graphics APIs like OpenGL or DirectX were the only way to interact
with GPUs and that too confined within functions provided in graphics library.
Researchers found a way to trick GPU for general-purpose computation through
graphics API and masked their problem behind traditional rendering-procedures.
Particularly, GPUs in 2000s were capable to render color for each pixel on the
screen through pixel-shaders, which compute color of a pixel depending on some
input and added information like input colors that could be passed to the shader
at run-time. Since programmer could control arithmetic operations on the input
colors; researchers sensed that they could disguise their computation as graphics
problem and could actually perform arithmetic on their data. This technique of
using GPUs for general-purpose computing was very clever but at the same time
very complex. Researchers were successful in gaining high arithmetic throughput
using graphics-only programming language, which is also known as shading language.
However, this programming model was way too restrictive to adopt as a standard
programming model [35].

2.1.4 GPGPU computing and CUDA architecture

CUDA (Compute Unified Device Architecture) is a parallel computing platform
and programming model designed to present the user with a seamless programming
environment that allows simultaneous programming of both GPU and CPU within
the same application. It was launched in 2006 and would only support sequential C
with some extension to express parallelism so as to code algorithms for GeForce-8
series GPUs. Since the first release of CUDA a lot of updates were released. CUDA
programming model has matured to provide full programming environment with
many salient features and support for numerous programming languages like C++
(11). CUDA is very popular for parallel programming despite only be possible to
run CUDA code on nVIDIA GPUs, because CUDA is considered less complex than
cross-platform, open-source parallel programming standard: OpenCL. CUDA made

8 2.1. GPU programming

GPU programming much more intuitive for normal programmer by providing a
simple general-purpose interface. Furthermore, nVIDIA provides powerful tools for
debugging and profiling CUDA code that makes its user efficient in writing high
quality code with less effort and less complexity.

Today, GPUs are considered as fully programmable processors but the downside is
that they cannot run standalone programs; a CPU is required to manage a GPU
and uses it to offload specific computation. CUDA programming model allows
programmer to program both processors at the same time. In particular, CUDA
code consists of host- and device- code which is typically contained inside a single
file. nVIDIA provide its own compiler nvcc (nVIDIA CUDA Compiler) to compile
CUDA source code; ‘.cu’ is the naming convention for CUDA files. NVCC separates
host- and device- code, and compile host code using conventional compiler like C
compiler and translates device code to PTX (Parallel Thread Execution) assembly
code, which get compiled by nVIDIA driver into binary code and can then be run on
nVIDIA GPU.

A CUDA program starts on the CPU, and it allocates storage on the GPU. The
CPU copies some input data on to the GPU and calls some kernels, which is just
like normal sequential function but major difference is that kernel runs on GPU and
executed by thousands of thread concurrently. Finally, the CPU copies the result
back from the GPU. As we can see data is moving back and forth between the CPU
and the GPU; an optimized code minimizes data transfer between the CPU and the
GPU and maximizes computation work on the GPU. Generally, GPU computing fits
for the problem that require lot of computation and have high ratio of computation
to communication. In particular, a programmer should send data to the GPU and
perform a lot of computation there and should not bring result back on the CPU
until absolutely necessary. We shall discuss one such optimized mechanism of SkePU
framework later in this chapter.

GPUs offer hierarchically structured hardware parallelism. At the top level, GPUs
are very much similar to the shared-memory multi-core CPUs. GPUs can handle
coarse-grain parallelism by concurrent execution of different task on different SMs
(Streaming Multiprocessors). A GPU thread performs a basic sequential task and the
warp scheduler maintains threads in a group within a warp, each thread inside a warp
follows same execution path in a SIMD (Single Instruction Multiple Data) manner
that enables fine grained data parallelism. On one single SM multiple warps can run
simultaneously and managed by hardware scheduler so that different instructions
from alternate warps can run in an interleaved fashion, this increases hardware
utilization when thread in one warp get stalled due to some slow operation. SM
keeps record of currently executing threads that allows zero-time switching, this type
of thread execution is called SIMT (Single Instruction Multiple Thread) execution
[36].

All threads in a GPU are grouped into thread-blocks, and thread-blocks are grouped
into block-grid as shown in Figure 2.2 . A kernel in CUDA programming model is
executed as a grid of blocks of threads. The block in newer GPUs can accommodate
up to 1024 threads while older GPUs can only support 512 threads, multiple thread
blocks can be executed by a single core. Threads inside a thread block may share
state and synchronize efficiently via shared memory, and by that means coordinated

2.1. GPU programming 9

Figure 2.2: A graphical representation of threads and blocks in CUDA programming
model.

data processing is possible. The multiprocessor executes threads in lockstep within a
warp and each warp contain 32 threads. Branching inside warp is still possible since
threads execute with its own instruction address, register state and local memory;
however, branching inside warp is discouraged, since it can reduce GPU performance,
for example, two-way thread divergent code would run 2 times slower. At worst, code
could run 32 times slower if every thread in a warp would take different path.

The CUDA programming model exposes an abstraction of memory hierarchy as
shown in Figure 2.3. The GPU has different memory types and are used for different
purposes. Global memory is the largest memory on-board and having high latency
of around 400-800 cycles and normally used for copying data from the CPU to the
GPU, or vice versa. All running threads can read and write global memory and
CPU can also read and write into it. Global memory is the main memory of the
GPU, and its every byte is addressable. Multiple accesses to the global memory
from different thread in a thread-block can be coalesced into a single large memory
access. Another way of thinking about coalescing is that the GPU accesses global
memory in large chunks of 32 or 128 bytes at a time, it essentially means, if all
threads in a warp access contiguous adjacent memory location then we need less
memory transaction and if every thread in a warp access random location in the
memory then total number of chunks required for reading or writing could be as
large as the number of threads in the warp. Poorly coalesced read or write operation
can dramatically reduce the performance of the GPU, and reducing global memory
access enhances performance. A common optimization technique to reduce global
memory access is called tiling. In tiling, data is divided into subsets of data in such
a way that each tile fits into the shared memory.

Besides global memory, each SM has a read/write shared memory and can be allocated
at block level, and that way it is possible to access shared memory by multiple thread
blocks in parallel. Constant memory is a small read-only cache memory having low
latency and high bandwidth when all threads access the same location. Apart from
this, each SM has its own set of general-purpose registers. Limited CUDA memory
limits the number of threads that can execute simultaneously or we can say, memory
is the limiting factor to parallelism in GPGPU computing.

10 2.1. GPU programming

Figure 2.3: Memory organization in CUDA programming model.

2.1.5 Some advantages and disadvantages of GPGPU com-
puting

One obvious advantage of GPU computing is low cost-to-performance ratio. GPUs
are very effective in performing rapid calculations because of their hierarchical
parallel-hardware. Furthermore, GPU provides tremendous memory bandwidth
and can transfer data more rapidly than CPUs. GPUs can run certain algorithms
anywhere from 10 to 100 times faster than CPUs, and this is a huge advantage. GPUs
can hide memory latency by switching threads and computing continuously on those
threads that have their data in place and are good to go. High level programming
model like CUDA provide multiple streams and allows asynchronous overlap of PCIe
data transfer time behind ongoing computations. CPU clock frequency is stagnating
whereas GPUs are continuously evolving and in future GPUs will be able to process
data at even much faster rates. GPUs turned out much more power-efficient devices,
if we compare them to CPUs. Besides so many advantages, GPU computing has
the disadvantage of having being used in a sub-optimal way which can drop the
whole idea of using GPUs in the first place; it is often an good idea to reason about
GPUs limitation before employing them. As we know that GPUs are the peripheral
devices connected to the CPU via PCIe bus, and having its own physical memory;
CPU cannot reference GPU’s memory directly, so input- and output- data must be
copied back and forth from the CPU to the GPU. PCIe bandwidth is much lower
than the GPU’s bandwidth to its local memory, and in some cases PCIe is 20 times
slower. Therefore, applications that are not compute-intensive is not a good fit for
GPU computing. Another aspect of target application that can be quantitatively
expressed by Amdahl’s law, which states that if the fraction of code that can be
parallelized perfectly is not the significant portion of the total run-time then very
small benefit can be seen by running that code on parallel processors, for example, if
parallel code account for 50 percent of the run-time then according to Amdahl’s law(

1
1−.5

)
= 2× speedup can be achieved not more than that, and if 99 percent of the

run-time is used by a parallelizable section of the code then 100x speedup is possible.
Amdahl’s law assumed the problem size to be fixed; on the contrary, Gustafson’s law
stated that if the problem size increases then parallel portion expands faster than the
serial portion. Therefore, if more processors are available then larger problems can

2.2. Skeleton programming 11

be solved within the same time, for example Matrix-Matrix-Multiplication, where
actual computation is O(n3) but time in initializing matrices increases with the
matrix size. This discussion boil down to one thing that not all algorithms are suited
for GPGPU computing and before implementing any algorithm on GPU it is worth
considering if it is a good idea to move algorithm from the CPU to the GPU, which
can be justified by Amdahl’s law or Gustafson’s law.

2.2 Skeleton programming

Parallel computing is a way of solving large computational problem by simultaneously
using multiple compute resources. Today almost every computer system is a parallel
system from the hardware perspective, and the presence of co-processors like GPUs
along with main processor have escalated the demand for parallel programming
model to harness the power of increasingly complex parallel systems. Many parallel
programming models came into existence in the past, and each of them would cover
different class of problem; a unified parallel programming model that provide efficient
solution to wide range of parallel programming problems has long been desired,
specially in the high performance computing where effectiveness of a parallel program
is measured by performance and often require hand-written code so as to reflect
underlying hardware architecture by writing machine dependent code, which raises a
serious question on the portability and maintainability of the code.

An approach to high-level structured parallel programming abstraction that remain
relevant across wide range of computer systems is offered by “algorithmic skeletons”
which was conceived in 1989 by Cole [8]. Algorithmic skeletons are polymorphic higher
order functions that represent common parallelization patterns and are implemented
in parallel [6]. Skeletons feasibly decouples behavior of a parallel program from the
structure through its novel parallel programming model. Structured parallel program
can be decomposed into roughly two components: computation and communication
[21], the computation part that deals with the application logic, control-flow and
the data-flow in a procedural manner, and also deals with coordination part, which
abstracts communication and concurrency issues such as thread management, load
balancing, synchronization, memory-management. An algorithmic skeleton is a
generic construct that models a solution to recurring problem in parallel programming
and provides a high-level abstraction. The application programmer uses Skeletons
by instantiating it with the actual program logic. Internally, specific implementation
may be written in specific parallel programming model that reflect hardware specific
capabilities of the underlying system, and in this way programmer can focus on the
description of the algorithm without caring much about platform dependent details.
However, it may happen that no previously defined Skeleton exist for particular
computation, in that case implementation have to be written manually.

2.2.1 Classification of algorithmic skeletons

Skeletons classified into data-parallel and task-parallel skeletons:

12 2.3. SkePU

Data-parallel skeletons

This type of skeletons expresses parallelism in SIMD (Single Instruction Stream
Multiple Data Stream) style, where the same operation is applied on the aggregate
of data like an array or vector, for example, i←j+k; where j and k are two vectors of
equal size and an addition operation is performed on j and k; the result is collected in
another vector i of the same size. Suppose size of each vector is ‘n’ then two vectors
get added using n processors in constant O(1) time, i.e. irrespective of the size of
the vector.

Task-parallel skeletons

Big tasks can often be subdivided into relatively smaller tasks; task-parallel skeletons
take advantage of this by exploiting independence between sub-tasks. The behavior
of task-parallel skeletons is mainly determined by the interaction between sub-tasks
[21]

2.2.2 Context aware implementation selection

Skeleton framework may provide multiple implementations for the same skeleton, for
instance, one implementation for the CPU and another one for the GPU, this way
skeleton call can be considered as component call, having multiple implementation
from which only one suitable, context aware implementation will be chosen for a
given call.

2.3 SkePU

SkePU [18, 10] is a generic, tunable skeleton programming framework developed
in C++ for single-GPU and multi-GPU systems. It currently implements several
data-parallel skeletons including map, reduce, mapreduce, map-overlap, map-array,
scan, and generate. SkePU provides multiple implementations for each skeleton
type (CUDA, OpenCL, OpenMP and sequential C++). The SkePU skeletons accept
SkePU generic containers (Vector, Matrix) as arguments, which implicitly manage
the data transfers between host and GPU memory and keep track of multiple copies
of the data residing on different memory units. SkePU provides higher programming
abstraction while retaining performance close to hand-written code for real-world
applications [15]. SkePU is unique in its feature and functionality.

• SkePU supports one- and two- dimensional data type for skeleton operation.

• SkePU framework contains smart implementation of data-management for its
container type.

• An offline auto-tuning mechanism has been set-up inside SkePU framework
that enables implementation selection with nominal training cost.

2.3. SkePU 13

• SkePU framework allows simultaneous task execution on the GPU as well as
on the CPU.

• SkePU version 1.2 contains MultiStream support that partly overlaps data
transfer time with kernel execution time.

• Newer version of SkePU includes extension of maparray skeleton and provides
multivector skeleton.

2.3.1 SkePU smart containers

There are vector and matrix container classes in SkePU for representing data in
one- and two- dimension respectively. Element type of a container are made generic
using C++ templates, and provide interface similar to C++ STL container so that
SkePU containers can support almost every STL algorithm; furthermore, it supports
several other functions related to memory management on different device memories
such as updateHost, updateDeviceCopy and invalidDeviceCopy. A SkePU container
object internally keeps track of different copies of its data elements residing on
different memory units with their content state, for instance, at a particular time
data may be in valid state or invalid state. SkePU ensures that data accesses on
the CPU are handled in a consistent manner and necessary data transfers are made
implicitly when needed. Furthermore, the read and write accesses to container data
are distinguished by proxy classes. This allows to differentiate between different
types of accesses made to a container object. SkePU smart containers not only keep
track of data copies on different memory units but also help in reducing the data
communication between different memory units by delaying the communication until
it becomes necessary [14].

SkePU vector

This container data-type supports one dimensional data, much like C++ std::vector,
since its internal implementation has been carried out with STL vector and hence
the interface is compatible with C++ vector.

Code Example

1 #inc lude " skepu/ vec to r . h"
2 #inc lude <iostream>
3 i n t main () {
4 skepu : : Vector<double> vector_demo (10 , 1 . 2) ;
5 std : : cout << vector_demo << ' \n ' ;
6 re turn 0 ;
7 }
8 // output
9 1 .2 1 .2 1 . 2 1 . 2 1 . 2 1 . 2 1 . 2 1 . 2 1 . 2 1 . 2

10

Listing 2.1: Vector instantiation.

14 2.3. SkePU

SkePU matrix

Matrix represents two-dimensional array which is stored in row-major order at
contiguous memory location.

Code Example
1 #inc lude " skepu/matrix . h"
2 #inc lude <iostream>
3 i n t main () {
4 skepu : : Matrix<int> matrix_demo (5 , 5 , 8) ;
5 std : : cout << matrix_demo << ' \n ' ;
6 re turn 0 ;
7 }
8 // output
9 Matrix : (5 X 5)

10 8 8 8 8 8
11 8 8 8 8 8
12 8 8 8 8 8
13 8 8 8 8 8
14 8 8 8 8 8

Listing 2.2: Matrix instantiation.

2.3.2 User functions

In SkePU, skeletons must be parameterized with actual function in the form of
user-function. User-functions are implemented in the form of preprocessor macros,
and are used for defining low-level functions. The preprocessor macros expand to
a structure that contains target-specific version of the user function, which is very
much dependent on the underlying architecture. Commonly used macro-functions
are

• UNARY_FUNC

• BINARY_FUNC

• TERNARY_FUNC

• OVERLAP_FUNC

• ARRAY_FUNC

• ARRAY_FUNC_MATR_BLOCK_WISE

• ARRAY_FUNC_SPARSE_MATR_BLOCK_WISE

2.3.3 Skeletons

SkePU provides seven data-parallel skeletons Map, Reduce, MapReduce, MapArray,
MapOverlap, Scan, and Generate each of them implemented in sequential C++,
OpenMP, CUDA, and OpenCL. SkePU also provides one task-parallel skeleton: Farm
skeleton, the hierarchical parallel execution that enables all data parallel skeletons
to be used as tasks inside the farm construct. A program can use SkePU library

2.3. SkePU 15

by including SkePU header files for skeletons and containers, which are defined in
‘skepu’ namespace.

SkePU is built over C++ and uses template meta programming extensively. In the
object-oriented spirit of C++, the skeleton functions in SkePU are represented by
objects and behave like normal C++ functions. Each skeleton contains member
functions representing each of the different implementation. If the skeleton is called
with operator() then SkePU library decides which of the implementation has to be
used. When a skeleton is instantiated, SkePU creates an environment to execute in,
containing all available devices (OpenCL or CUDA) in the system. This environment
is created as singleton so that only one instance is created and shared among all
skeletons in the program [18].

The skeleton can be used either by passing containers as arguments and performing
operation on every element of it or by iterating over sub-part of the container. In
the latter case, a start iterator and an end iterator are provided and operations are
performed only on the sub-part of the container instead of entire container.

We try to cover SkePU data-parallel skeletons by example for a better understand-
ing.

Map

Map is the most commonly used data-parallel skeleton in skeleton-programming with
a simple semantic. Inside SkePU framework, Map skeleton are used with container
classes like Vector and Matrix [11].

• For vector operands: Result r is calculated as a function f and exhibits one to
one correspondence between the elements of input vectors; if the input vector
is having N elements then the resultant vector will also be having N elements.

r[i] = f(v1[i], . . . , vk[i])∀i ∈ {0, . . . , N − 1},∀k ∈ {1, 2, 3}

• For matrix operand: Result r is a function f of the corresponding elements in
input matrices of dimension R×C, where R and C are the number of rows and
the numbers of columns respectively, Map is formally defined as:

r[i, j] = f(m1[i, j], . . . ,mk[i, j])∀i ∈ {0, . . . , R−1},∀j ∈ {0, . . . , C−1},∀k ∈ {1, 2, 3}

Code Example
1 #inc lude " skepu/matrix . h"
2 #inc lude " skepu/map . h"
3 #inc lude <iostream>
4

5 #de f i n e SIZE 5
6

7 BINARY_FUNC(sum , int , a , b , r e turn a+b ;) //User func t i on
8

9 i n t main () {
10 skepu : : Matrix<int> matrix_one (SIZE , SIZE , 3) ;
11 skepu : : Matrix<int> matrix_two (SIZE , SIZE , 5) ;
12 skepu : : Matrix<int> r e s u l t (SIZE , SIZE) ;
13

14 skepu : : Map<sum> matrix_add (new sum) ; // Map ske l e t on

16 2.3. SkePU

15 matrix_add (matrix_one , matrix_two , r e s u l t) ;
16

17 std : : cout << r e s u l t << ' \n ' ;
18 re turn 0 ;
19 }
20 // output
21 Matrix : (5 X 5)
22 8 8 8 8 8
23 8 8 8 8 8
24 8 8 8 8 8
25 8 8 8 8 8
26 8 8 8 8 8

Listing 2.3: Map skeleton with + as operator.

Reduce

Reduce or reduction is another common data-parallel skeleton with the following
definition in SkePU:

• For a vector operand, the result is computed as a scalar by performing com-
mutative associative binary ⊕ operation between each element in the vector v.
Formally:

r = v[0]⊕ v[1]⊕, . . . ,⊕v[N − 1]

• For a matrix operand, the result is computed as a scalar value by performing
an associative binary ⊕ operation across the matrix m. Formally:

r = m[0, 0]⊕m[0, 1]⊕, . . . ,⊕m[R− 1, C − 1]

Code Example

1 #inc lude " skepu/matrix . h"
2 #inc lude " skepu/ reduce . h"
3 #inc lude <iostream>
4

5 #de f i n e SIZE 5
6

7 BINARY_FUNC(sum , int , a , b , r e turn a+b ;)
8

9 i n t main () {
10 skepu : : Matrix<int> matrix_one (SIZE , SIZE , 3) ;
11 skepu : : Reduce<sum> matrix_sum(new sum) ;
12 i n t r = matrix_sum(matrix_one) ;
13 std : : cout << r << ' \n ' ;
14 re turn 0 ;
15 }
16 // output
17 75

Listing 2.4: Reduce skeleton with + as operator.

2.3. SkePU 17

MapReduce

The MapReduce skeleton is the union of the two basic skeletons: Map and Reduce.
MapReduce perform Map operation first on one or more operand to produce an
intermediate result and then reduction is performed on the same intermediate result,
this way MapReduce avoids unnecessary synchronization, compared to the case
where Map and Reduce operation performed separately on the same data. Vector
and Matrix can be used as operand data types. Formally:

• For a vector operand

r = f(v1[0], . . . , vk[0])⊕ · · · ⊕ f(v1[N − 1], . . . , vk[N − 1])

• For a matrix operand

r = f(m1[0, 0], . . . ,mk[0, 0])⊕ · · · ⊕ f(m1[R− 1, C − 1], . . . ,mk[R− 1, C − 1])

The MapReduce skeleton uses two user-functions, one for mapping and another for
reduction. Apart from that, MapReduce is similar to Map and Reduce skeleton.

Code Example

1 #inc lude " skepu/ vec to r . h"
2 #inc lude " skepu/mapreduce . h"
3 #inc lude <iostream>
4

5 #de f i n e SIZE 5
6

7 BINARY_FUNC(sum , int , a , b , r e turn a+b ;)
8 BINARY_FUNC(mult , int , a , b , r e turn a∗b ;)
9

10 i n t main () {
11 skepu : : MapReduce<mult , sum> dot_product (new mult , new sum) ;
12 skepu : : Vector<int> vect1 (SIZE , 3) ;
13 skepu : : Vector<int> vect2 (SIZE , 2) ;
14 i n t r = dot_product (vect1 , vect2) ;
15 std : : cout << r << ' \n ' ;
16 re turn 0 ;
17 }
18 // output
19 30

Listing 2.5: MapReduce skeleton with + and × as operators.

MapArray

MapArray skeleton can be considered as a variant of Map skeleton.

• For two input vectors an output vector is generated with N elements, where
each element, r[i]∀i ∈ {0, . . . , N − 1}, is the function of the corresponding
element of one of the input vectors v2[i] and any number of elements from the
other input vector v1. Formally:

r[i] = f(v1, v2[i])∀i ∈ {0, . . . , N − 1}

18 2.3. SkePU

• For one input vector and one input matrix, an output vector is generated with
N elements, where each element, r[i]∀i ∈ {0, . . . , N − 1}, is the function of the
corresponding element of the input matrix m[i, j] and any number of element
from the input vector v. Formally:

r[i] = f(v,m[i, j])∀i ∈ {0, . . . , N − 1}, j ∈ {0, . . . ,M − 1}

• For two input matrices, an output matrix is generated with N ×M elements,
where each element, r[i, j]∀i ∈ {0, . . . , N − 1},∀j ∈ {0, . . . ,M − 1}, is the
function of the corresponding element of the input matrix m2[i, j] and any
number of element from the input matrix m1. Formally:

r[i, j] = f(m1,m2[i, j])∀i ∈ {0, . . . , N − 1}, j ∈ {0, . . . ,M − 1}

Code Example
1 #inc lude " skepu/ vec to r . h"
2 #inc lude " skepu/matrix . h"
3 #inc lude " skepu/maparray . h"
4 #inc lude <iostream>
5

6 #de f i n e SIZE 5
7

8 ARRAY_FUNC_MATR_BLOCK_WISE(mvm, int , a , b , SIZE , i n t temp = 0 ;
9 f o r (i n t i = 0 ; i<SIZE ; i++){temp += a [i]∗b [i] ; } re turn temp ;)

10

11 i n t main () {
12 skepu : : MapArray<mvm> vm_mult(new mvm) ;
13 skepu : : Matrix<int> mat1 (SIZE , SIZE , 3) ;
14 skepu : : Vector<int> vect1 (SIZE , 2) ;
15 skepu : : Vector<int> vect_r (SIZE) ;
16 vm_mult(vect1 , mat1 , vect_r) ;
17 std : : cout << vect_r << ' \n ' ;
18 re turn 0 ;
19 }
20 // output
21 30 30 30 30 30

Listing 2.6: MapArray skeleton with vector × matrix.

MapOverlap

The MapOverlap skeleton can be considered as an other variant of Map skeleton.

• For vector operands, each element r[i] of the output vector r is calculated as
the function of multiple adjacent elements of one input vector v with a constant
stride d from i in the input vector. The number of these elements is controlled
by the parameter overlap(d). Formally:

r[i] = f(v[i− d], v[i− d+ 1], . . . , v[i+ d])∀i ∈ {0, . . . , N − 1}

A policy for dealing with pass array bound read is also implemented as edge policy
and can be selected as cyclic or constant ; by default constant is selected.

• For matrix operands, MapOverlap can be used with two-dimensional images for
image-filtering. A filter matrix F is called separable if it can be expressed as the

2.3. SkePU 19

outer-product of two vectors, and requires less computation than non-separable
filter. In case of two-dimensional separable filters, computation can be divided
into two one-dimensional MapOverlap operations, i.e. row-wise and column-
wise overlap, whereas in non-separable overlap computation is defined in terms
of block neighboring elements, which also includes diagonal-neighbor-element
[11].

Code Example
1 #inc lude <iostream>
2 #inc lude " skepu/ vec to r . h"
3 #inc lude " skepu/mapoverlap . h"
4

5 OVERLAP_FUNC (over_f , f l o a t , 2 , a ,
6 re turn a [−3]∗0 .5 f + a [−2]∗0 .4 f + a [−1]∗0 .2 f + a [0] ∗ 0 . 1 f +
7 a [1] ∗ 0 . 2 f + a [2] ∗ 0 . 4 f + a [3] ∗ 0 . 5 f ;
8)
9

10 i n t main ()
11 {
12 skepu : : MapOverlap<over_f> convo lut ion (new over_f) ;
13 skepu : : Vector <f l o a t > v (9 ,10) ;
14 skepu : : Vector <f l o a t > r ;
15 convo lut ion (v , r , skepu : :CONSTANT , (f l o a t) 1) ;
16 std : : cout <<" Result : " <<r <<"\n " ;
17 re turn 0 ;
18 }
19 // output
20 Result : 12 .6 9 .9 18 23 23 23 18 9 .9 12 .6

Listing 2.7: MapOverlap skeleton overlaps 1 element.

Scan

Scan (also called plus-scan, all-prefix-sums) takes a sequence of values and returns a
sequence of equal length for which each element is the sum of all previous elements
in the original sequence [4].

• For a given input vector v of size N an output vector of size N is generated
with each element k calculated as v[0] ⊕ v[1] ⊕ · · · ⊕ v[k − 1] where ⊕ is a
commutative associative binary operator.

• For a matrix operands, row-wise scan is only possible where each row of the
matrix is considered as a vector scan operation.

Code Example
1 #inc lude <iostream>
2 #inc lude " skepu/ vec to r . h"
3 #inc lude " skepu/ scan . h"
4

5 BINARY_FUNC(sum , f l o a t , a , b , r e turn a+b ;)
6

7 i n t main ()
8 {
9 skepu : : Scan<sum> prefix_sum (new sum) ;

20 2.3. SkePU

10 skepu : : Vector <f l o a t > v (15 ,1) ;
11 skepu : : Vector <f l o a t > r ;
12 prefix_sum (v , r , skepu : : INCLUSIVE, (f l o a t) 1) ;
13 std : : cout <<" Result : " <<r <<"\n " ;
14 re turn 0 ;
15 }
16 // output
17 Result : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Listing 2.8: Scan skeleton with plus-scan.

2.3.4 Lazy memory copying

Vector and Matrix container classes make use of lazy memory copying and delay
copying data from the GPU memory to the CPU memory until absolutely needed at
CPU side for further computation, and thus avoids unnecessary memory transfer
operation. A SkePU container keeps track of which parts of it are currently allocated
and uploaded to the GPU. If any modification made to the state of the container then
these modification does not reflect back on the CPU instantly. Instead, the container
waits until an element is accessed on the CPU side before copying data back to
the CPU. Lazy copying outperform regular copying scheme, specially when several
skeletons are called one after the other, with no modification of the container data by
the host in-between. Container classes perform memory-management automatically
without the user to know about it, but if a user wants to explicitly synchronize device-
or host-data, she/he can do so using flush operation, which updates a container from
the device and deallocate its memory [14].

2.3.5 Adaptive off-line tuning mechanism

SkePU provides skeleton implementation for both CPU and GPU devices available
in the system using C++, OpenMP, CUDA, and OpenCL. Every time a skeleton
call is made, a decision has to be taken whether execution will occur on the CPU or
the GPU, and if it is going to be on the GPU then what SkePU implementation will
be used, i.e. CUDA or OpenCL. It has been experimented and observed that small
problem size often outperforms on the CPU with sequential C++ implementation,
however, for larger problem sizes OpenMP with multi-core CPU is relatively faster,
and for even larger problem sizes, execution on the GPU often outperforms the
other two implementations on the CPU. In order to facilitate decision making within
SkePU framework, an offline empirical tuning based technique is implemented that
performs an adaptive hierarchical search. [27].

Chapter 3

Design and Implementation

This chapter particularly describes the improvements made to the SkePU framework
which includes extension of the matrix container type to support sparse matrices.
Our work can be classified into three parts. The first part corresponds to creating a
hierarchical design for matrix container class so as to abstract from specific matrix
representation that further allows automated selection 1 and conversion functions to
work seamlessly with auto selection, this part also includes correcting the behavior
of SparseMatrix 2 class by partially implementing memory management and lookup
policy of almost same magnitude as the DenseMatrix 3 class. The second part
corresponds to implementing generic function for matrix format conversion that
works on both the CPU and the GPU. The last and third part of our work corresponds
to automated matrix container type selection for the locally best SkePU variant
using a greedy approach. Our solution is based on shortest path computation
where switching between different states is possible and depends on a specific call
context.

3.1 Relevance of sparse matrix representations

Sparse matrices constitute the core of scientific computation, especially in large
scale optimization, structural and circuit analysis, computational fluid dynamics
and usually in the numerical solution of sparse linear equation systems. Both linear
algebra and partial differential equations are extensively used to model complex
physical phenomena. Discretization is the mathematical process of transforming
continuous functions and physical models into discrete functions, during this process
large continuous function divided into millions of small discrete functions connected
to their neighbor, producing a large sparse matrix. Sparse matrices find its rele-
vance in computer graphics, hashing [7], image compression, recommender systems
[30], machine-learning; for example, efficient computation of Google’s “PageRank”
algorithm using sparse linear system [9]. It is evident that the performance of a
large number of applications depends on sparse matrices, especially in the field of

1Between dense- sparse-matrix container type
2A dummy implementation was implemented in previous work
3Formerly known as Matrix class in SkePU(1.2)

21

22 3.2. Generic matrix class design

computing in science and engineering where the problem size is often relatively large
and standard computation on dense matrix representation limits the applicability of
certain algorithms that involve matrices of higher order.

In Wilkinson’s definition, a sparse matrix is “any matrix with enough zeroes that
it pays to take advantage of them.” so the density of zeroes in a matrix is like
a lucrative issue [20], and by performing arithmetic operations only on non zero
elements, sparse matrix algorithms can save computer time. Furthermore, by not
storing zeroes, a sparse data structure requires less computer memory compared
to a dense data structure. The literature on efficient sparse matrix data structures
or storage techniques is extensive, several sparse matrix data structures have been
proposed with different optimization strategies, all of which having their different
strengths and weaknesses. A detailed study of standard sparse matrix formats can be
found in [17]. Several libraries have also been developed and implemented for sparse
matrix computation, for example, SPARSKIT [34]. Conceptually, sparse matrix
algorithms are very powerful and many scientific applications rely on them but
achieving the best performance from them is not straightforward, since no universal
structure to store a sparse matrix exists, and irregular matrix structure creates a
challenge for optimization. If the structure of a sparse matrix or the sparsity pattern
is known at compile time the matrix can be stored directly in an optimized format, for
example, a band matrix can be stored in a rectangular matrix whose row dimension
is equal to the bandwidth of the band matrix, and in this way work involved in
performing operations on entire elements of band matrix falls dramatically. Often
sparsity of a sparse matrix cannot be known until run-time and therefore which
storage format to use cannot be decided at compile time, and a wrongly speculated
format may do more harm than good. Since using sparse matrices carries the
potential for more efficient computation than its dense counterpart, there has been
much research conducted in the area for efficiently utilizing sparse matrices.

The first inspiration of our work comes directly from an automatic comprehension
system for sparse matrix computation: SPARAMAT [24]. Computation on sparse
matrix is bandwidth limited but still parallelizable. SPARAMAT presents a system
for concept comprehension that is particularly suitable for sparse matrix code. In
SPARAMAT it was observed that optimizing an algorithm without considering the
structure of the sparse matrix can limit the effectiveness of possible optimization.
SPARAMAT suggests an approach to capture a pattern of computation through con-
cepts, where concept is an abstraction of an externally defined procedure. Through
SPARAMAT it was proved that speculative comprehension techniques plays a critical
role with conventional parallelizing compilers (indirect array indexing prevents com-
piler optimization) in translating parallel programs in order to maximize application
efficiency.

3.2 Generic matrix class design

In this section we describe the class design for generic matrix container type in the
SkePU framework. In our first approach we suggested a design that would provide
a generic interface to interact with matrix class, whether it be dense (full) matrix
or sparse matrix. We designed a class hierarchy to cash in on opportunity from

3.2. Generic matrix class design 23

Figure 3.1: The hierarchical structure of GMatrix class.

compile time polymorphism using C++ template specialization and regular run-time
polymorphism using virtual functions. But soon we realized one problem with the
design was that the matrix class incurred run-time dispatch overhead, which was
caused by virtual functions even if switching between two types (dense and sparse)
was not intended or the user must state the type of matrix at compile time. There
was a trade-off between abstraction and efficiency, and therefore we abandoned
our first approach. We started afresh and by considering technical complexities
of the SkePU framework and constraints from the previous design, we came along
with a new design as shown in Figure 3.1. It is not the perfect design 4 but it
provides flexibility in changing implementation dynamically at low run-time cost,
since we are not using virtual functions. The intent of our design is to provide an
abstract matrix data structure which may have several internal representations, like
DNS, CSR, COO, CUR. Furthermore, SkePU provides an interface with several
methods that take matrix as their parameter, each interface method may have
different implementation variants. Selection between internal representation and
implementation variant must potentially be done dynamically at run-time. Our
current design allows dynamic exchange of matrix representation and implementation
variant at run-time. SkePU skeleton classes are loosely coupled with the abstract
GMatrix class that allows further modification in concrete implementations of data
representation classes without breaking anything else.

3.2.1 Details of GMatrix class

We used GMatrix class as the base class in order to unify DenseMatrix container
class and SparseMatrix container class together. GMatrix class is a generic class
and have been implemented using C++ template. Internally it contains a pointer

4An improved version is included in the appendix B.1 and in future we shall implement this
design after resolving some technical issues with the SkePU framework.

24 3.2. Generic matrix class design

to DenseMatrix class and a pointer to SparseMatrix class, and can be dereferenced
by using get_matrix public function, this function returns pointer of GMatrix type,
which internally points to the object of either DenseMatrix class or SparseMatrix
class depending which concrete container type have been selected at run-time by the
automatic selection mechanism for an ongoing computation.

3.2.2 Details of DenseMatrix class

In this section we go through a quick overview of DenseMatrix class and later in this
section describe conversion function in brief.

The DenseMatrix class is based on direct adaptation of the Matrix class from SkePU
version 1.2, we brought the Matrix class under a common base class for representing
two-dimensional data types. We took care while moving the Matrix class to ensure
that all of the existing functionality in SkePU framework has been preserved. Changes
to the user interface is very minimal considering the flexibility of choosing the right
container type at the right time. Besides regular functions provided in SkePU version
1.2, a new conversion function is implemented to change the format of the matrix
from dense to sparse. The DenseMatrix container class internally makes use of
std::vector to store elements in an adjacent memory location. The DenseMatrix
class provides an interface which is largely compatible with the Vector container
class implemented in SkePU, which supports one dimensional data, much like C++
STL vector but with some added features and variations. The DenseMatrix class
uses an inner proxy class so that it can return proxy elements whenever read and
write operation occurs on the same data in the same context, it also keeps track of
which parts of it are currently allocated and uploaded to the GPU. If a computation
is performed and resulting in change of matrix data in the GPU memory, data
is not directly transferred back to the host memory. Instead, transfer is delayed
until an element is accessed before any copying is done [18]. It also implements
support for allocating and de-allocating page-locked memory using cudaMallocHost
and cudaFreeHost.

The syntax for creating a DenseMatrix instance is same as for the Matrix class in
SkePU (1.2), see Listing 3.1.

Code Example

1 #inc lude " skepu/dense_matrix . h"
2 #de f i n e SIZE 5
3

4 i n t main () {
5 skepu : : DenseMatrix<f l o a t > denseMatrix (SIZE , SIZE) ;
6 denseMatrix . randomize (3 . 0 f , 7 . 0 f) ;
7 std : : cout << denseMatrix << std : : endl ;
8 }
9 // output

10 DenseMatrix : (5 X 5)
11 6 4 5 3 6
12 3 4 5 7 4
13 5 5 3 7 6
14 4 3 4 5 4

3.2. Generic matrix class design 25

15 4 6 5 7 5

Listing 3.1: DenseMatrix instantiation.

3.2.3 Short description of CSR format

Figure 3.2: Pictorial representation of CSR storage scheme.

Since sparse matrices in SkePU library are stored in CSR (Compressed Sparse Row)
format, we would like to discuss CSR format in this section. Compressed sparse
row format is a matrix storage scheme that aims to minimize the storage for sparse
matrices. In this format three compact vectors are maintained: value vector, column
vector and a row vector. A value vector contains all non-zero elements of the matrix
and stores them at contiguous memory locations. A column vector keeps record of
the columns associated with the non-zero elements of the matrix. Lastly, the row
vector gives the offset into the value vector where each row starts. In Figure 3.2 5,
vector ‘Val’ contains non-zero (nnz) elements in row major order. A column vector
‘Col’ is maintained to keep track of elements and associated column. Another vector
‘FirstInRow’ gives the position where each row starts in the ‘Val’ vector; the difference
between two consecutive elements of vector ‘FirstInRow’ gives the number of non-zero
elements present in that row, for example, FirstInRow[2]− FirstInRow[1] gives 2,
which suggests two elements in first row. The storage complexity for CSR format is
of order O(2× nnz + n_rows+ 1), where nnz is the total number of non-zeroes and
n_rows is the number of rows.

Code Example
1 #inc lude " skepu/ sparse_matrix . h"
2 #de f i n e SIZE 5
3 #de f i n e NNZ 21
4 i n t main () {
5 i n t nnz_value = {3 , 1 , 2 , 3 , 1 , 2 , 4 , 1 , 2 , 2 , 4 , 3 , 1 , 1 , 2 , 1 , 1 ,

3 , 2 , 4 , 2} ;
6 s i ze_t rows [6] = {0 , 4 , 8 , 12 , 16 , 21} ;

5In Figure 3.2, A. . . S represent non zero elements and not the character or ascii code.

26 3.2. Generic matrix class design

7 s i ze_t c o l s [2 1] = {0 , 1 , 2 , 4 , 1 , 2 , 3 , 4 , 0 , 1 , 3 , 4 , 0 , 2 , 3 , 4 ,
0 , 1 , 2 , 3 , 4} ;

8 skepu : : SparseMatrix<int> sparse_matrix (SIZE , SIZE , NNZ, nnz_value ,
rows , c o l s) ;

9 sparse_matrix . printMatrixInDenseFormat () ;
10 }
11 // output
12 SparseMatrix (5 X 5) nnz : 21
13 3 1 2 0 3
14 0 1 2 4 1
15 2 2 0 4 3
16 1 0 1 2 1
17 1 3 2 4 2

Listing 3.2: SparseMatrix instantiation using direct constructor for CSR fomat.

3.2.4 Conversion function: DenseToSparse

To be able to implicitly convert matrix format from dense to CSR format, we
implemented the DenseToSparse function inside the DenseMatrix class. This function
is internally parallelized with GPU support using SkePU data-parallel skeletons,
which yields portable performance, see Section 3.2.5. The DenseToSparse method
does not convert the dense-matrix object into the sparse-matrix object. Instead, it
returns a new object of SparseMatrix class. It essentially means that DenseMatrix
object ‘D’ and its counterpart SparseMatrix object ‘S’ having different container
class but still represents the same matrix after conversion. They occupy different
amount of computer memory. But, otherwise they are the same. Their non-zero
elements are equal; the same operation on ‘D’ and ‘S’ yields the same result. Having
two representations of the same data at the same time comes handy when different
algorithms run faster with different data representations, for instance. The decision
of conversion depends on many factors, like density of zeroes, locality of data and
the size of the matrix, all of which are considered while making a decision about
conversion, and taken care by the automatic selection mechanism which is described
in the later part of this chapter.

For some kernels the conversion does not pay off since execution may consist of a
single skeleton call operated on sparse matrix. But we may also assume that the
time needed to convert the matrix can be amortized over several operations on the
same matrix, for example, iterative solvers for systems of linear equations, where we
can see a substantial benefit of matrix format conversion.

Code Example
1

2 #inc lude " skepu/dense_matrix . h"
3 #de f i n e SIZE 10
4

5 i n t main () {
6 skepu : : DenseMatrix<f l o a t > denseMatrix (SIZE , SIZE) ;
7 denseMatrix . randomize (0 . 0 f , 4 . 0 f) ;
8 std : : cout << denseMatrix << std : : endl ;
9 denseMatrix . DenseToSparse ()−>printMatrixInDenseFormat () ;

10 }

3.2. Generic matrix class design 27

11

12 // output
13 Matrix : (10 X 10)
14 3 1 2 0 3 0 1 2 4 1
15 2 2 0 4 3 1 0 1 2 1
16 1 3 2 4 2 0 2 3 2 0
17 4 2 2 3 4 2 3 1 1 2
18 4 3 1 4 4 2 3 4 0 0
19 3 1 1 0 1 3 2 0 1 1
20 0 0 4 2 1 0 1 4 3 2
21 4 0 2 0 4 2 4 4 3 0
22 2 3 1 3 3 4 3 1 4 4
23 2 0 1 3 4 2 1 1 4 4
24

25

26 SparseMatrix (10 X 10) nnz : 83
27 3 1 2 0 3 0 1 2 4 1
28 2 2 0 4 3 1 0 1 2 1
29 1 3 2 4 2 0 2 3 2 0
30 4 2 2 3 4 2 3 1 1 2
31 4 3 1 4 4 2 3 4 0 0
32 3 1 1 0 1 3 2 0 1 1
33 0 0 4 2 1 0 1 4 3 2
34 4 0 2 0 4 2 4 4 3 0
35 2 3 1 3 3 4 3 1 4 4
36 2 0 1 3 4 2 1 1 4 4

Listing 3.3: Conversion from dense matrix to sparse matrix using DenseToSparse()
function.

3.2.5 Implementation of DenseToSparse function

In this section we describe how we implemented DenseToSparse conversion function
using data-parallel skeletons of the SkePU framework.

First we flatten out 2-dimensional DenseMatrix to get 1-dimensional SkePU Vector
using GetArrayRep function of DenseMatrix class that returns the pointer to the
first element of 2-dimensional data. Accessing DenseMatrix 2-dimensional elements
in 1-dimensional array comes free, since DenseMatrix internally uses SkePU Vector
to store its elements, see Listing 3.4.

1

2 //−−User Functions
3 UNARY_FUNC(map_binary , T, a , i f (a) re turn (s i ze_t) 1 ; e l s e re turn (

s i ze_t) 0 ;)
4 GENERATE_FUNC(gser ies_ , s ize_t , s ize_t , index , setVal , r e turn index ;)
5 BINARY_FUNC(iv_scan_ , T, a , b , r e turn a+b ;)
6 VAR_FUNC(multivec_f , s ize_t , char , skepu : : MultiVector , index , cont ,
7 T∗ in1 = subvector (cont , 0 , T∗) ;
8 T∗ in2 = subvector (cont , 1 , T∗) ;
9 T ∗ in3 = subvector (cont , 2 , T∗) ;

10 s i ze_t ∗ in4 = subvector (cont , 3 , s i ze_t ∗) ;
11 s i ze_t ∗ in5 = subvector (cont , 4 , s i ze_t ∗) ;
12 s i ze_t ∗ i n f o = subvector (cont , 5 , s i ze_t ∗) ;
13 i f (in1 [index] > 0) {
14 in3 [s ta t i c_cas t <size_t >(in2 [index])] = in1 [index] ;

28 3.2. Generic matrix class design

15 in4 [s ta t i c_cas t <size_t >(in2 [index])] = index%in f o [0] ;
16 } i f ((index%in f o [0]) ==0){ in5 [index / i n f o [0]] = s ta t i c_cas t <

size_t >(in2 [index]) ;
17 } return index ;
18)
19

20 //−−Function De f i n i t i o n
21 template <typename T>
22 SparseMatrix<T>∗ DenseMatrix<T>: : DenseToSparse () {
23

24 //−− l o c a l s
25 s i ze_t rows = th i s−>m_rows ;
26 s i ze_t c o l s = th i s−>m_cols ;
27 s i ze_t iv_s i z e = th i s−>m_data . s i z e () ;
28

29 //−−value vector , i n t e r n a l use only
30 Vector<T> iv_vctr ;
31 iv_vctr . a s s i gn (th i s−>GetArrayRep () , th i s−>GetArrayRep ()+iv_s i z e) ;

Listing 3.4: Implementation of DenseToSparse function.

We performed SkePU Map skeleton over the retrieved SkePU Vector in order to
trace out non-zero values in a matrix; map skeleton marks 1 if element is non-zero
otherwise 0. See Listing 3.5.

12 //−−map c a l l
13 Vector<T> map_vctr ;
14 Map<map_binary> maptobinary (new map_binary) ;
15 maptobinary (iv_vctr , map_vctr) ;

Listing 3.5: Implementation of DenseToSparse function.

Then we performed exclusive scan (also called prefix sums) skeleton, which takes a
sequence of values and returns a sequence of equal length for which each element is
the sum of all previous elements in the original sequence [4]. See Listing 3.6

16 //−−scan c a l l
17 Vector<T> scan_vctr ;
18 Scan<iv_scan_> vctrScan (new iv_scan_) ;
19 vctrScan (map_vctr , scan_vctr , skepu : : EXCLUSIVE) ;
20

21 //−−nnz
22 s i ze_t nnz ;
23 i f (iv_vctr (iv_s ize −1)==0)nnz=(scan_vctr [iv_s ize −1]) ;
24 e l s e nnz=(scan_vctr [iv_s ize −1])+1;

Listing 3.6: Implementation of DenseToSparse function.

We then pass the result obtained from scan skeleton and pointer to the elements of
the DenseMatrix object to MapArray skeleton using MultiVector, which is a special
variant of MapArray skeleton and allows arbitrary number of operands to MapArray
skeleton, see Listing 3.7.

25

26

27 //−−c a l l mu l t ivec to r
28 skepu : : Generate<gser ies_> g s e r i e s (new gse r i e s_) ;
29 Vector<size_t> ske leton_index ;

3.2. Generic matrix class design 29

30 g s e r i e s . setConstant (1) ;
31 g s e r i e s (iv_s ize , ske leton_index) ;
32

33 skepu : : Vector<size_t> r e s u l t (i v_s i z e) ;
34

35 T∗ sparse_vector = new T[nnz] ;
36 s i ze_t ∗ c o l I n d i c e s = new s ize_t [nnz] ;
37 s i ze_t ∗ row_ptr = new s ize_t [rows +1] ;
38

39 s i ze_t i n f o [] = { c o l s } ;
40

41 skepu : : MapArray<multivec_f> f i l l e r (new mult ivec_f) ;
42 skepu : : Mult iVector conta ine r ;
43 conta ine r . a l l ocData (6) ;
44 conta ine r . addData (0 , i v_s i z e ∗ s i z e o f (T) , &iv_vctr [0]) ; // va lue s
45 conta ine r . addData (1 , i v_s i z e ∗ s i z e o f (T) , &scan_vctr [0]) ; // p o s i t i o n s
46 conta ine r . addData (2 , nnz∗ s i z e o f (T) , sparse_vector) ; // sparse_val
47 conta ine r . addData (3 , nnz∗ s i z e o f (s i ze_t) , c o l I n d i c e s) ; // sparse_co l
48 conta ine r . addData (4 , rows∗ s i z e o f (s i ze_t) , row_ptr) ; // row_pointer
49 conta ine r . addData (5 , 1∗ s i z e o f (s i ze_t) , i n f o) ;
50

51 f i l l e r (skeleton_index , conta iner , r e s u l t) ;
52 row_ptr [rows] = nnz ;

Listing 3.7: Implementation of DenseToSparse function.

We use the information generated from Scan skeleton to calculate pointer to non-zero
elements, pointer to column indices and row pointer, which we pass to the constructor
of SparseMatrix class to create an object. Computation on this object yields the
same result as the computation on the source DenseMatrix object.

55 //−−con s t ruc to r c a l l
56 m_sparse = new SparseMatrix<T>(rows , co l s , nnz , sparse_vector ,

row_ptr , c o l I n d i c e s) ;
57

58 re turn m_sparse ;
59 }

Listing 3.8: Implementation of DenseToSparse function.

3.2.6 Details of SparseMatrix class

The SparseMatrix class provides the concrete sparse implementation for the abstract
GMatrix class by specifying methods to store two-dimensional sparse data. It offers
high performance and low memory usage. It implements the state-of-the-art CSR
(Compressed Row Storage) format, which is described in the Section 3.2.3. It also
provides a look-up mechanism that keeps track of which parts of the sparse matrix are
currently allocated and uploaded to the GPU. If any operation resulted in changing
the matrix state in the GPU memory, data is not directly transferred back to the
host memory. Instead, the SparseMatrix waits until an element is accessed before
any copying is done. The SparseMatrix class works similar to DenseMatrix class in
many ways and supports all SkePU skeletons.

Code Example

30 3.2. Generic matrix class design

1 \ t e x t i t {Code Example}
2 #inc lude " skepu/ sparse_matrix . h"
3 #de f i n e SIZE 5
4 #de f i n e DENSITY 60
5 i n t main () {
6 skepu : : SparseMatrix<f l o a t > sparse_matrix (SIZE , SIZE , ((SIZE∗SIZE)

∗ .01∗(100−DENSITY)) , 3 . 0 f , 7 . 0 f) ;
7 sparse_matrix . printMatrixInDenseFormat () ;
8 }
9 // output

10 SparseMatrix (5 X 5) nnz : 10
11 6 0 0 3 0
12 0 0 3 4 0
13 0 0 6 6 0
14 0 0 0 4 3
15 0 6 0 6 0

Listing 3.9: SparseMatrix instantiation.

3.2.7 Conversion function: SparseToDense

Besides several useful utility functions and basic operations, SparseMatrix class
provides a conversion function: SparseToDense, which is the counterpart of Dense-
ToSparse function in the DenseMatrix class. Just like the DenseToSparse function,
the conversion function in SparseMatrix class internally parallelized with GPU sup-
port using SkePU data-parallel skeletons. Description of its implementation is given
in the Section 3.2.8.

Code Example
1

2 #inc lude " skepu/ sparse_matrix . h"
3 #de f i n e SIZE 10
4 #de f i n e DENSITY 60
5

6 i n t main () {
7 skepu : : SparseMatrix<f l o a t > sparse_matrix (SIZE , SIZE , ((SIZE∗SIZE)

∗ .01∗(100−DENSITY)) , 3 . 0 f , 7 . 0 f) ;
8

9 sparse_matrix . printMatrixInDenseFormat () ;
10

11 std : : cout << ∗(sparse_matrix . SparseToDense ()) ;
12 re turn 0 ;
13 }
14

15

16 SparseMatrix (10 X 10) nnz : 40
17 0 5 0 0 0 5 0 6 6 0
18 0 3 0 6 4 0 0 0 6 0
19 0 5 0 0 6 5 0 0 6 0
20 0 0 0 5 0 0 6 3 3 0
21 0 0 5 3 0 6 0 0 0 5
22 5 6 0 0 0 0 6 0 6 0
23 0 6 0 3 0 5 0 3 0 0
24 6 0 0 0 3 0 0 3 5 0
25 5 0 7 0 0 5 0 3 0 0

3.2. Generic matrix class design 31

26 0 5 0 3 5 0 7 0 0 0
27

28 Matrix : (10 X 10)
29 0 5 0 0 0 5 0 6 6 0
30 0 3 0 6 4 0 0 0 6 0
31 0 5 0 0 6 5 0 0 6 0
32 0 0 0 5 0 0 6 3 3 0
33 0 0 5 3 0 6 0 0 0 5
34 5 6 0 0 0 0 6 0 6 0
35 0 6 0 3 0 5 0 3 0 0
36 6 0 0 0 3 0 0 3 5 0
37 5 0 7 0 0 5 0 3 0 0
38 0 5 0 3 5 0 7 0 0 0

Listing 3.10: Conversion from sparse matrix to dense matrix using SparseToDense()
function.

3.2.8 Implementation of SparseToDense function

1 //−−User Functions
2 BINARY_FUNC(scan_row , T, a ,b , r e turn a>b?a : b ;)
3 GENERATE_FUNC_MATRIX(gser ies_ , T, T, ind_x , ind_y , setVal , r e turn 0 ;

)
4 GENERATE_FUNC(indexser i e s_ , s ize_t , s ize_t , index , setVal , r e turn

index ;)
5 VAR_FUNC(f i l l F u l lMa t r i x , s ize_t , T, skepu : : MultiVector , index , cont ,
6 s i ze_t ∗ row_vector = subvector (cont , 0 , s i z e_t ∗) ;
7 s i ze_t ∗ co l_ ind i c e s = subvector (cont , 1 , s i z e_t ∗) ;
8 T∗ sparse_values = subvector (cont , 2 , T∗) ;
9 T∗ matr ix_fu l l = subvector (cont , 3 , T∗) ;

10 s i ze_t ∗ i n f o = subvector (cont , 4 , s i ze_t ∗) ;
11 i f (index<i n f o [2]) {
12 matr ix_fu l l [(i n f o [1] ∗ row_vector [index]) + co l_ ind i c e s [index]] =

sparse_values [index] ; }
13 re turn index ;
14)
15

16

17 //−−Function De f i n i t i o n
18 template <typename T>
19 DenseMatrix<T>∗ SparseMatrix<T>: : SparseToDense () {
20

21 typede f typename skepu : : Vector<size_t >: : i t e r a t o r i t e r a t e ;
22

23 // g e t t i n g rows and c o l s o f spar s e matrix
24 s i ze_t num_rows = th i s−>total_rows () ;
25 s i ze_t num_cols = th i s−>to ta l_co l s () ;
26 s i ze_t nnz = th i s−>total_nnz () ;
27

28 T∗ sparse_values = th i s−>get_values () ;
29

30 Vector<size_t> row_vec (nnz , 0) ; // p ro c e s s i ng data f o r scan
31 i t e r a t e itr_dn = row_vec . begin () ;
32

33 // over spar s e rows
34 f o r (s i ze_t i_row=0; i_row<num_rows ; ++i_row) {

32 3.2. Generic matrix class design

35 ∗(itr_dn+m_rowPtr [i_row]) = i_row ;
36 }
37

38 skepu : : Scan<scan_row> f i l lRow (new scan_row) ;
39 f i l lRow (row_vec , skepu : : INCLUSIVE) ;
40

41 // Generating a dense matrix
42 DenseMatrix<T>∗ matr ix_fu l l = new DenseMatrix<T>(num_rows , num_cols

) ;
43 Generate<gser ies_>gen e r a t eS e r i e s (new gse r i e s_) ;
44 g en e r a t eS e r i e s (num_rows , num_cols , ∗ matr ix_fu l l) ;
45

46 //data p ro c e s s i ng f o r con s t ru c t i ng dense−matrix ob j e c t
47 s ize_type matr ix_size= num_rows∗num_cols ;
48 skepu : : Vector<T> r e s u l t (1) ; // r e s u l t
49

50 skepu : : Generate<indexser i e s_> g s e r i e s (new indexse r i e s_) ;
51 Vector<size_t> ske leton_index ;
52 g s e r i e s . setConstant (1) ;
53 g s e r i e s (matrix_size , ske leton_index) ;
54

55 T∗ array_rep = matr ix_ful l−>GetArrayRep () ;
56

57 s i ze_t i n f o [] = {num_rows , num_cols , nnz } ;
58 skepu : : MapArray<f i l l F u l lMa t r i x > d en s eF i l l e r (new f i l l F u l l Ma t r i x) ;
59 skepu : : Mult iVector conta ine r ;
60 conta ine r . a l l ocData (5) ;
61 conta ine r . addData (0 , nnz∗ s i z e o f (s i ze_t) , &row_vec [0]) ;
62 conta ine r . addData (1 , nnz∗ s i z e o f (s i ze_t) , &m_colInd [0]) ;
63 conta ine r . addData (2 , nnz∗ s i z e o f (T) , &sparse_values [0]) ;
64 conta ine r . addData (3 , matr ix_size ∗ s i z e o f (T) , &array_rep [0]) ;
65 conta ine r . addData (4 , 3∗ s i z e o f (s i ze_t) , i n f o) ;
66 d en s eF i l l e r (skeleton_index , conta iner , r e s u l t) ;
67

68 skepu : : DenseMatrix<T>∗ exp = new skepu : : DenseMatrix<T>(num_rows ,
num_cols , array_rep , matr ix_size) ;

69

70 re turn exp ;
71

72 }

Listing 3.11: Implementation of SparseToDense() function.

SparseMatrix stores data using three compact vectors: row vector, column vector
and value vector. Value vector and column vector is of equal length but row vector
is not. In SparseToDense function first we make new row vector of same size as of
column vector using SkePU Scan skeleton as shown in Figure 3.3, then we use SkePU
Generate skeleton to generate series of numbers starting from zero for indexing into
the one dimensional array. We use MapArray (MultiVector) skeleton in order to fill
the correct value at correct position, starting from the memory address which was
passed as an argument to the MapArray skeleton. We implemented a new constructor
in the DenseMatrix class in order to construct a two-dimensional dense matrix object
from a one-dimensional array. For pictorial representation, please refer to Figure
3.3.

3.3. Automatic selection mechanism 33

Figure 3.3: Graphical representation for the implementation of SparseToDense
function.

Memory lookup mechanism

All container classes provide lookup functions to find out the state of their data
in different memories. This information is useful in deciding which skeleton im-
plementation to invoke, for example, if operand data of a skeleton call is already
present in a device memory then it is more efficient to use the CUDA implementation
variant on that GPU device. Similarly, it could help in optimizing communication
patterns between different device memories without involving the main memory
if the underlying GPU platform supports it. We provided the same lookup func-
tionality in the SparseMatrix class. Look-up functionality is provided by internal
device_pointers which are used to map a specific section of the memory on the host
to its corresponding copy on the device.

3.3 Automatic selection mechanism

In this section, we explain an automatic selection mechanism. The main function
of automatic selection mechanism is to dynamically bind the appropriate data
representation with a skeleton call, and also to select the best implementation
variant for the skeleton invocation by considering information about the underlying
hardware as well as the actual computation and locality of the operand data at
hand. Automatic selection directly relates to the problem of conditional component
composition, which is a special case discussed in [13]. In the context of the SkePU
framework, composition is the selection of an implementation among possibly many
implementation variants, which is based on a performance criterion like execution
time, for instance. Please refer to [12] and [16] for detailed description of auto-tuning
and adaptive implementation selection mechanism applied in previous work on the
SkePU framework.

Designing locality aware data structures and algorithms can be an intimidating and
time consuming task, because the best implementation may vary from one computer
system to another and can have performance implications. Ideally, we would like
to select the best implementation along with the data structure with which the

34 3.3. Automatic selection mechanism

implementation runs fastest.

SkePU targeted this problem by dividing it into two phases; in the first phase
SkePU collects profile data at deployment time by explicitly running implementation
variants at different data points with different matrix container types in order to
model execution time corresponding to matrix container type. In the second phase,
dynamic selection mechanism recognizes a specific scenario in an actual call, which
is based on prediction given by modeled equations on the data collected in first
part.

3.3.1 Empirical cost estimation: Phase one

In order to evaluate execution time on different architecture with different matrix
container types we modeled polynomial functions. Execution time is given as a
function of matrix size(x) and density of zeroes(y) in the matrix. Formally:

Xt(x, y) (3.1)

where:

Xt = execution time taken by a computation with container type t.

We modeled polynomial functions in order to evaluate how much time a conversion
from container type t to t’ will take. Conversion time is given as a function of matrix
size(x) and density of zeroes(y) in the matrix. Formally:

Ct′

t (x, y) (3.2)

where:

Ct′
t (x, y) = conversion time taken in converting from container type t to t’.

We also considered the time taken in moving data (bytes) from host to device, and
vice versa. Transfer time can be given by a modeled function. Formally:

T (bytes) (3.3)

The time taken in moving a dense matrix of N ×N dimension from the CPU to the
GPU can be calculated as follows.

TDENSE(N,N, element_type) = T (sizeof(element_type)×N ×N) (3.4)

Similarly, time taken in moving a sparse matrix of N ×N dimension with NNZ non
zeroes, can be calculated as follows.

TSPARSE(N,N,NNZ, element_type) = T (sizeof(element_type)×(2×NNZ+N+1))
(3.5)

3.3. Automatic selection mechanism 35

Figure 3.4: Pictorial representation of GPU/CPU state machine.

While modeling transfer time, we observed that the time taken in moving data from
host to device and from device to host, on our Tesla M2050 GPU-based testing
platform takes almost equal time. Thus, we considered THtoD ≈ TDtoH ≈ T .

We modeled these functions using regression analysis and curve fitting tool in Matlab.
Please refer to Section 4.4.1 where we showed plotted data along with best fit curve
that shows the trend of data points.

3.3.2 Dynamic selection: Phase two

Our target system is having two execution modes, namely, the CPU mode and
the GPU mode. Also, as we discussed earlier, SkePU provides functionally equal
implementation variants for these execution modes. Furthermore, now we have two
data representations of same data for which different implementation variant perform
differently in different execution mode.

For the sake of simplicity we adopt the following conventions to refer to the above
scenario:

M : execution mode (CPU or GPU);

K : kernel call, specific to mode M;

O: operand data type(Sparse Matrix or Dense Matrix);

THtoD : transfer time taken in moving data from CPU to GPU;

TDtoH : transfer time taken in moving data from GPU to CPU;

CStoD : conversion time taken to convert Sparse- to Dense-Matrix;

CDtoS : conversion time taken to convert Dense- to Sparse-Matrix;

We visualize the above situation with the help of a cyclic directed graph. In Figure 3.4,
each node represents the computation time of kernel K with operand O in execution

36 3.3. Automatic selection mechanism

mode M, and each edge represents the cost associated to reach its connected node.
We can assume that from each node there exists at least one shortest path for which
the accumulated time over the edges and the target node is minimum. We use
Dijkstra’s algorithm to find the shortest path possible from each active node and
switch to the best predicted node. Switching may include conversion from one matrix
format to another; in a GPU-based system, it may also include data transfer from
host to device or vice versa.

Toggle class and switching mechanism

Switching is carried out by a mediator class: Toggle, which is represented using
the class diagram in Figure 3.5. Toggle class act as a mediator between switching
mechanism, the matrix container class and the prediction mechanism. Model class
maintains a cost matrix, and the cost of particular node or an edge can be queried
from this cost matrix. Switching class is responsible for performing all necessary steps
in order to make predicted plan feasible on the predicted execution platform (CPU or
GPU), it may require matrix format conversion or data transfer or both. Switching
class maintains a reference to the skepu::BackEndParams which is responsible for
making a hardware specific skeleton call, for example, recognizing the number of
threads per block for a particular GPU device.

Toggle class has refresh function among others. The refresh function is an important
function because several functions of different classes are invoked inside refresh
function in order to perform switching between container types, and also to set the
predicted execution platform.

1

2 template <typename T>
3 void Toggle<T> : : r e f r e s h () {
4 s e t_state () ;
5 m_path . pass_matrix_status (s t a t e s) ;
6 m_path . compute_node () ;
7 p r ed i c t i on = m_path . p r ed i c t i on () ;
8 Switch execute (p r ed i c t i o n) ;
9 execute . set_matrix_status (s t a t e s) ;

10 execute . switch_to (m_container) ;
11 bp=execute . get_predicted_backend_parameters () ;
12 }

Listing 3.12: Implementation of refresh() function.

The working of refresh function is straight forward. First it checks, what is the current
state of GMatrix object; possible states are: DenseMatrix on CPU, 0; SparseMatrix
on CPU, 1; DenseMatrix on GPU, 2; SparseMatrix on GPU, 3. Then it passes the
current state of the GMatrix to the Path class so that Path object can calculate all
possible paths from the current states to all possible valid states in the graph, which
is shown in Figure 3.4, and returns the state that incurs least execution time. This
information is then passed to the Switch class, which checks whether the GMatrix
is already in the predicted state, if yes, then it let the computation start with the
predicted state, and if no, then it takes necessary steps to make computation feasible
on the predicted state, and depending on the prediction it may convert the matrix
format or transfer the matrix from host to device, or vice versa.

3.3. Automatic selection mechanism 37

Our current implementation of automatic switching mechanism allows to add more
nodes to the graph in Figure 3.4, which will come handy in future when more
execution mode will be added, for example, it is more likely that OpenCL execution
mode will be added in future work. Source code listing of each class is available in
Appendix C.

Figure 3.5: Class diagram of the Toggle class, which acts as a mediator between
other classes.

Code Example
1 #de f i n e SKEPU_OPENMP
2 #de f i n e SKEPU_CUDA
3 #de f i n e SKEPU_NUMGPU 1
4 #de f i n e SKEPU_OPENMP_THREADS 2
5 #inc lude " skepu/gmatrix . h"
6 #inc lude " skepu/dense_matrix . h"
7 #inc lude " skepu/ sparse_matrix . h"
8 #inc lude " t ogg l e . h"
9 #inc lude " he lpe r . h"

10 #inc lude <type in fo>
11

12 //#de f i n e DISPLAY
13 #de f i n e COMPARE
14

15 #de f i n e SIZE 7500
16

17 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
18 ∗∗USER FUNCTIONS∗∗
19 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
20

21 ARRAY_FUNC_MATR_BLOCK_WISE(map_f , f l o a t , a , b , SIZE , f l o a t temp = 0 ;
22 f o r (u int i = 0 ; i<SIZE ; i++){
23 temp += a [i]∗b [i] ;
24 }

38 3.3. Automatic selection mechanism

25 re turn temp ;
26)
27

28 ARRAY_FUNC_SPARSE_MATR_BLOCK_WISE(arr_s , f l o a t , a , b , nnz , aIdx , SIZE ,
f l o a t r e s = 0 ;

29 f o r (s i ze_t i =0; i<nnz ; ++i) {
30 r e s += a [aIdx [i]] ∗ b [i] ;
31 }
32 re turn r e s ;)
33

34

35 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
36 ∗ MAIN FUNCTION ∗
37 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
38 i n t main () {
39

40 i n t s p a r s i t y =90;
41

42 skepu : : Model<f l o a t > model (SIZE , s p a r s i t y) ;
43

44 skepu : : GMatrix<f l o a t > generic_mat ;
45 skepu : : DenseMatrix<f l o a t > dense_mat (SIZE , SIZE) ;
46 skepu : : Vector<f l o a t > vector_in1 (SIZE , 2) ;
47 skepu : : Vector<f l o a t > vector_r ;
48 skepu : : Vector<f l o a t > vec to r_d i r ec t (SIZE) ;
49 skepu : : Toggle<f l o a t > togg l e (generic_mat) ;
50

51 t ogg l e . set_model (model) ;
52 generic_mat (dense_mat) ;
53 generic_mat . dense_matrix−>randomize (3 . 0 f , 7 . 0 f) ;
54 f i l lW i t hP r ob ab i l i t y (∗ (generic_mat . dense_matrix) , s p a r s i t y) ;
55

56 /∗comment !
57 ∗gmatrix {0 ,1 ,2 ,3}
58 ∗/
59 t ogg l e . p r i n t () ;
60

61 /∗comment !
62 ∗update search mechanism with cur rent s t a tu s o f GMatrix
63 ∗/
64 t ogg l e . r e f r e s h () ;
65 t ogg l e . best_plan () ;
66

67

68 i f (type id (∗ (generic_mat . get_matrix ())) == type id (skepu : : DenseMatrix<
f l o a t >)) {

69 std : : cout << "Dense Matrix \n" ;
70 skepu : : DenseMatrix<f l o a t >∗ dense_in
71 = dynamic_cast<skepu : : DenseMatrix<f l o a t >∗>(generic_mat . get_matrix

()) ;
72 skepu : : MapArray<map_f> add_func (new map_f) ;
73 add_func . setExecPlan (t ogg l e . getPred ic tedPlan ()) ;
74 add_func (vector_in1 , ∗(dense_in) , vector_r) ;
75

76 /∗ !
77 ∗Result V e r i f i c a t i o n and Display Output f o r Demonstration only
78 ∗/
79 #i f d e f COMPARE

3.3. Automatic selection mechanism 39

80 directMV (vector_in1 , ∗(dense_in) , vec to r_d i r ec t) ;
81 #end i f
82 #i f d e f DISPLAY
83 std : : cout << ∗(dense_in) ;
84 std : : cout << "\n SKEPU RESULT : " << vector_r << "\n" ;
85 std : : cout << "\n DIRECT RESULT : " << vecto r_d i r ec t << "\n" ;
86 #end i f
87

88 }
89 e l s e i f (type id (∗ (generic_mat . get_matrix ())) == type id (skepu : :

SparseMatrix<f l o a t >)) {
90 std : : cout << "Sparse Matrix \n" ;
91 skepu : : SparseMatrix<f l o a t >∗ sparse_in
92 = stat i c_cas t <skepu : : SparseMatrix<f l o a t >∗>(generic_mat . get_matrix

()) ;
93 skepu : : MapArray<arr_s> add_func (new arr_s) ;
94 add_func . setExecPlan (t ogg l e . getPred ic tedPlan ()) ;
95 add_func (vector_in1 , ∗(sparse_in) , vector_r) ;
96

97 /∗ !
98 ∗Result V e r i f i c a t i o n and Display Output f o r Demonstration only
99 ∗/

100 #i f d e f COMPARE
101 directspmv (vector_in1 , ∗(sparse_in) , vec to r_d i r e c t) ;
102 #end i f
103 #i f d e f DISPLAY
104 sparse_in−>printMatrixInDenseFormat () ;
105 std : : cout << "\n SKEPU RESULT : " << vector_r << "\n" ;
106 std : : cout << "\n DIRECT RESULT : " << vecto r_d i r ec t << "\n" ;
107 #end i f
108 }
109

110 #i f d e f COMPARE
111 std : : cout << (compare_results (vector_r , vec to r_d i r e c t) ?"\ nFai led . . . ! !

" : "\ nSucess . . . ! ! \ n") ;
112 #end i f
113

114 std : : cout << "\n" ;
115 t ogg l e . r e f r e s h () ;
116 t ogg l e . p r i n t () ;
117 t ogg l e . best_plan () ;
118 std : : cout << "\n" ;
119

120

121 re turn 0 ;
122 }
123

124 \\ output
125 Current Status o f GMatrix
126 0
127 Pred ic ted Plan
128 0 −> 3
129 Sparse Matrix
130

131 Sucess . . . ! !
132

133 Current Status o f GMatrix
134 013

40 3.3. Automatic selection mechanism

135 Pred ic ted Plan
136 3 −> 3

Listing 3.13: Code example to demonstrate automatic switching.

Code explanation

Line number 1 to line number 10; some header file inclusion, which are important in
order to run this program.

Line number 12 to line number 15; macro definitions, SIZE is used to set the matrix
of SIZE × SIZE elements. COMPARE macro enables comparison between the
result generated by SkePU extension and result generated by a helper function that
calculates matrix vector multiplication in a traditional sequential C++ way, so that
we can verify the correctness of the result generated by the SkePU library.

Line 21 to 32; define SkePU user function to calculate GeMV and SpMV.

Line 40 to line 49; some declaration and initialization. We explicitly set the percentage
of zeroes to 90 and passed SIZE and percentage to the Model class, which calculates
all possible costs. Line number 49, we passed instance of the GMatrix class to the
Toggle class, so that the Toggle class can reason about GMatrix states and also to
adapt GMatrix with the predicted state.

Line number 59; Toggle class prints the current states of the GMatrix object.

Line number 64; Toggle class adapts GMatrix with the predicted state 6 (adaptation
is performed under the hood). Here we want to discuss about refresh function, which
is declared in the Toggle class. Please refer to Appendix C, Listing C.2, line number
72. Function set_state checks the current state of the GMatrix object and passes this
information to the Path class object: m_path. At line number 76, m_path invokes
compute_node function of the Path class, which calculates the shortest distance
from active states to all possible states of the GMatrix object (currently 4 states
are possible), please see the Figure 3.4. Function compute_node is implemented in
path.inl, please see Appendix C, Listing C.8, line number 85. Now we discuss the
implementation of compute_node function. At line number 90, we have declared
an array to store the plain computation cost of each node, for example, CpDeHo
gives the computation cost with dense matrix as the operand data type on the CPU,
similarly CpDeDv gives the computation cost with dense matrix as the operand data
type on the GPU and so forth. Line number 91 declares an iterator to iterate over
active states of the GMatrix object. We maintain a key value pair to account for
total cost incurred in reaching and computing on the target node, on line number
92. Then we iterate over each active node in order to find out the cost to reach
other 3 nodes from each active node; the outer most while loop runs at most 4 times
when all states are active and the inner while loop runs at most 4 times to calculate
the aggregate computation cost, i.e. the cost incurred in reaching the target node
plus the computation cost; furthermore, the inner loop runs 4 times and not 3 times
because it also accounts for the computation cost on the source node as well, for
example, if 1 is the active node then the algorithm will calculate the cost from (1 to

6We use term state and node interchangeably.

3.3. Automatic selection mechanism 41

1), (1 to 2), (1 to 3) and (1 to 4). We used Dijkstra’s algorithm to find the shortest
path between the source and the target node, which is invoked at line number 96 and
implemented at line number 16, please see Appendix C, Listing C.8. After executing
compute_node function, we jump back to refresh function in toggle.inl, please see
Appendix C, Listing C.2. At line 77 and 78 we could uncomment all_costs and
sorted_cost functions in order to print all possible calculated cost in random order
or in sorted order. In sorted order, the first entry gives the best node, which is
more adequately return by prediction function on line 79. The information about
best node is passed to the Switch class, which depending on transitions involved in
moving from the source node to the target node may perform conversion of the data
structure or data transfer or both.

Line 68 to line 108; GeMV or SpMV is computed depending on what matrix format
GMatrix object is adapted to.

Line 110 to line 122; result is compared and current states of the GMatrix is printed;
what will be the next prediction if matrix vector multiplication is computed again
on the same matrix, is also printed.

Some explanation on the generated output.

Current Status of GMatrix : Some text.

0 : GMatrix initialized as dense matrix.

Predicted Plan: Some text.

0->3 : Prediction; that current state is 0 but state 3 will incur least cost.

Sparse Matrix : Computation performed with sparse matrix.

Success...!!! : Result compared; which turned out to be successful.

Current Status of GMatrix : Some text.

013 : Printed out that in which states GMatrix currently exists.

Predicted Plan : Some text.

3->3 : Next prediction says GMatrix is in right format at right place.

Chapter 4

Evaluation

4.1 Experimental results

In this chapter, we include and discuss experimental results in order to verify the
functionality, performance and limitation of our extension to the SkePU framework.
To demonstrate automatic selection and automatic conversion we consider a matrix
vector multiplication kernel. The input matrix operand is passed using a generic
matrix container that can internally delegate actual computation either on Dense-
Matrix container type or SparseMatrix container type. While creating an instance of
the GMatrix type we must mention on which format we actually want to initiate our
computation, as shown in Listing 4.1, but it does not mean computation will run on
the matrix format suggested by the user at the time of instantiation. Instead, auto-
matic switching mechanism makes decision under the hood and decides whether the
container type suggested by user is the right candidate for an ongoing computation
or need to convert into other format, it also decides whether computation will run
on the GPU or the CPU.

Code Example
1 #inc lude " skepu/gmatrix . h"
2 #inc lude " skepu/dense_matrix . h"
3 #de f i n e SIZE 5
4 us ing namespace skepu ;
5

6 i n t main () {
7 GMatrix<f l o a t > gener ic_matr ix (DenseMatrix<f l o a t >(SIZE , SIZE)) ;
8 re turn 0 ;
9 }

Listing 4.1: GMatrix instantiation.

4.2 Testing platform

We use a GPU based heterogeneous system: Fermi. A brief description of this
platform is shown in Table 4.1.

42

4.3. Methodology 43

Testbed
Specification Platform A
Machine Fermi
CPU cores 8
CPU type Intel(R) Xeon(R) E5520 @

2.27GHz
GPUs 2
GPU type Tesla M2050 Processor
OS Linux 4.4.5-1-ARCH
Compiler gcc (GCC) 5.3.0
CUDA Capa-
bility

2

SkePU 1.2

Table 4.1: Testing platform specification.

4.3 Methodology

For evaluation purpose we generated almost 200 matrices of each type(dense, sparse),
and randomized over the number of rows, columns and non-zero elements(nnz). We
implemented a helper function in C++ to fill a matrix with specified number of
zeroes 1 at random position inside a matrix. In order to estimate actual computation
cost of a kernel, in our case SpMV and GeMV, we executed each kernel on the GPU
as well on the CPU, we parameterized SpMV kernel with sparse matrix and GeMV
kernel with dense matrix operand type, we repeated this process for 200 randomly
generated matrices. The size of operand matrix varied from 10, 000 to 49 million
elements and the density of zeroes varied from 0% i.e. fully dense to 90% i.e. 10%
dense. Please note that on Fermi machine we only used one processor with hyper
threading. Since Fermi has 8 cores that makes it immensely powerful on CPU side;
consequently, the OpenMP SpMV kernel on CPU outperforms other three variants of
matrix vector multiplication whenever the number of zeroes falls below certain level,
which makes the SpMV GPU version to lose every time. But our intention in this
evaluation work was to show that switching is possible not only between neighbor
nodes but also between any node in the graph, please see Figure 3.4.

4.4 Evaluation

As we discussed in the previous chapter that our work is divided into two phases:
a training phase at library deployment time and a dynamic selection phase at
run-time.

1Percentage of zeroes, in a N ×N matrix 50% zeroes yields dN2 ÷ 2e zeroes.

44 4.4. Evaluation

4.4.1 Evaluating the first phase

In the first phase we generated profile data corresponding to our application scenario
which we used to construct general cost estimation model for the approximate
judgment of the cost for the computation. We characterize our cost model into
three specific cost estimation models in order to predict estimated execution time,
conversion time and transfer time.

We used regression and curve fitting in order to get predicted execution time de-
pending on size of the matrix and percentage of zeroes. The best fit parameters are
estimated using the method of least-square. We assessed the quality of our models
using R-squared statistical measure, also called the coefficient of determination which
is well explained in [29].

Computation cost estimation

We modeled four polynomial functions in order to estimate execution time for
our kernels on the CPU and on the GPU. In Figure 4.1 we show a 3-dimensional
plot that we obtained by modeling computation time of the GeMV kernel with
DenseMatrix as operand data type on the CPU. In Figure 4.1, the curve represents
the modeled function and blue dots represent actual data points, the x-axis represents
the total number of elements in a matrix, whereas the y-axis represents the percentage
of zeroes in a matrix, and the z-axis (vertical axis) represents the time taken in
computing GeMV kernel in microseconds. The Graph in Figure 4.1 shows that
computation time increases linearly with the size of the matrix, whereas computation
time remains unaffected when the number of zeroes increases. We modeled a second-
order polynomial function (4.1) for our collected data, and verified our accuracy of
fit with the R-squared measure.

Xdense_cpu(x, y) = p00 + p10× x+ p01× y + p20× x2 + p11× x× y + p02× y2

(4.1)

R-squared = 0.9999
p00 = -333.5
p10 = 0.009594
p01 = 31.31
p20 = -1.163e-13
p11 = -2.224e-06
p02 = -0.3496

Table 4.2: Coefficient of determination: R-squared and coefficients for the polynomial
in Equation 4.1.

In order to estimate the computation time of the GeMV kernel on GPU, we executed
the GeMV kernel on the GPU. Figure 4.2 represents a 3-dimensional plot that we
obtained by modeling the computation time of the GeMV kernel with DenseMatrix

4.4. Evaluation 45

Figure 4.1: 3-dimensional plot of the data. Data generated by executing GeMV on
CPU.

as operand data type on the GPU. As it can be seen the rate of change of execution
time with respect to matrix size is not constant. In Figure 4.2, the curve represents
the modeled function and blue dots represent actual data points, the x-axis represents
total number of elements in a matrix, whereas the y-axis represents the percentage
of zeroes in a matrix, and the z-axis (vertical axis) represents the time taken in
computing the GeMV kernel in microseconds. Graph in Figure 4.2 also shows that
computation time remains unaffected when number of zeroes increases. We modeled
a 5th order polynomial function for our collected data, and verified our accuracy of
fit with the R-squared measure.

Xdense_gpu(x, y) = p00+p10×x+p01×y+p20×x2+p11×x×y+p02×y2+p30×x3

+p21×x2×y+p12×x×y2+p03×y3+p40×x4+p31×x3×y+p22×x2×y2+p13×x×y3

+p04×y4+p50×x5+p41×x4×y+p32×x3×y2+p23×x2×y3+p14×x×y4+p05×y5
(4.2)

Similarly, we estimated computation time for SpMV kernel on CPU by explicitly
running the SpMV kernel with the SparseMatrix container type on the CPU. In Figure
4.3 we show a 3-dimensional plot that we obtained by modeling the computation
time of the SpMV kernel with SparseMatrix as operand data type on the CPU. In
Figure 4.3, the curve represents the modeled function and blue dots represent actual
data points, the x-axis represents the total number of elements in a sparse matrix,
whereas the y-axis represents percentage of zeroes in the matrix, and z-axis (vertical
axis) represents the time taken in computing the SpMV kernel in microseconds. The
graph in Figure 4.1 shows that computation time increases linearly when the size of
the matrix increases, whereas computation time decreases when number of zeroes
increases in the sparse matrix. We modeled a second order polynomial function
(4.3) for our collected data, and verified our accuracy of fit with the R-squared
measure.

46 4.4. Evaluation

R-squared = 0.9807
p00 = 1218
p10 = 0.000439
p01 = -127
p20 = 5.952e-10
p11 = 1.389e-05
p02 = 9.428
p30 = -4.831e-17
p21 = -1.319e-12
p12 = -3.743e-07
p03 = -0.2542
p40 = 1.423e-24
p31 = 4.138e-20
p22 = 1.393e-14
p13 = 1.452e-09
p04 = 0.002899
p50 = -1.374e-32
p41 = -4.382e-28
p32 = -8.77e-23
p23 = -5.604e-17
p14 = 5.475e-12
p05 = -1.185e-05

Table 4.3: Coefficient of determination: R-squared and coefficients for the polynomial
in Equation 4.2.

Figure 4.2: 3-dimensional plot of the data. Data generated by executing GeMV on
GPU.

Xsparse_cpu(x, y) = p00 + p10× x+ p01× y + p20× x2 + p11× x× y + p02× y2

(4.3)

4.4. Evaluation 47

R-squared = 0.9999
p00 = 67.78
p10 = 0.01255
p01 = 3.372
p20 = -1.571e-13
p11 = -0.0001246
p02 = -0.04193

Table 4.4: Coefficient of determination: R-squared and coefficients for the polynomial
in Equation 4.3.

Figure 4.3: 3-dimensional plot of the data. Data generated by executing SpMV on
CPU.

In order to estimate the computation time for the SpMV kernel on GPU we ran
the SpMV kernel on the GPU. Figure 4.4 represents a 3-dimensional plot that we
obtained by modeling computation time of the SpMV kernel with SparseMatrix as
operand data type on the GPU. As it can be seen that rate of change of execution time
with respect to matrix size is not constant. In Figure 4.4, the curve represents the
modeled function and blue dots represent actual data points, the x-axis represents
total number of elements in a matrix, whereas the y-axis represents percentage
of zeroes in a matrix, and the z-axis (vertical axis) represents the time taken in
computing SpMV kernel in microseconds. Graph in Figure 4.4 also shows that
computation time decreases at constant rate with the increase in number of zeroes.
We modeled a 5th order polynomial function (4.4) for our collected data, and verified
the accuracy of fit with the R-squared measure.

Xsparse_gpu(x, y) = p00+p10×x+p01×y+p20×x2+p11×x×y+p02×y2+p30×x3

+p21×x2×y+p12×x×y2+p03×y3+p40×x4+p31×x3×y+p22×x2×y2)+p13×x×y3

+p04×y4+p50×x5+p41×x4×y+p32×x3×y2+p23×x2×y3+p14×x×y4+p05×y5
(4.4)

48 4.4. Evaluation

R-squared = 0.9854
p00 = 2.102
p10 = 0.009835
p01 = -7.02
p20 = -1.013e-10
p11 = -0.0001004
p02 = 4.635
p30 = -1.967e-17
p21 = 7.269e-12
p12 = -4.394e-07
p03 = -0.1454
p40 = 9.463e-25
p31 = -2.745e-19
p22 = 1.098e-14
p13 = 4.079e-09
p04 = 0.001782
p50 = -1.11e-32
p41 = 3.029e-27
p32 = 1.283e-23
p23 = -9.631e-17
p14 = -1.821e-12
p05 = -7.622e-06

Table 4.5: Coefficient of determination: R-squared and coefficients for the polynomial
in Equation 4.4.

Figure 4.4: 3-dimensional plot of the data. Data generated by executing SpMV on
GPU.

Conversion cost estimation

Conversion functions are the integral part of our automatic switching mechanism,
which make conversion possible from one matrix format into another, either on the
CPU or the GPU. Therefore, it was essential to estimate time taken in converting

4.4. Evaluation 49

matrix format. However, conversion cost is inherent in any auto-tuning mechanism
that considers conversion of the data structures. We modeled polynomial functions
in order to estimate conversion time for our four conversion functions, i.e. Dense
to Sparse on CPU, Dense to Sparse on GPU, Sparse to Dense on CPU and Sparse
to Dense on GPU. In Figure 4.5, the curve represents the modeled function and
blue dots represent actual data points, the x-axis represents the total number of
elements in a matrix, whereas the y-axis represents the percentage of zeroes in a
matrix, and the z-axis (vertical axis) represents the time taken in converting from
DenseMatrix data type into SparseMatrix data type on the CPU, time is measured in
microseconds. The graph in Figure 4.5 shows that conversion time increases linearly
with the size of the matrix, whereas conversion time remains almost unaffected when
the number of zeroes increases because while converting, algorithm has to access all
the elements in order to recognize zero and non-zero elements. We modeled a second
order polynomial function (4.5) for our generated data, and verified the accuracy of
fit with the R-squared measure.

Csparse
dense (x, y) = p00 + p10 × x + p01 × y + p20 × x2 + p11 × x × y + p02 × y2;

(4.5)

R-squared = 0.9991
p00 = -9.602e+04
p10 = 0.137
p01 = 7357
p20 = -7.973e-14
p11 = -0.0001311
p02 = -81.76

Table 4.6: Coefficient of determination: R-squared and coefficients for the polynomial
in Equation 4.5.

Similarly, we estimated the time taken in converting DenseMatrix container type to
SparseMatrix container type on the GPU. In Figure 4.6 we show a 3-dimensional
plot that we obtained by modeling execution time of the DenseToSparse function
(implemented in the DenseMatrix class) on the GPU. In Figure 4.6, the curve
represents the modeled function and blue dots represent actual data points, the
x-axis represents total number of elements in a matrix, whereas the y-axis represents
percentage of zeroes in the matrix, and the z-axis (vertical axis) represents the time
taken in executing the DenseToSparse function on the GPU; time is measured in
microseconds. We observed in the plotted graph (Figure 4.6) that conversion time
increases as the size of the matrix increases but not linearly, whereas some impact of
number of zeroes can also be seen, especially for large matrices. We modeled a 5th

order polynomial function (4.6) for our collected data, and verified the accuracy of
fit with the R-squared measure.

50 4.4. Evaluation

Figure 4.5: 3-dimensional plot of the collected data. Data generated by converting
DenseMatrix into SparseMatrix on CPU.

Csparse
dense (x, y) = p00+p10×x+p01×y+p20×x2+p11×x×y+p02×y2+p30×x3

+p21×x2×y+p12×x×y2+p03×y3+p40×x4+p31×x3×y+p22×x2×y2+p13×x×y3

+p04×y4+p50×x5+p41×x4×y+p32×x3×y2+p23×x2×y3+p14×x×y4+p05×y5
(4.6)

Figure 4.6: 3-dimensional plot of the collected data. Data generated by converting
DenseMatrix into SparseMatrix on GPU.

In order to estimate the time taken in converting SparseMatrix container type to
DenseMatrix container type on the CPU; we executed the SparseToDense function
(implemented in the SparseMatrix class) on the CPU. Figure 4.7 represents a 3-
dimensional plot the we obtained by modeling the data collected by executing
SparseToDense function on the CPU. As it can be seen the rate of change of

4.4. Evaluation 51

R-squared = 0.99437
p00 = 1.148e+04
p10 = 0.04475
p01 = -3387
p20 = 4.519e-09
p11 = -0.0002643
p02 = 271.2
p30 = -4.233e-16
p21 = 1.188e-11
p12 = -2.209e-06
p03 = -7.581
p40 = 1.314e-23
p31 = -5.716e-19
p22 = 1.405e-13
p13 = 2.808e-08
p04 = 0.08764
p50 = -1.282e-31
p41 = 9.556e-27
p32 = -5.57e-21
p23 = 1.397e-15
p14 = -3.903e-10
p05 = -0.0003554

Table 4.7: Coefficient of determination: R-squared and coefficients for the polynomial
in Equation 4.6.

execution time with respect to matrix size is constant. In Figure 4.7, the curve
represents the modeled function and blue dots represent actual data points, the
x-axis represents total number of elements in a matrix, whereas the y-axis represents
percentage of zeroes in a matrix, and the z-axis (vertical axis) represents the time
taken in converting a sparse matrix container type into a dense matrix container type,
the time is measured in microseconds. Graph in Figure 4.7 also shows that conversion
time decreases rapidly when number of zeroes increases, especially in a large matrix
when we keep the size of the matrix constant. We modeled a second order polynomial
function (4.7) for the data we collected while performing the experiment. We verified
the accuracy of fit with the R-squared measure.

Cdense
sparse(x, y) = p00 + p10× x+ p01× y+ p20× x2 + p11× x× y+ p02× y2 (4.7)

In order to get the time estimation on GPU for the conversion of SparseMatrix
container type to DenseMatrix container type, we collected data by running Sparse-
ToDense function (implemented in the SparseMatrix class) on the GPU with almost
200 matrices, which varied in their sizes as well as number of zeroes. In Figure
4.8, the curve represents the modeled function and blue dots represent actual data
points, the x-axis represents the total number of elements in a matrix, whereas the
y-axis represents the percentage of zeroes in the matrix, and the z-axis (vertical
axis) represents the time taken in executing SparseToDense function on the GPU,

52 4.4. Evaluation

R-squared = 0.9999
p00 = 288.5
p10 = 0.1013
p01 = -98.54
p20 = -3.042e-12
p11 = -0.0008322
p02 = 1.043

Table 4.8: Coefficient of determination: R-squared and coefficients for the polynomial
in Equation 4.7.

Figure 4.7: 3-dimensional plot of the collected data. Data generated by converting
SparseMatrix to DenseMatrix on CPU.

we measured the time in microseconds. We observed in the plotted graph shown in
Figure 4.8 that conversion time is not always increasing with the size of the matrix,
and it is partially affected by the increase in the number of zeroes, especially when
the size of the matrix is large. We modeled a 5th order polynomial function (4.8) for
our collected data, and verified the accuracy of fit with the R-squared measure.

Cdense
sparse(x, y) = p00+p10×x+p01×y+p20×x2+p11×x×y+p02×y2+p30×x3

+p21×x2×y+p12×x×y2+p03×y3+p40×x4+p31×x3×y+p22×x2×y2+p13×x×y3

+p04×y4+p50×x5+p41×x4×y+p32×x3×y2+p23×x2×y3+p14×x×y4+p05×y5
(4.8)

Transfer cost estimation

In a GPU-based system, switching cost also includes transfer cost of operand matrix,
which is required for the computation and not yet available in the device memory.
In order to estimate transfer cost, we sent up to .5 Gigabytes of data from the CPU
(host) to the GPU (device), since transfer time for moving data from host to device

4.4. Evaluation 53

R-squared = 0.9987
p00 = 1506
p10 = 0.06886
p01 = -2.245
p20 = 1.648e-09
p11 = -0.000765
p02 = -4.159
p30 = -1.751e-16
p21 = 1.628e-11
p12 = -5.353e-07
p03 = 0.3128
p40 = 5.827e-24
p31 = -7.371e-19
p22 = 9.715e-14
p13 = -8.172e-09
p04 = -0.005588
p50 = -6.032e-32
p41 = 9.255e-27
p32 = -1.188e-21
p23 = -1.695e-16
p14 = 6.498e-11
p05 = 3.089e-05

Table 4.9: Coefficient of determination: R-squared and coefficients for the polynomial
in Equation 4.8.

Figure 4.8: 3-dimensional plot of the collected data. Data generated by converting
SparseMatrix to DenseMatrix on GPU.

and from device to host is approximately equal for larger matrices on our testing
platform, therefore we only considered transfer time in moving data from host to
device. In Figure 4.9 red line represents the modeled equation and blue dots represent
actual data points, the x-axis represents number of bytes sent, whereas the y-axis
represents the transfer time in sending n bytes, where n could be any legitimate

54 4.4. Evaluation

number from the x-axis; we measured time in microseconds. As it can be seen from
Figure 4.9, there is a linear relationship between the number of bytes transferred
and the time taken in moving that amount of data from host to device.

Figure 4.9: 2-dimensional plot of the collected data. Data generated by sending data
from the CPU to the GPU.

T (x) = p1× x+ p2 (4.9)

R-squared = 0.9999
p1 = 0.0003136
p2 = 684.5

Table 4.10: Coefficient of determination: R-squared and coefficients for the polynomial
in Equation 4.9.

4.4.2 Evaluating the second phase

Dynamic switching between nodes in Figure 3.4 is carried out in the second phase.
In this phase an automatic switching mechanism recognizes for the current state of
the operand matrix, the best performing node by evaluating the modeled function
that we obtained in training phase, and switches the execution to the predicted node
(best performing node). The automatic switching mechanism considers the transfer
cost incurred by moving data from host to device as well as the cost involved in
transforming the data structure. It has been assumed that for some kernels the
conversion does not pay off, since execution may consist of a single skeleton call on the
data structure, however, time needed to convert the data-structure can be amortized
over the time savings from several kernel calls on the same data structure.

4.4. Evaluation 55

4.4.3 Test cases

We tested our automatic switching mechanism for different test cases but in this
section we particularly include five test cases in which we test our prediction and
selection mechanism. We test our automatic switching mechanism for different matrix
sizes in order to demonstrate switching at run-time. We use single GPU and two
CPU threads for these test cases. We compute matrix vector multiplication in all five
test cases and compare the result generated from our SkePU extension with a regular
C++ function to compute matrix vector multiplication, if the result computed by
our SkePU extension and regular C++ function matches then a message “Success” is
printed otherwise “Failed” get printed on the screen. A program to run different test
cases is given in Appendix D.1.

We summarized test results in the form of a table. Following symbols are used to
indicate different states of the GMatrix object.

0: DenseMatrix on the CPU.

1: SparseMatrix on the CPU.

2: DenseMatrix on the GPU.

3: SparseMatrix on the GPU.

Summary of test cases from A to D
Test Case A B C D

Matrix
dimension

7000×
7000

7000×
7000

3000×
3000

5000×
5000

Percentage
of zeroes

50% 80% 10% 50%

Initial
state

0 0 1 1

Predicted
state

2 3 1 3

Final
states

0,2 0,1,3 1 1,3

Next
prediction

2 3 1 3

Execution
time before

auto-
selection

464668.0
µ sec.

460406.0
µ sec.

101946.1
µ sec.

157987.4
µ sec.

Execution
time after

auto-
selection

88050.1
µ sec.

85680.7
µ sec.

101946.1
µ sec.

77056.4
µ sec.

Table 4.11: Summarizing results, which was generated from different test cases.

Test case E

In this test case we compared the time taken by the SkePU library when matrix
vector multiplication is computed with and without automatic switching mechanism.
We varied the dimension of the GMatrix from 100× 100 to 7000× 7000 and for each

56 4.4. Evaluation

dimension we increased the percentage of zeroes from 0% to 90%. A timer was placed
to note down the time spent in computing matrix vector multiplication; recorded
time does not include the time taken in converting data structure or transferring
data from host to device or vice versa.

We plotted the graph 4.10 in order to compare execution time taken in computing
matrix vector multiplication by SkePU OpenMP variant with DenseMatrix container
type; SkePU OpenMP variant with SparseMatrix container type; SkePU CUDA
variant with DenseMatrix container type; SkePU CUDA variant with SparseMatrix
container type, and the time taken in computing matrix vector multiplication guided
by automatic switching mechanism.

Discussion on plotted graph shown in Figure 4.10

As it can be seen in Figure 4.10 different nodes performed differently in different call
scenarios. The pink color line represents the execution time taken by the GeMV kernel
on the CPU, as the figure shows that execution time for this kernel increases linearly
and performs worst among all the kernels, especially for large matrices. Similarly, the
green zigzag line represents the execution time of the SpMV kernel on the CPU. As
it can be seen that the performance varies even for the same size of matrix because
the performance of SpMV kernel is dependent on the number of zeroes. It can also
be observed that this kernel sometimes outperforms all other kernels and sometimes
under-performs among all kernels. The red zigzag line represents the execution time
of the SpMV kernel on the GPU. It shows the same trend as the CPU version but it is
less affected by the number of zeroes. GeMV computation on the GPU is represented
by the black color line, it outperforms almost every time but certainly it is not the
winner all the time. So, Figure 4.10 actually represents the problem we solved. It
depicts the desire of some mechanism that can guide the execution to adapt to the
best performing implementation when multiple implementations are present.

The blue dashed line represents execution guided by our automatic switching mech-
anism. It seems that it made a wrong prediction when the size of the matrix was
.016×107 but as we mentioned it considers the transfer time in moving data from host
to device before giving its prediction, and since the GPU requires a constant warm-up
time to receive transmitted data from the host, no matter how small a chunk of data
is sent, the automatic switching mechanism predicted the CPU implementation to
be beneficial. Again, when the size of the matrix was 1.6× 107, automatic switching
mechanism predicted the GeMV (GPU) kernel whereas the lowest execution time
was taken by the SpMV (CPU) kernel. Here we would like to explain that switching
mechanism considers the conversion time as well as the transfer time while switching,
and if the conversion cost plus computation cost is greater than the transfer cost
plus computation cost then the switching mechanism would choose transfer over
conversion, therefore GeMV (GPU) kernel was chosen and not the SpMV (CPU)
kernel.

So we conclude this section by noting that our automatic switching mechanism adapts
with a low cost computation kernel but not necessarily with the lowest computation
cost, since the decision of switching takes the conversion time and the transfer time
into account.

4.4. Evaluation 57

F
ig
ur
e
4.
10
:
3-
di
m
en
si
on

al
pl
ot

in
(x
-z
)
vi
ew

fo
r
co
m
pa

ri
ng

co
m
pu

ta
ti
on

ti
m
e
ta
ke
n
on

di
ffe

re
nt

no
de
s
of

ou
r
gr
ap

h
sh
ow

n
in

F
ig
ur
e
3.
4.

B
lu
e
tr
ia
ng

le
re
pr
es
en
ts

th
e
co
m
pu

ta
ti
on

ti
m
e
gu

id
ed

by
ou

r
au

to
m
at
ic

sw
it
ch
in
g
m
ec
ha

ni
sm

.

58 4.5. Chapter summary and limitations

4.5 Chapter summary and limitations

In this chapter we evaluated our performance model driven automatic switching
mechanism. We presented our cost models and included modeled functions that we
obtained by collecting data on Fermi machine and performing regression analysis on
that data. We have also shown how our automatic switching mechanism performs
in a real scenario. We showed that the automatic switching mechanism adapts
to a low cost kernel. We want to point out that our test has been conducted on
synthetically generated sparse matrices of random sparsity pattern. Our work is
based on offline bench-marking combined with dynamic composition. We observed
that data structure conversion can be costly in some case and does not pay off if
execution consists of a single operation on the converted data structure, but there may
be cases when some application performs several operations on the same converted
data structure, in that case we can assume the time needed to convert the data
structure can be amortized over the time savings from several operations on the
same data structure. However, this cost is ingrained in any auto-tuning mechanism
that wishes to consider conversion of the data structure [38].

Limitations

Our work is encouraging but it has limitations too. First, we adopted the state-of-
the-art CSR format to store a sparse matrix; however, the class of sparse matrix
storage schemes is still fairly broad as it includes other sparsity based storage formats,
which are sometimes more efficient than CSR format. But we could only validate
our work with respect to the CSR format. Our current work considered read only
SparseMatrix container type and writing into a sparse matrix is not allowed. Another
limitation is that we manually modeled functions for cost estimation. However, for
an automatic mechanism to be fully sustainable in the long run we started working
in this direction too, so that model construction become an intrinsic feature of the
SkePU framework but due to time constraints we stopped working halfway through
this direction. Nevertheless, in future it would be possible to construct models within
the SkePU framework.

Chapter 5

Related Work

The literature on offline bench-marking is extensive. A variety of sophisticated
profile guided tuning mechanism and conditional composition techniques have been
developed, each with the goal of providing a sufficiently precise information for
selecting hardware specific features. However, these approaches tackle different
problems specific to their application domain. In [27], Li et al. proposed an adaptive
off-line training algorithm that internally builds a dispatch tree which is been used at
runtime to select a specific implementation variant among several implementations
that renders same functionality but on different platform. In their work they
considered component selection but with same operand data. In our work, changing
operand data type as well as implementation variant is possible at runtime.

In [2], Bell and Garland presented basic sparse matrix format that are specifically
suited for GPUs, they recognize potential for fine-grained parallelism by avoiding
irregularities caused by sparse data structure on execution paths and memory access.
Feng et al. [19] proposed extension over state-of-the-art CSR format specially for
GPUs by wrapping multiple rows for simultaneous execution in a group of threads.
Similar type of work is proposed by Oberhuber et al. [32], they tested their approach
extensively on different type of formats, it seems that their format can be adopted as
universal sparse format on GPUs, whereas Koza et al. [25] tackled the sparse matrix
storage format on GPUs in the same way as it was done by Feng, which make it
more suitable for CSR format. However, specially tailored optimization, specific to
architecture and sparsity-pattern of the matrix is also considered by model driven
auto-tuning solutions.

In [28], Monakov et al. observed that CSR format due to poor coalescing unfit for
GPUs and proposed their hybrid “Sliced ELLPACK” format with a tuning parameter
‘S’, they partitioned the input matrix into strips of ‘S’ adjacent rows and store each
strip in ELLPACK format. ‘S’ varied from 1 to N, where N is the number of rows.
When ‘S’= 1, their storage scheme is same as CSR format and when ‘S’= number
of rows, their approach gives the same representation as ELLPACK format. This
tuning feature allows choosing ‘S’ sufficiently small so that their representation take
as little computer space as CSR format, and can be large enough so that each strip
can be mapped to a group of threads on the GPU.

Beside specialized sparse matrix formats there are other optimization techniques used

59

60

to achieve improved performance with sparse matrix data structure, for example,
blocking techniques. Nishtala and Vuduc [31] used performance modeling in order
to predict correct cache block size given the matrix dimension and density. They
proposed new optimization for computation on sparse matrix by providing two new
vectors per cache block that contain information: from where nonzero row starts
and where it ends, in the cache block. However, their optimization is best suited for
matrices with few rows and large number of columns.

Despite the drawbacks of CSR format on super-scalar architectures, many optimiza-
tions have been proposed in order to improve the performance of computation on
sparse matrices, for example, the Intel Math Kernel Library, which improves the
performance of sparse BLAS operations on sparse matrices which are stored in CSR
format. These optimization particularly focuses on improving memory management
and exploiting the ILP on Intel processors. On the other hand, different kernels based
on CSR format that targets GPUs have also been proposed. Vázquez, Francisco
and Fernández [37] targets one such kernel: ELLR-T, and proposed an analytical
model in order to obtain the auto-tuning for ELLR-T SpMV kernel with particular
combinations of sparse matrix and GPU architecture. Their algorithm relies on
ELLPACK-R format and yields better performance for the optimum selection of
the number of threads which collaborate to compute one element of output vector:
a specific parameter for ELLR-T, and the block size. Their modeled function es-
tablishes the relationship between the memory activity, block size and number of
threads needed to compute one output element.

nVIDIA released CUSPARSE library, which allows its user to convert matrix into its
hybrid ELLPACK format and uses it to perform matrix operations. CUSPARSE
library currently allows conversion from DNS, CSR, COO to ELLPACK format.
However, CUSPARSE library does not reveal the underlying data structure of the
newly formed matrix which make it impossible to make any optimization on it and if
an element of the source matrix gets changed then the conversion has to be performed
all over again. However, just like SkePU extension it maintains two copies of the
same matrix in two different storage formats but does not allow automatic switching
between them.

Gilbert and Moler [20] extended Matlab by providing sparse matrix storage and
operations to it. They compressed full(dense) matrix into sparse matrix using CCS
(Compressed Column Storage) technique. Unlike SkePU extension, their approach
does not consider computation on GPUs and user has to explicitly tell when she/he
wants to use sparse matrix. They allowed both full and sparse matrices to coexist
but automatic switching between two matrices is not possible since their intention
was just to provide functionality for sparse linear algebra.

OSKI: A library of automatically tuned sparse matrix ker-
nels

We would like to discuss OSKI library [38] in this section. It is a library of automati-
cally tuned sparse matrix kernels, SpMV and SpTS for instance. The aim of this
library is to provide a collection of low-level primitives that provide computational

61

kernels on sparse matrices, and justify the requirement of auto-tuning mechanism in
performance-aware programming.

OSKI designers observed that the efficiency of kernels, which are used to solve
sparse linear system, depends on careful selection of the data structure and code
transformation. Just like SkePU extension, they observed that tuning can not be
performed until run-time, since the matrix structure may not be known until then.
They also observed that the tuning of sparse-matrix kernels are more complex than
tuning its counterpart dense-matrix kernels.

Their work is related to our work in some extent; unlike SkePU extension they
focus on sparse-linear-system and sparse matrices, they define an interface for basic
sparse operations like SpMV and SpTS and adopt standards from basic-linear-
algebra-subroutines, whereas SkePU extension is more general-purpose in solving
dense-linear-system as well as sparse-linear-system on the CPU as well as on the
GPU. Their tuning mechanism is able to adapt one sparse data structure into another
sparse data structure depending on the pattern of zeroes in the sparse matrix. In
their library they introduced the concept of handles, which represents an interface
for the library to choose the data structure at run-time. They used this indirection
because the best data structure may not be known at compile time on the modern
hardware for ongoing computation. They use handles to switch to the data structure,
once it is determined that which data structure is going to be used by the library. In
the SkePU extension switching mechanism works seamlessly and switches not only
the data structure but also the execution platform.

In OSKI, designers focused on optimizing for cache-based machines by enhancing
the spatial and temporal locality of the operand matrix, whereas SkePU is designed
to provide solutions on multi-core GPU-based machines and provides high order
user function that internally exposes fine-grained parallelism on throughput oriented
multiprocessors.

Just like the SkePU extension the OSKI library does not hide extra cost incurred
in automatic tuning and exposes the cost of tuning to its users. SkePU extension
provides an option to its user to perform computation with or without automatic-
selection-mechanism because of the cost involved in context-aware switching, and so
does the OSKI library and motivates its user to only use tuning mechanism when the
user expects sufficiently many computations on the same operand matrix. However,
user cannot always predict the number of such computation on the same matrix,
therefore OSKI provides an interface to allow the library to monitor transparently
all operation performed on a given matrix, its designers called this mechanism “Self-
Profiling” in which the library can make a guess whether tuning will be profitable or
not; however, this functionality is not implemented in the SkePU version 1.2.

The OSKI library provide its user the functionality for log-profiling, where the user
can see string-based summaries of what tuning transformations and other performance
optimizations have been applied to the operand matrix. However, in the SkePU
extension user can guide the tuning mechanism but functionality for log-profiling is
not yet implemented.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Automatic selection mechanisms are becoming increasingly important since modern
computers render diverse architecture. Often multiple implementations are provided
for the same functionality in order to tailor parameters combination that provides
the best performance for the underlying architecture. Operations on a sparse matrix
can further improve in performance by not considering zeroes thus saving computer
time and computer space. The decision of using a sparse- or dense- representation
when (depending on number of zeroes) and where (CPU or GPU) is considered as
an optimization problem.

In this thesis work we presented a way to provide an abstraction to the user in
choosing a suitable matrix container type inside the SkePU framework. As we
mentioned it is a run-time optimization problem because the decision of choosing
the right matrix representation depends on many factors that may not be known
at compile time. We designed a class hierarchy in order to unify dense- and sparse-
matrix classes under one common base class in such a way that we can toggle between
sub classes at runtime, and that too without having to pay runtime overhead for
vtable 1 look-up. We implemented conversion functions in the SkePU framework
which can convert from dense-matrix to sparse-matrix and other way round. We
implemented the conversion functions in a way that they can perform conversion on
the CPU as well as on GPUs in a GPU-based system, and if GPUs are not available
then by default they convert the matrix format on the CPU. These functions are made
generic by using C++ templates. We partially implemented memory management in
the SparseMatrix class which is one of the many optimization features available in
SkePU framework for its container types [14]. We also implemented trace-ability and
look-up mechanism to reason about locality and correctness of data in sparse matrix
class. Finally, we implemented an profile-guided automatic switching mechanism in
order to target the problem of composition, and showed that our automatic selection
mechanism adapts to using a kernel that incurs low cost, in terms of execution time.
It also includes transfer time and conversion time wherever transfer and conversion
is required.

1Vtables contain pointer to virtual functions and are used to resolve function calls at run time.

62

6.2. Future work 63

Our solution to the problem is encouraging but not without limitations. We used
the state-of-the-art CSR format as sparse matrix storage format both for the CPU
and the GPU, however there exist several GPU specific sparse matrix storage
formats that perform efficiently on throughput oriented processors. Secondly, we
explicitly modeled cost estimation functions, whereas in a real scenario it should
have been done automatically so as to make the automatic switching mechanism
more sustainable.

6.2 Future work

The decision of which implementation to invoke must be made inside skeleton
classes. However, SkePU provides two different user functions for the same looking
kernel, dense matrix vector multiplication and sparse matrix vector multiplication,
for instance. Since we had this limitation, we implemented switching outside the
skeleton class. In future, some work is required to make decision making functionality
intrinsic to skeleton classes.

Current work is limited to read only SparseMatrix container type and writing to
sparse matrices is not implemented. In future, some work is required to make
SparseMatrix container type writable.

A more sophisticated memory-management must be implemented in future to check
the consistency between data in SparseMatrix and DenseMatrix classes.

More sparse matrix storage formats must be implemented and their relevance to the
underlying hardware must be studied in the future work.

References

[1] Krste Asanovic et al. “A View of the Parallel Computing Landscape”. In:
Commun. ACM 52.10 (Oct. 2009), pp. 56–67. issn: 0001-0782. doi: 10.1145/
1562764.1562783. url: http://doi.acm.org/10.1145/1562764.1562783.

[2] Nathan Bell and Michael Garland. Implementing sparse matrix-vector multipli-
cation on throughput-oriented processors. ACM, 2009, p. 18.

[3] Kevin Bjorke. “Image processing on parallel GPU pixel units”. In: Proc. SPIE
6065 (2006). doi: 10.1117/12.648936. url: http://dx.doi.org/10.1117/
12.648936.

[4] Guy E. Blelloch and Bruce M. Maggs. “Algorithms and Theory of Computation
Handbook”. In: ed. by Mikhail J. Atallah and Marina Blanton. Chapman &
Hall/CRC, 2010. Chap. Parallel Algorithms, pp. 25–25. isbn: 978-1-58488-820-8.
url: http://dl.acm.org/citation.cfm?id=1882723.1882748.

[5] George Horatiu Botorog and Herbert Kuchen. “Efficient parallel programming
with algorithmic skeletons”. In: Euro-Par’96 Parallel Processing: Second Inter-
national Euro-Par Conference Lyon, France, August 26–29 1996 Proceedings,
Volume I (1996). Ed. by Luc Bougé et al., pp. 718–731. doi: 10.1007/3-540-
61626-8_95. url: http://dx.doi.org/10.1007/3-540-61626-8_95.

[6] George Horaţiu Botorog and Herbert Kuchen. “Efficient high-level parallel
programming”. In: Theoretical Computer Science 196.1–2 (1998), pp. 71 –
107. issn: 0304-3975. doi: http://dx.doi.org/10.1016/S0304-3975(97)
00196-5. url: http://www.sciencedirect.com/science/article/pii/
S0304397597001965.

[7] Marshall D Brain and Alan L Tharp. “Perfect hashing using sparse matrix
packing”. In: Information Systems 15.3 (1990), pp. 281 –290. issn: 0306-4379.
doi: http://dx.doi.org/10.1016/0306-4379(90)90001-6. url: http:
//www.sciencedirect.com/science/article/pii/0306437990900016.

[8] M. I. Cole. “A Skeletal Approach to the Exploitation of Parallelism”. In:
Proceedings of the Conference on CONPAR 88. UMIST, Manchester, United
Kingdom: Cambridge University Press, 1989, pp. 667–675. isbn: 0-521-37177-5.
url: http://dl.acm.org/citation.cfm?id=90523.90657.

[9] Gianna M. Del Corso, Antonio Gullí, and Francesco Romani. “Fast PageRank
Computation via a Sparse Linear System”. In: Internet Mathematics 2.3 (2005),
pp. 251–273. doi: 10.1080/15427951.2005.10129108. eprint: http://dx.
doi.org/10.1080/15427951.2005.10129108. url: http://dx.doi.org/10.
1080/15427951.2005.10129108.

64

References 65

[10] Usman Dastgeer. “Performance-aware Component Composition for GPU-based
systems”. PhD thesis. Linköping University, The Institute of Technology, 2014.

[11] Usman Dastgeer. “Skeleton Programming for Heterogeneous GPU-based Sys-
tems”. Linköping University, PELAB - Programming Environment Laboratory,
2011, p. 90.

[12] Usman Dastgeer, Johan Enmyren, and Christoph W. Kessler. “Auto-tuning
SkePU: A Multi-backend Skeleton Programming Framework for multi-GPU
Systems”. In: Proceedings of the 4th International Workshop on Multicore
Software Engineering. IWMSE ’11. Waikiki, Honolulu HI, USA: ACM, 2011,
pp. 25–32. isbn: 978-1-4503-0577-8. doi: 10.1145/1984693.1984697. url:
http://doi.acm.org/10.1145/1984693.1984697.

[13] Usman Dastgeer and Christoph Kessler. “Conditional component composition
for GPU-based systems”. In: Proc. Seventh Workshop on Programmability Issues
for Multi-Core Computers (MULTIPROG-2014) at HiPEAC-2014, Vienna,
Austria, Jan. 2014 : MULTIPROG workshop series. HiPEAC NoE, 2014.

[14] Usman Dastgeer and Christoph Kessler. “Smart Containers and Skeleton
Programming for GPU-Based Systems”. In: International Journal of Parallel
Programming 44(3):506-530 (2016). issn: 1573-7640. doi: 10.1007/s10766-
015-0357-6. url: http://dx.doi.org/10.1007/s10766-015-0357-6.

[15] Usman Dastgeer, ChristophWKessler, and Samuel Thibault. “Flexible Runtime
Support for Efficient Skeleton Programming on Heterogeneous GPU-based
Systems.” In: PARCO. 2011, pp. 159–166.

[16] Usman Dastgeer, Lu Li, and Christoph Kessler. “Advanced Parallel Processing
Technologies: 10th International Symposium, APPT 2013, Stockholm, Sweden,
August 27-28, 2013, Revised Selected Papers”. In: ed. by Chenggang Wu and
Albert Cohen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. Chap. Adap-
tive Implementation Selection in the SkePU Skeleton Programming Library,
pp. 170–183. isbn: 978-3-642-45293-2. doi: 10.1007/978-3-642-45293-2_13.
url: http://dx.doi.org/10.1007/978-3-642-45293-2_13.

[17] Iain S Duff, Roger G Grimes, and John G Lewis. “Users’ guide for the Harwell-
Boeing sparse matrix collection (Release I)”. In: available online ftp orion.
cerfacs. fr (1992).

[18] Johan Enmyren and Christoph W. Kessler. “SkePU: A Multi-backend Skeleton
Programming Library for multi-GPU Systems”. In: Proceedings of the Fourth
International Workshop on High-level Parallel Programming and Applications.
HLPP ’10. Baltimore, Maryland, USA: ACM, 2010, pp. 5–14. isbn: 978-1-
4503-0254-8. doi: 10.1145/1863482.1863487. url: http://doi.acm.org/
10.1145/1863482.1863487.

[19] Xiaowen Feng et al. “Optimization of sparse matrix-vector multiplication with
variant CSR on GPUs”. In: Parallel and Distributed Systems (ICPADS), 2011
IEEE 17th International Conference on. IEEE. 2011, pp. 165–172.

66 References

[20] John R. Gilbert, Cleve Moler, and Robert Schreiber. “Sparse Matrices in
MATLAB: Design and Implementation”. In: SIAM Journal on Matrix Analysis
and Applications 13.1 (1992), pp. 333–356. doi: 10.1137/0613024. eprint:
http://dx.doi.org/10.1137/0613024. url: http://dx.doi.org/10.1137/
0613024.

[21] Horacio González-Vélez and Mario Leyton. “A survey of algorithmic skeleton
frameworks: high-level structured parallel programming enablers”. In: Software:
Practice and Experience 40.12 (2010), pp. 1135–1160. issn: 1097-024X. doi:
10.1002/spe.1026. url: http://dx.doi.org/10.1002/spe.1026.

[22] Hailin Jiang, M. Marek-Sadowska, and S. R. Nassif. “Benefits and costs of power-
gating technique”. In: Computer Design: VLSI in Computers and Processors,
2005. ICCD 2005. Proceedings. 2005 IEEE International Conference on. 2005,
pp. 559–566. doi: 10.1109/ICCD.2005.34.

[23] C. Kessler et al. “Programmability and performance portability aspects of
heterogeneous multi-/manycore systems”. In: Design, Automation Test in
Europe Conference Exhibition (DATE), 2012. Mar. 2012, pp. 1403–1408. doi:
10.1109/DATE.2012.6176582.

[24] Christoph W Keßler, Craig Smith, Helmut Seidl, et al. “The SPARAMAT
Approach to Automatic Comprehension of Sparse Matrix Computations.” In:
International Workshop on Program Comprehension. 1999, pp. 200–207.

[25] Zbigniew Koza et al. Compressed multiple-row storage format. Tech. rep. 2012.

[26] Mario Leyton. “Advanced features for algorithmic skeleton programming”. PhD
thesis. Université de Nice-Sophia Antipolis, 2008.

[27] Lu Li, Usman Dastgeer, and Christoph Kessler. “High Performance Computing
for Computational Science - VECPAR 2012: 10th International Conference,
Kope, Japan, July 17-20, 2012, Revised Selected Papers”. In: ed. by Michel
Daydé, Osni Marques, and Kengo Nakajima. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013. Chap. Adaptive Off-Line Tuning for Optimized Composition
of Components for Heterogeneous Many-Core Systems, pp. 329–345. isbn:
978-3-642-38718-0. doi: 10.1007/978- 3- 642- 38718- 0_32. url: http:
//dx.doi.org/10.1007/978-3-642-38718-0_32.

[28] Alexander Monakov, Anton Lokhmotov, and Arutyun Avetisyan. “Automat-
ically tuning sparse matrix-vector multiplication for GPU architectures”. In:
High Performance Embedded Architectures and Compilers. Springer, 2010,
pp. 111–125.

[29] N. J. D. Nagelkerke. “A Note on a General Definition of the Coefficient of
Determination”. In: Biometrika 78.3 (1991), pp. 691–692. issn: 00063444. url:
http://www.jstor.org/stable/2337038.

[30] X. Ning and G. Karypis. “SLIM: Sparse Linear Methods for Top-N Recom-
mender Systems”. In: 2011 IEEE 11th International Conference on Data Mining.
Dec. 2011, pp. 497–506. doi: 10.1109/ICDM.2011.134.

[31] Rajesh Nishtala et al. Performance modeling and analysis of cache blocking
in sparse matrix vector multiply. Computer Science Division, University of
California, 2004.

References 67

[32] Tomáš Oberhuber, Atsushi Suzuki, and Jan Vacata. “New row-grouped CSR
format for storing the sparse matrices on GPU with implementation in CUDA”.
In: arXiv preprint arXiv:1012.2270 (2010).

[33] Susanna Pelagatti. Chap. “Task and Data Parallelism in P3L”. In: Patterns
and Skeletons for Parallel and Distributed Computing. Ed. by Fethi A. Rabhi
and Sergei Gorlatch. London: Springer London, 2003, pp. 155–186. isbn:
978-1-4471-0097-3. doi: 10 . 1007 / 978 - 1 - 4471 - 0097 - 3 _ 6. url: http :
//dx.doi.org/10.1007/978-1-4471-0097-3_6.

[34] Yousef Saad. “SPARSKIT: A basic toolkit for sparse matrix computations,
1994”. In: University of Minnesota, Minneapolis (1994).

[35] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to
General-Purpose GPU Programming, Portable Documents. Addison-Wesley
Professional, 2010.

[36] Mark Silberstein. “GPUs: High-performance Accelerators for Parallel Appli-
cations: The Multicore Transformation (Ubiquity Symposium)”. In: Ubiquity
2014.August (Aug. 2014), 1:1–1:13. issn: 1530-2180. doi: 10.1145/2618401.
url: http://doi.acm.org/10.1145/2618401.

[37] Francisco Vázquez, José Jesús Fernández, and Ester M Garzón. “Automatic
tuning of the sparse matrix vector product on GPUs based on the ELLR-T
approach”. In: Parallel Computing 38.8 (2012), pp. 408–420.

[38] Richard Vuduc, James W Demmel, and Katherine A Yelick. “OSKI: A library of
automatically tuned sparse matrix kernels”. In: Journal of Physics: Conference
Series. Vol. 16. 1. IOP Publishing. 2005, p. 521.

[39] Nicholas Wilt. The cuda handbook: A comprehensive guide to gpu programming.
Pearson Education, 2013.

[40] Qing Wu, M. Pedram, and Xunwei Wu. “Clock-gating and its application to
low power design of sequential circuits”. In: IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications 47.3 (2000), pp. 415–420.
issn: 1057-7122. doi: 10.1109/81.841927.

Appendix A

Glossary

A.1 Terms and abbreviations

COO

Coordinate format. A matrix compression method in which non zero elements are
stored in random order and separate arrays are used to reference row and column of
a non zero element.

CPU

Central processing unit. The main processing element inside a computer that executes
the instructions of a computer program.

CUDA

Compute unified device architecture. A parallel computing platform and program-
ming model developed by nVIDIA.

CUR

Row compressed unsorted storage format. A matrix compression method in which
non zero elements are stored in row major order. The order of non zero elements is
not important.

CSR

Row compressed sorted storage format. A matrix compression method in which only
non zero elements stored in row major order. The order of non zero elements is
important.

68

DNS

Dense storage format. A two-dimensional array in which all elements of a matrix are
stored.

FPGA

Field programmable gate arrays is a programmable integrated circuit designed to
implement complex digital computations.

GeMV

General matrix-vector multiplication is a special case of matrix multiplication in
which a matrix of N×N elements is multiplied with a N element vector to give a N
element vector.

GPGPU

General purpose graphical processing unit is a graphical processing unit that performs
non specialized calculations, previously conducted by CPU only.

GPU

Graphical processing unit is a specialized electronic component designed to manipu-
late and alter memory at high speed in order to accelerate the creation of images in
a frame buffer mostly for output to a display.

SpMV

Sparse matrix-vector multiplication is a special case of matrix multiplication in which
a matrix of N×N elements with most of its element as zero, is multiplied with a N
element vector to give a N element vector.

SpTS

Sparse triangular solve is a kernel used to solve sparse triangular linear system.

69

Appendix B

Miscellaneous Figures

B.1

Figure B.1: Improved class design intended for future use.

In future it would be possible to see GMatrix class as more generalized class, and
this can be done by moving common functions from both container classes into the
GMatrix class. These common functions can be utility functions like total_rows,
total_cols which do not have direct implication on the efficiency of container types.
Whereas, functions like begin, end, which are essentially the iterators and must be
referenced by pointer in order to cut down look-up cost by not declaring them virtual
functions in the GMatrix class.

Iterator and Proxy classes are inner classes and declared in two container types
separately; in future, one possible improvement would be to unite them by using
iterator design pattern, for instance.

WMatrix can act as a wrapper class to wrap around container type so that container
type look more generic to the skeleton classes.

70

Appendix C

Source code for Automatic Switching
Mechanism

In this appendix we include our implemented source code for automatic switch-
ing mechanism which spans over several classes; we include source code for each
class.

toggle.h
1 #i f n d e f TOGGLE_H
2 #de f i n e TOGGLE_H
3 #inc lude " skepu/gmatrix . h"
4 #inc lude " skepu/ s r c / environment . h"
5 #inc lude <vector>
6 #inc lude <i t e r a t o r >
7 #inc lude <algorithm>
8 #inc lude <set>
9 #inc lude <c l im i t s >

10 #inc lude " switch . h"
11 #inc lude "model . h"
12 #inc lude "graph . h"
13 #inc lude "path . h"
14

15

16 namespace skepu {
17

18 template<typename T >
19 c l a s s Toggle {
20

21 pub l i c :
22

23 Toggle (GMatrix<T>& Matrix) ;
24

25 /∗ ! Pr int cur rent s t a tu s o f GMatrix
26 ∗/
27 void p r in t () ;
28 std : : vector<uint> get_state () ;
29

30 /∗ ! Set model and bu i ld graph
31 ∗/
32 void set_model (Model<T>& model) ;
33

71

72

34 /∗ ! Ca l cu la t e co s t matrix from a l l p o s s i b l e cur rent s t a t e s o f
35 ∗ GMatrix
36 ∗/
37 void r e f r e s h () ;
38

39 /∗ ! Returns best suggested plan
40 ∗/
41 void best_plan () ;
42

43 /∗ ! Return pred i c t ed plan
44 ∗/
45 skepu : : ExecPlan∗ getPred ictedPlan () ;
46

47

48 pr i va t e :
49

50 /∗ !
51 ∗ s e t the graph s t a t e
52 ∗ 0(Dense_H) 1(Sparse_H) 2(Dense_D) 3(Sparse_D)
53 ∗ i f matrix on dev i ce then 2 ,3 i s p o s s i b l e
54 ∗ i f matrix on host i s v a l i d then 1 ,2 i s p o s s i b l e
55 ∗/
56 void se t_state () ;
57

58 pr i va t e :
59 GMatrix<T>∗ m_container ;
60 std : : vector<uint> s t a t e s ;
61 Model<T>∗ m_model ;
62 Graph<T> m_graph ;
63 Path<T> m_path ;
64 std : : pa ir<int , int> p r ed i c t i o n ;
65 skepu : : BackEndParams bp ;
66 skepu : : ExecPlan execPlan [MAX_EXEC_PLANS] ;
67 typede f typename std : : vector<uint >: : i t e r a t o r i t e r a t o r_ s t a t e s ;
68

69

70 } ;
71 }
72

73 #inc lude " s r c / t ogg l e . i n l "
74 #end i f

Listing C.1: Header file for the Toggle class.

toggle.inl
1 namespace skepu{
2 /∗ !
3 ∗ Class Function De f i n i t i o n
4 ∗/
5

6 //−− con s t ruc to r
7 template <typename T>
8 Toggle<T> : : Toggle (GMatrix<T>& Matrix) {
9 m_container = &Matrix ;

10 s e t_state () ;
11 }
12

13

73

14 //−− s e t_state
15 template <typename T>
16 void Toggle<T> : : s e t_state () {
17 s t a t e s . c l e a r () ;
18 i f (m_container−>dense_matrix !=NULL) s t a t e s . push_back (0) ;
19

20 i f (m_container−>sparse_matrix !=NULL) s t a t e s . push_back (1) ;
21

22 #i f d e f SKEPU_CUDA
23

24 i f (m_container−>dense_matrix != NULL && m_container−>dense_matrix−>
isMatrixOnDevice_CU (0))

25 s t a t e s . push_back (2) ;
26 i f (m_container−>sparse_matrix != NULL && m_container−>sparse_matrix

−>isSparseMatrixOnDevice_CU (0))
27 s t a t e s . push_back (3) ;
28

29 #end i f
30 }
31

32 //−− pr in t
33 template <typename T>
34 void Toggle<T> : : p r i n t () {
35 std : : cout << "Current Status o f GMatrix\n" ;
36 s e t_state () ;
37 std : : vector<uint >: : i t e r a t o r i t=s t a t e s . begin () ;
38 whi le (i t != s t a t e s . end ()) {
39 std : : cout << ∗ i t ;
40 ++i t ;
41 }
42 std : : cout << "\n" ;
43 }
44

45 //−− get_state
46 template <typename T>
47 std : : vector<uint> Toggle<T> : : get_state () {
48 s e t_state () ;
49 re turn s t a t e s ;
50 }
51

52 //−− get p r ed i c t ed plan
53 template <typename T>
54 skepu : : ExecPlan∗ Toggle<T> : : getPred ic tedPlan () {
55 execPlan [0] . add (1 , 100000000 , bp) ;
56 execPlan [0] . c a l i b r a t e d = true ;
57 re turn execPlan ;
58 }
59

60 //−− set_model
61 template <typename T>
62 void Toggle<T> : : set_model (Model<T>& model) {
63 m_model = &model ;
64 m_model−>CalcCost () ;
65 Graph<T> g (m_model) ;
66 m_graph = g ;
67 Path<T> p(&m_graph) ;
68 m_path = p ;
69 }

74

70

71 //−− r e f r e s h
72 template <typename T>
73 void Toggle<T> : : r e f r e s h () {
74 s e t_state () ;
75 m_path . pass_matrix_status (s t a t e s) ;
76 m_path . compute_node () ;
77 //m_path . a l l_co s t s () ;
78 //m_path . sorted_cost () ;
79 p r ed i c t i on = m_path . p r ed i c t i on () ;
80 Switch execute (p r ed i c t i o n) ;
81 execute . set_matrix_status (s t a t e s) ;
82 execute . switch_to (m_container) ;
83 bp=execute . get_predicted_backend_parameters () ;
84

85 }
86

87 //−− t ogg l e ' s p r ed i c t i o n
88 template <typename T>
89 void Toggle<T> : : best_plan () {
90 std : : cout << " Pred ic ted Plan\n" ;
91 std : : cout << pr ed i c t i on . f i r s t << " −> " << pr ed i c t i on . second ;
92 std : : cout << "\n" ;
93 }
94 }

Listing C.2: C++ implementation of the Toggle class.

model.h

1 #i f n d e f MODEL_H
2 #de f i n e MODEL_H
3 #inc lude " eqtn . h"
4

5 namespace skepu {
6 s t r u c t cost_matrix {
7 double DeToDv ;
8 double SpToDv ;
9 double DeToHo ;

10 double SpToHo ;
11 double DeToSpDv ;
12 double SpToDeDv ;
13 double DeToSpHo ;
14 double SpToDeHo ;
15

16 double CpDeHo ;
17 double CpDeDv ;
18 double CpSpHo ;
19 double CpSpDv ;
20 } ;
21

22 template <typename T>
23 c l a s s Model{
24

25 pub l i c :
26 Model (s i ze_t s i z e , s i z e_t perZr) {
27 SIZE = s i z e ;
28 per0 = perZr ;

75

29 numbytes_dense_matrix = SIZE∗SIZE∗ s i z e o f (T) + SIZE∗ s i z e o f (T) ; //
matrix + input vec to r

30 numbytes_sparse_matrix = 2∗(SIZE∗SIZE∗ (1−(per0 ∗ . 0 1))) ∗ s i z e o f (T)
+ (SIZE+1)∗ s i z e o f (T) + SIZE∗ s i z e o f (T) ;

31 }
32

33 void CalcCost () ;
34

35 cost_matrix& getCost () {
36 re turn co s t ;
37 }
38

39 pr i va t e :
40 cost_matrix co s t ;
41 s i ze_t SIZE ;
42 s i ze_t per0 ;
43 s i ze_t numbytes_dense_matrix ;
44 s i ze_t numbytes_sparse_matrix ;
45 } ;
46

47 }
48

49 #inc lude " s r c /model . i n l "
50 #end i f

Listing C.3: Header file for the Model class.

model.inl
1 namespace skepu {
2

3 template <typename T>
4 void Model<T>: : CalcCost () {
5

6 co s t .DeToDv = (TransferHostToDevice (numbytes_dense_matrix) < 0 ? 0
: TransferHostToDevice (numbytes_dense_matrix)) ;

7 co s t . SpToDv = (TransferHostToDevice (numbytes_sparse_matrix) < 0 ? 0
: TransferHostToDevice (numbytes_sparse_matrix)) ;

8 co s t .DeToHo = (TransferDeviceToHost (numbytes_dense_matrix) < 0 ? 0
: TransferDeviceToHost (numbytes_dense_matrix)) ;

9 co s t . SpToHo = (TransferDeviceToHost (numbytes_sparse_matrix) < 0 ? 0
: TransferDeviceToHost (numbytes_sparse_matrix)) ;

10 co s t .DeToSpDv = (ConversionDtoS_GPU(SIZE∗SIZE , per0) < 0 ? 0 :
ConversionDtoS_GPU(SIZE∗SIZE , per0)) ;

11 co s t . SpToDeDv = (ConversionStoD_GPU(SIZE∗SIZE , per0) < 0 ? 0 :
ConversionStoD_GPU(SIZE∗SIZE , per0)) ;

12 co s t .CpDeHo = (ComputationDense_OMP(SIZE∗SIZE , per0) < 0 ? 0 :
ComputationDense_OMP(SIZE∗SIZE , per0)) ;

13 co s t .CpDeDv = (ComputationDense_GPU(SIZE∗SIZE , per0) < 0 ? 0 :
ComputationDense_GPU(SIZE∗SIZE , per0)) ;

14 co s t .CpSpHo = (ComputationSparse_OMP(SIZE∗SIZE , per0) < 0 ? 0 :
ComputationSparse_OMP(SIZE∗SIZE , per0)) ;

15 co s t .CpSpDv = (ComputationSparse_GPU(SIZE∗SIZE , per0) < 0 ? 0 :
ComputationSparse_GPU(SIZE∗SIZE , per0)) ;

16 co s t .DeToSpHo = (ConverstionDtoS_OMP(SIZE∗SIZE , per0) < 0 ? 0 :
ConverstionDtoS_OMP(SIZE∗SIZE , per0)) ;

17 co s t . SpToDeHo = (ConversionStoD_OMP(SIZE∗SIZE , per0) < 0 ? 0 :
ConversionStoD_OMP(SIZE∗SIZE , per0)) ; ;

18

76

19 }
20

21 }

Listing C.4: C++ implementation of the Model class.

graph.h
1 #i f n d e f GRAPH_H
2 #de f i n e GRAPH_H
3

4 namespace skepu {
5 s t r u c t edge {
6 edge (i n t to_ , double l en) : to (to_) , l ength (l en) {} ;
7 i n t to ;
8 double l ength ;
9 } ;

10

11 template <typename T>
12 c l a s s Graph{
13

14 pub l i c :
15 Graph(Model<T>∗ model) ;
16 Graph () {} ;
17

18 std : : vector<std : : vector<edge> > getGraph () {
19 re turn graph ;
20 }
21

22 cost_matrix getCost () {
23 re turn co s t ;
24 }
25

26 pr i va t e :
27 Model<T>∗ v_model ;
28 std : : vector<std : : vector<edge> > graph ;
29 cost_matrix co s t ;
30

31 void BuildGraph () ;
32 } ;
33

34 }
35 #inc lude " s r c /graph . i n l "
36 #end i f

Listing C.5: Header file for the Graph class.

graph.inl
1 namespace skepu {
2

3 template <typename T>
4 Graph<T>::Graph (Model<T>∗ model) {
5 v_model = model ;
6 co s t = v_model−>getCost () ;
7 BuildGraph () ;
8 }
9

10 template <typename T>

77

11 void Graph<T>:: BuildGraph () {
12

13 std : : vector<edge> node0 ;
14 node0 . push_back (edge (1 , co s t .DeToSpDv)) ;
15 node0 . push_back (edge (2 , co s t .DeToDv)) ;
16

17 std : : vector<edge> node1 ;
18 node1 . push_back (edge (0 , co s t . SpToDeDv)) ;
19 node1 . push_back (edge (3 , co s t . SpToDv)) ;
20

21 std : : vector<edge> node2 ;
22 node2 . push_back (edge (3 , co s t .DeToSpDv)) ;
23 node2 . push_back (edge (0 , co s t .DeToHo)) ;
24

25 std : : vector<edge> node3 ;
26 node3 . push_back (edge (2 , co s t . SpToDeDv)) ;
27 node3 . push_back (edge (1 , co s t . SpToHo)) ;
28

29 graph . push_back (node0) ;
30 graph . push_back (node1) ;
31 graph . push_back (node2) ;
32 graph . push_back (node3) ;
33

34 }
35

36 }

Listing C.6: C++ implementation of the Graph class.

path.h
1 #i f n d e f PATH_H
2 #de f i n e PATH_H
3 #inc lude <set>
4 #inc lude " switch . h"
5

6 us ing namespace std ;
7 namespace skepu{
8

9 s t r u c t Comparator{
10

11 bool operator () (const std : : pair<std : : pa ir<int , int >, double>& lhs ,
const std : : pa ir<std : : pair<int , int >, double>& rhs) {

12

13 re turn (l h s . second < rhs . second) ;
14 }
15

16 } ;
17

18 template <typename T>
19 c l a s s Path{
20

21 pub l i c :
22 Path () {} ;
23 Path (Graph<T>∗ trgt_graph) ;
24 void FindPath (i n t t a r g e t) ;
25 double Distance (i n t source , i n t t a r g e t) ;
26 void pass_matrix_status (const std : : vector<uint>& gmatrix_status) ;
27 void a l l_co s t s () ;

78

28 void sorted_cost () ;
29 void compute_node () ;
30 std : : pa ir<int , int> p r ed i c t i o n () ;
31

32 pr i va t e :
33 std : : vector<std : : vector<edge> > graph ;
34 cost_matrix co s t ;
35

36 pr i va t e :
37 std : : vector<int> path_val ;
38 std : : vector<std : : vector<int> > path ;
39 std : : set< std : : pair<std : : pa ir<int , int >, double >, Comparator>

state_pa i r ;
40 std : : vector<uint> m_gmatrix_status ;
41

42 } ;
43

44 }
45

46 #inc lude " s r c /path . i n l "
47 #end i f

Listing C.7: Header file for the Path class.

path.inl
1

2 namespace skepu {
3

4 /∗ ! Constructor
5 ∗/
6 template <typename T>
7 Path<T>:: Path (Graph<T>∗ trgt_graph) {
8 graph = trgt_graph−>getGraph () ;
9 co s t = trgt_graph−>getCost () ;

10 i n t s ize_ = graph . s i z e () ;
11 path_val = std : : vector<int >(1 , INT_MAX) ;
12 path = std : : vector<std : : vector<int> >(size_ , path_val) ;
13

14 }
15

16 /∗ ! Ca l cu l a t e s minimum d i s t anc e between two nodes
17 ∗/
18 template <typename T>
19 double Path<T>:: Distance (i n t source , i n t t a r g e t) {
20 std : : vector<int> min_distance (graph . s i z e () , INT_MAX) ;
21 min_distance [source] = 0 ;
22 set< pair<int , int> > ac t i v e_ve r t i c e s ;
23 a c t i v e_ve r t i c e s . i n s e r t (make_pair (0 , source)) ;
24 whi le (! a c t i v e_ve r t i c e s . empty ()) {
25 i n t where = ac t i v e_ve r t i c e s . begin ()−>second ;
26 i f (where == ta rg e t) re turn min_distance [where] ;
27 a c t i v e_ve r t i c e s . e r a s e (a c t i v e_ve r t i c e s . begin ()) ;
28

29 std : : vector<edge >: : i t e r a t o r i t e r ;
30 i t e r = graph [where] . begin () ;
31 whi le (i t e r != graph [where] . end ()) {
32 i f (min_distance [i t e r−>to] > min_distance [where] + i t e r−>length) {
33 path [i t e r−>to] [0] = where ;

79

34 a c t i v e_ve r t i c e s . e r a s e (make_pair (min_distance [i t e r−>to] , i t e r−>to)
) ;

35 min_distance [i t e r−>to] = min_distance [where] + i t e r−>length ;
36 a c t i v e_ve r t i c e s . i n s e r t (make_pair (min_distance [i t e r−>to] , i t e r−>to

)) ;
37 }
38 ++i t e r ;
39 }
40 }
41

42 re turn INT_MAX;
43 }
44

45 /∗ ! Find sho r t e s t d i s t anc e between source and ta r g e t
46 ∗/
47 template <typename T>
48 void Path<T>:: FindPath (i n t t a r g e t) {
49 i f (path [t a r g e t] [0]==INT_MAX) ;
50 e l s e
51 {
52 std : : cout << path [t a r g e t] [0] << " " ;
53 FindPath (path [t a r g e t] [0]) ;
54 }
55 }
56

57

58 /∗ ! i t w i l l s e t the cur rent s t a tu s o f gmatrix ; gmatrix can be , dense ,
sparse ,

59 ∗ dense / spar s e on dev i ce dense / spar s e on host
60 ∗/
61 template <typename T>
62 void Path<T>:: pass_matrix_status (const std : : vector<uint>&

gmatrix_status) {
63 m_gmatrix_status = gmatrix_status ;
64 }
65

66

67 /∗ ! Can show a l l generated co s t from node to node
68 ∗/
69 template <typename T>
70 void Path<T>:: a l l_co s t s () {
71 double Cp_Cst [] = { co s t .CpDeHo, co s t .CpSpHo , co s t .CpDeDv, co s t .

CpSpDv } ;
72 std : : vector<uint >: : i t e r a t o r source = m_gmatrix_status . begin () ;
73 std : : cout << "\nCost Matrix from source node to every node in graph

. . . \ n" ;
74 whi le (source != m_gmatrix_status . end ()) {
75 i n t target_= 0 ;
76 whi le (target_ <4){
77 double i = Distance (∗ source , target_) ;
78 std : : cout << ∗ source << "−>" << target_ <<" " << i + (Cp_Cst [target_

]) <<" " ;
79 target_++;
80 }
81 std : : cout << "\n" ;
82 ++source ;
83 }
84 }

80

85

86 /∗ ! Can show a l l p o s s i b l e c o s t s in i n c r e a s i n g order
87 ∗/
88 template <typename T>
89 void Path<T>:: compute_node () {
90 double Cp_Cst [] = { co s t .CpDeHo, co s t .CpSpHo , co s t .CpDeDv, co s t .

CpSpDv } ;
91 std : : vector<uint >: : i t e r a t o r source = m_gmatrix_status . begin () ;
92 std : : pa ir< std : : set< std : : pa ir<std : : pair<int , int >, double> >::

i t e r a t o r , bool > i f I n s e r t ;
93 whi le (source != m_gmatrix_status . end ()) {
94 i n t target_= 0 ;
95 whi le (target_ <4){
96 double i = Distance (∗ source , target_) ;
97 std : : pa ir<int , int> key (∗ source , target_) ;
98 i f I n s e r t = state_pa i r . i n s e r t (std : : make_pair (key , i + (Cp_Cst [target_

]))) ;
99 i f (i f I n s e r t . second==f a l s e) {

100 #i f d e f DEBUG_SWITCH
101 std : : cout << "Updating " << std : : endl ;
102 #end i f
103 s tate_pa i r . e r a s e (i f I n s e r t . f i r s t) ;
104 i f I n s e r t = state_pa i r . i n s e r t (std : : make_pair (key , i + (Cp_Cst [

target_]))) ;
105 i f (i f I n s e r t . second==true) {
106 #i f d e f DEBUG_SWITCH
107 std : : cout << "Now value i s Updated " << std : : endl ;
108 #end i f
109 }
110 }
111 target_++;
112 }
113 ++source ;
114 }
115 }
116

117 template <typename T>
118 void Path<T>:: sorted_cost () {
119

120 std : : set< std : : pair<std : : pa ir<int , int >, double> >:: i t e r a t o r
i t r_s t a t e = state_pa i r . begin () ;

121 std : : cout << "Execution time in i n c r e a s i n g order . . . \ n" ;
122 whi le (i t r_s t a t e != state_pa i r . end ()) {
123 std : : cout << it r_sta te−>f i r s t . f i r s t << "−>" << it r_sta t e−>f i r s t

. second << " " << it r_sta t e−>second << " " ;
124 i t r_ s t a t e++;
125 }
126 std : : cout << "\n" << std : : endl ;
127

128 }
129

130 template <typename T>
131 std : : pa ir<int , int> Path<T>:: p r ed i c t i on () {
132 std : : set< std : : pair<std : : pa ir<int , int >, double> >:: i t e r a t o r

i t r_s t a t e = state_pa i r . begin () ;
133 re turn (i t r_s ta t e−>f i r s t) ;
134 }
135

81

136 }

Listing C.8: C++ implementation of the Path class.

switch.h
1

2 #i f n d e f SWITCH_H
3 #de f i n e SWITCH_H
4 #inc lude <iostream>
5

6 namespace skepu {
7

8 enum StateStat {
9 C_DtoS_H,

10 T_StoS_D,
11 C_StoD_D,
12 T_DtoD_H,
13 T_DtoD_D,
14 C_DtoS_D,
15 T_StoS_H,
16 C_StoD_H
17 } ;
18

19 c l a s s Switch{
20

21 pub l i c :
22 Switch (std : : pa ir<int , int> key) : switch_key (key) {
23 set_state_diagram () ;
24 }
25

26 template <typename Container>
27 void switch_to (Container& matrix_pointer) ;
28 void set_matrix_status (const std : : vector<uint>& s ta tu s) ;
29 skepu : : BackEndParams get_predicted_backend_parameters () ;
30

31 pr i va t e :
32 void set_state_diagram () ;
33 void set_backend_parameters () ;
34 void matrix_on_host () ;
35 void matrix_on_device () ;
36

37 pr i va t e :
38 std : : pa ir<int , int> switch_key ;
39 std : : vector<uint> matrix_status ;
40 std : : map<std : : pair<int , int >, StateStat> state_diagram ;
41 skepu : : BackEndParams bp ;
42 } ;
43 }
44 #inc lude " s r c / switch . i n l "
45 #end i f

Listing C.9: Header file for the Switch class.

switch.inl
1 namespace skepu{
2

3 void Switch : : set_matrix_status (const std : : vector<uint>& s ta tu s) {

82

4 matrix_status = s ta tu s ;
5 }
6

7 template <typename Container>
8 void Switch : : switch_to (Container& matrix_pointer) {
9 std : : vector<uint >: : i t e r a t o r f ind_state ;

10 f i nd_state = std : : f i nd (matrix_status . begin () , matrix_status . end () ,
switch_key . second) ;

11 // check i f t a r g e t type i s a l r eady av a i l a b l e in r i g h t format
12 i f (f ind_state != matrix_status . end ()) {
13

14 #i f d e f DEBUG_SWITCH
15 std : : cout << "Target a v a i l a b l e in r i gh t format at r i g h t p lace

. . . \ n" ;
16 #end i f
17 // s e t the execut ion plan and return matrix s ta te , no conve r s t i on

or t r a n s f e r reqrd
18 switch (∗ f i nd_state) {
19 case 0 :
20 matrix_pointer−>adapted_matrix = matrix_pointer−>dense_matrix ;
21 matrix_on_host () ;
22 break ;
23 case 1 :
24 matrix_pointer−>adapted_matrix = matrix_pointer−>sparse_matrix ;
25 matrix_on_host () ;
26 break ;
27 case 2 :
28 matrix_pointer−>adapted_matrix = matrix_pointer−>dense_matrix ;
29 matrix_on_device () ;
30 break ;
31 case 3 :
32 matrix_pointer−>adapted_matrix = matrix_pointer−>sparse_matrix ;
33 matrix_on_device () ;
34 break ;
35 de f au l t :
36 a s s e r t (f a l s e) ;
37 }
38 }
39 e l s e { // t a r g e t i s not in r i gh t p lace or format .
40 #i f d e f DEBUG_SWITCH
41 std : : cout << "Target i s not in r i g h t format / p lace . . . \ n" ;
42 #end i f
43 // check i f d i r e c t path i s the re
44 std : : map<std : : pair<int , int >, StateStat >: : i t e r a t o r s ta t e_sta t_ i t r

= state_diagram . begin () ;
45 s ta t e_sta t_ i t r = state_diagram . f i nd (switch_key) ;
46

47 i f (s t a t e_sta t_ i t r != state_diagram . end ()) {
48 // i f d i r e c t path e x i s t s from source to target , then switch to that
49

50 StateStat s ta te_status = state_stat_i t r−>second ;
51

52 switch (s ta te_sta tus) {
53 case C_DtoS_H:
54 i f (matrix_pointer−>sparse_matrix != NULL) d e l e t e matrix_pointer−>

sparse_matrix ;
55 matrix_on_device () ;
56 matrix_pointer−>sparse_matrix = matrix_pointer−>dense_matrix−>

83

DenseToSparse () ;
57 matrix_pointer−>adapted_matrix = matrix_pointer−>sparse_matrix ;
58 matrix_on_host () ;
59 #i f d e f DEBUG_SWITCH
60 std : : cout << "\nConversion DenseMatrix to SparseMatrix on Host\n" ;
61 #end i f
62 break ;
63 case T_StoS_D:
64 matrix_on_device () ;
65 matrix_pointer−>adapted_matrix = matrix_pointer−>sparse_matrix ;
66 #i f d e f DEBUG_SWITCH
67 std : : cout << "\nTransfer SparseMatrix from host to dev i ce \n" ;
68 #end i f
69 break ;
70 case C_StoD_D:
71 i f (matrix_pointer−>dense_matrix !=NULL) d e l e t e matrix_pointer−>

dense_matrix ;
72 matrix_on_device () ;
73 matrix_pointer−>dense_matrix = matrix_pointer−>sparse_matrix−>

SparseToDense () ;
74 matrix_on_device () ;
75 matrix_pointer−>adapted_matrix = matrix_pointer−>dense_matrix ;
76 #i f d e f DEBUG_SWITCH
77 std : : cout << "\nConversion from SparseMatrix −> DenseMatrix on host

\n" ;
78 #end i f
79 break ;
80 case T_DtoD_H:
81 matrix_on_host () ;
82 matrix_pointer−>adapted_matrix = matrix_pointer−>dense_matrix ;
83 #i f d e f DEBUG_SWITCH
84 std : : cout << "\nTransfer DenseMatrix Device −> Host\n" ;
85 #end i f
86 break ;
87 case T_DtoD_D:
88 matrix_on_device () ;
89 matrix_pointer−>adapted_matrix = matrix_pointer−>dense_matrix ;
90 #i f d e f DEBUG_SWITCH
91 std : : cout << "\nTransfer DenseMatix Host −> Device \n" ;
92 #end i f
93 break ;
94 case C_DtoS_D:
95 i f (matrix_pointer−>sparse_matrix != NULL) d e l e t e matrix_pointer−>

sparse_matrix ;
96 matrix_on_device () ;
97 matrix_pointer−>sparse_matrix = matrix_pointer−>dense_matrix−>

DenseToSparse () ;
98 matrix_on_device () ;
99 matrix_pointer−>adapted_matrix = matrix_pointer−>sparse_matrix ;

100 #i f d e f DEBUG_SWITCH
101 std : : cout << "\nConversion DenseMatrix −> SparseMatrix on Device \n"

;
102 #end i f
103 break ;
104 case T_StoS_H:
105 matrix_on_host () ;
106 matrix_pointer−>adapted_matrix = matrix_pointer−>sparse_matrix ;
107 #i f d e f DEBUG_SWITCH

84

108 std : : cout << "\nTransfer SparseMatrix −> Host\n" ;
109 #end i f
110 break ;
111 case C_StoD_H:
112 i f (matrix_pointer−>dense_matrix != NULL) d e l e t e matrix_pointer−>

dense_matrix ;
113 matrix_on_device () ;
114 matrix_pointer−>dense_matrix = matrix_pointer−>sparse_matrix−>

SparseToDense () ;
115 matrix_on_host () ;
116 matrix_pointer−>adapted_matrix = matrix_pointer−>dense_matrix ;
117 #i f d e f DEBUG_SWITCH
118 std : : cout << "\nConversion SparseMatrix −> DenseMatrix on Host\n" ;
119 #end i f
120 break ;
121 de f au l t : a s s e r t (f a l s e) ;
122 }
123 }
124 e l s e {
125 i f (matrix_pointer−>sparse_matrix != NULL) d e l e t e matrix_pointer−>

sparse_matrix ;
126 matrix_on_host () ;
127 matrix_pointer−>sparse_matrix = matrix_pointer−>dense_matrix−>

DenseToSparse () ;
128 matrix_on_device () ;
129 matrix_pointer−>adapted_matrix = matrix_pointer−>sparse_matrix ;
130 }
131 }
132 }
133

134

135 void Switch : : set_state_diagram () {
136 state_diagram . i n s e r t (std : : make_pair (std : : make_pair (0 , 1) , C_DtoS_H)

) ;
137 state_diagram . i n s e r t (std : : make_pair (std : : make_pair (1 , 3) , T_StoS_D)

) ;
138 state_diagram . i n s e r t (std : : make_pair (std : : make_pair (3 , 2) , C_StoD_D)

) ;
139 state_diagram . i n s e r t (std : : make_pair (std : : make_pair (2 , 0) , T_DtoD_H)

) ;
140

141 state_diagram . i n s e r t (std : : make_pair (std : : make_pair (0 , 2) , T_DtoD_D)
) ;

142 state_diagram . i n s e r t (std : : make_pair (std : : make_pair (2 , 3) , C_DtoS_D)
) ;

143 state_diagram . i n s e r t (std : : make_pair (std : : make_pair (3 , 1) , T_StoS_H)
) ;

144 state_diagram . i n s e r t (std : : make_pair (std : : make_pair (1 , 0) , C_StoD_H)
) ;

145 }
146

147 //−− s e t s backend parameter
148 void Switch : : set_backend_parameters ()
149 {
150 Environment<int> ∗ environment = Environment<int >: : g e t In s tance () ;
151

152 #i f de f ined (SKEPU_OPENCL) && ! de f ined (SKEPU_CUDA) && SKEPU_NUMGPU == 1
153 bp . backend = CL_BACKEND;

85

154 #e l i f de f i ned (SKEPU_OPENCL) && ! de f ined (SKEPU_CUDA) && SKEPU_NUMGPU !=
1

155 bp . backend = CLM_BACKEND;
156 #e l i f ! d e f i ned (SKEPU_OPENCL) && de f ined (SKEPU_CUDA) && SKEPU_NUMGPU ==

1
157 bp . backend = CU_BACKEND;
158 #e l i f ! d e f i ned (SKEPU_OPENCL) && de f ined (SKEPU_CUDA) && SKEPU_NUMGPU !=

1
159 bp . backend = CUM_BACKEND;
160 #e l i f de f i ned (SKEPU_OPENCL) && de f ined (SKEPU_CUDA) && SKEPU_NUMGPU == 1
161 bp . backend = CL_BACKEND;
162 #e l i f de f i ned (SKEPU_OPENCL) && de f ined (SKEPU_CUDA) && SKEPU_NUMGPU != 1
163 bp . backend = CLM_BACKEND;
164 #e l i f ! d e f i ned (SKEPU_OPENCL) && ! de f ined (SKEPU_CUDA)
165

166 #i f de f ined (SKEPU_OPENMP)
167 bp . backend = OMP_BACKEND;
168 #e l s e
169 bp . backend = CPU_BACKEND;
170 #end i f
171

172 #end i f
173

174 #i f d e f SKEPU_OPENCL
175 bp . amxThreads = environment−>m_devices_CL . at (0)−>getMaxThreads () ;
176 bp . maxBlocks = environment−>m_devices_CL . at (0)−>getMaxBlocks () ;
177 #end i f
178

179 #i f d e f SKEPU_CUDA
180 bp . maxThreads = environment−>m_devices_CU . at (0)−>getMaxThreads () ;
181 bp . maxBlocks = environment−>m_devices_CU . at (0)−>getMaxBlocks () ;
182 #end i f
183

184 #i f d e f SKEPU_OPENMP
185 #i f d e f SKEPU_OPENMP_THREADS
186 bp . numOmpThreads = SKEPU_OPENMP_THREADS;
187 #e l s e
188 bp . numOmpThreads = omp_get_max_threads () ;
189 #end i f
190 #end i f
191 }
192

193 skepu : : BackEndParams Switch : : get_predicted_backend_parameters () {
194 re turn bp ;
195 }
196

197

198 void Switch : : matrix_on_host () {
199 #i f d e f SKEPU_OPENMP
200 set_backend_parameters () ;
201 bp . backend = OMP_BACKEND;
202 #i f d e f SKEPU_OPENMP_THREADS
203 bp . numOmpThreads = SKEPU_OPENMP_THREADS;
204 #e l s e
205 bp . numOmpThreads = omp_get_max_threads () ;
206 #end i f
207

208 #e l s e

86

209 set_backend_parameters () ;
210 #end i f
211

212 #i f d e f DEBUG_SWITCH
213 std : : cout << "Matrix on Host \n" ;
214 #end i f
215 }
216

217 void Switch : : matrix_on_device () {
218 #i f d e f SKEPU_CUDA
219 set_backend_parameters () ;
220 bp . backend = CU_BACKEND;
221 #e l s e
222 set_backend_parameters () ;
223 #end i f
224

225 #i f d e f DEBUG_SWITCH
226 std : : cout << "Matrix on Device \n" ;
227 #end i f
228 }
229

230 }

Listing C.10: C++ implementation of the Switch class.

helper.h
1 #i f n d e f HELPER_DEMONSTRATION_H
2 #de f i n e HELPER_DEMONSTRATION_H
3

4 /∗ ∗∗∗
5 ∗ A he lpe r func t i on to c a l c u l a t e dense matrix−vec to r product .∗
6 ∗ Used to v e r i f y that the SkePU output i s c o r r e c t . ∗
7 ∗∗ ∗/
8 template<typename T>
9 void directMV (skepu : : Vector<T> &v , skepu : : DenseMatrix<T> &m, skepu : :

Vector<T> &re s)
10 {
11 i n t rows = m. total_rows () ;
12 i n t c o l s = m. to t a l_co l s () ;
13

14 f o r (i n t r=0; r<rows ; ++r)
15 {
16 T sum = T() ;
17 f o r (i n t i =0; i<c o l s ; ++i)
18 {
19 sum += m[r ∗ c o l s+i] ∗ v [i] ;
20 }
21 r e s [r] = sum ;
22 }
23 }
24 template<typename T>
25 void directspmv (skepu : : Vector<T> &v , skepu : : SparseMatrix<T> &m, skepu : :

Vector<T> &re s)
26 {
27 i n t rows = m. total_rows () ;
28 i n t nnz = m. total_nnz () ;
29

30 T ∗ va lue s= m. get_values () ;

87

31 s i ze_t ∗ row_of f se t s = m. get_row_pointers () ;
32 s i ze_t ∗ co l_ ind i c e s = m. get_co l_ind ices () ;
33

34 T sum ;
35

36 i n t rowIdx = 0 ;
37 i n t nxtRowIdx = 0 ;
38

39 f o r (i n t i i = 0 ; i i < rows ; i i ++)
40 {
41 sum = 0 ;
42

43 rowIdx = row_of f se t s [i i] ;
44 nxtRowIdx = row_of f se t s [i i +1] ;
45

46 f o r (i n t j j=rowIdx ; j j <nxtRowIdx ; j j++)
47 {
48 sum += va lues [j j] ∗ v [co l_ ind i c e s [j j]] ;
49 }
50 r e s [i i] = sum ;
51 }
52 }
53 template <typename T>
54 i n t compare_results (skepu : : Vector<T>& skepu_v , skepu : : Vector<T>&

direct_v)
55 {
56 i n t r e s u l t = 0 ;
57

58 s i ze_t s i z e_vec to r = skepu_v . s i z e () ;
59 f o r (s i ze_t i =0; i<s i z e_vec to r ; ++i) {
60 i f (skepu_v [i] != direct_v [i])
61 {
62 r e s u l t = 1 ;
63 break ;
64 }
65 }
66 re turn r e s u l t ;
67 }
68

69

70

71 /∗ ∗∗
72 ∗ F i l l e r Function with percentage as a c r i t e r i a ∗
73 ∗∗ ∗/
74 template<typename T>
75 void f i l lW i t hP r ob ab i l i t y (skepu : : DenseMatrix<T>& source_matrix , i n t

percentage) {
76

77 i f (percentage >=0 && percentage <100){
78

79 T∗ pointerM1 = source_matrix . GetArrayRep () ;
80 s i ze_t size_of_mat = source_matrix . s i z e () ;
81 i n t t imes = sta t i c_cas t <int >((percentage ∗ source_matrix . s i z e ())

/100) ;
82 f o r (i n t i = 0 ; i<times ; ++i) {
83 pointerM1 [i] = 0 ;
84 }
85

88

86 std : : random_shuffle(&pointerM1 [0] , &pointerM1 [size_of_mat]) ;
87 }
88 e l s e {
89 std : : ce r r<<" Inva l i d Input "<<std : : endl ;
90 }
91 }
92

93 #end i f

Listing C.11: C++ implementation of helper functions.

Appendix D

Source code to test Automatic
Switching Mechanism

In this appendix we include our implemented source code in order to test automatic
switching mechanism.

1 #de f i n e SKEPU_OPENMP
2 #de f i n e SKEPU_CUDA
3 #de f i n e SKEPU_NUMGPU 1
4 #de f i n e SKEPU_OPENMP_THREADS 2
5 #inc lude " skepu/gmatrix . h"
6 #inc lude " skepu/dense_matrix . h"
7 #inc lude " skepu/ sparse_matrix . h"
8 #inc lude " t ogg l e . h"
9 #inc lude " he lpe r . h"

10 #inc lude <type in fo>
11

12 //#de f i n e DISPLAY
13 #de f i n e COMPARE
14

15 #de f i n e SIZE 7000
16

17 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
18 ∗∗USER FUNCTIONS∗∗
19 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
20

21 ARRAY_FUNC_MATR_BLOCK_WISE(map_f , f l o a t , a , b , SIZE , f l o a t temp = 0 ;
22 f o r (u int i = 0 ; i<SIZE ; i++){
23 temp += a [i]∗b [i] ;
24 }
25 re turn temp ;
26)
27

28 ARRAY_FUNC_SPARSE_MATR_BLOCK_WISE(arr_s , f l o a t , a , b , nnz , aIdx , SIZE ,
f l o a t r e s = 0 ;

29 f o r (s i ze_t i =0; i<nnz ; ++i) {
30 r e s += a [aIdx [i]] ∗ b [i] ;
31 }
32 re turn r e s ;)
33

34

35 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

89

90

36 ∗ MAIN FUNCTION ∗
37 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
38 i n t main () {
39

40 i n t s p a r s i t y =50;
41

42 skepu : : Model<f l o a t > model (SIZE , s p a r s i t y) ;
43

44 skepu : : GMatrix<f l o a t > generic_mat ;
45 skepu : : DenseMatrix<f l o a t > dense_mat (SIZE , SIZE) ;
46 skepu : : Vector<f l o a t > vector_in1 (SIZE , 2) ;
47 skepu : : Vector<f l o a t > vector_r ;
48 skepu : : Vector<f l o a t > vec to r_d i r ec t (SIZE) ;
49 skepu : : Toggle<f l o a t > togg l e (generic_mat) ;
50

51 t ogg l e . set_model (model) ;
52 generic_mat (dense_mat) ;
53 generic_mat . dense_matrix−>randomize (3 . 0 f , 7 . 0 f) ;
54 f i l lW i t hP r ob ab i l i t y (∗ (generic_mat . dense_matrix) , s p a r s i t y) ;
55

56 /∗comment !
57 ∗gmatrix {0 ,1 ,2 ,3}
58 ∗/
59 t ogg l e . p r i n t () ;
60

61 /∗comment !
62 ∗update search mechanism with cur rent s t a tu s o f GMatrix
63 ∗/
64 t ogg l e . r e f r e s h () ;
65 t ogg l e . best_plan () ;
66

67

68 i f (type id (∗ (generic_mat . get_matrix ())) == type id (skepu : : DenseMatrix<
f l o a t >)) {

69 std : : cout << "Dense Matrix \n" ;
70 skepu : : DenseMatrix<f l o a t >∗ dense_in
71 = dynamic_cast<skepu : : DenseMatrix<f l o a t >∗>(generic_mat .

get_matrix ()) ;
72 skepu : : MapArray<map_f> add_func (new map_f) ;
73 add_func . setExecPlan (t ogg l e . getPred ic tedPlan ()) ;
74 add_func (vector_in1 , ∗(dense_in) , vector_r) ;
75

76 /∗ !
77 ∗Result V e r i f i c a t i o n and Display Output f o r Demonstration only
78 ∗/
79 #i f d e f COMPARE
80 directMV (vector_in1 , ∗(dense_in) , vec to r_d i r ec t) ;
81 #end i f
82 #i f d e f DISPLAY
83 std : : cout << ∗(dense_in) ;
84 std : : cout << "\n SKEPU RESULT : " << vector_r << "\n" ;
85 std : : cout << "\n DIRECT RESULT : " << vecto r_d i r ec t << "\n" ;
86 #end i f
87

88 }
89 e l s e i f (type id (∗ (generic_mat . get_matrix ())) == type id (skepu : :

SparseMatrix<f l o a t >)) {
90 std : : cout << "Sparse Matrix \n" ;

91

91 skepu : : SparseMatrix<f l o a t >∗ sparse_in
92 = stat i c_cas t <skepu : : SparseMatrix<f l o a t >∗>(generic_mat .

get_matrix ()) ;
93 skepu : : MapArray<arr_s> add_func (new arr_s) ;
94 add_func . setExecPlan (t ogg l e . getPred ic tedPlan ()) ;
95 add_func (vector_in1 , ∗(sparse_in) , vector_r) ;
96

97 /∗ !
98 ∗Result V e r i f i c a t i o n and Display Output f o r Demonstration only
99 ∗/

100 #i f d e f COMPARE
101 directspmv (vector_in1 , ∗(sparse_in) , vec to r_d i r e c t) ;
102 #end i f
103 #i f d e f DISPLAY
104 sparse_in−>printMatrixInDenseFormat () ;
105 std : : cout << "\n SKEPU RESULT : " << vector_r << "\n" ;
106 std : : cout << "\n DIRECT RESULT : " << vecto r_d i r ec t << "\n" ;
107 #end i f
108 }
109

110 #i f d e f COMPARE
111 std : : cout << (compare_results (vector_r , vec to r_d i r e c t) ?"\ nFai led

. . . ! ! " : "\ nSucess . . . ! ! \ n") ;
112 #end i f
113

114 std : : cout << "\n" ;
115 t ogg l e . r e f r e s h () ;
116 t ogg l e . p r i n t () ;
117 t ogg l e . best_plan () ;
118 std : : cout << "\n" ;
119

120

121 re turn 0 ;
122 }
123

124

Listing D.1: Program to run test-cases.

