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Abstract

This paper introduces the Raoul package for handling missing data in R through multiple im-

putation by iterated sequential regression. The Raoul package uses a computationally efficient

algorithm to generate imputations and allows for the imputation of categorical and count vari-

ables without relying on the Multivariate Normal Distribution or Markov Chain Monte Carlo

simulations. A simulation study is conducted to compare the performance of the Raoul pack-

age with the performance of the mice, Amelia II, and NORM packages, and Listwise Deletion.

Simulations are made on data Missing Completely at Random, Missing at Random, and Not

Missing at Random, and at missingness levels of 10%, 20%, and 40%. The simulation study

shows that the Raoul package is computationally faster than its competitors, and that its per-

formance is roughly on par with these competitors for all types of missing data at the 10% and

20% level of missingness, but that it fails to compete at the 40% missingness level.

Keywords: Missing Data, Maximum Likelihood, Multiple Imputation, Iterated Regression
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1 Introduction

Missing data is a common problem in almost all fields of research which rely on human gathered

data. Missing data generally refers to the situation which arises when some cases in a data set

have incomplete data i.e. when information is missing for some, but not all, variables, in some

of the cases included in the data set. There may be several reasons for why the information is

missing; a respondent may have declined or forgotten to answer a specific question in a survey,

a country may not have the capacity to collect data for a specific variable, or existing data in

a data set may have been found to be fraudulent or misrecorded. Missing data is problematic

because most of the commonly used statistical methods for data analysis require data to be

complete, i.e. to not have any missing data, to work properly. Ignoring the presence of missing

data will therefore affect the results of any analysis made using that data, and may lead to

biased results and false conclusions.1 Therefore, it is highly important to use statistically sound

methods for handling missing data in order to ensure the validity of the analyses made.

There are already several different statistical tools and packages for handling missing data, such

as the Amelia II (Honaker et. al 2011), mice (van Buuren and Groothuis-Oudshoorn 2011), and

NORM packages for R (Novo and Schafer 2013), and Proc MI for SAS (SAS Institute 2015),

which are readily available in statistical software. These tools and packages rely on different

types of imputation methods, i.e. methods which replace the missing data with new values,

thereby allowing for the use of complete data statistical methods in the analysis. These existing

packages and tools do, however, have several weaknesses. One of the primary weaknesses is

that these existing packages and tools are often difficult to use and difficult to comprehend

without extensive prior statistical knowledge. Additionally, many of these packages and tools

are computationally slow and/or do not allow for handling of categorical and ordinal variables

without certain assumptions which are not always reasonable.

The Raoul package for R, named after the Swedish Diplomat and Humanitarian Raoul Wal-

lenberg, who disappeared in January 1945 and whose fate is still unknown, aims to address

these weaknesses in the existing statistical tools and packages for handling missing data. The

Raoul package allows for Multiple Imputation through Sequential Iterated Regression. The

Raoul package is both computationally fast, easy to use, and allows for handling of categorical,

ordinal, and count without having to edit the data set and without having to rely on the any

1 It is important to emphasize that Missing Data is different from non-response in data, since Missing Data

requires that at least some variables are observed for each case. The errors introduced by missing data are

therefore fundamentally different from errors which may occur due to the non-response bias.
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joint distributional assumptions for the variables.

1.1 Aim and Outline

The aim of this paper is to introduce the Raoul package for R, and to compare its performance in

handling missing data to the performance of some of the existing packages for handling of missing

data in R and to conventional missing data methods. More specifically, the performance of the

Raoul package is compared to the performance of the Amelia II (Honaker et al. 2011), mice (van

Buuren and Groothuis-Oudshoorn 2011), and NORM packages in R (Novo and Schafer 2013),

and to the conventional method for handling missing data, Listwise Deletion.2 These packages,

and Listwise Deletion, are chosen as they are the most commonly used tools for handling missing

data in R. The comparison is done by through evaluating the performance of these different

methods on simulated missing data from a complete data set under different types of missing

data.3

The remainder of this paper is divided into six sections. In the first two sections, different types

of missing data, as well as different methods for handling missing data are discussed. In Section

4, the Raoul package is introduced and its theoretical motivation and algorithms discussed.

Section 5 introduces the methodology and the data for the simulation study, which is followed

by a section presenting and analyzing the results of this simulation study. Lastly, conclusions

about the effectiveness of the Raoul package are drawn and implications discussed.

2 See Section 3 for more detail on these various methods for handling missing data.
3 See Section 2 for more details on types of missing data
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2 Types of Missing Data4

Missing data is a phenomenon which is often accepted as a natural part of data collection, as

it is not uncommon that certain information about some of the cases in the data set cannot

be obtained. However,just as any other values in a data set, missing data can be though of

as having been caused by some sort of missing data mechanism which determines whether or

not a specific datum will be observed or missing. The process through which this missing data

mechanism operates will then affect the effectiveness of different techniques for handling the

missing data (see for instance King et. al. 2001). In order to discuss and evaluate different

methods for handling missing data, some general assumptions for how these different missing

data mechanisms may operate must therefore be discussed, as well as their implications for

different techniques for handling missing data (Allison 2012).

Missing data, or missing data mechanisms, can generally be divided into three categories; data

which are Missing Completely at Random, data which are Missing at Random, and data which

are Not Missing at Random. The first two of these types of missing data are known as missing

data caused by an ignorable missing data mechanism, while the last one is caused by a non-

ignorable missing data mechanism (Schafer 1997, Allison 2009). Missing data generated from

an ignorable mechanism allows for valid parameter estimates to be estimated without having

to model the missing data mechanism. Missing data generated by a non-ignorable missing data

mechanism, on the other hand, generally requires a model of the mechanism itself in order for

valid parameter estimates to be obtained. Understanding, or making assumptions about, the

mechanism which causes the missingness in the data is therefore important for choosing the

correct method of handling the missing data. While there are statistical tools and methods for

handling missing data with a non-ignorable missing data mechanism, the aim of this paper is to

discuss different methods for handling data from ignorable missing data mechanisms. As will

be seen below the assumption of ignorability is under many circumstances not an unreasonable

assumption, as non-ignorability can often be remedied by adding auxiliary variables to achieve

near-ignorability.

2.1 Data Missing Completely at Random

The strongest, and often the most unrealistic, assumption which can be made about a missing

data mechanism is that the mechanism causes the missing data to be missing completely at

4 Parts of this section is based on Randahl (2015)
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random (MCaR), i.e. that all datum have an equal probability of being missing. This indicates

that the probability of a datum being missing is independent of both the variable itself, as well

as of all other variables included in the data set (King et. al. 2001, Allison 2009).

Some notation must be introduced to show this mathematically. Let Y be a variable with

missing data, and let MYi be a dummy variable which takes the value zero if Yi, i.e. the value

of Y for individual i, is observed and take the value one if Yi is unobserved. Then, let X be a

set of other variables which are included in the data set. The probability that a specific datum

is missing given the value of itself and all other variables in the data set under the MCaR

assumption, i.e. Pr(MY = 1|X, Y ), can then be thought of as

Pr(MY = 1|X, Y ) = P (MY = 1) (1)

This means that the probability of a specific value of Y being missing, conditional on both the

values of X and of Y itself is the same as the unconditional probability that the same specific

value of Y being missing. It is, however, important to emphasize that the missingness of the

data need only be independent of the values of X and Y for the data to be MCaR. If there is

another set of variables, say Z, not included in the data set (i.e. entirely unobserved) which

affect the missingness of the data and which are uncorrelated with X and Y such that

P (MY = 1|X, Y,Z) = P (MY = 1|Z) 6= P (MY = 1), and (2)

Cov(Y,Z) = Cov(X,Z) = 0

then the data are still considered MCaR, since no variable(s) in the data set Y,X can be used

to predict the missingness and the variables which affect the missingness, Z, are uncorrelated

with Y and X.

While the assumption that data are missing completely at random is an incredibly strong

assumption to make, it has the advantage of being an assumption which is partially testable.

Assuming that the values of X are observed, it is possible to test if

Pr(MY = 1|X) = Pr(MY = 1) (3)

by, for instance, a logistic regression of MY on X and reject the MCaR assumption if the F-

statistic for the model is significant. However, since the value of Y itself is always unobserved,

it is never possible to test
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Pr(MY = 1|Y ) = Pr(MY = 1) or Pr(MY = 1|X, Y ) = Pr(MY = 1) (4)

i.e. it is not possible to test whether or not the missingness is dependent on the values of Y

itself. As will be seen in Section 3, missing completely at random is the least severe form of

missing data with regards to effectiveness of different methods for handling missing data.

2.2 Data Missing at Random

A less strong, and under most circumstances more reasonable, assumption on the missing data

mechanism is that the mechanism causes data to be missing at random (MaR). Under MaR

assumptions, the probability that a specific datum is missing or observed on the variable with

missing data is independent of the value of the datum itself, but may depend on other variables

which are included in the data set (Allison 2009, Schafer 1997). Using the same notation as

above, this can be expressed as

Pr(MY = 1|X, Y ) = Pr(MY = 1|X) (5)

i.e. the missingness of Y is independent of Y itself when conditioned on X. For example, if

in a survey the sample is divided into different groups (the X-variable(s)) and the probability

that the individuals in the survey answer a specific question (the Y -variable) varies between

the groups, but does not vary (with regards to Y ) within the groups, then the missing data

mechanism would generate data missing at random on Y (Allison 2009, Graham 2009). From

the expression (5) above, it is easy to see that MCaR is a special case of MaR, since if the

missingness of Y in expression (5) is independent of X the expression reduces to

Pr(MY = 1|X, Y ) = Pr(MY = 1|X) = Pr(MY = 1) (6)

Unlike MCaR the MaR assumption is not testable since the true values of Y are unknown and

therefore it is not possible to test expression (4) above.

While MaR is still a relatively strong assumption, the MaR assumption is in many cases rela-

tively reasonable since if X and Y are correlated, conditioning the missingness of Y on X may

account for a pattern of missingness which may otherwise have been attributed to the value of

Y itself. For instance, if as above, the missingness of Y is dependent on some set of variables Z
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which are not included in the data set and independent of X, which are observed, but Y and Z

are correlated, then

Pr(MY = 1|X, Y ) = Pr(MY = 1|Y ) 6= Pr(MY = 1) (7)

However, if the set of variables Z were to be included and observed in the data set then the

situation above would reduce to

Pr(MY = 1|X, Y,Z) = Pr(MY = 1|Y,Z) = Pr(MY = 1|Z) (8)

which means that the missingness of Y is MaR when Z is included in the data. This indi-

cates that if the data are not missing at random (see below), it may be possible to correct

this by adding more variables to the data set (See for instance Graham 2009, Graham and

Donaldson 1993). Since it is possible to model the mechanism which generates the missing

data through the other variables included in the data set, missing data which are MaR do not

require the missingness mechanism to be modeled separately for valid parameter estimates to

be obtained.

2.3 Data Not Missing at Random

If none of the assumptions above can be assumed to hold, then the missing data mechanism

is considered to cause data to be not missing at random (NMaR)5. In essence this means that

whether a specific value for Y is missing or observed is dependent on the value of Y itself, and

that it is not possible to predict this value from the values of the observed set of variables X

(Allison 2009, King et. al. 2001). In this case the equality in expression (5) does not hold.

There are several different methods for dealing with missing data which are NMaR, for instance

methods similar to those used to handle selection bias (King et. al. 2001)6. These methods do,

however, require analysis of the missing data mechanism since each NMaR situation is unique,

and it is therefore difficult to create generalizable approaches to NMaR data. Yet, as seen above

in section 2.2, it is often possible to improve the NMaR situation by including more variables

in the data set. This may not necessarily turn the NMaR missing data into MaR missing data,

but it may reduce the severity of the NMaR problem such that

5 Also known as data missing not at random (MNaR), or simply as non-ignorable (NI) missing data
6 For more information on methods for handling NMaR data, see for instance Little (1993, 1994, 1995),

Heckman (1979).
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Pr(MY = 1|X, Y,Z) ≈ Pr(MY = 1|X,Z) (9)

which may allow for an approximate MaR assumption under mild NMaR conditions (Allison

2012). It is, however, important to remember that the methods discussed in this paper, and the

methods used by the Raoul-package, on a theoretical level requires the missing data mechanism

to generate ignorable missing data, i.e. data which are MCaR or MaR.
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3 Methods for Handling Missing Data

As noticed in the introduction, missing data is a problem which occurs in one form or another

in most fields of research. Yet, despite the need for handling missing data, the missing data

problem is not always discussed, and it is sometimes unclear what methods have been used to

handle this problem7 (van Buuren 2012). Not discussing how the missing data has been handled

may be tempting, as it may make it possible to avoid questions about the quality of the data

and the quality of the study. Avoiding this discussion does, however, not solve the underlying

problem and avoiding the discussion may rather lead to the use of unsuitable methods for

handling missing data when more appropriate methods are readily accessible.

There are three general theoretical criteria with which methods for handling missing data can

be evaluated. First, the missing data method should minimize parameter bias in the analysis,

i.e. when the statistical analysis is conducted on the treated data, the missing data method

should ensure that the parameters of interest are as close as possible to the values which would

have been obtained if the missing values had been observed (van Buuren 2012). Secondly, the

missing data method should ensure that the maximum amount of the available data is used, and

that as little as possible of the data is discarded. This is a natural criteria to include, since data

collection is often time consuming, expensive, or both. Lastly, the missing data method needs

to yield good estimates of the variability of the data, i.e. produce standard errors, p-values, and

confidence intervals which are neither too large nor too small. This last criteria is important

for the inference drawn from the analysis, as overestimating standard errors, and thereby also

p-values and the length of confidence intervals, will lead to lower efficiency in the analysis, while

underestimating the standard errors and the length of the confidence intervals will lead to an

increased risk of Type I errors and thereby render the p-values unusable (Allison 2009).

As the problem of missing data is so prevalent in research it is not only important that the

methods used for handling missing data are evaluated on theoretical performance, but also on

their ease of use and their computational efficiency. These two dimensions are important since

if the missing data methods are not easy and quick to use, researchers with limited statistical

know-how may opt for using other, less complicated, methods for handling the missing data.

The section below will discuss a number of different methods for handling missing data and how

these different methods fare with regards to the three theoretical, as well as the two practical,

evaluation criteria for data which are MCaR and MaR.

7 Whether or not missing data is discussed varies greatly between different disciplines where statistical data is

used.
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3.1 Conventional Methods for Handling Missing Data

The most commonly used methods for dealing with missing data are methods which either re-

move the missing values or entire observations with missing data, or simpler forms of imputation

methods, i.e. methods where the missing values are replaced by other values to enable complete

data analysis. As will be shown below, these ”conventional” methods for dealing with missing

data do not perform well on the three theoretical criteria above, especially when the data is not

MCaR.

3.1.1 Listwise Deletion

The standard approach for dealing with missing data in most statistical software, and probably

also in most research (van Buuren 2012), is to simply delete all observations which have missing

data. This approach of dealing with missing data is called Listwise Deletion or Complete Case

Analysis, as it only uses the observations, or cases, in which all variables are observed (King

et. al 2001, Allison 2009). Listwise Deletion is a very simple method for handling the missing

data as it does not require any calculations or manipulations of the data, and because most

statistical analysis software have default options of excluding observations with missing data,

allowing for a ”quick-fix” of the missing data problem.

Under the MCaR assumption, Listwise Deletion yields unbiased parameter estimates for means,

variances, as well as in a regression setting. However, as the sample size decreases when observa-

tions are removed, the standard errors produced from regressions made using Listwise Deletion

will be larger than standard errors produced if the missing data had been observed, since the

standard errors are a function of the sample size (van Buuren 2012). Listwise Deletion is also

a very wasteful missing data procedure, as it discards all information on an observation if a

single variable for that observation has missing data which may lead to high levels of wasted

data. For instance, King et al. (2001) claims that in political science surveying, an average of

50 % of all observations have at least one missing value, while in some cases it may be as high

as 90%. Discarding all cases with missing values can therefore leave researchers with very little

data.

If the data is MaR but not MCaR, Listwise Deletion will no longer yield unbiased parameter

estimates as the correlation between the variables which the missingness is dependent upon and

the variable in which the missingness occurs will cause a bias in the parameters. For instance,

if the parameter of interest is the mean of some variable, and the variable is measured in two
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groups where the mean of the first group is twice the mean of the second group. Then, if the

first group is more likely to answer a question about the variable than the second group, this

would create an upward bias for the mean if Listwise Deletion is used to calculate the mean

(Allison 2009).

In summary, Listwise Deletion does not fare well on any of the three criteria for handling missing

data, as it fails to produce unbiased parameter estimates (unless data is MCaR), it wastes much

gathered information, and it does not provide accurate estimates of uncertainty in the regression

setting. Listwise Deletion is very easy to use and requires no additional computations, which

is most likely why it is still the standard methods for dealing with missing data, despite its

theoretical deficiencies.

3.1.2 Pairwise Deletion

An alternative to removing all cases which contain missing values is to use that most parameters

of interest in statistical analysis can be expressed as functions of the means and covariance

matrix. The means and covariance matrix can then, in turn, be estimated using the available

data for each case. Thus, means and variances for individual variables are estimated using

the observed data for that variable, and covariances between variables are estimated using

all observations with data on both variables. This approach of handling missing data is called

Pairwise Deletion or Available Case Analysis, and is an alternative to Listwise Deletion (Allison

2009).

The parameters yielded by Pairwise Deletion are consistent under the MCaR assumption, which

means that they are asymptotically unbiased. When the data are MaR and not MCaR, Pairwise

Deletion may, just as Listwise Deletion, yield biased estimates. Estimating the standard errors

in a regression setting with Pairwise Deletion is, however, very complicated, as each covariance

pattern may, theoretically, be estimated with a different number of observations. Since the

standard errors are a function of the sample size it is therefore impossible to properly estimate

these errors. Yet an additional complication with Pairwise Deletion is that the covariance and

correlation matrices yielded using this missing data method are not guaranteed to be positive

definite, which is a requirement for usage in most statistical analysis methods (Graham 2009,

Allison 2009).

Pairwise Deletion is a slight improvement over Listwise Deletion on the theoretical level as it

makes use of all available information. On the two other theoretical evaluation criteria Pairwise

Deletion does, however, not fare much better than Listwise Deletion. In addition, although it
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does not require any computationally intensive calculations, Pariwise Deletion is a complicated

method to use for most users with limited specialized statistical know-how, especially with re-

gards to the calculation of standard errors, why it cannot be considered very user friendly.

3.1.3 Mean Imputation

Another simple method for handling missing data is Mean Imputation, whereby the missing

values for a variable are simply replaced by the unconditional mean for the variable. Imputing

the unconditional mean of the variable makes it possible to analyze the data using conventional

complete data analysis methods, while still making use of all the observed data. As with both

Listwise and Pairwise Deletion, Mean Imputation, will yield unbiased estimates of the mean

under an MCaR assumption. Mean Imputation does, however, lower the variability of the

data since the same value is imputed for all missing values. This creates a downward bias for

the variance, and it also disturbs the covariances with the other variables in the set. Mean

Imputation will therefore yield biased estimates for almost all other parameters except the

mean, as well as standard errors which are too low due to the decreased variability. If the data

is not MCaR, even the estimate of the mean may be biased (van Buuren 2012).

Thus, while Mean Imputation does make greater use of the available data, it does not fare well

on any of the two other theoretical evaluation criteria. It is, however, easy to use and does

not require any complicated calculations. Researchers with limited statistical know-how may

therefore be tempted to use Mean Imputation rather than Listwise Deletion if they are not

aware of the shortcomings of Mean Imputation.

3.2 Regression Imputation

The three conventional methods for handling missing data discussed above all have in common

that they do not require any complicated calculations or manipulations of the data (except

for the calculation of standard errors in Pairwise Deletion), and are easily implemented in the

data analysis. In essence, they are statistically weak, but easy to use and easy to understand

and may therefore be preferred by many researchers. The last of these conventional methods,

Mean Imputation, does, however, take an important step in the right direction by replacing the

missing values by other values which are, in some sense, plausible.

One way of improving upon Mean Imputation is to impute the conditional mean for the variable,

given the observed values of the other values. This approach is commonly known as Regression
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Imputation, as it simply replaces the missing values with the fitted values from a (linear) regres-

sion of the variable with missing values on the observed variables (Schafer and Graham 2002,

Allison 2009). Unlike the conventional missing data methods, Regression Imputation yields un-

biased parameter estimates under both MCaR and MaR, under the condition that the variables

which affect the missingness in MaR are included in the statistical models used. In addition,

Regression Imputation does not only allow for the use of the complete data set, it also uses the

available data to improve the imputations for the missing data, thereby maximizing the use of

the available data. The downside with regression imputation is that imputing the conditional

means for the missing values will, naturally, strengthen the relationships between the variables

since all values are on the regression line. This will lead to an underestimation of the variability

of the data, as well as an underestimation of standard errors in a regression setting (Lee et al.

1994, van Buuren 2012).

Regression Imputation is a step forward compared to Mean Imputation. It remains both rel-

atively user friendly, and does not require complex calculations or computationally intensive

algorithms. The problem with the standard errors does, however, remain, but can be remedied

by adding uncertainty to the imputations in the regression.

3.2.1 Regression Imputation with Uncertainty

The main problem with Regression Imputation is that imputations from the fitted values of

the regression results in a deterministic imputation which always yield the same (fitted) value.

The estimation of a regression line is, however, always associated with some residual errors

around the regression line. A natural way of handling the problem of deterministic imputations

is therefore be to add a random error term from the normal distribution to each imputed value,

where the standard deviation for the normal distribution is taken from the residual standard

error of the regression. This method of creating random imputations from the conditional mean

improves the situation slightly by increasing the variance of the variables and producing larger

standard errors in a regression setting. Yet, the variances and standard errors will still be too

small (Schafer and Schenker 2000).

The reason that the standard errors and variances remain too small is that in a regression

setting, the regression uncertainty is not dependent on the residuals, but also dependent on the

uncertainty in the estimated parameters. As the regression parameters by the Central Limit

Theorem (CLT) follow an approximate normal distribution under the condition that the sample

size is large, or an exact normal distribution if the residuals are normally distributed, it is possi-
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ble to take a random draw of the parameters of the regression and use these random regression

parameters, as well as a normal error term, to create imputations. This recreates the uncer-

tainty associated with the regression and thereby minimizes the problem of underestimating

variances and standard errors (van Buuren 2012, Lee et al 1994).

One downside with this approach is that the estimation of parameters is not efficient due to

the added noise. This problem can be remedied by using this method in a multiple imputation

setting, which will be discussed in section 3.4. In a multiple imputation setting, this method

has been shown to work very well for univariate missing data, i.e. when data are missing only

on a single variable (van Buuren 2012), but the approach can easily be generalized to cases

with multivariate missing data, i.e. when data are missing on several variables. The method

of replacing the missing values using Regression Imputation with parameter uncertainty and

error term is more complicated than regular Regression Imputation, but still computationally

fast and a relatively intuitive procedure.

The easy generalization to the multivariate case, as well as the statistically sound properties,

the relative ease of use, and the computationally fast algorithm makes Regression Imputation

with parameter uncertainty and error term quite a suitable imputation method. In fact, as will

be seen in section 4, the imputation algorithm of the Raoul package is based on a multivariate

version of this method, combined with multiple imputation.

3.3 Predictive Mean Matching

An additional way of handling missing data more appropriately than the conventional methods

are through Predictive Mean Matching, or Hot Deck Imputation. Predictive Mean Matching

uses the theoretical assumption that the missing value on a variable for an individual should be

similar to the observed value for that variable in an individual similar to the one with a missing

value. In practice, Predictive Mean Matching scans the data, for each missing value, to gather

a set of individuals similar to the individual with the missing value, so called donor candidates.

Then, the observed value of one of these candidates is imputed to replace the missing value,

creating a full data set (van Buuren 2012, de Waal et al. 2011).

The donor candidates can be selected through a number of different criteria, often involving their

statistical distance from the individual with the missing value, i.e. the recipient. The specific

donor can also be selected in a number of different ways, both deterministicly and randomly.

For instance, the donor can deterministically be selected as the candidate with the shortest

statistical distance to the recipient, or a pool of d candidates can be sampled based on their
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distance to the recipient, and then one of the d candidates are selected randomly. Often, the

value of d vary between one and ten. The probability of each candidate can also be weighted

to the statistical distance between the donors and the recipient, increasing the likelihood of

picking a donor close to the recipient (van Buuren 2012, de Waal et al. 2011).

One strong advantage with Predictive Mean Matching over the Regression Imputation methods

is that the imputed values are taken from the existing data, ensuring that no imputations

are outside the data range. Predictive Mean Matching is also more robust to misspecification

and interaction effects than Regression Imputation, as the model is implicit and therefore does

not require an explicitly specified model from which imputations are generated. Predictive

Mean Matching also does well on the three theoretical criteria for missing data methods, as it

produces approximately unbiased parameters, makes use of all available data, and does not have

a minimizing effect on variability as long as the data is MCaR or MaR (van Buuren 2012).

Just as with Regression Imputation with error term and/or parameter uncertainty, extending

Predictive Mean Matching to multiple imputation (see section 3.4 below) is relatively straight-

forward, as it is possible to re-sample the Predictive Mean Matching and thereby make it

possible to impute several different values for each missing value, increasing the efficiency of

the method (van Buuren 2012, de Waal et al. 2011). For univariate missing data, the method

is also computationally fast, and relatively easy to use. For multivariate missing data, the

method is more complicated as sequential imputation of the data may lead to oversampling

from individual donors.

3.4 Multiple Imputation

A general downside with the missing data methods discussed in section 3.2.1 and 3.3 is that when

imputing a single, random, value instead of the missing value, the value would be unbiased but

not generally correct, and that the statistical methods used for the analysis cannot differentiate

between the imputed and the observed values and therefore treat the imputed values as if they

were observed (Rubin 1987, van Buuren 2012). As a solution to this problem, Rubin (1987)

suggested that instead of imputing a single value for each missing data point, m different values

should be imputed to create m different complete data sets. Each complete data set is then

analyzed separately using standard statistical methods, and the results for the parameters are

combined. This procedure is known as Multiple Imputation (MI) and is described in Figure 3.18

below.

8 Figure based on van Buuren (2012)
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Figure 3.1: The Concept of Multiple Imputation

Multiple Imputation retains the advantages of the methods discussed in 3.2.1 and 3.3, but

allows for the differentiation of the imputed values and the observed values, as the observed

values remains the same across the m different data sets. This will counter the problem of the

imputations not being generally correct, as each imputation will create an additional unbiased

data point with which to estimate the parameters. Thus, as m increases, the efficiency of the

parameter estimation will increase. This efficiency in combination with the variability which

is introduced through the multiple imputations allows for proper inference to be made directly

from the pooled results (Rubin 1987).

As was mentioned in the sections above, both Regression Imputation methods with added un-

certainty and Predictive Mean Matching can be used in the context of Multiple Imputation.

Adding multiple imputations is straightforward as the methods allows for repeating m indepen-

dent draws from the distribution of regression coefficients and error terms, in the case of Regres-

sion Imputation, or independent draws among donor candidates, in the case of Predictive Mean

Matching, in order to create the m complete data sets needed for Multiple Imputation.

An alternative to these methods are Multiple Imputation methods based on drawing imputa-

tions from Markov Chain Monte Carlo (MCMC) simulation to generate the m complete data

sets. This can be done by either assuming a join multivariate distribution for the variables, or

through specifying a set of conditional distributions. Another alternative is to use bootstrapped

samples from the observed data and apply the Expectation-Maximization algorithm to generate

independent imputations of the data. These methods generate good imputations for cases with

multivariate missing data which occurs anywhere in the data, and can be seen as the ”standard

approach” for multivariate missing data as they are readily available in different statistical soft-

ware (Honaker et. al. 2011, van Buuren and Groothuis-Oudshoorn 2011, SAS Institute 2015).
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These methods for generating Multiple Imputations are discussed in the sections below.

3.4.1 Imputation by Data Augmentation

The general idea of imputation through Data Augmentation is to use Markov Chain Monte Carlo

simulations to draw random imputations from a posterior multivariate distribution. Drawing

the values direct from the multivariate distribution is, however, difficult due to the missingness.

Instead of drawing directly from the distribution, the process can be simplified by augmenting

the data by filling in the missing values (King et al. 2001). By updating the distribution after

each draw and generating a sequence, or chain, of these imputations, the actual multivariate

distribution can be approximated and used to draw imputations (Schafer 1997). In essence,

this procedure involves first specifying a multivariate distribution which the data is assumed to

follow, usually the multivariate normal distribution, and a set of starting parameters θ[0]. Then

the data is updated through in the following two steps

Draw Ẏ
[t]
mis ∼ P (Ymis|Yobs, θ̇

[t−1]) (10)

Draw θ̇[t] ∼ P (θ|Ẏ[t]
mis,Yobs) (11)

Where Ymis are the missing data, Ẏ
[t]
mis are the imputed or augmented data for Ymis at point

t in the sequence, and θ̇[t] are the drawn distribution parameters at time t (Schafer 1997, van

Buuren 2012). The first step is known as the imputation step and the second step is known as

the posterior step, why the procedure is sometimes known as the Imputation-Posterior (I-P)

method (Schafer 1997, King et al. 2001). The two steps of the procedure are then repeated

until the distribution converges, after which the final iteration is imputed for the missing data to

create the complete data set. After each (final) imputation, the procedure is repeated to create

m different complete data sets. In order for the imputations to be independent, a number of

iterations must be made in between the imputations to ensure that the time dependency of the

Markov Chain is eliminated (SAS Institute 2015).

The advantage of imputing the data trough Data Augmentation is that the random draws of the

imputations are taken from the (asymptotically) exact distribution, why it yields imputations

which are statistically very sound. The downside is that there is no standard method to assess

whether or not the Markov Chain has converged, and therefore it is essentially arbitrary how

many iterations need to be used before imputations are made (King et al. 2001). This use

of a large number iterations before imputations, so called ”burn-in” iterations, also makes the



3 Methods for Handling Missing Data 17

algorithm slow to use when the data set is large (Takahashi and Ito 2013). Another downside

with the method is that it requires an explicit multivariate distribution to be specified for the

data, with the multivariate normal distribution being the standard choice. However, data sets

often consist of mixed data of which some variables may have characteristics which make them

highly non-normal, for instance if they are categorical data. The method have been shown to

be quite robust to non-normality, but there is nonetheless a theoretical problem (Schafer 1997,

Schafer and Graham 2002, Graham 2009).

Data Augmentation is the standard method for handling (continuous) missing data in the

statistical software SAS, where the standard setting is to use 200 ”burn-in” iterations before the

first imputation, and then 100 iterations between each imputation (SAS institute 2015). Data

Augmentation is also available through the NORM package in R (Novo and Schafer 2013).

For both of these programs, the Expectation Maximization algorithm9 is used to obtain the

starting values for θ[0], after which the I-P steps are applied for the pre-specified number of

iterations.

In summary, Data Augmentation exhibit excellent statistical properties with regards to the three

theoretical criteria under MCaR and MaR, i.e. it provides unbiased parameter estimates, makes

use of all available data, and provides good estimates of the variability of the data, as it draws

the imputations from the asymptotically exact distribution. The main theoretical drawback

of the Data Augmentation method is the assumption of the multivariate normal distribution,

which may make some researchers uneasy. Data Augmentation does, however, not do as well on

the practical evaluation criteria as Data Augmentation involves several decisions which require

extensive statistical know-how, for instance to estimate how many iterations should be used

before imputations are made, and whether or not a multivariate normal distribution for the

data is a realistic assumption. Many researchers in fields outside statistics may also be deterred

from using Data Augmentation by a lack of understanding of how MCMC methods work math-

ematically. In addition, the Data Augmentation method is computationally slow, which may

be problematic in cases where the data sets are large.

3.4.2 Fully Conditional Specification Imputation

An alternative to the traditional Data Augmentation method for creating multiple imputations

is the Fully Conditional Specification method for creating multiple imputations. In contrast

to the Data Augmentation method, the Fully Conditional Specification does not require an

9 For more information on the Expectation-Maximization algorithm see section 3.4.3, Schafer (1997)
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explicit multivariate distribution to be specified for the data. Instead, the Fully Conditional

Specification models the joint distribution of the data implicitly through a set of conditional

distributions where each individual variable is conditioned on all other variables. This allows

for different conditional distributions being specified for each variable, which, in turn, means

that appropriate distributions can be specified for each type of data, regardless of whether it is

continuous, count, ordinal, or categorical (van Buuren 2012).

The perhaps most commonly used version of Fully Conditional Specification is Multiple Impu-

tation through Chained Equations (MICE), which is an Markov Chain Monte Carlo method for

imputing data through the conditional distributions of all variables. In many ways the MICE

algorithm resembles the Data Augmentation algorithm, except that the MICE algorithm only

makes draws for one variable at a time, conditioned on all other variables, and repeats the

procedure across all variables. Specifically, the MICE algorithm begins by drawing imputations

for the missing values for variable j, Ẏ
[0]
j , through a random draw from the observed values,

then it repeats the following two steps

Draw θ̇
[t]
j ∼ P (θ

[t]
j |Y

obs
j , Ȳ

[t]
−j) (12)

Draw Ẏ
[t]
j ∼ P (Y mis

j |Y obs
j , Ȳ

[t]
−j , θ̇

[t]
j ) (13)

where Y obs
j are the observed values for variable j, Y mis

j are the missing values for variable j,

and Ȳ
[t]
−j are the complete data (observed and imputed) except for variable j. These two steps

are iterated for all variables with missing data, for a predefined number of iterations, which can

usually be low (van Buuren 2012). MICE is implemented in the aptly named R-package mice,

where the default number of iterations are 5 (van Buuren et al. 2015).

The MICE algorithm retains the statistically sound properties of the Data Augmentation

method for data which are MCaR or MaR, but does not rely on the problematic assumption of

the (usually) multivariate normal distribution. MICE is, however, still a method depending on

MCMC simulations which makes it computationally slow. Not assuming a predefined explicit

distribution also makes some computational shortcuts often implemented in Data Augmentation

algorithms impossible, why there are no computational gains compared to Data Augmentation

despite the much lower number of iterations needed (van Buuren 2012, Takahashi and Ito

2013). Rather, the lack of these short-cuts render the MICE algorithm even slower than the

Data Augmentation method.
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In summary, Fully Conditional Specification Imputation with the MICE algorithm is a theoret-

ical step forward compared to Data Augmentation when missing data which cannot be assumed

to follow a multivariate normal distribution is imputed. MICE is computationally slow, and

not easy to use for users without extensive statistical know-how.

3.4.3 Expectation-Maximization Bootstrapping Imputation

The problem of relying on Markov Chain Monte Carlo simulations in multiple imputation was

noted by King et al. (2001), who highlighted the computational difficulties, the difficulties asso-

ciated with determining when convergence has occurred, and the extensive statistical know-how

needed to make these decisions. As an alternative, King et. al suggested using methods based

on the Expectation-Maximization (EM) algorithm for data under the multivariate normal distri-

bution, and using different methods of resampling values after the EM algorithm had been run.

The EM algorithm was developed as an iterative method for computing maximum-likelihood es-

timates for parameters in distributions where these parameters could not be estimated directly

due to missing data (Graham 2009, Allison 2009, Shafer 1997). The main advantage of using

the EM algorithm is that it converges deterministically, why it is simple to determine when the

algorithm has converged and pre-specified bounds can be used to terminate the algorithm (King

et. al 2001, Honaker and King 2010). The Expectation-Maximization essentially reduces to the

following steps, begin by estimating θ[0] 10 by, for instance, Listwise Deletion. Then repeat the

following two steps until convergence;

The E-step: Impute Ẏ[t] by Ẏ[t] = E[Ymis|Yobs, θ̇[t−1]] (14)

The M-step: Re-estimate θ̇[t] by maximizing Q(θ|Ȳ[t]) = E[logL(θ|Ȳ[t])] (15)

This procedure is very similar to the Imputation-Posterior algorithm in section 3.4.1 above,

but instead of being based on an MCMC chain, the EM-algorithm converges deterministically

to the maximum likelihood values for θ (Allison 2009, Honaker and King 2010, Schafer 1997).

Under the multivariate normal model, this procedure is essentially the same as imputing the

fitted values from linear regressions of the variables with missing values on all other observed

and imputed variables, re-estimating the parameters (θ = {µ,Σ}), with a correction factor for

Σ, after each imputation, and iterating the procedure until convergence (Allison 2009).

10 For the multivariate normal distribution θ = {µ,Σ}
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The problem is that variability is needed to create multiple imputations and to make valid

inference. To solve this problem, Honaker and King (2010) proposes to combine the Expectation-

Maximization algorithm with bootstrapping, which introduces variability into the algorithm,

making it possible to create multiple imputed data sets. The extension of adding a bootstrapping

step to the EM-algorithm is simple: by drawing a bootstrapped sample from the observed data,

i.e. a sample with replacement, and then running the EM algorithm, fundamental uncertainty

is introduced in the estimation of θ which is then used to impute data to create a complete data

set. By repeating this procedure m times, m distinct complete data sets are created which can

be used to analyze the data (Honaker and King 2010, Honaker et al. 2011).

Compared to the methods based on MCMC simulations, the EM-bootstrapping algorithm is

a computationally fast and relatively simple method for obtaining multiple imputations in the

face of missing data. The user is not required to have extensive statistical know-how, as all

computations are relatively simple and the algorithm converges deterministically. The main

theoretical drawback with the algorithm is, as in the case with the Data Augmentation method,

that a multivariate normal distribution is assumed for the variables in the data. Simulation

studies have found that the EM-bootstrapping algorithm performs well on the three theoret-

ical evaluation criteria for data which are MCaR and MaR, although the results are slightly

worse than the results from Data Augmentation or the MICE algorithm (Takahashi and Ito

2013).

3.5 Summary of Existing Methods

Section 3 has outlined some of the most commonly used methods for handling missing data, and

how some of these methods have been implemented in statistical software. From this discussion

it seems clear that the conventional methods often employed to deal with missing data do not

yield satisfactory results, and neither do the methods which impute single values due to their

inefficient estimation of the parameters.

The methods based on Multiple Imputation produce results which satisfactory on the theoretical

evaluation criteria, but fare worse on practical evaluation criteria as the Data Augmentation and

MICE methods require extensive statistical know-how and are computationally slow. The EM-

bootstrapping method is easier to use, but does not perform as well as the Data Augmentation

and MICE methods, and is also theoretically problematic due to the assumption that the data

follow a multivariate normal distribution. The theoretical and practical performance of these

different methods are summarized in Table 3.1.
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Method Bias Data Use Variability Speed Ease-of-use

Listwise
Deletion

Unbiased for
MCaR

Minimal Too
Large

Instant Very Easy

Pairwise
Deletion

Unbiased for
MCaR

Medium Unclear Instant Difficult

Mean
Imputation

Biased for
all but µMCaR

Medium Too
Small

Instant Very Easy

Regression
Imputation

Unbiased for
MaR

High Too
Small

Fast Easy

Regression
Imputation
w. uncertainty

Unbiased for
MaR

Maximal Appropriate Fast Medium

Predictive
Mean
Matching

Unbiased for
MaR

Maximal Appropriate Fast Medium

Data
Augmentation

Unbiased for
MaR

Maximal Appropriate Slow Difficult

MICE Unbiased for
MaR

Maximal Appropriate Very
Slow

Difficult

EM
Bootstrapping

Unbiased for
MaR

Maximal Appropriate Medium Medium

Table 3.1: Summary of Existing Missing Data Methods

For users with limited statistical know-how, it may seem as if the EM-bootstrapping method

would be the most convenient choice. However, while the EM-bootstrapping algorithm is rel-

atively fast compared to the Data Augmentation and MICE algorithms (see Takahashi and

Ito 2013), it may still require substantial computational power in larger datasets. In addition,

the reliance on the multivariate normal distribution may be problematic for many types of

data.
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4 Introducing the Raoul Package

The Raoul package for R aims to address some of the weaknesses in the current methods for

handling missing data by introducing an algorithm which is faster and easier to use than the

EM-bootstrapping algorithm, and with built in support for directly obtaining pooled regression

results from the imputed data. In essence, the Raoul algorithm is a method of the Fully Condi-

tional Specification class of imputation methods, whereby imputations are made on a variable-

by-variable basis, based on the conditional distribution of the variable on all other variables in

the dataset. Unlike the MICE algorithm, the Raoul algorithm is a two step procedure where

the Maximum Likelihood values are first imputed in the data through iterated regressions, after

which uncertainty is re-introduced by drawing parameter estimates and adding an error term

from the imputed data. This two-stage approach is illustrated in Figure 4.1 below.

Figure 4.1: The Raoul Approach to Multiple Imputation

The Raoul approach has several advantages compared to the methods in section 3.4.1-3.4.3.

First, compared to the methods based on MCMC simulations, the Raoul algorithm converges

deterministically to the maximum likelihood estimates for the imputations which neutralizes

the issue of convergence. Secondly, avoiding the MCMC simulations also makes the Raoul

algorithm, just as the EM-bootstrapping algorithm, computationally more efficient than these

methods. Unlike the EM-bootstrapping algorithm, which draws a bootstrapped sample for each

of the m complete data sets and thus iterates the algorithm m times, the Raoul algorithm first

converges and then creates m complete data sets. This strategy of first letting the algorithm

converge and then recreating the uncertainty reduces the number of iterations to 1. Lastly,

by employing imputation on a variable-by-variable basis based on all conditional distributions,

rather than imputing based on the joint distribution, the Raoul algorithm avoids the reliance

on the multivariate normal distribution.
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4.1 Handling of Different Data Types

The main reason that a reliance on the multivariate normal distribution is problematic is that

categorical and count variables cannot, by definition, follow such a distribution. Even more

problematic is the fact that imputation methods based on the multivariate normal distribution

will always impute continuous variables, which may not be suitable if missingness occurs on the

dependent variable and specific analysis methods for count or categorical data are being used.

To counter this problem, the Raoul algorithm allows for special imputation methods for count

and categorical variables. More specifically, the Raoul algorithm makes imputations for count

variables based on Poisson regression estimates, and imputations for categorical variables based

on the predicted probabilities from logistic regression estimates.

It has been suggested that imputing continuous values for ordinal and count variables may,

in many cases, be more sensible in an analysis setting than rounding these variables to their

closest integer value (Honaker et al. 2011). Therefore, the Raoul package allows users to

specify whether they want the algorithm to return integer values or continuous values for count

variables. For categorical variables with r categories, the Raoul package will automatically

create r − 1 dummy variables containing observed values, and in the imputation phase it will

impute the predicted probabilities for each category. As with the count variables, the user is

then allowed to specify whether or not the data should be returned with predicted probabilities

for each category, or if the data should be returned with proper categories.

4.2 The Raoul Algorithm

The Raoul algorithm is a two-step algorithm where first the most likely values are imputed, and

then multiple imputations are created from this imputed dataset. The algorithm can therefore

be divided into two parts where the first deals with how to reach the most likely imputations,

while the second deals with how to generate multiple imputations from this data set. The first

step is described in Algorithm 4.1 below, where X is the set of fully observed variables11, Y is

the set of k variables containing missing values, Y obs
j are the observed values for variable j of

Y , Y mis
j are the missing values for variable j of Y , Ẏ [t] are the imputations of Y at the t :th

iteration of the algorithm, and β̇
[t]
j are the beta parameters from appropriate regressions of Yj

on the available data at iteration t.12.

11 If all variables contain missing values X is simply a constant
12 See section 4.1 for details on different data types
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1. Estimate β̇
[1]
j by β̇

[1]
j = E[β|Y obs

j ,X] from appropriate regressions

2. Impute Ẏ
[1]
j by Ẏ

[1]
j = E[Y mis

j |β̇[1],X]

3. Repeat 1-2. for all j = 1, ..., k

4. Estimate β̇
[t]
j by β̇

[t]
j = E[β|X, Ȳ[t−1]], t = 2, 3, ...

from appropriate regressions.

5. Impute Ẏ
[t]
j by Ẏ

[t]
j = E[Y mis

j |β̇[t],X, Ȳ
[t−1]
−j ]

6. Repeat 4-5. for all j = 1, ..., k

7. Repeat 4-6 until convergence

Algorithm 4.1: Step 1 of the Raoul algorithm

When Algorithm 4.1 has converged, multiple imputations are created by assuming that the

estimated regression coefficients for each variable with missing values follow a multivariate

normal distribution13, i.e. that

βj ∼ N(β
[T ]
j ,Σ

β
[T ]
j

) (16)

where β
[T ]
j are the final estimates of β̇j from Algorithm 4.1. The problem with this specification

is the estimation of Σ
[T ]
βj

.In a regular OLS-setting, Σβ[T ] would be estimated by σ̂2
j (Z−j

TZ−j)
−1,

where Z is the full data set, i.e. Z = {X,Y}, and σ2
j is the variance of the j :th variable in

Y (Greene 2012). However, as Y contains missing values Z also contains missing values, and

therefore (Z−j
TZ−j)

−1 cannot be calculated.

One solution to this problem would be to calculate (Z−j
obs TZ−j

obs)−1, i.e. using Listwise Dele-

tion, and only use the fully observed observations to estimate the covariance matrix of βj .

This would, however, not make use of all available information. In order to make use of all

information, the imputed data must be used in calculating the covariance matrix. However,

as the imputed values will by their design increase the correlations between the variables, it is

reasonable to weight the observations by the amount of missingness each observation experi-

ence.

Σ
[T ]
βj

will therefore be estimated by σ̂2
j (Z̄

T
−jWZ̄−j)

−1, where W is a diagonal matrix of weights,

proportional to the rate of observed variables for each observation, and Z̄ is the complete data

13 If the sample size is reasonably large, the Central Limit Theorem will ensure that this assumption approx-
imately holds. For more details on the Central Limit Theorem and the normality of β-coefficients, see Greene
(2012)
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set with both observed and imputed values. In order to further avoid problems of decreased

variability due to imputations, σ̂2
j are estimated using only Y obs

j . It is also used that

(n− 1)σ̂2
j

σ2
j

∼ χ2
(nj,obs−p)

why a random draw from χ2
(nj,obs−p), where nj,obs is the number of observed values for Yj and p

is the number of parameters, can be used to draw a random value for σ̇2.

These considerations form the foundation for the second stage of the Raoul algorithm, where

the multiple imputations are created from the maximum likelihood imputed data. The details

for this stage are found in Algorithm 4.2 below, where MYj,i is a binary variable taking the

value 1 if observation i of variable Yj is missing, MYj denotes a vector of binary variables which

indicate the missingness pattern of variable j from Y, 1n denotes a vector of n 1’s, and p

denotes the total number of variables in Z, n the total number of observations, nj,mis is the

number of missing observations for variable Yj , m the number of desired imputations, and Z̄obsj

are all observations in Z̄ which have observed values on variable Yj .
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1. Calculate W = diag

[
n

Σk
j=1Σn

i=1MYj,i
/k

(
1n − Σk

j=1MYj/k
)]

2. Start from j = 1

3. Calculate Vj = (Z̄T
−jWZ̄−j)

−1

4. Calculate V
1/2
j by Cholesky decomposition

5. Calculate σ̂2
j by σ̂2

j = (Y obs
j − Z̄

obsj
−j β̇

[T ]
j )T(Y obs

j − Z̄
obsj
−j β̇

[T ]
j )

6. Draw a random variable ġj ∼ χ2
nj,obs−p

7. Calculate σ̇2
j = σ̂2

j /ġj

8. Draw k − 1 independent N(0, 1) variables in the vector Q̇2

9. Calculate β̇j,s = β̇
[T ]
j + σ̇2

j Q̇1V
1/2
j

10. Draw nj,mis independent N(0, 1) variables in the vector Q̇2

11.

(a) For continuous variables, impute

Ẏj,s = Z̄−j β̇j,s + σ̇2
j Q̇2

(b) For binary categorical variables14 impute

Ẏj,s = 1/
(

1 + exp
(
−Z̄−j β̇j,s − σ̇2

j Q̇2

))
(c) For count variables, impute

Ẏj,s = exp(Z̄−j β̇j,r + σ̇2
j Q̇2)

12. Repeat 3-12 for j = 1, ..., p

13. *Optionally Algorithm 4.3

14. Repeat 2-13 for s = 1, ...,m

Algorithm 4.2: Step 2 of the Raoul algorithm

As discussed in section 4.1, the Raoul package allows users to decide whether or not they want

their categorical and count data variables to be returned in their original form, or if they want

their data to be returned with continuous values. If continuous values are selected, these values

are based on, as can be seen in Algorithm 4.2 above, the fitted values from the Poisson and

logistic regressions respectively. If the user desires the data to be returned in its original form,

Algorithm 4.3 below is executed in order to return the data to its original state.

14 For categorical variables with more than two categories, the predicted probabilities of the categories are
imputed simultaneously to ensure that no nonsensical values are imputed.
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Optional steps for categorical and count variables:

1. (a) If Yj , Yj+1, ..., Yj+r−1 are a set of variables corresponding to the predicted prob-
abilities of one categorical variable with r categories in the original data

i. Draw nj,mis independent U(0, 1) variables in the vector R

ii. Define the predicted probabilities for each category as pq = Ẏj+q−1,s for q =
1, ..., r − 1, pr = 1 − Σr−1

q=1pq, where r is the reference category, and define
p0 = 0

iii. For observation i, find qi such that

qi−1∑
h=0

ph < Ri <
qi∑
h=0

ph for all i in Y mis
j

iv. Replace the set Yj , Yj+1, ..., Yj+r−1 with an imputation of the single variable
Ẏj,s, where each element in Ẏj,s, Ẏi,j,s = qi.

(b) If Yj is a count variable

i. Replace each element in Ẏj with a random draw such that ˙̇Yi,j,s ∼ Po(Ẏi,j,s)

Algorithm 4.3: Optional step of the Raoul algorithm

4.3 Additional Functions in the Raoul Package

Apart to being a fast and easy package for creating multiply imputed data, the Raoul package

also aims to make it easier to analyze results from multiply imputed data. The Raoul package

therefore contains a set of functions which allows for pooling of results automatically, and

thereby allows the user to directly estimate models and get interpretable results without having

to go through several different stages or resort to third party packages.

More specifically, the Raoul package allows users to calculate summary statistics as well as

estimate linear models and generalized linear models directly in R through the, raoul.lm()

and raoul.glm() functions. The raoul.lm() and raoul.glm() call the R functions lm()

and glm() respectively and runs the specified model on all multiply imputed data sets, and

then pools the results. This pooling of the results is done through the so called Rubin Rules,

which stipulates that the β coefficients should be estimated through the means of the m sets

of estimated β coefficients(van Buuren 2012), while the standard errors of the estimated β

coefficients are estimated through the following formula

sb =

√√√√ 1

m

M∑
k=1

s2
b,k +

(
1 +

1

m

)(
1

m− 1

) M∑
k=1

(
bk − b̄

)2
(17)

where m is the number of data sets, sb,k is the estimated standard error for β in data set k, bk
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is the estimated β value in data set k, and b̄ is the mean of the estimated β coefficients (Al-

lison 2009). The t-statistics and the p-values are then calculated based on these estimated

β coefficients and their standard errors. The R-code can be downloaded from GitHub at

https://github.com/Airfixer/Raoul, and examples of how to use the Raoul package can

be found in Appendix B.
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5 Comparative Simulation Study

In order to test the performance of the Raoul algorithm compared to existing missing data

methods, a comparative simulation study is conducted. This simulation study compares the

performance of the mice, Amelia, Raoul, and NORM packages for R on simulated missing data

from two data sets with fully observed data. As a comparison to the conventional missing data

methods, these more advanced methods are also be compared to Listwise Deletion.

More specifically, the performance of methods is tested on data which were MCaR, MaR, and

NMaR, with the amount of missingness being set to 10%, 20%, and 40%, creating a total of 9

different specifications. While the methods used to replace missing data theoretically require the

assumption of MaR to be fulfilled to work, it is nonetheless interesting to try simulations under

NMaR circumstances. As noted in section 2.3, data which are NMaR can often be remedied

by the inclusion of auxiliary variables which may make the data near MaR. The MaR and

NMaR data are generated using different probabilities of missingness for different quantiles of

an auxiliary variable for the data generated as MaR and different probabilities of missingness

for different quantiles of the variable itself for the data which generated as NMaR.

The methods are evaluated on their performance in a regression setting with one dependent

variable and three independent variables, with missingness simulated on all three independent

varaibles. All evaluations are be made against the beta coefficients estimated with the complete

data set. The procedure is repeated 1000 times, and the results averaged. Three criteria are

used to evaluate the missing data methods:

1. Average Relative RMSE across the four β parameters. This value should be as low as

possible.

2. Average β parameter mis-rate, i.e. average the proportion of cases where the complete

data β parameter is outside the 95% confidence interval of the estimated β parameter of

the method. Ideally, this value should be below but close to 0.05

3. Average Relative size of β standard error across the four β parameters. This value should

be above but close to 1 under the condition that the mis-rate is below 0.05.

van Buuren (2012) argues that the methods should be evaluated using bias, coverage15, and

width of confidence intervals as evaluation criteria. This paper uses RMSE instead of bias as

it provides a more comprehensive measurement of accuracy than bias. The relative size of the

15 Coverage is the complement to the mis-rate, i.e. the proportion of cases where the complete data β parameter
is inside the 95% confidence interval of the estimated β parameter
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standard errors are used instead of the width of the confidence intervals as the width of the

confidence intervals is simply a function of the size of the standard errors. In addition to these

tests on the accuracy of the methods, all computer intensive methods, are also compared on

their computational efficiency. This is done by measuring the time required to run the algorithm

the 1000 iterations of the simulation.

Two data sets are used for the simulations. One larger set with 4177 observations on 8 variables16

for collected Abalones gathered from the UCL Machine Learning Data Repository (Lichman

2013). This data set allows for testing the performance of the methods under the presence

of a a larger number of fully observed auxiliary variables, and the large sample properties of

the methods. The second data set is a data set on different irises with 149 observations on 5

variables, taken from the datasets of Applied Multivariate Statistical Analysis by Johnson and

Wichern (2014). This data set allows for testing the performance in a smaller sample setting,

with only one fully observed auxiliary variable. All variables with missing data were numeric

variables. For clarity, only the results relating to the Abalone data are presented in the main

text, while the results relating to the iris data can be found in Appendix A.

16 9 variable in the original data set, but the first variable was dropped.
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6 Results

6.1 Results for Data which are MCaR

Figures 6.1-6.3 below shows the average relative RMSE, the average mis-rate, and the average

relative standard error size for the different methods under different levels of simulated MCaR

data. These results indicate that with regards to RMSE and mis-rate, the conventional method

Listwise Deletion outperforms all of the more advanced methods for handling missing data.

The four R-packages for handling missing data seem to perform relatively evenly for the two

lower levels of missingness. For the simulations with 40% MCaR, however, the Raoul package

performs substantially worse than its competitors. One reason for the poor performance of

the Raoul package at 40% MCaR may be seen in the results on the average relative standard

error size, as it has substantially lower standard errors compared to its competitors at 40%

MCaR, while its mis-rate is very high. This indicates that the Raoul package produces too

little variability in the data at higher levels of missing data.

Figure 6.1: Average Relative RMSE of Beta Coefficients for different methods under MCaR in
Abalone data.

From an inference perspective, it is interesting to note that while Listwise Deletion performs

well on RMSE and mis-rate, it does produce very inflated standard errors under MCaR, which

would make inference more difficult from the data. The exact numeric results corresponding to

Figures 6.1-6.3 can be found in Tables A.1-A.3 in Appendix A. Figures A.1-A.3 in Appendix

A, with corresponding numeric results in Tables A.10-A.12, show the same results for the Iris

data, with roughly the same conclusions, except that the more advanced methods perform on

par with Listwise Deletion for RMSE and mis-rate.
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Figure 6.2: Average Relative mis-rate of Beta Coefficients for different methods under MCaR in
Abalone data.

Figure 6.3: Average Relative Standard Error Size of Beta Coefficients for different methods
under MCaR in Abalone data.

6.2 Results for Data which are MaR

The results for the data which are MaR, found in Figures 6.4-6.6. below, are similar to those

in which the data was MCaR for the more advanced methods of handling missing data. The

most substantial difference is that Listwise Deletion no longer fares well on any of the three

evaluation criteria, as it has a high average relative RMSE, a high mis-rate, and still greatly

overestimates the standard errors of the β coefficients. Among the four R-packages, the Raoul-

packages has the lowest average relative RMSE values and relative size of standard errors while

still maintaining a low mis-rate for the lower levels of missingness. Just as with the MCaR

case, the Raoul package performs very poorly at 40% missingness. Among the three other

packages, it is clear that the Amelia package and the NORM package outperform mice on all

three criteria at all levels of missingness, and that their results are very similar. The results for
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the Iris data can be found in Figures A.4-A.6 in the appendix. Worth noting is that Listwise

Deletion for the Iris data performs much better than for the Abalone data, and that the mice

package outperforms both Amelia and NORM with regards to the relative standard error size,

but not RMSE and mis-rate. The correponding numerical results are found in Tables A.4-A.6

for the abalone data, and in Tables A.13-A.15 for the Iris data.

Figure 6.4: Average Relative RMSE of Beta Coefficients for different methods under MaR in
Abalone data.

Figure 6.5: Average Relative mis-rate of Beta Coefficients for different methods under MaR in
Abalone data.
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Figure 6.6: Average Relative Standard Error Size of Beta Coefficients for different methods
under MaR in Abalone data.

6.3 Results for Data which are NMaR

The final set of simulations are conducted on data which are NMaR, the results of which can be

found in Figures 6.7-6.9 below. Surprisingly, these results indicate that all of the methods seem

to fare better under the NMaR data than under the MaR data, and that the general result

structure of the MaR data remains, i.e. that Listwise Deletion fares worst, and Amelia and

NORM fare best. As with the two earlier cases, the Raoul package performs well on the lower

levels of missingness, but performs poorly at the higher level of missingness.

Figure 6.7: Average Relative RMSE of Beta Coefficients for different methods under NMaR in
Abalone data.

These surprising results are even more clear for the Iris data, found in Tables A.7-A.9 in the

Appendix, where Listwise Deletion performs on par with the more advanced methods on all

theoretical criteria, although its relative standard errors are somewhat higher. The correspond-

ing numerical results for the NMaR data can be found in Tables A.7-A.9 for the abalone data,
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and Tables A.16-A.18 for the Iris data.

Figure 6.8: Average Relative mis-rate of Beta Coefficients for different methods under NMaR
in Abalone data.

Figure 6.9: Average Relative Standard Error Size of Beta Coefficients for different methods
under NMaR in Abalone data.

6.4 Computational Efficiency

Lastly, all methods were evaluated on their computational efficiency by measuring the time it

took the four packages to iterate the procedure 1000 times for the different assumptions and

amounts of missingness. These results are found in Table 6.1 below. As Listwise Deletion is

an instant method for handling missing data, only the results from the four R-packages are

reported.
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Table 6.1: Time in Minutes to complete 1000 iterations in the
abalone data for different levels and types of missing-
ness

mice Amelia Raoul NORM

MCaR 10% 114.06 17.97 7.910 13.70
MCaR 20% 173.00 18.30 8.06 18.18
MCaR 40% 240.34 19.11 11.21 26.45
MaR 10% 112.56 18.36 7.25 13.70
MaR 20% 160.07 18.64 7.81 16.97
MaR 40% 241.94 19.64 9.16 26.34
NMaR 10% 117.18 18.24 7.95 14.00
NMaR 20% 176.70 18.58 8.42 18.44
NMaR 40% 241.22 20.06 11.86 26.92

These results clearly show that the Raoul package is by far the most computationally efficient

package at all levels of missingness. It outperforms the Amelia and NORM packages by roughly

a factor of 2-2.5 depending on the type and amount of missingess. The NORM package seems

to be the second fastest method for handling the data when the amount of missingess is small,

but is outperformed by the Amelia package at a 40% missingness level. The mice package was,

by far, the computationally slowest, being outperformed by the Raoul package by a factor of

roughly 14-24 depending on the type and amount of missingness, and by a factor of 6-12 by the

Amelia and NORM packages.
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7 Discussion

The results in the section above are highly interesting from several point of view. Firstly, they

show that the Raoul package is a viable alternative to the existing packages for handling lower

rates of missing data with a missingness of upwards of 20% and which are MCaR or MaR. The

results also show that the Raoul package, in its current form, should not be used at higher levels

of missingess. At these levels of missingness it is more advisable to use some of the already

established packages for handling of missing data. Why this problem occurs at the higher levels

of missingness is unclear, but it may be related to the Raoul algorithm’s use of only the fully

observed variables in the very first imputation step, i.e. step 2 in Algorithm 4.1. This use of only

the fully observed variables may, if these variables have low explanatory power in the variables

with missingness, create imputations in this first step which biases the subsequent imputations

and thereby also the values which the algorithm converge to. This suspicion is strengthened

by observation that the problem seems more severe in the Iris data, which only contained one

auxiliary variable, than in the Abalone data, which contained several auxiliary variables.

Another interesting result is that the three established R packages perform relatively evenly

with regards to their relative RMSE, mis-rate, and relative size of standard errors, with different

packages claiming the title of ”best” for different types and amounts of missingness. However,

even though the the established packages for handling missing data in most cases perform better

than the Raoul package and Listwise Deletion, it is noteworthy that the mis-rate in many cases,

especially for the abalone data, greatly exceed the 0.05 threshold set by van Buuren (2012).

This indicates that while these packages perform better than the conventional methods, their

relative standard error sizes may still be too low compared to what is advisable according to

van Buuren (2012), as their mis-rate exceed the threshold. This is especially true for the higher

levels of missingness, and the more ”severe” types of missingness, i.e. MaR and NMaR. With

regards to computational efficiency it is, however, clear that the mice package is very slow

compared to its competitors.

Lastly, the results show that the packages for handling missing data also perform relatively well

under NMaR conditions, despite their theoretical need for at least MaR conditions. This is

probably, as Allison (2012) argues, due to the inclusion of auxiliary variables correlated with

the variables with missingness which may therefore bring the data close to MaR conditions

even under NMaR. Perhaps most surprisingly is that even Listwise Deletion seems to be faring

relatively well under NMaR conditions, especially when the amounts of missingness is relatively

low.
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8 Conclusions

This paper has introduced the Raoul package for handling of missing data under MCaR and

MaR conditions, as well as compared its performance to existing methods for handling missing

data in R. The results show that the Raoul package is a computationally fast method for

handling missing data, which performs roughly on par with the existing packages, the mice

package, the Amelia package, and the NORM package, under the condition that the amount of

missingness is relatively low. At higher levels of missingness in the data, the Raoul package fails

to generate usable imputations, while the existing packages continue to perform satisfactorily

or near satisfactorily. The results also showed that the performance with regards to accuracy is

relatively even among the existing packages for handling missing data. Regarding computational

efficiency the Amelia and NORM packages outperform the mice package by roughly a factor of

6-12, and the Amelia and NORM packages are outperformed by the Raoul package by a factor

of roughly 2-2.5.

Future work on the Raoul package may improve its ability to handle data with higher levels

of missingness. One possible solution to the problem discussed in section 7 could be to sort

the missing data by missingness patterns and then use Listwise Deletion, in the very first

imputation step (step 2 in Algorithm 4.1), rather than only using the fully observed variables

in this step.

Future studies should also focus on the performance of the existing missing data packages in

different types and amounts of missingness, and for different types of data sets. For while

the results between the two data sets used in this study are relatively consistent with one

another, preliminary simulations on other data sets indicate that the performance of the different

packages vary greatly with different types of data. The unsatisfactory mis-rate values for the

existing missing data packages should also be further investigated, in order to establish whether

or not this is a consistent result which appear in data with high amounts of missingness. If so,

further work on the existing packages may be needed to address this problem.
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Appendix A. Extended Results

Figure A.1: Average Relative RMSE of Beta Coefficients for different methods under MCaR in
Iris data.

Figure A.2: Average Relative mis-rate of Beta Coefficients for different methods under MCaR
in Iris data. Values cropped at 0.2, for actual values see Table A.2.

Figure A.3: Average Relative Standard Error Size of Beta Coefficients for different methods
under MCaR in Iris data.
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Figure A.4: Average Relative RMSE of Beta Coefficients for different methods under MaR in
Iris data.

Figure A.5: Average Relative mis-rate of Beta Coefficients for different methods under MaR in
Iris data. Values cropped at 0.2, for actual values see Table A.5.

Figure A.6: Average Relative Standard Error Size of Beta Coefficients for different methods
under MaR in Iris data.
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Figure A.7: Average Relative RMSE of Beta Coefficients for different methods under NMaR in
Iris data.

Figure A.8: Average Relative mis-rate of Beta Coefficients for different methods under NMaR
in Iris data. Values cropped at 0.2, for actual values see Table A.8.

Figure A.9: Average Relative Standard Error Size of Beta Coefficients for different methods
under MaR in Iris data.
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Table A.1: Average Relative RMSE of Beta Coefficients under
MCaR in Abalone data.

10% MCaR 20% MCaR 40% MCaR

mice 0.394 0.722 1.543
Amelia 0.349 0.588 1.032
Raoul 0.350 0.745 2.682

NORM 0.374 0.630 1.064
List 0.236 0.383 0.802

Table A.2: Average Relative mis-rate of Beta Coefficients under
MCaR in Abalone data.

10% MCaR 20% MCaR 40% MCaR

mice 0.036 0.067 0.185
Amelia 0.030 0.053 0.082
Raoul 0.025 0.104 0.802

NORM 0.032 0.063 0.134
List 0.002 0.022 0.064

Table A.3: Average Relative Standard Error Size for Beta Coeffi-
cients under MCaR in Abalone data.

10% MCaR 20% MCaR 40% MCaR

mice 1.117 1.282 1.777
Amelia 1.092 1.208 1.582
Raoul 1.072 1.154 1.364
NORM 1.081 1.180 1.450
Listwise 1.194 1.441 2.295

Table A.4: Average Relative RMSE of Beta Coefficients under MaR
in Abalone data.

10% MaR 20% MaR 40% MaR

mice 0.516 0.832 1.677
Amelia 0.446 0.654 1.045
Raoul 0.348 0.573 1.931

NORM 0.410 0.596 1.020
List 1.113 1.403 1.904



Appendix A. Extended Results 45

Table A.5: Average Relative mis-rate of Beta Coefficients under
MaR in Abalone data.

10% MaR 20% MaR 40% MaR

mice 0.052 0.093 0.174
Amelia 0.049 0.080 0.121
Raoul 0.044 0.103 0.834

NORM 0.044 0.073 0.132
List 0.833 0.892 0.846

Table A.6: Average Relative Standard Error Size for Beta Coeffi-
cients under MaR in Abalone data.

10% MaR 20% MaR 40% MaR

mice 1.232 1.344 1.825
Amelia 1.151 1.243 1.596
Raoul 1.121 1.196 1.446

NORM 1.144 1.229 1.533
List 1.304 1.506 2.374

Table A.7: Average Relative RMSE of Beta Coefficients under
NMaR in Abalone data.

10% NMaR 20% NMaR 40% NMaR

mice 0.342 0.659 1.229
Amelia 0.335 0.533 0.959
Raoul 0.342 0.741 1.615

NORM 0.344 0.569 1.042
List 0.343 0.720 2.020

Table A.8: Average Relative mis-rate of Beta Coefficients under
NMaR in Abalone data.

10% NMaR 20% NMaR 40% NMaR

mice 0.020 0.041 0.126
Amelia 0.023 0.046 0.196
Raoul 0.0.016 0.070 0.552

NORM 0.025 0.052 0.221
List 0.138 0.462 0.524
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Table A.9: Average Relative Standard Error Size for Beta Coeffi-
cients under NMaR in Abalone data

10% NMaR 20% NMaR 40% NMaR

mice 1.124 1.304 1.739
Amelia 1.109 1.250 1.792
Raoul 1.079 1.179 1.440

NORM 1.090 1.198 1.606
List 1.179 1.417 2.217

Table A.10: Average Relative RMSE of Beta Coefficients under
MCaR in Iris data.

10% MCaR 20% MCaR 40% MCaR

mice 0.052 0.083 0.162
Amelia 0.051 0.087 0.183
Raoul 0.052 0.100 0.328

NORM 0.051 0.083 0.164
Listwise 0.071 0.114 0.235

Table A.11: Average Relative mis-rate of Beta Coefficients under
MCaR in Iris data.

10% MCaR 20% MCaR 40% MCaR

mice 0 0.003 0.038
Amelia 0 0.007 0.052
Raoul 0 0.010 0.452

NORM 0 0.007 0.040
Listwise 0 0.010 0.045

Table A.12: Average Relative Standard Error Size for Beta Coeffi-
cients under MCaR in Iris data

mice 1.097 1.229 1.647
Amelia 1.092 1.221 1.808
Raoul 1.083 1.178 1.308

NORM 1.100 1.220 1.646
Listwise 1.178 1.426 2.315
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Table A.13: Average Relative RMSE of Beta Coefficients under
MaR in Iris data.

10% MaR 20% MaR 40% MaR

mice 0.062 0.096 0.218
Amelia 0.060 0.100 0.199
Raoul 0.062 0.126 0.373

NORM 0.059 0.098 0.190
Listwise 0.078 0.133 0.288

Table A.14: Average Relative mis-rate of Beta Coefficients under
MaR in Iris data.

10% MaR 20% MaR 40% MaR

mice 0 0.006 0.075
Amelia 0.001 0.012 0.045
Raoul 0.001 0.033 0.480

NORM 0 0.010 0.957
Listwise 0.001 0.022 0.076

Table A.15: Average Relative Standard Error Size for Beta Coeffi-
cients under MaR in Iris data.

10% MaR 20% MaR 40% MaR

mice 1.132 1.304 1.798
Amelia 1.110 1.264 2.008
Raoul 1.105 1.233 1.399

NORM 1.112 1.266 1.861
Listwise 1.193 1.438 2.261

Table A.16: Average Relative RMSE of Beta Coefficients under
NMaR in Iris data.

10% NMaR 20% NMaR 40% NMaR

mice 0.059 0.099 0.286
Amelia 0.060 0.099 0.245
Raoul 0.060 0.127 0.414

NORM 0.056 0.099 0.225
Listwise 0.075 0.127 0.293
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Table A.17: Average Relative mis-rate of Beta Coefficients under
NMaR in Iris data.

10% NMaR 20% NMaR 40% NMaR

mice 0 0.007 0.115
Amelia 0.001 0.011 0.053
Raoul 0.002 0.034 0.533

NORM 0.001 0.013 0.054
Listwise 0 0.014 0.064

Table A.18: Average Relative Standard Error Size for Beta Coeffi-
cients under NMaR in Iris data

10% NMaR 20% NMaR 40% NMaR

mice 1.138 1.324 2.025
Amelia 1.128 1.310 2.403
Raoul 1.115 1.267 1.503

NORM 1.129 1.306 2.167
Listwise 1.192 1.457 2.479
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Appendix B. Examples for Raoul in R

## I n s t a l l Raoul

l i b r a r y ( dev too l s )

i n s t a l l g i t h u b (” A i r f i x e r /Raoul ” , f o r c e=TRUE)

## Access data f i l e s

l i b r a r y ( mice )

## Simple example

s e t . seed (1 )

x1 <− r u n i f (10)

x2 <− r u n i f (10)

x1 [ 1 ] <− NA

d <− data . frame ( x1 , x2 )

rd <− Raoul : : r aou l (d)

## Simple example

data ( nhanes )

rn<−Raoul : : r aou l ( nhanes )

## Example with two f a c t o r s

data ( s e l f r e p o r t )

dat <− s e l f r e p o r t [ , c (” age ” , ” sex ” , ”hm” , ”wm” , ”hr ” , ”wr” , ”edu ”) ]

r s <− Raoul : : r aou l ( dat , f a c s = c (2 , 7) )

## Example with two f a c t o r s

data ( s e l f r e p o r t )

dat <− s e l f r e p o r t [ , c (” age ” , ” sex ” , ”hm” , ”wm” , ”hr ” , ”wr” , ”edu ”) ]

r s <− Raoul : : r aou l ( dat , f a c s = c (2 , 7) , r e tu rnca t=TRUE)

## Example with one f a c t o r

data ( nhanes )

nhanes$hyp <− as . f a c t o r ( nhanes$hyp )
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rn <− Raoul : : r aou l ( nhanes , f a c s = 3 , r e tu rnca t=TRUE)

## Example with two f a c t o r s

data ( nhanes )

nhanes$hyp <− as . f a c t o r ( nhanes$hyp )

nhanes$fubar <− as . f a c t o r ( sample ( c (” foo ” , ”bar ” , ”baz ”) , nrow ( nhanes

) , r e p l a c e = TRUE) )

nhanes$fubar [ 8 : 9 ] <− NA

rn <− Raoul : : r aou l ( nhanes , f a c s = c (3 , 5) )

## Example with count

data ( nhanes )

rn <− Raoul : : r aou l ( nhanes , counts = 3)

## Example with count and f a c t o r

data ( nhanes )

nhanes$fubar <− as . f a c t o r ( sample ( c (” foo ” , ”bar ” , ”baz ”) , nrow ( nhanes

) , r e p l a c e = TRUE) )

nhanes$fubar [ 8 : 9 ] <− NA

rn <− Raoul : : r aou l ( nhanes , counts = 3 , f a c s= 5)

## LM Regres s ion example

data ( nhanes )

d<−nhanes

rlm<−Raoul : : r aou l . lm( bmi˜ age+hyp+chl , raou l=d)

### GLM Regres s ion example

rglm<−Raoul : : r aou l . glm ( hyp˜bmi+chl , raou l=d , fam=”binomial ” , f a c s =3)


