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Abstract

This thesis presents SkePU 2, the next generation of the SkePU C++ frame-
work for programming of heterogeneous parallel systems using the skeleton
programming concept. SkePU 2 is presented after a thorough study of the
state of parallel programming models, frameworks and tools, including other
skeleton programming systems. The advancements in SkePU 2 include a
modern C++11 foundation, a native syntax for skeleton parameterization
with user functions, and an entirely new source-to-source translator based
on Clang compiler front-end libraries.

SkePU 2 extends the functionality of SkePU 1 by embracing metapro-
gramming techniques and C++11 features, such as variadic templates and
lambda expressions. The results are improved programmability and per-
formance in many situations, as shown in both a usability survey and per-
formance evaluations on high-performance computing hardware. SkePU’s
skeleton programming model is also extended with a new construct, Call,
unique in the sense that it does not impose any predefined skeleton structure
and can encapsulate arbitrary user-defined multi-backend computations.

We conclude that SkePU 2 is a promising new direction for the SkePU
project, and a solid basis for future work, for example in performance opti-
mization.
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Chapter 1

Introduction

This chapter provides an introduction to the thesis project, starting with the
motivation in Section 1.1. In Section 1.2 the aim of the project is described,
followed by explicit research questions in Section 1.3. Finally, delimitations
are considered in Section 1.4.

Additionally, an overview of the structure of the thesis report is given in
Section 1.5.

1.1 Motivation

The well-known Moore’s law—formulated in the 1960s—states that the
number of transistors per area in microprocessors approximately doubles
every two years. The law still holds today, and likely for some time to
come1. However, transistor count is not the only factor affecting perfor-
mance. During the twentieth century, the power density in microprocessors
remained constant (this is known as Dennard scaling [22]). Starting in the
early 2000s, the power density is now increasing because of static power
losses, preventing ever higher clock frequencies. Computer engineering hit
the power wall.

During the era of Dennard scaling, Moore’s law could just as well be in-
terpreted as a doubling of performance every two years [2]; today new ideas
are required for continued performance increase. Initially, these were proces-
sor architecture improvements—such as pipelined and superscalar cores—with
little-to-no impact on software. The efficiency of such low-level features rely
on the presence of instruction-level parallelism (ILP) in sequential machine
code. Inevitably, computer engineering struck the ILP wall as well.

1An argument can be made that Moore’s law is a self-fulfilling prediction, as it has
been used by the industry for road-mapping future technology development. There are
signs that the industry is moving away from this practice [70], substituting scaling for
functional diversification as the road-map target. Whether this means the end of Moore’s
law is far outside the scope of this thesis.

1



CHAPTER 1. INTRODUCTION

Multi-core CPUs, GPUs, and other accelerators additionally exploit thread-
level parallelism. The downside is that parallel and heterogeneous architec-
tures are significantly more difficult to program for, and good automated
compilation techniques are few and difficult to construct. Also, even if com-
putations can be easily parallelized, memory latency has not improved at a
pace comparable to compute performance. This is a third wall: the memory
wall.

Due to the power- and ILP walls, the adoption of parallel architectures
is a requirement for continuing the increase of computing performance. This
applies to systems of all sizes: from HPC super-clusters to embedded sys-
tems. The construction of programming environments allowing efficient pro-
gramming of parallel and heterogeneous computer architectures—without
requiring expert programmers—is thus one of the most important research
areas in computer science and engineering today.

1.2 Aim

The aim of this thesis was to design and implement a new interface for
SkePU [38], a research project based on the concept of skeleton program-
ming implemented as a C++ header library. The SkePU project is about
five years old and has developed into a powerful tool showing promising per-
formance gains. Specifically, this project aimed to improve SkePU in terms
of programmability. A thorough overview of the SkePU project is found in
Chapter 3.

A drawback of SkePU compared with similar research tools is that the
implementation is heavily based on C macros. This design is not particularly
flexible, hindering further development of the tool. It is also unnecessarily
difficult for programmers to use because of the lack of type safety.

The improvements to SkePU realized in this thesis project makes pro-
gramming with SkePU, as well as adding new backends, easier; it also opens
up new optimization opportunities for existing target architectures. New
language constructs, implemented with a source-to-source precompiler, and
template metaprogramming are the basic implementation tools for the new
interface.

1.3 Research Questions

1. Language embedding
What are the common approaches to programming-language extension
design (e.g., DSEL specification) in contemporary research projects?
What are the advantages and disadvantages of the respective ap-
proaches?

2. Type-safe skeleton programming

2



1.4. DELIMITATIONS

How can a modern C++ interface for skeleton programming be de-
signed while retaining type safety?

3. Source-to-source precompiling
Can source-to-source precompiling be applied to a skeleton program-
ming tool, for example to allow for additional target-specific optimiza-
tion? What tools are best used for an implementation of this? How
would such an implementation look like?

1.4 Delimitations

As mentioned in Section 1.1, efficient execution of arbitrary programs on
parallel architectures is very difficult to achieve. This project covers only
specific cases, while requiring any existing programs to be rewritten target-
ing the SkePU tool central to the thesis project. Thus, the results presented
in this report are not applicable to all forms of parallel programming.

Designing an interface which is both clean, easy to understand and to
use—while still allowing enough information to be specified as to be able
to perform target-specific optimizations—requires deep understanding in a
variety of areas such as computer architectures and compiler construction.
It is also necessary to be proficient with many different languages, tools and
frameworks already attempting to solve similar problems. Time is a limited
resource, so this ideal position will not be achievable. Only a subset of the
most common tools will be investigated in some detail and some more are
considered only shallowly.

There are also difficulties in assessing the qualities of different ideas for
the new interface. Ideally, a variety of proposed solutions should be tested
by professionals over a long period of time to evaluate productivity, perfor-
mance, code quality, etc. Since the calendar time of this project is limited,
these evaluations are not possible.

Work on adding other new features to SkePU progressed concurrently
with this project. There are also other ideas for the future development of
the framework. The improvements made to SkePU in this project cannot
be expected to integrate seamlessly with these still hypothetical features,
but they should at least be considered when designing both interface and
implementation.

1.5 Report Structure

The thesis report begins with an introduction, in Chapter 1, to the prob-
lem from a general perspective and to the aim of the project. Chapter 2
provides a background, describing parallel and heterogeneous architectures,
programming frameworks, compiler technology and more. An introduction
to the SkePU project is given in Chapter 3, where its history and structure
are described. Chapter 4 presents related work by giving short overviews

3
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of a large number of tools, either similar to SkePU or otherwise interesting
for the thesis. Chapter 5 covers the methodology used in implementation
and evaluation during this project. The SkePU 2 framework and source-
to-source translator is introduced in Chapter 6, interface, and Chapter 7,
implementation. Results and discussion are presented in Chapter 8, and
finally conclusions in Chapter 9.
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Chapter 2

Background

This chapter presents the theoretical basis for this thesis project. Section 2.1
covers modern computer architectures from a theoretical, model-based per-
spective, introducing concepts such as the PRAM model, while relating the
models to practical systems. Established industry standards for parallel pro-
gramming are given brief introductions in Section 2.2. The problems with
developing performance-portable programs targeting parallel computers are
also considered, before the concept of algorithmic skeletons is presented as
a possible mitigation in Section 2.3. Section 2.4 changes focus to C++ and
the recent improvements to the language. Generative programming is cov-
ered in Section 2.5. The concept of metaprogramming is introduced and its
approaches in C++ are covered: template and preprocessor metaprogram-
ming, in Section 2.6 and Section 2.7 respectively. Concluding the chapter,
source-to-source transformation is presented as an alternative to metapro-
gramming in Section 2.8.

2.1 Programming of Parallel Systems

Parallel computer architectures come in many variants. The range of de-
signs from the relatively simple (but still very advanced) multi-core proces-
sors common in today’s personal computers, to clusters of such processors
forming large supercomputers are but one dimension. Massively multi-core
systems such as modern, programmable GPUs (graphics processing units)
and specialized on-chip solutions such as the heterogeneous Cell processor
[9] presents other challenges.

A popular classification system for parallel architectures is Flynn’s tax-
onomy [29], containing four categories:

• SISD: Single instruction-stream, single data-stream,

• SIMD: Single instruction-stream, multiple data-stream,
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Figure 2.1: A typical shared memory architecture.

• MISD: Multiple instruction-stream, single data-stream, and

• MIMD: Multiple instruction-stream, multiple data-stream.

Most architectures of interest in this thesis are MIMD architectures;
SIMD is also relevant to some extent. SISD architectures can be parallel
(e.g., superscalar processors) but this parallelism is hidden from the pro-
grammer. MISD architectures are not as common, although pipelined pro-
cessors and systolic arrays may be regarded as MISD architectures [30].

An attribute of most—if not all—parallel architectures is that computing
resources are available in abundance. It is not (anymore) the limiting factor
for extracting performance of these systems in typical use cases. Instead,
the bottlenecks are communication and synchronization using the available
interconnection networks and memory subsystems.

2.1.1 Shared Memory

In a shared memory programming model, all processors share a common
memory address space. The physical memory may or may not be shared,
depending on implementation; a system with shared physical memory is said
to have uniform memory access (UMA). A shared memory interface realized
on top of a distributed memory architecture is called non-uniform memory
access (NUMA), as some parts of the address space is local and fast while
some parts are remote and slow. Figure 2.1 illustrates a simplified shared
memory organization.

A theoretical model for shared memory architectures is the idealized
PRAM (parallel random access memory) machine, a generalization of the
sequential RAM machine. It consists of several processors with access to a
common shared memory. The processors operate synchronously, executing
one operation each per time step. It is an attractive model to use as the
basis for evaluating algorithm performance, since an algorithm which does
not perform well on a PRAM machine will not fit into any practical parallel
architecture [37]. The model largely ignores issues in communication and
synchronization, but for modeling simultaneous memory accesses four forms
of PRAM models are used:
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Figure 2.2: A typical message passing architecture.

• EREW: Exclusive read, exclusive write,

• CREW: Concurrent read, exclusive write,

• ERCW: Exclusive read, concurrent write, and

• CRCW: Concurrent read, concurrent write.

Shared memory programs use threads for parallel computation. Thread
programming often result in low-level, boilerplate code. Also, threading
libraries are vendor-specific. A consequence of the shared memory program-
ming is that synchronization must be explicit; absence of synchronization
can be difficult to spot and may lead to race conditions.

OpenMP is an extension for writing shared memory programs in C, C++,
and Fortran; OpenMP code is both higher level and portable (among shared
memory systems).

2.1.2 Message Passing

Models without shared memory, instead using distributed memory, are often
referred to as message passing models. An important consideration for mes-
sage passing architectures is what kind of interconnection network should
be used, as this has major contributions to performance as well as cost.

Most supercomputers are distributed memory architectures with fat tree
or switched fabric-based interconnection networks for inter-node communi-
cation. The nodes themselves consist of multiple cores with shared memory.

MPI (Section 2.2.2) is a de-facto standard library specification for pro-
gramming distributed memory systems.

2.1.3 Heterogeneity and Accelerators

An heterogeneous computer architecture uses multiple kinds of processor
cores. The cores may differ in size, capabilities, instruction set, memory
hierarchy, etc.; the exact meaning of the term is not clearly defined. Het-
erogeneity is usually visible to the programmer and extra care is necessary
to utilize the different cores in an efficient manner.
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Accelerator is a term used for co-processors that are optimized for specific
tasks and thus not as flexible as CPUs: GPUs, ASICs, FPGAs, etc. An
architecture containing one or more accelerators visible to the programmer is
thus a heterogeneous architecture. The strength of accelerators lies in large-
scale data parallel workloads [45], in contrast to traditional CPUs which
are optimized for irregular tasks. Such systems introduce programming
challenges: firstly, accelerators need to be programmed in different ways
than CPUs, perhaps with different languages and libraries. Secondly, the
programmer has to decide which computations to offload to the accelerators
and when to do so; for example, if the address spaces are distinct, data
transfer time may be the bottleneck for small data sets.

OpenCL (Section 2.2.4) is a framework for developing programs for het-
erogeneous execution, with support for a wide variety of hardware. More
specific accelerator frameworks are also available, such as Nvidia’s CUDA
(Section 2.2.3) and Microsoft’s DirectCompute, both targeting GPUs.

2.1.4 Abstraction Level

When programming parallel systems, the level of abstraction on which to
work in must first be decided. Cole [11] suggests that systems can be divided
into three rough categories:

1. In the first, the level of abstraction is so high that the user need not
be aware of parallelism at all. This leaves the system itself to trans-
form the program to take advantage of the available computational
resources.

2. The second category presents a programming model that is close to the
physical system implementation, tasking the user to make the choices
to make use of the system.

3. A third category covers the middle ground, where parallelism is pre-
sented to the user but not at the system level.

An example of the first category are declarative languages. Cole discusses
the potential advantages for parallelism in these types of systems, stemming
from the lack of synchronization and other control structure.

For the third category—where a simplified but still parallel model of the
system is presented to the user—there are further considerations, most im-
portantly a communication model. The two established models are shared
memory and message passing [72], covered in Sections 2.1.1 and 2.1.2, re-
spectively.

2.2 Industry Standards

There is no truly universal standard programming model for parallel pro-
gramming today. Designing such a model would be difficult due to the
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variety of parallel and heterogeneous architectures in existence, both today
and in the future. Even slight design differences may have important per-
formance implications. We have instead a collection of coexisting de-facto
standards created and managed by industry consortiums, some directly com-
peting with each other.

In this section five programming models are introduced:

2.2.1 OpenMP for shared memory programming,

2.2.2 MPI for message passing,

2.2.3 CUDA for Nvidia GPUs,

2.2.4 OpenCL for GPUs and other accelerators, and

2.2.5 OpenACC for high-level accelerator programming.

Of these, none are published by an recognized standards body (such as
ISO or IEC), but all except for CUDA are open.

2.2.1 OpenMP

OpenMP (Open Multi-Processing) is an open standard for shared memory
multiprocessing. It supports programming in C, C++ and Fortran and
is built into many high-profile compilers. OpenMP consists of compiler
#pragma directives (for the C family of languages, as shown in Listing 2.1)
and an optional support library. Carefully written OpenMP code can be
compiled with any compiler since unknown pragma directives are ignored,
generating sequential programs.

Recent versions of OpenMP also include a unified heterogeneous pro-
gramming model [45].

2.2.2 MPI

MPI (Message Passing Interface) is a message-passing library interface spec-
ification managed by the MPI Forum [32]. Bindings for C and Fortran are
part of the standard. The standard assumes a distributed memory environ-
ment and defines a message passing interface; since message passing can be
implemented on shared memory systems, the library can be used on such
architectures as well.

2.2.3 CUDA

Nvidia’s CUDA1 (Compute Unified Device Architecture) is a pioneering,
proprietary, de-facto standard for GPGPU computing. CUDA has its roots

1http://www.nvidia.com/cuda
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Listing 2.1: OpenMP basic example.

1 #include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc , char *argv [])
6 {

int th_id , nthreads;

#pragma omp parallel private(th_id)
{

11 th_id = omp_get_thread_num ();
printf("Hello World from thread %d\n", th_id);

#pragma omp barrier
if (th_id == 0)

16 {
nthreads = omp_get_num_threads ();
printf("There are %d threads\n", nthreads );

}
}

21
return EXIT_SUCCESS;

}

in the Brook project at Stanford [8, 51] in 2003. The author of Brook later
joined Nvidia and CUDA was subsequently released in 2006.

CUDA exclusively targets Nvidia GPUs, limiting the portability of pro-
grams targeted at the framework. A relatively high-level programming lan-
guage (closely based on C++) and APIs, as well as high performance has
nonetheless resulted in CUDA being used in a variety of projects.

An example CUDA program2 can be seen in Listing 2.2.

2.2.4 OpenCL

The OpenCL3 (Open Computing Language) framework is a vendor-neutral
open standard for heterogeneous computing. OpenCL was originally de-
veloped by Apple and is now managed by the Khronos Group consortium.
The framework differs from CUDA in its lower-level programming language,
which is based on C, and broader range of target platforms; OpenCL drivers
are available for CPUs, GPUs, FPGAs, and other accelerators.

OpenCL C is used for writing computation kernels—the functions exe-
cuted on accelerator devices. While the language itself is similar to C, the
standard library is replaced entirely. The host API is defined in C and C++,
but non-standard bindings exist for a variety of programming languages.

Due to the low-level nature of OpenCL and establishment of CUDA,
OpenCL has had some difficulty of gaining traction in the field. Tools that
automatically transform CUDA code into OpenCL have been proposed for

2Original idea by Ingemar Ragnemalm, http://www.computer-graphics.se/
3https://www.khronos.org/opencl/
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Listing 2.2: CUDA “Hello World!” program.

// Based on example by Ingemar Ragnemalm 2010
2 // http ://www.computer -graphics.se/

#include <stdio.h>

__global__ void hello(char *a, char *b)
7 {

a[threadIdx.x] += b[threadIdx.x];
}

#define N 7
12

int main()
{

char a[N] = "Hello ";
char b[N] = {15, 10, 6, 0, -11, 1, 0};

17 printf("%s", a); // Prints "Hello "

char *ad, *bd;
cudaMalloc (&ad , N);
cudaMalloc (&bd , N);

22 cudaMemcpy(ad, a, N, cudaMemcpyHostToDevice );
cudaMemcpy(bd, b, N, cudaMemcpyHostToDevice );

dim3 dimBlock(N, 1);
dim3 dimGrid(1, 1);

27 hello <<<dimGrid , dimBlock >>>(ad, bd);

cudaMemcpy(a, ad, N, cudaMemcpyDeviceToHost );
cudaFree(ad);
cudaFree(bd);

32
printf("%s\n", a); // Prints "World !"
return EXIT_SUCCESS;

}
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this reason [47].
An example program, similar to the CUDA example in Listing 2.2 but

implemented with OpenCL, is presented in Listing 2.3.

2.2.5 OpenACC

OpenACC (Open Accelerators) is a standard for accelerator programming
on heterogeneous systems. Both the goals and the means of OpenACC is
similar to those of OpenMP (Section 2.2.1), but OpenACC is much younger
(first demonstrated in 2012) and less widely adopted. OpenACC allows
programmers to write high-level constructs targeting heterogeneous acceler-
ators. Listing 2.4 shows how pragma directives are used to annotate other-
wise sequential code (compare with Listing 2.1). However, early performance
evaluation of OpenACC [71] has shown significant slowdown compared to
manual OpenCL in some cases.

2.3 Algorithmic Skeletons

As described in Sections 2.2, 2.1.1, and 2.1.2, parallel programming inter-
faces are diverse and the underlying systems are fundamentally different.
It is not possible to write a low-level program that runs on a wide variety
of architectures—even if it was, the performance characteristics would vary
significantly between different hardware. Clearly, some higher abstraction
level is required for writing performance-portable programs for parallel com-
puters. Cole [11] notes that such a system should not be explicitly parallel
to the programmer, but enforce a structure which is efficiently parallelizable
by the system.

In 1989, Cole [11] introduced an approach to parallel programming in-
spired by functional programming. In functional programming, higher order
functions are functions accepting other functions as arguments, usually to
be applied to a sequence of data. Common examples of such functions are
map, scan, and reduce (sometimes known as fold). The map function accepts
a unary function

f : a→ b

which is applied to each element of the sequence. The other variants take
binary functions

f : (a, b)→ c

the properties (e.g., associativity and commutativity) of which restricts the
kinds of parallel optimization possible. Higher-order functions with proper-
ties suitable for parallelization can be used as skeletons.

More generally, algorithmic skeletons are pre-defined, parametrizable
generic components with well defined semantics [18], for which efficient par-
allel or accelerator-specific implementations may exist.

Algorithmic skeletons are categorized into two types [17]:
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Listing 2.3: OpenCL “Hello World!” program.

// Based on example by Ingemar Ragnemalm 2013 (no error checking)
// http ://www.computer -graphics.se/

#include <iostream >
5 #include <cmath >

#include <CL/cl.h>

const char *src =
"__kernel void hello(__global char* a, __global char* b)"

10 "{"
" a[get_global_id (0)] += b[get_global_id (0)];"
"}";

constexpr size_t N = 7;
15

int main(int argc , char** argv)
{

char a[N] = "Hello ";
char b[N] = {15, 10, 6, 0, -11, 1, 0};

20 std::cout << a; // Prints "Hello "

// Where to run
int err;
cl_device_id id;

25 unsigned int no_plat;
cl_platform_id platform;
clGetPlatformIDs (1, &platform , &no_plat );
clGetDeviceIDs(platform , CL_DEVICE_TYPE_GPU , 1, &id, NULL);
cl_context ctx = clCreateContext (0, 1, &id, NULL , NULL , &err);

30 cl_command_queue cmd = clCreateCommandQueue(ctx , id , 0, &err);

// What to run
cl_program prog = clCreateProgramWithSource(ctx , 1, &src , NULL , &err);
clBuildProgram(prog , 0, NULL , NULL , NULL , NULL);

35 cl_kernel kernel = clCreateKernel(prog , "hello", &err);

// Create space for data and copy a and b to device
cl_mem buf1 = clCreateBuffer(ctx , CL_MEM_USE_HOST_PTR , N, a, NULL);
cl_mem buf2 = clCreateBuffer(ctx , CL_MEM_USE_HOST_PTR , N, b, NULL);

40
// Run kernel
clSetKernelArg(kernel , 0, sizeof(cl_mem), &buf1);
clSetKernelArg(kernel , 1, sizeof(cl_mem), &buf2);
clEnqueueNDRangeKernel(cmd , kernel , 1, NULL , &N, &N, 0, NULL , NULL);

45 clFinish(cmd);

// Read result
clEnqueueReadBuffer(cmd , buf1 , CL_TRUE , 0, N, a, 0, NULL , NULL);
std::cout << a << "\n"; // Prints "World!"

50
// Clean up
clReleaseMemObject(buf1);
clReleaseMemObject(buf2);
clReleaseProgram(prog);

55 clReleaseKernel(kernel );
clReleaseCommandQueue(cmd);
clReleaseContext(ctx);
return 0;

}
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Listing 2.4: OpenACC example program [71].

1 // Initialization: |x[i]| < 1, i = 0,...,size -1

#pragma acc data copy(x[0: size]) // Data movement
{

while(error > eps)
6 {

error = 0.0;
#pragma acc parallel present (x[0: size])
#pragma acc loop gang vector reduction (+: error )

for (int i = 0; i < size; ++i)
11 {

x[i] *= x[i];
error += fabs(x[i]);

}
}

16 }

• Data-parallel skeletons work on large data sets, where some operation
is independently applied to multiple small subsets of the data.

• Task-parallel skeletons exploit independence between different tasks.

Tools utilizing the concepts of algorithmic skeletons have been success-
fully applied in both scientific and commercial environments. Some of them
are explicitly modeled after Cole’s proposal—SkePU itself is—while some
have reached the same conclusions by other means, for example Google’s
MapReduce [21]. A selection of algorithmic skeleton frameworks are covered
in Chapter 4.

Note: In this thesis, the term skeleton programming is used in the mean-
ing “programming with algorithmic skeletons”. The term may have different
meanings in other contexts.

2.4 Modern C++

C++ is a multi-paradigm, general purpose programming language origi-
nally based on C. C++ syntax is similar to C with the additions of, among
other things, classes and templates; these features provide support for ob-
ject oriented programming and generic programming, respectively. C++ is
standardized by ISO/IEC [12].

While C and Fortran are still the most common programming languages
used in scientific high-performance computing (HPC), C++ provides a higher
abstraction level and more expressivity, while retaining most of the perfor-
mance characteristics4—at least compared to almost any other established
higher-level language. Anecdotally, C++ is growing in popularity in HPC
applications.

4High performance C++ may require avoiding or disabling certain features (for ex-
ample, run-time type information and exceptions). These features are traditionally not
needed in HPC applications.
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Listing 2.5: constexpr metaprogramming example.

// A. Computing factorial
constexpr int factorial(int n) {

return (n == 0) ? 1 : n * factorial(n-1);
4 }

// Test program
int main() {

constexpr int f = factorial (5);
9 }

The term modern C++ refers to the new standards C++11 and C++14
(eventually also C++17). These revisions overhaul the language by intro-
ducing a multitude of new concepts (e.g., move semantics), amending the
syntax with new constructs (e.g., range-based for-loops, lambda expres-
sions) and extending the C++ standard library with, for example, threads
and regular expressions [12].

Modern C++ allows for higher-level programming than before, while also
reducing overhead and improving performance in many cases. C++11 and
later versions are starting to be used in programming frameworks targeting
parallel heterogeneous architectures, specifically systems consisting of both
CPUs and GPUs. See for example PACXX [35] and SYCL [53].

2.4.1 constexpr Specifier

The constexpr specifier declares that the value of an expression is com-
putable at compile-time. It can be used on variables and on functions. For
a variable, it forces the value of the variable to be known at compile-time.
For a function, it indicates that the function is computable at compile-time
if its actual parameters are known at compile-time.

Compile-time computation is useful for metaprogramming techniques,
for example partial evaluation. Compared to template metaprogramming
(Section 2.6), constexpr functions are syntactically more similar to dynamic
computations. As an example, consider the factorial function in Listing 2.5
and compare with example A in Listing 2.7.

2.4.2 Unified Attribute Syntax

C++11 brings unified and generalized attributes to the language. Attributes
gives the compiler information about a programming construct (a type, an
object, an expression, etc.) otherwise not possible to encode in the grammar.
Although C++14 has three built-in attributes (with arguably the most use-
ful being [[noreturn]]), they are typically used for specialized compilers
or build environments. For example, a parallelizing compiler may under-
stand a specific attribute on a for-loop to mean that the loop iterations are
independent and can be executed in parallel.
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Before modern C++, each vendor had to use a custom attribute syntax
or would risk to interfere with each other. GNU/IBM attributes uses the
__attribute__((...)) and Microsoft uses __declspec(). (These non-
standard variants remain in use today, even for C++11 code.) The standard
syntax has the form [[<namespace>::<attribute>]] where the optional
namespace part prevents attribute name collisions when used properly [48].

According to the C++ standard, unrecognized attributes should be ig-
nored.

C++ continues to support #pragma directives. Most existing paralleliza-
tion tools, as covered in Section 2.2, today use pragma directives instead of
attributes. However, pragma directives are formally a part of the C++ pre-
processor (although this is not always true in practice). While they serve a
role similar to that of attributes, pragma directives are defined in an entirely
different part of the standard. This alone may indicate that C++ attributes
are better suited to annotate source code for parallelizable compilers than
pragma directives are. Another reason is that attributes are applied to syn-
tactical constructs, as opposed to pragmas which are bound to a line of
source code.

2.5 Generative Programming

Generative programming is defined by Czarnecki and Eisenecker [14] as

. . . a software engineering paradigm based on modeling software
system families such that, given a particular requirements speci-
fication, a highly customized and optimized intermediate or end-
product can be automatically manufactured on demand from ele-
mentary, reusable implementation components by means of con-
figuration knowledge.

Note that, while SkePU’s usage of algorithmic skeletons fits the defini-
tion of generative programming fairly well, parallel programming is not the
target application suggested by Czarnecki and Eisenecker; they are mainly
interested in production efficiency of software systems, which is outside the
scope of this thesis. Nonetheless, their methods and tools are applicable in
other contexts.

There are many implementation approaches to generative programming.
In this thesis, we are only interested in automatic, compiler-driven tech-
niques (in contrast to, e.g., software development methodologies). For C++,
this restricts us to three established options: metaprogramming using either
preprocessor macros (Section 2.7) or templates (Section 2.6), which can
be utilized within the standard C++ compiler phases; or source-to-source
translation as a separate, initial stage in the compiler chain (Section 2.8).
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2.6 Template Metaprogramming

“[Template metaprogramming] is closer to Lisp than C++”

—Walter E. Brown [7]

Metaprogramming is the process of writing programs (called metapro-
grams) that represent and manipulate other programs [14]. Metaprograms
may also be used for partial evaluation: performing computations otherwise
done at run-time at compile-time [7].

Templates are the C++ implementation of the paradigm generic pro-
gramming. A construct—class, function, or even variable in C++14—is an-
notated with one or more template arguments (which can be types or integral
values). At compile-time, separate template instantiations will be made for
each unique combination of arguments used. Templates in C++ have purely
static semantics (every argument of a template is known at compile-time);
this allows for a Turing-complete, static programming model called template
metaprogramming. The limitations of templates—namely immutable data
and absence of side effects—effectively makes template metaprogramming
a pure functional metalanguage of C++ [1]. Template metaprogramming
is considered a complicated C++ technique and therefore avoided in some
software projects [52].

Template metaprogramming is not a new feature of C++; nonetheless, it
is a feature relatively far from the C roots and usually considered a modern
feature of the language. The technique is an originally unintended ability
of C++ [69] and was discovered in 1994 by Unruh [66], who constructed a
program printing consecutive prime numbers as compiler errors. The tech-
nique was refined in the following years, most notably by Veldhuizen [69, 68].
Due to advancements in modern C++, as well as compiler improvements in
general, most of the initial articles on template metaprogramming are today
somewhat outdated. In Listing 2.6 and 2.7, example A illustrates improve-
ments in implementation of template metafunctions and example B shows
how the usage of such functions have become cleaner. Note that example
A can also be implemented statically in C++11 without templates, using
recursive constexpr functions (as in Listing 2.5).

Metaprogramming goals which can be accomplished with template meta-
programming include code selection, code generation, and partial evaluation.
Common criticisms of template metaprogramming include complicated im-
plementations and difficulty of debugging [52].

Libraries built with template metaprogramming are often combined with
preprocessor macros to simplify the interface for the user (see, e.g., Skell BE
in Section 4.1).

2.6.1 Expression Templates and DSELs

A common idiom in template metaprogramming is expression templates.
The syntactical structure of C++ expressions are encoded as nested function
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Listing 2.6: C++98 template metaprogramming example.

1 // A. Computing factorial
template <int N>
struct Factorial {

enum { RET = Factorial <N-1>::RET * N };
};

6
template <>
struct Factorial <0> { enum { RET = 1 }; };

// B. Selecting types
11 template <int , typename T1, typename >

struct Select { typedef T1 TYPE; };

template <typename T1 , typename T2>
struct Select <1, T1 , T2> { typedef T2 TYPE; };

16
// Test program
int main() {

int f = Factorial <5>::RET;
Select <1, int , float >:: TYPE number = 5;

21 }

templates, specifically overloaded operators. The expression structure is
thus encoded in the type. Expression templates were first proposed by
Veldhuizen [68].

The main advantage of expression templates is an interface that is barely
distinguishable from ordinary C++ code. As a result, domain-specific lan-
guages (DSLs) can be used within C++ code and parsed by any C++
compiler. Such languages are called domain-specific embedded languages
(DSELs or EDSLs). A typical example of an DSEL-based framework is
Eigen for vector and matrix calculations [33] (Section 4.10) and Skell BE
for automatic parallelization [57] (Section 4.1). Boost.Proto is a support
library for DSEL applications [49].

2.7 Preprocessor Metaprogramming

C++ inherits the preprocessor from its ancestor, C. The preprocessor runs
as the first phase when compiling a C++ program, and is responsible for
performing the following:

• Inclusion of source and header files. (#include "...")

• Macro expansion. (#define X ...)

• Conditional compilation. (#ifdef, #if etc.)

Although the preprocessor thus has both a conditional and a looping
construct, there are practical limitations to the use of the preprocessor as
a general purpose programming tool. Preprocessor metaprogramming is
nonetheless used for basic tasks in most large C or C++ projects.
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Listing 2.7: C++14 template metaprogramming example.

// A. Computing factorial
template <int N>
struct Factorial_ {

4 static constexpr int RET = Factorial_ <N-1>::RET * N;
};

template <>
struct Factorial_ <0> { static constexpr int RET = 1; };

9
template <int N>
constexpr int Factorial = Factorial_ <N>::RET;

// B. Selecting types
14 template <int , typename T1, typename >

struct Select_ { using TYPE = T1; };

template <typename T1 , typename T2>
struct Select_ <1, T1, T2> { using TYPE = T2; };

19
template <int I, typename T1, typename T2>
using Select = typename Select_ <I, T1, T2 >:: TYPE;

// Test program
24 int main() {

int f = Factorial <5>;
Select <1, int , float > number = 5;

}

There are features of the preprocessor which can be useful and difficult
to emulate with other means, such as the “stringification” operator # which
converts a macro argument to an escaped string representation5.

2.8 Source-to-Source Transformation

Source-to-source compilers (also called translators or open compilers) per-
form source-to-source transformation: accepting high-level source code as
input and generating source code at a similar level as output. This is in
contrast to standard compilers which generate output at a lower level than
the input, for example assembly or machine code. Source-to-source compil-
ers can produce output in the same language as the input or in an entirely
different language, depending on the application.

A popular use of source-to-source compilers is implementing new pro-
gramming languages. Instead of constructing an entire compiler stack,
source code written in the new language can be translated into an exist-
ing language. The implementation of the existing language provides the
remaining compilation steps. C is a popular target for this use of source-to-
source compilers. For example, the first C++ compiler produced C code as
output (at this time, C++ was known as C with Classes).

5This is a crucial tool for OpenCL program generation in SkePU 1.2.
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The terms (source-to-source) translator and preprocessor are often con-
fused. The difference is that the translator is more sophisticated and must
understand the syntax of the target language at a level deeper than that of
the preprocessor [55].

2.8.1 ROSE

ROSE 6 is a tool for source transformation (source-to-source compilation).
It is also a major research project, originally from Lawrence Livermore Na-
tional Laboratory [54], now supported by a large group of contributors. The
purpose of ROSE is to allow straightforward implementation of complex
compilation techniques in domain-specific research projects. The kinds of
tasks which can be implemented with ROSE include transformation, in-
strumentation, analysis, verification and optimization of source code. It
has stable support for C and C++ with active development of additional
language front-ends.

All transformations in ROSE are done on its internal abstract syntax
tree (AST) representation. ROSE first generates the internal representation
by parsing the input program. The AST is then modified during multiple
passes, and finally unparsed to generate the output program.

2.8.2 Clang

Clang7 is a compiler front-end for programming languages in the C family,
including C++. It it built on top of LLVM8, a research project conceived by
Lattner et al. in 2002 [42, 43], now used in, and supported by, academic and
commercial projects. For example, LLVM is also the basis of Nvidia’s CUDA
compiler (NVCC9). LLVM received the prestigious ACM Software System
Award in 2012 [31]. The LLVM project is young compared to other popular
compiler toolchains (GCC was released in 1987 and ROSE was proposed in
1999 [54])

Although the main goals of Clang are fast and efficient compilations and
expressive error messages [41], it is designed with a modular, library-based
API. This means that it is relatively simple to build standalone tools based
on Clang, including source-to-source translators. This is contrasted to ROSE
(Section 2.8.1): ROSE is explicitly designed to be a translator generator.
Possible drawbacks of Clang are its relative immaturity and unstable C++
API.

One example research project using Clang as a source-to-source trans-
lator tool is CU2CL [47], a tool performing automatic source code trans-
formation from CUDA to OpenCL. The authors cite the modular design

6http://www.rosecompiler.org/
7http://clang.llvm.org
8http://llvm.org
9https://developer.nvidia.com/cuda-llvm-compiler
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of Clang as one reason for the choice, and classifies their translation ap-
proach as AST-driven and string-based. Their choice of Clang is noted for
its usefulness in situations when the source language is similar to the target
language; as only a small part of the source needs translation, the rest of
the structure (e.g., comments) of the original source file are retained. After
their work was published in 2011, higher-level interfaces for tool develop-
ment has been added to Clang and more and more projects are being built
on its libraries. See for example gpucc [73] and PACXX [35].

Clang’s approach to source-to-source transformation differs from that of
ROSE. Where in ROSE the AST is modified and then unparsed to generate
output, Clang instead uses the AST as a read-only structure to guide the
translation. Modifications are done though string operations, i.e., insertions
and removals, potentially retaining more of the input’s original structure.
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SkePU

SkePU (Skeleton Processing Unit) is an open source skeleton programming
(see Section 2.3) framework, started at Linköping University in 2010 by
Johan Enmyren et al. [23, 24]. It is a C++ template header library, enabling
higher-level skeleton programming for various multi-core and heterogeneous
parallel architectures. SkePU was modeled after BlockLib [74], a similar
project targeting the IBM Cell processor [9] from the same research group.
SkePU has been part of several international (i.e., EU FP7) research projects
and is publicly available as an open source project1.

The advantages of using SkePU instead of a lower-level interface can be
summarized with three concepts:

• programmability, as SkePU code is more high-level than code targeting
the backends directly;

• portability from the existence of backends for a diverse array of target
hardware;

• performance, as the backends are optimized by domain experts with
deeper knowledge of the target architectures than most SkePU users.

SkePU has been extended over time with many different features; for
example new backends, auto-tuning and smart container [19] types. There
is also support for hybrid execution using integrated StarPU [3] support.
As of today, there are backends for sequential C++, OpenMP, OpenCL and
CUDA with single or multiple GPUs. There are also experimental backends
for, e.g., MPI.

In SkePU, as is customary in this context, the CPU is referred to as the
host and GPUs and other accelerators are called devices.

1http://www.ida.liu.se/labs/pelab/skepu/
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3.1 Smart Containers

SkePU includes three container types: 1D Vector, 2D (dense) Matrix, and
SparseMatrix. They are all implemented as class templates, with the con-
tained type as template parameter.

All containers are “smart” in the sense that copying between host and
device address spaces are automatically optimized. An MSI-like sequentially
consistent implementation ensures that no manual memory management is
needed [19].

3.1.1 Vector

The Vector class is modeled after std::vector and is largely compatible
with it. Data is stored in contiguous memory.

3.1.2 Matrix

skepu::Matrix is a row-major, contiguous matrix class with an interface
similar to that of Vector.

3.1.3 Sparse Matrix

A sparse matrix is a matrix in which most elements are zero. SparseMatrix
is a sparse matrix implementation using the CSR format, storing arrays of
elements and their respective indices.

3.1.4 Multi-Vector

MultiVector is a wrapper class for allowing any number of vectors to be
passed as arguments to user functions. This is only implemented for the
MapArray skeleton.

3.2 Skeletons

SkePU provides a number of skeletons: Map, Reduce, MapReduce, MapArray,
MapOverlap, Generate, Scan, and the special Farm. A summary of each of
the skeletons are provided here; detailed explanation of the different skele-
tons, what types of user functions can be combined, and which backends are
supported can be found in the SkePU User Guide [59].

3.2.1 Map

Accepting k containers of the same type and size, Map applies a k-ary func-
tion to the k items which share an index, for all indices in the containers. A
single container of matching size is returned. There are also variants of each
arity which allow for an additional constant argument to be passed along.
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3.2.2 Reduce

Accepting a container and returning a scalar, the result of a Reduce opera-
tion is equivalent to applying a binary commutative and associative operator
to each element in the vector and the result. In practice, the operation is
efficiently implemented as a binary reduction tree.

3.2.3 MapReduce

MapReduce combines Map and Reduce in an efficient manner.

3.2.4 Scan

The Scan skeleton is similar to Reduce, but returns a container with each
partial result. The scan can be either inclusive or exclusive.

3.2.5 MapOverlap and MapOverlap2D

MapOverlap accepts one container as input and applies a k-ary operator to
k neighboring elements, for each index in the container. The edge handling
can be set as either cyclic or constant. For a thorough explanation, see
Dastgeer’s licentiate thesis [17].

3.2.6 MapArray

MapArray behaves similarly to unary Map, with the addition of an auxiliary
Vector argument which can be accessed in its entirety.

3.2.7 Generate

The Generate skeleton accepts an optional constant scalar input and returns
a container. Each element is calculated from its index and the constant.

3.2.8 Farm

Farm is a task-parallel skeleton using the StarPU run-time, only available in
a special version of SkePU.

3.3 User Functions

SkePU uses C preprocessor macros for defining user functions, as exemplified
in Listing 3.1.

The list of available user function macros has grown over time and is
now quite long:

• UNARY FUNC

UNARY FUNC CONSTANT
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Listing 3.1: Dot product example from the public SkePU distribution.

// following define to enable/disable OpenMP implmentation to be used
/* #define SKEPU_OPENMP */

3
// following define to enable/disable OpenCL implmentation to be used
/* #define SKEPU_OPENCL */

// With OpenCL , following define to specify number of GPUs to be used.
8 // Specifying 0 means all available GPUs. Default is 1 GPU.

/* #define SKEPU_NUMGPU 0 */

#include <iostream >

13 #include "skepu/vector.h"
#include "skepu/mapreduce.h"

// User -function used for mapping
BINARY_FUNC(mult_f , float , a, b,

18 return a*b;
)

// User -function used for reduction
BINARY_FUNC(plus_f , float , a, b,

23 return a+b;
)

int main()
{

28 skepu::MapReduce <mult_f , plus_f > dotProduct(new mult_f , new plus_f );

skepu::Vector <float > v0(20, (float )2);
skepu::Vector <float > v1(20, (float )5);

33 float r = dotProduct(v0 , v1);

return 0;
}
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Listing 3.2: Specifying an execution plan in SkePU.

skepu::Reduce <plus > globalSum(new plus);
skepu::Vector <double > input (100, 10);
skepu:: ExecPlan plan;

4 plan.add(1, 5000, CPU_BACKEND );
plan.add(5001, 1000000 , OMP_BACKEND , 8);
plan.add (1000001 , INFINITY , CL_BACKEND , 65535, 512);
globalSum.setExecPlan(plan);

• BINARY FUNC

BINARY FUNC CONSTANT

• TERNARY FUNC

TERNARY FUNC CONSTANT

• ARRAY FUNC

ARRAY FUNC CONSTANT

ARRAY FUNC MATR

ARRAY FUNC MATR CONSTANT

ARRAY FUNC MATR BLOCK WISE

ARRAY FUNC SPARSE MATR BLOCK WISE

• VAR FUNC

• OVERLAP DEF FUNC

OVERLAP FUNC

OVERLAP FUNC STR

OVERLAP FUNC 2D STR

• GENERATE FUNC

GENERATE FUNC MATRIX

3.4 Execution Plans and Auto-Tuning

To ensure the most efficient execution possible, the programmer can supply
the SkePU runtime system with an execution plan, declaring which backends
are to be used for various input sizes [18]. An example of an execution plan
specification can be seen in Listing 3.2. If no plan is explicitly defined,
SkePU constructs one from default parameters.

A framework for auto-tuning SkePU based on a heuristic optimization
algorithm has been proposed [18]. The algorithm first generates an optimal
plan for each backend, then generates an overall plan considering all available
backends.
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3.5 Implementation

The SkePU implementation is largely implemented with preprocessor meta-
programming. User functions are specified with C macros (Listing 3.1) and
expanded to C++ structs at compile-time. These structs have member
functions, each corresponding to a particular backend, which are called by
skeleton instances; conditional compilation controls which of these are gen-
erated and called.

The design incurs limitations in the signatures of user functions and weak
type safety.

3.6 Criticism

SkePU has been used to parallelize several large industry programs, the
results of which includes suggestions for improvements to the framework,
specifically on the topic of user-function definitions. In both the thesis
project by Sundin [65]—parallelization of a sonar simulation—and the thesis
project by Sjöström [58]—translating a flow solver to C++ and SkePU—the
authors had difficulty with locating computations which fit into skeleton
structures. Only the most general skeleton, MapArray, was used and both
authors were required to add new user-function macros to SkePU. Sjöström
in particular needed access to multiple auxiliary data structures and was
required to construct the MultiVector container [60], losing the benefits of
the existing smart containers in the process. Sjöström also commented on
the weak type-safety in SkePU.
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Related Work

This chapter presents a selection of research projects with relevance to either
the problem domain of this thesis (skeleton programming), or the proposed
methods for solving the task at hand (compiler technology and generative
programming). There is a lot of research performed in the fields of parallel
computing and compiler technology, and many tools and frameworks has
been proposed as a result. Some, such as CU2CL, targets a specific niche;
while others, for example SkePU itself, aims to be a more general solution.

We first present an overview of the covered topics, starting with algo-
rithmic skeleton frameworks and libraries:

4.1 Skell BE: Skeleton framework targeting the Cell BE architecture.

4.2 SkelCL: OpenCL skeleton programming library.

4.3 Thrust: Template algorithm library for CUDA.

4.4 Muesli: Skeleton programming of multi-node cluster computers.

4.5 Marrow: Data and task-parallel skeletons for OpenCL systems.

4.6 Bones: Algorithmic skeletons in Ruby.

Two task-based parallel programming solutions are also presented:

4.7 StarPU: Task programming library for hybrid CPU/GPU architec-
tures.

4.8 Cilk: Multi-threaded programming language (a superset of C).

Template metaprogramming is an established C++ technique, and as
such there are many frameworks and libraries of various sizes based on it.
As template metaprogramming is a suggestion for implementation basis,
two typical libraries built using template metaprogramming techniques have
been investigated:
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4.9 Boost: General-purpose C++ libraries.

4.10 Eigen: High-performance linear algebra library.

Five tools using Clang as a source-to-source programming library are
also introduced in this chapter:

4.11 CU2CL: Automatic CUDA to OpenCL conversion.

4.12 Scout: Semi-automatic loop vectorization.

4.13 Clad: Compile-time automatic differentiation.

4.14 gpucc: An optimizing GPGPU compiler.

4.15 PACXX: A unified programming model for accelerators using C++14.

We also cover an example usage of C++11 attributes:

4.17 REPARA: Transforming applications for parallel and heterogeneous
architectures.

Finally, a proposed parallelism extension for C++:

4.18 C++ Extensions for Parallelism: Parallel algorithm overloads in
the C++ STL.

4.1 Skell BE

Saidani et al. proposed the Skell BE library in a 2009 paper [57]. Skell
BE is an algorithmic skeleton library targeting the Cell BE architecture [9].
The library is implemented with a generative programming approach using
template metaprogramming to create a DSEL on top of C++. It is possible
to define process networks by piping data between the built-in skeletons at
compile-time. See Listing 4.1 for a brief example.

Code generated by Skell BE has been shown to be faster than other
C++-based libraries [57]. The authors suggest that the meta-programming
approach is responsible for this performance gain. More computation is
done at compile-time, and more statically defined types can open up new
optimization opportunities for the compiler.

4.2 SkelCL

SkelCL (Skeleton Computing Language) [64, 63] is a skeleton programming
library similar to SkePU, but focused on OpenCL. Like SkePU, SkelCL is a
well-documented, open-source C++ library used as a basis for research on
high-level programming of parallel heterogeneous systems.

SkelCL is structured around three desirable requirements of a high-level
parallel programming model:
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Listing 4.1: A complete Skell BE example [57].

#include <skell.hpp >

3 void sqr()
{

float in[32], out [32];

pull(arg0_ , in);
8

for(int i = 0; i < 32; ++i)
out[i] = in[i] * in[i];

push(arg1_ , out);
13

terminate ();
}

SKELL_KERNEL(sample , (2,(float const*, float *)))
18 {

run(pardo <8>(seq(sqr));
}

int main(int argc , char** argv)
23 {

float in[256], out [256];
skell:: environment(argc , argv);
sample(in, out);
return 0;

28 }

Listing 4.2: Dot product in SkelCL [61].

#include <SkelCL/SkelCL.h>
2 #include <SkelCL/Zip.h>

#include <SkelCL/Reduce.h>
#include <SkelCL/Vector.h>

using namespace skelcl;
7

int main()
{

skelcl ::init (); // initialize SkelCL

12 // specify calculations using parallel patterns (skeletons ):
Zip <int(int ,int)> mult("int func(int x, int y){ return x*y; }");
Reduce <int(int)> sum("int func(int x, int y){ return x+y; }", "0");

// create and fill vectors
17 Vector <int > A(1024);

Vector <int > B(1024);
init(A.begin(), A.end ());
init(B.begin(), B.end ());

22 Vector <int > C = sum( mult(A, B) ); // perform calculation in parallel

std::cout << "Dot product: " << C.front() << std::endl; // access result
}
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• parallel data types,

• data distribution and redistribution, and

• recurring parallelizable patterns.

SkelCL has, in general, a more limited feature set compared to SkePU 2,
but includes features which are not in SkePU such as the AllPairs skeleton
[62], an efficient implementation of certain complex access modes involving
multiple matrices. In SkePU 2 matrices are accessed either element-wise or
randomly.

A possible downside to SkelCL is that the customizable computations
performed by a skeleton (comparable with SkePU’s ”user functions”) are
specified with string literals and thus not subject to syntactic or semantic
checking until run-time. This can be seen in the example in Listing 4.2.

4.3 Thrust

Nvidia Thrust1 [4] is a C++ template library with parallel CUDA imple-
mentations of common algorithms. It uses common C++ STL idioms, and
defines operators (equivalent to SkePU 2 user functions) as native functors.
The fundamentals of the implementation are in effect similar to SkePU 2,
as the CUDA compiler takes an equivalent role to the source-to-source com-
piler presented in this thesis. (In practice, Thrust is limited to Nvidia GPUs
and does not include SkePU features such as smart containers and tuning).

4.4 Muesli

The Muesli2 skeleton library [10] is targeted at multi-core cluster computers
using MPI and OpenMP execution, and has been ported for GPU execution
[25]. It currently contains a limited set of data-parallel skeletons.

4.5 Marrow

Marrow is a flexible skeleton programming framework for single-GPU OpenCL
systems [46]. It provides both data and task parallel skeletons with the abil-
ity to compose skeletons for complex computations. Marrow aims to avoid
the problems of data movement overhead by targeting algorithms and com-
putations based on persistent data schemes, and also by overlapping data
movement with computation.

1https://developer.nvidia.com/thrust
2https://www.wi.uni-muenster.de/research/projects/9220
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Listing 4.3: Convolution in Bones [50].

int N = 512 * 512;
#pragma kernel N|neighb (3) -> N|element
for (i=1; i<N-1; i=i+1)

B[i] = 3 * A[i-1] + 4*A[i] + 3*A[i+1];
5 #pragma endkernel conv

Listing 4.4: StarPU basic example.

#include <stdio.h>

static void my_task (int x) __attribute__ ((task ));
static void my_task (int x)

5 {
printf ("Hello , world! With x = %d\n", x);

}

int main ()
10 {

#pragma starpu initialize
my_task (42);

#pragma starpu wait
#pragma starpu shutdown

15 return 0;
}

4.6 Bones

Bones is a source-to-source compiler based on algorithmic skeletons [50].
It transforms #pragma-annotated C code to parallel CUDA or OpenCL us-
ing a translator written in Ruby, based on the existing C parser CAST 3.
The skeleton set is based on a well-defined grammar and vocabulary. An
example of a convolution operation specified in Bones syntax is available
in Listing 4.3. Bones places strict limitations on the coding style of input
programs.

4.7 StarPU

StarPU4 is a programming library for heterogeneous multi-core processors.
It is not a skeleton library, instead using a task-based model of computation.
It is considered in this thesis for its many similarities to SkePU such as aim,
age, and implementation.

StarPU [3] uses a mix of pragmas and GNU-style attributes, as seen in
Listing 4.4.

3http://cast.rubyforge.org
4http://starpu.gforge.inria.fr
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Listing 4.5: Cilk Fibonacci computation.

cilk int fib(int n)
{

if (n < 2)
4 return n;

else
{

int x, y;
x = spawn fib(n-1);

9 y = spawn fib(n-2);
sync;
return x + y;

}
}

4.8 Cilk

Cilk is a relatively old task-based language and runtime system. Cilk imple-
ments a work-stealing scheduler [6] as a means of distributing load between
processors. A Cilk computation consists of processes and threads, form-
ing a directed acyclic graph (DAG) at run time by spawning new threads
when necessary. Spawns are function calls resulting in the creation of a new
thread; the calls are annotated with the spawn keyword (see Listing 4.5),
one of a few Cilk-specific keywords. Otherwise Cilk code is similar to C.

See also Wool [28], a task-based library inspired by Cilk aiming for ex-
tremely low-overhead task creation and management.

4.9 Boost C++ libraries

Multiple Boost5 libraries are based on template metaprogramming, and are
regarded as some of the best such libraries available. Abrahams and Gur-
tovoy [1] has documented their experiences with the Boost implementation.

• Boost.MPL [34] is perhaps the most well known of the Boost metapro-
gramming libraries, aiming to simplify metaprogramming in C++ by
providing compile-time algorithms and data structures.

• Boost.Fusion focuses on heterogeneous containers and lazily evaluated
algorithms.

• Boost.Proto is an expression template support library [49] (see Sec-
tion 2.6.1).

5http://www.boost.org
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Listing 4.6: A simple Scout loop annotation [40].

float a[100];
2 double b[100];

double x;

#pragma scout loop vectorize
for (int i = 0; i < 100; ++i)

7 {
x = a[i];
x = x / b[i];
a[i] = x;

}

4.10 Eigen

Eigen6 is a numerical linear algebra library built using expression templates.
This gives Eigen a clean and type safe interface and support for aggressive
partial and lazy evaluation, all decided at compile time. It also performs
basic parallelization by explicit vectorization when such instructions are
available.

4.11 CU2CL

CU2CL7 is an automated CUDA to OpenCL source-to-source translator
built using the Clang framework [47]. CUDA is more common in practi-
cal use than OpenCL thanks to the higher-level interface. Yet OpenCL is
supported on a much larger collection of systems than CUDA. CU2CL thus
aims to be an automatic translator of CUDA, performing the relevant substi-
tutions and adding boilerplate OpenCL code. For this CU2CL uses Clang,
citing the flexible architecture and community support. CU2CL specifically
employs the Clang libraries AST, Lex, and Rewrite.

4.12 Scout

Scout8 performs loop vectorization on C code, targeting a wide array of
SIMD instruction formats [40]. The authors note that the approach is only
semi-automatic, as the source needs to be annotated with #pragma directives
as exemplified in Listing 4.6. While Scout uses Clang as a library, a custom
build of Clang with a small patch is required for pragma recognition.

6http://www.eigen.tuxfamily.org
7http://chrec.cs.vt.edu/cu2cl/
8http://scout.zih.tu-dresden.de
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Listing 4.7: Clad example program.

#include "clad/Differentiator/Differentiator.h"

double pow2(double x) { return x * x; }
4 double pow2_darg0(double ); // Body will be filled by Clad.

int main()
{

clad:: differentiate(pow2 , 0);
9 printf("Result is %f\n", pow2_darg0 (4.2));

return 0;
}

4.13 Clad

Clad9 is a compiler tool for automatic differentiation, a middle-ground be-
tween numeric and symbolic differentiation [67]. Clad performs source-to-
source translation using Clang libraries to generate derivatives of C++ func-
tions at (pre-)compile time. It can either produce valid C++ source code
or compiled object files as output. As seen in Listing 4.7, the user defines a
function, then declares the derivative of it and “calls” clad::differentiate,
resulting in Clad filling in the definition. The authors note that the overhead
of the extra compilation step is negligible for practical cases [67].

4.14 gpucc

A very recent Clang- and LLVM-based project is gpucc [73], an open-source
alternative to Nvidia’s CUDA compiler. gpucc is compatible with CUDA
source code and includes a complete compiler chain, for example including a
front-end and code generator. Aside from being the first open CUDA com-
piler, it focuses on improving both compile-time and run-time performance,
outperforming nvcc in some tests.

4.15 PACXX

PACXX is a unified programming model for systems with GPU accelerators
[35], utilizing the new C++14 language. PACXX shares many fundamental
choices with SkePU 2 as proposed in this thesis, for example using modern
C++ including attributes and basing the implementation on Clang. How-
ever, PACXX is not an algorithmic skeleton framework, and the compiler
tool generates executables directly.

9https://github.com/vgvassilev/clad
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4.16 HOMP

HOMP (Heterogeneous OpenMP) is a prototype implementation of the Open-
MP 4 accelerator model [45]. It uses ROSE to generate CUDA code targeting
GPUs.

4.17 REPARA

C++11 unified attributes (described in Section 2.4.2) are relatively new.
One project which already has embraced the new notation is REPARA10.
REPARA is an EU FP7 project, aiming to transform applications to reach
high performance and energy efficiency on parallel and heterogeneous archi-
tectures, while preserving source code maintainability. On the surface, the
REPARA methodology is similar to that of OpenMP; C++ code is anno-
tated with information on which regions are parallelizable and what pattern
to use. REPARA fully utilizes the advantage of attributes over pragma di-
rectives: attributes can be placed on any syntactic construct, not individual
source lines [15].

In more detail, the REPARA methodology consists of multiple, sepa-
rate steps. After the programmer annotates C++ code, a source-to-source
translator (built into Cevelop IDE11) generates an abstract immediate rep-
resentation (AIR). One of several parallel programming models is selected
as target, and the AIR is transformed into parallel programming model spe-
cific code. The remaining steps are the standard C++ compiler phases,
generating an executable program [15].

Programming models supported by REPARA include OpenMP, TBB,
Cilk and FastFlow.

4.18 C++ Extensions for Parallelism

The C++ standardization committee has proposed extensions to the C++
STL for parallel algorithms [13]. The goal is to support possible realizations
on a broad class of computer architectures. These extensions may be inte-
grated into the main C++ specification in the future, perhaps as early as
C++17.

The proposal extends the existing C++ algorithm collection with parallel
overloads. A leading execution policy argument is added to the function
call of an algorithm, and static ”tag dispatching” directs to the relevant
template definition. Parallel overloads exist for a large number of algorithms,
including std::for each, std::find, and std::sort.

10http://repara-project.eu
11https://cevelop.com
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4.19 Others

As already covered, there are many different parallel and heterogeneous
systems in use. There may be an even greater number of software tools
and frameworks to program for those architectures. All of them cannot
be covered in this thesis, but for the interested reader we list a few more
relevant tools.

• Intel TBB12

Intel Threading Building Blocks, a task parallel C++ template library
[56].

• FastFlow13

C++ framework for parallel stream-based applications [16].

• CUDPP
library of parallel primitives [36].

• BlockLib
Skeleton library for Cell BE; ancestor of SkePU [74].

• Skandium
Java library for shared memory programming [44].

• DatTel
C++ template skeletons [5].

• QUAFF
C++, MPI-based template metaprogramming skeleton library [27].

12https://software.intel.com/intel-tbb
13http://calvados.di.unipi.it/fastflow
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Chapter 5

Method

A common three-step separation of the method was applied for this the-
sis project: pre-study (Section 5.1), implementation, and evaluation. The
steps were mostly executed in the listed order. The implementation phase
consisted of interface specification (Section 5.2) architecture design (Sec-
tion 5.3), and the actual implementation work (Section 5.4).

Two aspects of SkePU 2 were evaluated as part of the project: the new
programming interface, with an empirical survey among computer science
students (Section 5.5); and run-time performance of SkePU 2 programs,
comparing backends and to SkePU 1 (Section 5.6).

5.1 Pre-Study

The first part of the method employed in this project is a pre-study of
relevant source material. This includes:

• Existing tools used for providing programming environments for par-
allel and heterogeneous architectures.

• Programming concepts, frameworks, and tools used in compiler tech-
nology.

• Articles, conference papers and other research publications covering
relevant topics.

The pre-study provided fundamental knowledge and understanding nec-
essary for completing the implementation and evaluation. Prior and related
work was found in large part by starting on publications from earlier SkePU
development and following the references to previous papers, and citations
by subsequent publications.
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5.2 Interface Specification

A feature list and an application programming interface (API) for the new
framework was designed with the previous version as a starting point. An
internal list of conceptual ideas was used for guidance, but the author’s own
knowledge of and experience—with, for example, modern programming with
C++—was the largest source of ideas in the end. The interface specifica-
tion was first used as the basis of a prototype implementation and later
continually revised as the project progressed.

5.3 Architecture Design and Prototyping

The first implementation step was to construct a prototype. The prototype
implemented a subset of the interface specification—the MapReduce skele-
ton—selected specifically to cover many of the common design choices. This
prototype was used as a basis for the mid-term evaluation and discussion,
where the decision was made to base the final architecture and implemen-
tation on the prototype by incremental improvement.

To a large extent, the architecture and class design of SkePU 1 was
preserved in the SkePU 2 runtime, drastically reducing the work which had
otherwise been necessary in this area.

5.4 Implementation

Three approaches was considered for the implementation of SkePU 2: one
based on the ROSE framework (see Section 2.8.1), one using Clang (Sec-
tion 2.8.2), and one employing template metaprogramming (see Section 2.6)
and the Boost libraries. Any combination of these were also possible.

Almost the entire project was written in C++, with some usage of shell
and Python scripting for assisting in the evaluation.

A source code management and version control system repository, Git,
was used to manage the source code for the implementation as well as doc-
umentation.

5.5 Usability Evaluation

To gain an understanding of how the new SkePU programming interface is
received among users, we asked 16 master-level students to participate in
an empirical survey. The respondents were presented with a questionnaire
and were tasked to fill in answers without outside help. The responses were
non-mandatory and anonymous, but some background information (such as
age and experience with C++ and parallel programming) were collected.

The participants first read a single paragraph of background context,
presenting SkePU and the algorithmic skeleton concept. They were told
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that the survey was part of a thesis project proposing a new interface for
SkePU programming. The respondents’ main task was then to read two
small SkePU programs, presented in both SkePU 1 and SkePU 2 syntax,
grading the code clarity of both versions and then comparing the two. There
was also an opportunity to leave a comment describing the reason for the
grading. To avoid biasing one or the other SkePU 2 version, the order in
which the versions were listed was randomized.

Page �  of �1 5 Version A

Survey
For a thesis project in high-level heterogeneous parallel programming

Time: approx. 10 min

SkePU is a research project for high-level heterogeneous parallel programming in C++, 
specifically for multi-core and (multi-)GPU systems. It uses a technique known as algorithmic 
skeletons, an abstraction consisting of high-level generic programming constructs inspired by 
functional programming (for example: map and reduce), allowing programmers to focus on 
applications and algorithms instead of hardware-specific issues such as parallelism, 
heterogeneity, data transfer and memory management. SkePU also provides auto-tuning 
functionality which can select the most efficient backend (CPU, GPU etc.) for a particular 
problem size. This thesis project proposes a next-generation programming interface for SkePU 
based on C++11.

In this survey, you will be presented with two small programs and your task is to grade and 
compare the code clarity of the programs across SkePU versions.

Background 

Age:  ..................................................................................................

Program:  (D, Y, International master etc.)..........................................................................................

Completed or ongoing advanced-level courses in parallel programming or C++

TDDC78 Programming of parallel computers
TDDD56 Multicore and GPU programming
TDDD38 Advanced programming in C++

Other: ...............................................................................................

Your estimated experience with C++

☐ ☐ ☐ ☐ ☐
Beginner Professional

Please complete this page before turning page
Figure 5.1: Example question from the survey.

The participants had no prior experience with the SkePU project and
got only a short time (1–2 minutes) to understand each code example. In
all grading questions, the scale went in five steps, presented as check-boxes
with explanations on the extreme ends, see the example in Figure 5.1.

5.6 Performance Evaluation

Evaluating the new SkePU tool was done by porting the example programs
available in the official SkePU distribution to the new syntax. The statistics
of each implementation was considered, such as lines of code. In some
cases, the improved expressivity allowed for new optimizations. To evaluate
this, and also make sure that the new syntax does not result in a general
performance regression, each application was evaluated for execution time
as well.

The system used for testing had two eight-core Intel Xeon E5-2660
”Sandy Bridge” processors at 2.2GHz, with 64 GB DDR3 1600 MHz mem-
ory and was equipped with multiple Nvidia Tesla k20x GPU accelerators.
The test programs were compiled with GCC g++ 4.9.2 or—when CUDA
was used—Nvidia CUDA compiler 7.5 using said g++ as host compiler.

5.6.1 Example Programs

The following is a list of test programs mentioned in this thesis.

• Pearson Product-Movement Correlation Coefficient
A sequence of three independent skeletons: one Reduce, one unary
MapReduce, and one binary MapReduce. The user functions are all
trivial, containing a single floating point operation.

• Mandelbrot Fractal
Uses a Map skeleton with a non-trivial user function. There is no need
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for copy-up of data to a GPU device in this example, but the fractal
image is copied down from device afterward. In fact, there are no
non-constant inputs to the user function, as the index into the output
container is all that is needed to calculate the return value.

• Coulombic Potential
Calculates electrical potential in a grid, from a set of charged parti-
cles. An iterative computation invoking one Map skeleton per itera-
tion. The user function takes one argument, a random-access vector
containing the particles. It also takes a unique two-dimensional ele-
ment index, from which it calculates the coordinates of its assigned
point in the grid.

• N-Body Simulation
Performs an N-body simulation on randomized input data. The pro-
gram is similar to Coulombic potential, both in its iterative nature
and the types of skeletons used.

• Cumulative Moving Average
Calculates the average value of elements in a vector, up to and includ-
ing itself. Performed in two passes: a prefix sum using Scan followed
by unary Map with element index to compute the average value.

• Median Filtering
Performs median filtering of an image, with a single MapOverlap skele-
ton instance and a quite complex user function. Performance evalua-
tions run on random noise images with one-byte gray-scale pixels. The
problem size parameter of this program is the side of the stencil area
(i.e., overlap), so the number of processed pixels grows quadratically.

Subsets of these programs are used for usability evaluation, compilation
time testing, and run-time performance evaluation.

5.7 Testing

The proposed interface for SkePU 2 is incredibly flexible. As the number
and variety of programs which can be constructed are so numerous, it is
difficult to test the implementation for correct behavior. Even 100 % code
coverage is far from enough, since template instantiation in C++ can give
very different behavior depending on the template parameters. Aside from
the aforementioned example programs, SkePU 2 has therefore been tested
with a fuzzy method. A meta-program (written in Python) generates ran-
dom SkePU 2 programs conforming to a predefined pattern; the randomness
affects which skeletons are used, their types and arities, container sizes etc.
At run-time, the container arguments are initialized with random data as
well. In this way, both the compiler and runtime system can be tested. The
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program generator does not provide reference output, so we instead rely
only on successful compilation and inter-backend comparison of the output.

5.8 Presentation of Results

The results from this thesis consist of source code for the new SkePU im-
plementation, along with the results and discussion from evaluations as pre-
sented in this thesis report. The source code repository itself will be handed
over to Linköping University, as it contains both up-to-date code and the
entire commit history.

Starting some time after this report is published, stable parts of SkePU 2
will be available as open source on the SkePU website1. A separate technical
documentation and user guide will also be written and provided with the
open source distribution.

A paper on SkePU 2 and the results from this thesis has been accepted
for HLPP 20162 and will be presented on July 4 2016 at HLPP in Münster,
Germany [26].

1http://www.ida.liu.se/labs/pelab/skepu/
29th International Symposium on High-Level Parallel Programming and Applications
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Chapter 6

Interface

This chapter introduces the SkePU 2 programming interface in Section 6.1.
The most fundamental constructs in SkePU 2 are the skeletons, as described
in Section 6.2. Skeletons are parametrizable with user functions, presented
in Section 6.3.

6.1 Introduction

The SkePU 2 interface is defined in terms of C++ header files and can
be used independently from the source-to-source translator. However, to
actually utilize the parallel functionality of SkePU, the translator has to be
used; in this mode, there are additional restrictions on the program code. A
user function can, for example, not contain side effects (e.g., by allocating
memory) or use most standard library functionality.

A full interface specification will be published separately, along with the
open-source release of SkePU 2.

6.2 Skeletons

Skeletons are declared with an inferred type (using the auto specifier) and
defined by assignment from a factory function, as exemplified in Listing 6.1.
The actual type of a skeleton should be regarded as unknown to the program-
mer. The assigned variable is annotated with the [[skepu::instance]]

C++11-style attribute to guide the source-to-source translator.
A skeleton is invoked with the call operator, with the arguments ordered

according to the user function. The output container, where applicable, is
passed by reference as the first argument. Smart containers may be passed
by reference or by iterator, the latter allowing operations on partial vectors
or matrices. A particular grouping of arguments is required by SkePU 2: all
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Listing 6.1: SkePU 2 example application: PPMCC calculation.

#include <iostream >
#include <cmath >
#include <skepu2.hpp >

4
// User functions
template <typename T>
[[skepu :: userfunction ]]
T square(T a)

9 {
return a * a;

}

template <typename T>
14 [[skepu :: userfunction ]]

T mult(T a, T b)
{

return a * b;
}

19
template <typename T>
[[skepu :: userfunction ]]
T plus(T a, T b)
{

24 return a + b;
}

using T = float; // Set precision
using namespace skepu2;

29
int main(int argc , char *argv [])
{

// Size and smart containers
size_t N = 100;

34 Vector <T> x(N), y(N);

// Skeleton instances
auto vsum [[ skepu:: instance ]] = Reduce(plus <T>);
auto dotp [[ skepu:: instance ]] = MapReduce <2>(mult <T>, plus <T>);

39 auto vsumsq [[skepu :: instance ]] = MapReduce <1>(square <T>, plus <T>);

// Perform computations
T sumX = sum(x);
T sumY = sum(y);

44
T res = (N * dotp(x, y) - sumX * sumY)

/ sqrt((N * vsumsq(x) - pow(sumX , 2))
* (N * vsumsq(y) - pow(sumY , 2)));;

49 return 0;
}
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6.2. SKELETONS

Map Reduce Scan MapReduce MapOverlap Call
Elwise vector • • • • With overlap
Elwise matrix • • • • With overlap
Elwise arity N ≥ 0 1 1 N > 0 1 0
Extra containers • • • •
Scalars • • • •
Indexing • •

Table 6.1: SkePU 2 skeletons and their features and attributes

Listing 6.2: Example usage of the Map skeleton.

[[skepu :: userfunction ]]
float sum(float a, float b)
{

return a + b;
5 }

Vector <float > vector_sum(Vector <float > &v1, Vector <float > &v2)
{

auto vsum [[ skepu:: instance ]] = Map <2>(sum);
10 Vector <float > result(v1.size ());

return vsum(result , v1, v2);
}

element-wise containers must be grouped first, followed by all random-access
containers, and scalar arguments last.

There are six skeletons available in SkePU 2, fewer than in SkePU 1, as
the generalized Map now covers the use-cases of MapArray and Generate.
See Table 6.1 for a list of the skeletons.

6.2.1 Map

Map is greatly expanded compared to SkePU 1. A Map skeleton accepts
N containers for any integer N including 0. These containers must be of
equal size, as does the output container. As one element from each of these
containers will be passed as arguments to a call to a user function, we refer
to these containers as element-wise arguments. Map additionally takes any
number of SkePU containers which are accessible in their entirety inside a
user function—called random access arguments—thus rendering MapArray
from SkePU 1 redundant. These parameters are declared to be either in,
out, or inout arguments and only copied (e.g., between the CPU and an
accelerator) when necessary. Finally, scalar arguments can also be included,
passed unaltered to the user function. The Map skeleton is thus three-way
variadic, as each group of arguments is handled differently and is of arbitrary
size.

Another feature of Map is the option to access the index for the cur-
rently processed container element to the user function. This is handled
automatically, deduced from the user function signature. An index param-
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Listing 6.3: Example usage of the Reduce skeleton.

[[skepu :: userfunction ]]
float min_f(float a, float b)

3 {
return (a < b) ? a : b;

}

float min_element(Vector <float > &v)
8 {

auto min_calc [[ skepu:: instance ]] = Reduce(min_f );
return min_calc(v);

}

eter’s type is one out of two structs, skepu2::Index1D for vectors and
skepu2::Index2D for matrices. This feature replaces the dedicated Gen-
erate skeleton of SkePU 1, allowing for a commonly seen pattern—calling
Generate to generate a vector of consecutive indices and then pass this vector
to MapArray—to be implemented in one single Map call.

See Listing 6.2 for an example usage of the Map skeleton.

6.2.2 Reduce

The Reduce skeleton is a generic reduction operation with an associative
operator available in multiple variants. A vector is reduced in only one
way while five options exist for matrices. A reduction on a matrix may be
performed in either one or two dimensions (for two-dimensional reduction
the user supplies two user functions), both either row-wise or column-wise.
The fifth mode treats the matrix as a vector (in row-major order) and is the
only mode available if an iterator into a matrix is supplied.

See Listing 6.3 for an example usage of the Reduce skeleton.

6.2.3 MapReduce

MapReduce is a combination of Map and Reduce and offers the features of
both, with the limitation that the element-wise arity must be at least 1. See
Listing 6.4 for an example usage of the MapReduce skeleton.

6.2.4 Scan

The Scan skeleton implements two variants of the prefix sum operation
generalized to any associative binary operator. The variants are inclusive or
exclusive scan, where the latter supports a user-defined starting value.

See Listing 6.5 for an example usage of the Scan skeleton.
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Listing 6.4: Example usage of the MapReduce skeleton.

[[skepu :: userfunction ]]
float add(float a, float b)
{

4 return a + b;
}

[[skepu :: userfunction ]]
float mult(float a, float b)

9 {
return a * b;

}

float dot_product(Vector <float > &v1 , Vector <float > &v2)
14 {

auto dotprod [[skepu :: instance ]] = MapReduce <2>(mult , add);
return dotprod(v1, v2);

}

Listing 6.5: Example usage of the Scan skeleton.

[[skepu :: userfunction ]]
float max_f(float a, float b)

3 {
return (a > b) ? a : b;

}

Vector <float > partial_max(Vector <float > &v)
8 {

auto premax [[skepu :: instance ]] = Scan(max_f );
Vector <float > result(v.size ());
return premax(result , v);

}

Listing 6.6: Example usage of the MapOverlap skeleton.

[[skepu :: userfunction ]]
float conv(

3 int overlap , size_t stride ,
const float *v, const float *stencil , float scale

)
{

float res = 0;
8 for (int i = -overlap; i <= overlap; ++i)

res += stencil[i + overlap] * v[i*stride ];
return res / scale;

}

13 Vector <float > convolution(Vector <float > &v)
{

auto convol [[skepu :: instance ]] = MapOverlap(conv);
Vector <float > stencil {1, 2, 4, 2, 1};
Vector <float > result(v.size ());

18 convol.setOverlap (2);
return convol(result , v, stencil , 10);

}
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6.2.5 MapOverlap

MapOverlap is a one or two-dimensional stencil operation. Parameters for
specializing the boundary handling are available, and there is specific sup-
port for separable 2D stencils.

See Listing 6.6 for an example usage of the MapOverlap skeleton.

6.2.6 Call

Call is a completely new skeleton for SkePU 2. It is not a skeleton in a strict
sense, as it does not enforce a specific structure for computations. Call sim-
ply invokes its user function in parallel. The programmer can provide arbi-
trary computations as explicit user function backend specializations, which
must include at least a sequential general-purpose CPU backend as a default
variant. Naming conventions are used to locate the source code files contain-
ing the implementation variants for various supported backend types. The
direction (in, out, inout) of parameter data flow follows the same principles
as for the Map skeleton described above. Call provides seamless integration
with SkePU features such as smart containers and auto-tuning of back-end
selection.

Basically, Call extends the traditional skeleton programming model in
SkePU with the functionality of user-defined multi-variant components (i.e.,
”PEPPHER” components [20]) with auto-tunable automated variant selec-
tion. The current interface is limited in that variants can only be coarsely
targeted at SkePU backends, with a cumbersome syntax. In the future this
shall be extended and integrated with a platform description language such
as XPDL [39].

Listing 6.7 contains an example application of the Call skeleton, integer
sorting, which does not translate well to data-parallel skeleton programming.
Two distinctly different algorithms are selected depending on whether the
Call instance is executed on CPU or GPU. (Note that the example is just an
illustration; the CPU insertion sort algorithm is inefficient, and the even-odd
sorting in the GPU variant works only inside a single work group.)

6.3 User Functions

A skeleton is parameterized by user-defined components to create skele-
ton instances. These components are defined as ordinary (free) functions
in SkePU 2, contrary to the macro syntax of SkePU 1, and are called user
functions. A user function is annotated with the [[skepu::userfunction]]
attribute, declaring the user’s intent and helping the precompiler to recog-
nize their usage. Many examples of user functions can be seen in the code
listings referenced throughout Section 6.2, for example Listing 6.2.

Alternatively, user functions can be specified using C++11 lambda ex-
pressions (closures). This may be preferred to free functions, as lambdas do
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Listing 6.7: Example usage of the Call skeleton.

[[skepu :: userfunction ]]
void swap_f(int *a, int *b)
{

int tmp = *a;
5 *a = *b;

*b = tmp;
}

[[skepu :: userfunction ]]
10 void sort_f(int *array , size_t nn)

{
#if SKEPU_USING_BACKEND_CL

// Even -odd sort
15 // Multiple invocations in parallel

size_t idx = get_global_id (0);
size_t l = nn / 2 + ((nn % 2 != 0) ? 1 : 0);

for (size_t i = 0; i < l; ++i)
20 {

if (idx % 2 == 0 && idx < nn - 1 && array[idx] > array[idx + 1])
swap_f (&array[idx], &array[idx + 1]);

barrier(CLK_GLOBAL_MEM_FENCE );

25 if (idx % 2 == 1 && idx < nn - 1 && array[idx] > array[idx + 1])
swap_f (&array[idx], &array[idx + 1]);

barrier(CLK_LOCAL_MEM_FENCE );
}

30 #else // SKEPU_USING_BACKEND_CPU

// Insertion sort
// A single , sequential invocation
for (size_t c = 1 ; c <= nn - 1; c++)

35 for (size_t d = c; d > 0 && array[d] < array[d-1]; --d)
swap_f (&array[d], &array[d - 1]);

#endif
}

40

void sort(skepu2 ::Vector <int > &v, skepu2 :: BackendSpec spec)
{

auto sort [[ skepu:: instance ]] = skepu2 ::Call(sort_f );
45

spec.setGPUBlocks (1);
spec.setGPUThreads(v.size ());
sort.setBackend(spec);

50 sort(v, v.size ());
}
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Listing 6.8: User function specified with lambda syntax.

Vector <float > vector_sum(Vector <float > &v1, Vector <float > &v2)
{

auto vsum [[ skepu:: instance ]] = Map <2 >([]( float a, float b)
4 {

return a + b;
});

Vector <float > result(v1.size ());
9 return vsum(result , v1, v2);

}

not pollute the enclosing namespace and the userfunction attribute is not
needed. However, lambdas are only used as syntactic sugar in SkePU 2, and
not every lambda can be used. For example, the lambda must be stateless
and can thus not capture any variables. Listing 6.8 uses lambda syntax for
a program with identical semantics to that in Listing 6.2.

It is possible to insert backend-specific code into user function bodies by
using preprocessor directives. This bypasses the source-to-source translator
(the sections are copied without being parsed) and should as such be used
as a last resort, or for temporary testing or debugging purposes. It is cur-
rently also the recommended way to do per-backend specialization of user
functions, as seen in Listing 6.7.

6.4 Explicit Backend Selection

While automatic backend selection is a major feature of SkePU, it is also
possible to explicitly request a backend when invoking a skeleton instance.
In SkePU 1, this was done completely statically by calling the appropri-
ate member function (e.g., .CPU or .CU) on the instance. SkePU 2 instead
takes a more dynamic approach with a BackendSpec object member on the
skeleton instance. This object encodes the requested backend type and pa-
rameters applicable to the backend, such as the number of threads to use
in OpenMP. The user may simply set this member before invocation, as in
Listing 6.7; the runtime system always checks this structure before dispatch-
ing the call to any backend. Although there may be a small performance
cost with this dynamic approach, we believe the increased flexibility will be
useful for users of SkePU 2 in the future. For example, entirely new tuning
mechanisms can be created on top of SkePU 2 without any modification to
its implementation.

The runtime system is allowed to override the user’s backend request,
for example in the case where a certain backend is not available.
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Implementation

In this chapter the implementation of SkePU 2 is presented. This includes
the overarching architecture in Section 7.1, the implementation of the skele-
ton runtime (Section 7.2.1 covers the sequential variant and Section 7.2.2
the parallel backend variants) .

Section 7.3 introduces the Clang-based source-to-source compiler, includ-
ing its purpose, implementation, invocation and distribution.

7.1 Architecture

SkePU 2 consists of three fundamental parts: a sequential skeleton inter-
face and runtime, a source-to-source translator, and the parallel runtime
system with multiple backends supported. The integration of these parts is
illustrated in Figure 7.1.

7.2 Skeletons

As in SkePU 1, skeletons in SkePU 2 are implemented as distinct class tem-
plates. Some details are tightened up in SkePU 2, primarily to avoid code
duplication; for example, a common base class contains members shared
between all skeletons (such as execution plans). A major defining character-
istic of SkePU 2 however, is the fact that each skeleton is implemented in two
different ways. A sequential implementation is used when a SkePU 2 pro-
gram is compiled without initial source-to-source transformation, with the
far more interesting parallel backend implementations are used normally.

To facilitate the multiple definitions, skeleton instances must be declared
with an auto inferred type. For this reason, the instances are constructed by
calling a factory function, which has the added benefit of the possibility to
infer template parameters for the skeleton types. That constructors in C++
cannot infer these parameters is a known limitation and the raison d’être for
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Parallel 
backend 
runtime

Parallel 
backend 
runtime

SkePU
source-to-source 

compiler

SkePU 
program 
source

C++11
compiler

Sequential 
runtime
library

Parallel 
backend
runtime

C++11
compiler

Sequential 
executable

Parallel 
executable

�1

Figure 7.1: SkePU 2 compiler chain.

STL std::make functions, e.g., std::make tuple and std::make unique.
We considered following this style in SkePU 2 but in the end chose the
approach of mimicking constructors.

7.2.1 Sequential Skeleton Variants

SkePU 2 programs are valid C++11 programs, with identical semantics re-
gardless of whether the SkePU attributes are handled or ignored. They can
thus be compiled with any C++11-conforming compiler. Programs gener-
ated this way will utilize a straightforward, sequential implementation of
skeletons. The intention is that this mode should be used for application
development—as the sequential skeletons guarantee identical output to the
parallel implementation (barring hardware-related limitations of parallel al-
gorithms1), applications can be developed and initially tested without the
precompiler.

With the use-case of development and debugging in mind, the sequen-
tial interface has been constructed to perform many run-time checks which
would be unacceptable in a high-performance context, e.g., container size
and bounds checks.

1Such as limited memory sizes.
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This straightforward and clean implementation of the skeletons can also
act as a reference when constructing complex parallel algorithms. In this
project, a variant of fuzzy testing was been performed, where input data
has been randomly generated and the output of a program using the pre-
processed, parallel run-time was compared to that of the sequential variant.

7.2.2 Parallel Backends

The backends are separate OpenMP, OpenCL, and CUDA implementations
of all skeletons accompanied by another single-threaded CPU variant. The
existence of a CPU backend separate from the sequential implementation is
partly a consequence of the slight differences in the interface between prepro-
cessed and non-preprocessed SkePU 2 code (e.g., a different set of template
parameters) and partly a way to provide an efficient single-threaded vari-
ant, without the bounds checking etc. that the sequential runtime system
includes.

Many implementation decisions such as parallel algorithms and the entire
container implementation have been preserved from SkePU 1. However, the
architecture of the skeletons has changed a lot.

7.3 Source-to-Source Compiler

The SkePU 2 source-to-source compiler (also source-to-source translator or
just precompiler) knows about the skeleton library interface and recognizes
attributes in the source code. A program targeting the skeleton interface
which is properly annotated with attributes can be transformed for hetero-
geneous parallel execution by the precompiler.

The role of SkePU 2’s source-to-source precompiler is to transform a
subset of programs written for the sequential interface for parallel execu-
tion. It is guided by attributes, skepu::userfunction on user functions,
skepu::instance on skeleton instances, skepu::usertype on user-defined
struct types appearing in user functions, and skepu::userconstant for
global constants on constexpr global variables. While most SkePU 2 at-
tributes are not strictly needed to recognize skeleton usage in a C++ pro-
gram, they provide for a straightforward implementation of the precom-
piler—but more importantly, they help declare the programmer’s intent and
thus generate better diagnostics.

The job of the precompiler is limited by design. Its main purpose is
to transform user functions, for example adding global keywords for
CUDA variants and stringifying the OpenCL variant. A user function is
represented as a struct with static member functions in the transformed
program. The precompiler also transforms skeleton instances, redirecting
to a completely different implementation accepting the structs as template
arguments. It also redefines user types for backends where necessary.
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Listing 7.1: Before transformation.

template <typename T>
[[skepu :: userfunction ]]
T arr(skepu2 :: Index1D row , T *m, const T *v, T *v2 [[skepu::out]])
{

5 // body
}

Listing 7.2: After transformation.

struct skepu2_userfunction_arr_float {
using T = float;
constexpr static size_t totalArity = 4;

4 constexpr static size_t anyContainerArity = 3;
constexpr static bool indexed = 1;
static skepu2 :: AccessMode anyAccessMode[anyContainerArity ];
using Ret = float;

9 #define SKEPU_USING_BACKEND_CUDA 1
static inline SKEPU_ATTRIBUTE_FORCE_INLINE __device__ float
CU(skepu2 :: Index1D row , T *m, const T *v, T *v2) {

// body
}

14 #undef SKEPU_USING_BACKEND_CUDA

#define SKEPU_USING_BACKEND_OMP 1
static inline SKEPU_ATTRIBUTE_FORCE_INLINE float
OMP(skepu2 :: Index1D row , T *m, const T *v, T *v2) {

19 // body
}

#undef SKEPU_USING_BACKEND_OMP
};

24 skepu2 :: AccessMode
skepu2_userfunction_arr_float :: anyAccessMode[anyContainerArity] {

skepu2 :: AccessMode ::ReadWrite ,
skepu2 :: AccessMode ::Read ,
skepu2 :: AccessMode ::Write ,

29 };

"#define SKEPU_USING_BACKEND_CL 1
static float arr_float(index1_t row , __global float * m,

__global const float * v, __global float * v2) {
34 typedef float T;

// body
}"
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Listing 7.3: Internal OpenCL kernel launch in SkePU 1.

// Sets the kernel arguments
clSetKernelArg(kernel , 0, sizeof(cl_mem), (void *)& in_p);
clSetKernelArg(kernel , 1, sizeof(cl_mem), (void *)& out_p );

4 clSetKernelArg(kernel , 2, sizeof(size_t), (void *)& numElem );
clSetKernelArg(kernel , 3, sizeof(typename MapFunc :: CONST_TYPE),

(void *)& const1 );

globalWorkSize [0] = numBlocks * numThreads;
9 localWorkSize [0] = numThreads;

// Launches the kernel (asynchronous)
err = clEnqueueNDRangeKernel(

m_kernels_CL.at(i).second ->getQueue(),
14 kernel , 1, NULL , globalWorkSize , localWorkSize , 0, NULL , NULL);

printCLError(err , "Error launching kernel\n");

Listing 7.4: Internal OpenCL kernel launch in SkePU 2.

CLKernel ::map(
i, // Device ID
numThreads , // Local work size
numBlocks * numThreads , // Global work size

5 std::get <EI >( elwiseMemP )..., // Elwise container args
std::get <AI -arity >( anyMemP )..., // Random container args
get <CI , CallArgs ...>( args ...)... , // Scalar args
outMemP[i], // Output container
res.getParent (). total_cols (), // Container width

10 numElem , // Container size
i * numElemPerSlice // Start index

);

For some backends such as OpenCL and CUDA, all kernel code is gen-
erated by the precompiler. OpenCL programming usually includes a type-
unsafe border between the host program and kernel invocations on the device
(that is, void* pointers to kernel arguments), but the SkePU 2 precompiler
generates typed wrapper functions resulting in a programming interface very
similar to that of CUDA. This is, however, invisible to end-users, as device
kernels are not called directly in the SkePU interface, but greatly simpli-
fies internal backend development and debugging. In Listings 7.3 and 7.4
OpenCL kernel calls directly from the implementations of the Map skele-
ton are shown. Note that the SkePU 2 variant accepts more arguments as
it supports optional element indexing and is variadic in the user function
arguments (the struct CLKernel is generated by the precompiler, passed to
the Map implementation as a template type parameter).

An example of a transformation2 of the template user function in List-
ing 7.1 can be seen in Listing 7.2.

2Slightly altered and reformatted for presentation purposes.
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Listing 7.5: An attribute definition in Clang.

def SkepuUserFunction : InheritableAttr
{

3 let Spellings = [CXX11 <"skepu", "userfunction" >];
let Subjects = SubjectList <[ Function]>;
let Documentation = [Undocumented ];

}

Listing 7.6: A diagnostic definition in Clang.

def err_skepu_no_userfunction_body: Error
<

"[SkePU] Declaration of function %0 with
4 skepu:: userfunction attribute is not a definition"

>;

7.3.1 Patching Clang

Clang, while primarily a compiler front-end, is built with a library-oriented
architecture [47]. The SkePU 2 source-to-source translator is built on top
of Clang’s parsing, tooling and rewriting libraries. However, some features
of the translator cannot be realized within the constraints of the library
interface and needs to be integrated at the source level. Attribute recogni-
tion and handling is the primary requirement for this in SkePU 2, but we
also improve the usability of the precompiler by integrating custom diagnos-
tics, i.e., errors and warnings, for common mistakes (such as forgetting the
[[skepu::userfunction]] attribute on a user function passed to a skeleton
instance).

An example of an attribute definition added to Clang as part of SkePU 2
is presented in Listing 7.5. In this example, the [[skepu::userfunction]]

attribute is defined in Clangs attribute definition DSL. It is added to the file
include/clang/Basic/Attr.td relative to the root of the Clang repository.

SkePU 2 diagnostics are added to the file include/clang/Basic/Diag-

nosticASTKinds.td as in Listing 7.6. This example defines an error sig-
naling that the [[skepu::userfunction]] attribute has been placed on a
function declaration without a definition, which is not allowed.

7.3.2 Invocation

The current version of the SkePU 2 source-to-source translator is invoked
on a single source file. The source file may depend on headers, which have
to be reachable for parsing by the tool, but only the main file will be subject
to source-to-source translation. The output from the translator is a trans-
formed copy of the original file. A standard C++ compiler (or specialized
compiler depending on which backends are enabled, e.g, nvcc) should then
be used for normal compilation.
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In the future, we plan to construct a compiler driver to simplify this
process. It would function similarly to nvcc, performing both the initial
transformation step and target compilation with a user-definable compiler.

7.3.3 Distribution

A few options exist for the distribution of a Clang tool. One possibility is
to create a pull request and hope to be accepted as a part of Clang itself;
this was not attempted, however, as SkePU 2 is still immature and probably
not relevant enough. A second option, commonly seen with software of all
kinds, is to build executable binaries for multiple platforms and make them
available for example on the web or in package management systems. This
is a more realistic approach and may be an interesting future possibility.
However, the current plan is to distribute the patch file in a Git-compatible
format along with the SkePU 2 runtime library source code. A SkePU 2
user must then clone the Git repositories by herself, check out a specified
version and apply the patch. This approach is applied by Scout [40] where
it is, to an extent, automated.
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Chapter 8

Results and Discussion

In this section, we present empirical results from SkePU 2. First the us-
ability improvements are covered in Section 8.1, followed by an example of
improved type safety in Section 8.2. Improvements to the implementation of
the existing SkePU libraries are presented in Section 8.3 and, finally, perfor-
mance results in Section 8.4. A discussion section accompanies each of these
sections, and discussion of the methodology is presented in Section 8.5.

8.1 Usability Survey

The interface of SkePU 2 improves on that of SkePU 1 with increased clarity
and a syntax that looks and feels more native to C++, making SkePU 2
more usable than its predecessor. A survey was issued to 16 participants,
all master-level students in computer science (see Section 5.5). The results
of this survey are presented in this section.

8.1.1 Example Programs

The respondents were presented with two short example programs, each in
two different versions (SkePU 1 and SkePU 2). The programs were presented
exactly as in Listing 8.1, 8.2, 8.3, and 8.4; with no explanation other than
the program title (”vector sum” and ”Taylor series”, respectively) and any
descriptive symbol names in the code. The participants were instructed to
spend one to two minutes to read each example. To avoid biasing either of
the SkePU versions, the order of introductions was reversed in half of the
questionnaires.

• Version A: Presented the SkePU 2 version first.

• Version B: Presented the SkePU 1 version first.

The order of the examples was consistent: the trivial vector sum followed
by the more complex Taylor series approximation.
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Listing 8.1: Vector sum example in SkePU 1.

BINARY_FUNC(sum , int , a, b,
return a + b;

)

5 Vector <float > vector_sum(Vector <float > &v1, Vector <float > &v2)
{

Map <sum > vsum(new sum);
Vector <float > result(v1.size ());

10 vsum(v1 , v2 , result );
return result;

}

Listing 8.2: Vector sum example in SkePU 2.

[[skepu :: userfunction ]]
float sum(float a, float b)

3 {
return a + b;

}

Vector <float > vector_sum(Vector <float > &v1, Vector <float > &v2)
8 {

auto vsum [[ skepu:: instance ]] = Map <2>(sum);
Vector <float > result(v1.size ());

vsum(result , v1 , v2);
13 return result;

}

Listing 8.3: Approximation by Taylor series in SkePU 1.

1 UNARY_FUNC_CONSTANT(kth_term , float , float , k, x,
float temp_x = pow(x, k);
int sign = ((int)k % 2 == 0) ? -1 : 1;
return sign * temp_x / k;

)
6

BINARY_FUNC(plus , float , a, b,
return a + b;

)

11 GENERATE_FUNC(index_init , float , float , index , seed ,
return index + 1;

)

float taylor_approx(float x, size_t N)
16 {

skepu::MapReduce <kth_term , plus > taylor(new kth_term , new plus);
skepu::Generate <index_init > vec_init(new index_init );

taylor.setConstant(x);
21

skepu::Vector <float > terms(N);
vec_init(N, terms);

return taylor(terms);
26 }
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Listing 8.4: Approximation by Taylor series in SkePU 2.

[[skepu :: userfunction ]]
float kth_term(skepu2 :: Index1D index , float x)
{

4 int k = index.i + 1;
float temp_x = pow(x, k);
int sign = (k % 2 == 0) ? -1 : 1;
return sign * temp_x / k;

}
9

[[skepu :: userfunction ]]
float plus(float a, float b)
{

return a + b;
14 }

float taylor_approx(float x, size_t N)
{

auto taylor [[skepu :: instance ]] = skepu2 ::MapReduce <0>(kth_term , plus);
19

taylor.setDefaultSize(N);

return taylor(x);
}
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Figure 8.1: Survey participants’ estimated C++ experience.

8.1.2 Survey Responses

All participants were students in advanced-level computer science or engi-
neering programs. They were instructed to estimate their C++ experience
on a five-step scale from beginner to professional. The results (Listing 8.1)
show that most respondents considered themselves as having average ex-
perience (the data seemingly conforms to a normal distribution). When
the participants later graded their understanding of the example programs,
the vector sum example showed a small negative correlation between esti-
mated experience and level of understanding while the Taylor series example
showed no correlation at all.

Figure 8.2 presents the results of the final question for each code ex-
ample, where the participants were constructed to compare the two SkePU
versions in terms of code clarity (How would you rate the clarity of this code
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Figure 8.2: Comparison of code clarity, SkePU 1 vs. SkePU 2.

in relation to the previous example? ). The scale went from less clear to
more clear in five steps. The questionnaires which had SkePU 1 first have
had their responses inverted afterwards, so a different scale is presented in
Figure 8.2.

We can see that the first example program was very divisive, with a slight
skew to SkePU 1 as the clearer version. For the second program, Taylor
series, there are clearly more responses preferring SkePU 2 than SkePU 1.

8.1.3 Discussion

The usability evaluation indicates that the SkePU 1 interface is sometimes
preferred to the SkePU 2 variant, at least when the user is not used to
C++11 attributes. From the comments left in the survey, we realized that
is important to clearly specify that SkePU attributes does not alter the
semantics of the program. There might even be a reason to reduce the
attribute usage in the interface; for example, the [[skepu::instance]]

attribute can be removed only at the cost of a more complex detection
mechanism in the source-to-source translator.

In the more complex Taylor series example, respondents generally con-
sidered the SkePU 2 variant to be clearer. We believe that the reason for
this is the fact that it has fewer user functions and skeleton instances than
the SkePU 1 version (thanks to the increased flexibility offered in SkePU 2).
The user functions are also fairly complex, so the macros in SkePU 1 may
be more difficult to understand.

The Taylor series program is also presented after the participants have
already seen their first use of C++11 attributes, in the vector sum example.
This may skew the result towards preferring SkePU 2, which would distort
the data but indicate that the attributes are easy to get accustomed to.
Some respondents mention the attributes as having a negative effect also for
the second example, however.

There is a clear trend in the data suggesting that a respondent favors the
first version of the presented example program. It was therefore good that
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Listing 8.5: Invalid SkePU 1 code.

UNARY_FUNC(plus_f , float , a,
2 return a;

)

float vsum(skepu::Vector <float > &v) {
skepu::Reduce <plus_f >

7 globalSum(new plus_f );
return globalSum(v);

}

Listing 8.6: Invalid SkePU 2 code.

1 [[skepu :: userfunction ]]
float plus_f(float a) {

return a;
}

6 float vsum(skepu2 ::Vector <float > &v) {
[[skepu :: instance ]] auto globalSum

= skepu2 :: Reduce(plus_f );
return globalSum(v);

}

we made two different versions of the survey. We assume that the biases
now cancel out in the aggregate, which might not be true in practice.

It is not clear why the respondents’ grading of their C++ experience
shows a small negative correlation to their understanding of the example
programs. A possible explanation may be that the relatively new C++11
attributes catches experienced users off guard; but a more likely reason is
that the sample size is too small, especially for the extreme ends of the
experience spectrum.

8.2 Type Safety

One of the goals with the SkePU 2 design was to increase the level of type
safety from SkePU 1. In the following example, a programmer has made
the mistake of supplying a unary user function to Reduce. Listing 8.5 shows
the error in SkePU 1 code, and Listing 8.6 illustrates the same in SkePU 2
syntax.

The SkePU 1 example compiles without errors or warnings, and only at
run-time terminates with the error message in Listing 8.7. The message itself
is shared between all reduce instances, limiting the information obtained by
the user.

SkePU 2, on the other hand, fails to compile and prints an error message
even before the precompiler has transformed the code. (The message does
not directly describe the issue, an aspect which can be further improved by
clever usage of C++11’s static assert.) It directs the user to the affected
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Listing 8.7: Error messages from SkePU 1 and 2.

// In SkePU 1, at run time;
[SKEPU_ERROR] Wrong operator type!

Reduce operation require binary user function.

5 // In SkePU 2, at compiler time:
error: no matching function for call to ’Reduce ’

[[skepu :: instance ]] auto globalSum = skepu2 :: Reduce(plus_f );
^~~~~~~~~~~~~~

note: candidate template ignored: failed template argument deduction
10 Reduce(T(*red)(T, T))

skeleton instance. The precompiler tool itself does not need to implement
any form of type checking.

8.3 Parallel Runtime Improvements

The implementation of SkePU backends, i.e., the parallel runtime, has been
significantly improved in SkePU 2. There are two major reasons for this:
the move to C++11 and the introduction of a source-to-source precompiler.
The improvements include the following:

• Reduced code size, in some cases approaching 70 %, for example by
elimination of separate implementation of unary, binary, and ternary
Map skeleton.

• Reduced code duplication, for example by more sharing of wrapper
member functions by different backends.

• Improved type safety, especially along the C++-OpenCL boundary as
detailed in Section 7.3.

The SkePU project has grown dynamically over multiple years. An in-
evitable part of this thesis project was to read though the code-base and un-
derstand the structure and intention, followed by a partial re-implementation
of the skeletons. This procedure has, to some extent, functioned as a code
audit and resulted in the discovery of a number of potential bugs and in-
consistencies.

8.4 Performance Evaluation

The performance of SkePU 2 was evaluated in three ways: compile times,
presented in Section 8.4.1; performance of SkePU 2 backends in Section 8.4.2;
and comparison between SkePU 1 and SkePU 2 in Section 8.4.3.

66



8.4. PERFORMANCE EVALUATION

C
om

pi
la

tio
n 

tim
e 

[s
]

0

4

8

12

16

Mandelbrot
MVmult CMA

PPMCC
PSNR Taylor

Coulombic
Nbody

Median
Average

SkePU 1 SkePU 2

Figure 8.3: Comparison of compilation durations, SkePU 1 vs. SkePU 2.

8.4.1 Compile-Time Performance

SkePU 2 contains more compilation steps than SkePU 1, so it is reasonable
to expect that compilation times are longer. To quantify the difference, a
set of example programs written in two versions each (targeting SkePU 1
and SkePU 2, respectively) were recompiled three times, and the average
of the durations recorded and presented in Figure 8.3. Here it can be seen
that it is not uncommon for SkePU 2 compilation times to be twice that of
SkePU 1.

Note that as a consequence of the difference in features across SkePU
versions, some programs differ in the number of skeleton instances used
or in other ways. The core algorithm is shared in all examples, however.
Additionally, as SkePU 1 cannot enable both OpenCL and CUDA in a single
compilation, all tests here are only generating CPU, CUDA and OpenMP
backends. As the majority of OpenCL compilation is done just-in-time,
adding the OpenCL backend does not adversely prolong the compilation
time.

8.4.2 Performance Comparison of Backends

Results of the performance comparison of backends with various test pro-
grams can be seen in Figure 8.4 and 8.5b. In three out of six cases, the GPU
backends (which are very close to each other) beat the CPU backends with
a margin on large problem sizes. In the other three cases, OpenMP is the
fastest. The sequential CPU backend is almost always faster for extremely
small problem sizes.

8.4.3 Performance Comparison of SkePU versions

In cases where the increased flexibility of SkePU 2 allows a program to be
implemented more efficiently—for example by reducing the number of skele-
ton invocations—SkePU 2 may outperform SkePU 1 significantly. Figure 8.5
shows such a case: approximation of the natural logarithm using Taylor se-
ries. For SkePU 1, this is implemented by a call to Generate followed by a
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call to MapReduce; in SkePU 2 a single MapReduce is enough, reducing the
number of GPU kernel launches and eliminating the need for O(N) auxiliary
memory.

8.4.4 Discussion

Google Benchmark1 was used for run-time performance evaluation. This
library has not been commonly used for scientific work, which may be a
reason for readers to question the validity of the results (and, by extension,
the conclusions as well). However, the results it reported were at least
consistent across runs.

There are many difficulties in performing a fair performance evaluation
for a complex library such as SkePU 2. It includes multiple skeletons with
infinitely2 many type combinations, each skeleton implemented on a set
of distinct backend architectures. On top of that, the physical systems
(particularly GPUs), while supporting a common programming model, can
have very different attributes which affect the decisions made by the run-
time. The evaluation presented in this thesis is thus not a completely fair
illustration of SkePU 2 performance, but hopefully a good indication of what
can be expected in typical use.

Results from the performance evaluation indicate that either the Scan
and MapOverlap skeletons—or the test programs using them—may have
performance bottlenecks, as the GPU backends are the slowest in these
evaluations. Especially the Median filtering example behaves very unex-
pectedly.

8.5 Method Discussion

For the source-to-source compiler, we selected an architecture based on
Clang fairly early in the process. ROSE was considered as an alternative
but dropped before any prototyping work began. If the project had had a
larger scope in terms of time, multiple different prototypes could have been
constructed and evaluated. In the end, Clang has proven to fit the task well.

The usability survey gathered a total of 16 responses, which may be in
the lower range in which reasonable conclusions can be made. However,
even though the survey was presented to a specific audience of students, the
reported backgrounds were surprisingly varied, with different fields of study
and programming experience. The survey itself was well structured, with
two versions of the questionnaire handed out to avoid biasing either of the
SkePU versions. Especially the free-form comment field, a late addition,
turned out to be very useful when interpreting the results.

1https://github.com/google/benchmark
2The SkePU 2 interface does allow for infinitely many type and arity combinations,

but compiler implementations will enforce a (possible configurable) limit here. Template
instantiation depth has been the limiting factor in the author’s experience.
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Figure 8.4: Test program evaluation results. Log-log scale.
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Figure 8.5: Comparison of Taylor series approximation.
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Chapter 9

Conclusions

This section concludes the thesis by presenting the conclusions reached dur-
ing the project, based on the research questions (Section 9.1). We also
consider the relevance of the project in a wider context in Section 9.2 and
possibilities for future work in Section 9.3.

9.1 Revisiting the Research Questions

In this section, conclusions are made in relation to the research questions
from Section 1.3.

9.1.1 Language Embedding

Chapter 4 lists several research projects in the form of C++ frameworks,
all of which more or less deliberately define domain-specific embedded lan-
guages. For some of them this is just a C++ header interface, among them
SkePU 1; while some define their own extensions to the core language. The
most popular way to extend C++ is by preprocessor pragma directives,
which the compiler usually can ignore while still producing a valid, but lim-
ited, executable. The REPARA project uses C++11 attributes in a similar
way, as does SkePU 2 as proposed.

9.1.2 Type-Safe Skeleton Programming

By constructing a proposed next-generation version of the SkePU frame-
work, we have demonstrated a way to design and implement a type-safe
C++ interface for skeleton programming. The proposed framework is based
on research of similar projects and the recent evolution of the C++ language.
The chosen approach builds on C++11, specifically variadic templates and
attributes, and is supported by a source-to-source translation tool. While
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not very common, each of those separate techniques have precursors in var-
ious contexts, even in parallel programming. However, the combination
applied in a skeleton programming framework is unprecedented.

9.1.3 Source-to-Source Precompiling

We have shown that a source-to-source compiler tool, in our case built on the
Clang libraries, can, with promising results, be used as a precompiler in a
skeleton programming framework. There are plans to extend the translator
with target-specific optimization capabilities in the future, but for now only
a rudimentary and limited implementation exists.

9.2 Relevance

As described in the introduction in Chapter 1, parallel and heterogeneous
computer architectures are increasingly important to consider for more and
more types of programmers. The programming frameworks in popular usage
today, e.g., OpenCL, are often fairly low-level and requires hardware-specific
optimization of, for example, memory handling. SkePU provides a high-level
abstraction model where domain experts have optimized the implementation
of common computational patterns. With SkePU 2 we have a reconsidered,
next-generation SkePU interface and an updated implementation. With the
move to C++11, and improvements such as a native syntax for user func-
tions, extended argument combinations for skeletons, and the introduction
of a new Call skeleton for user-defined multi-variant components integrating
with powerful SkePU features such as auto-tuning and smart containers, we
have extended the number of situations where SkePU can be successfully
applied.

9.3 Future Work

In the future, the precompiler role will be expanded to include selection of
system-specific user function specializations, guided by a platform descrip-
tion language [39]. The precompiler can either select the most appropriate
specialization directly, or include multiple variants and generate logic to
select the best one at run-time based on dynamic conditions.

Some features of SkePU 1 has yet to be re-implemented in SkePU 2. This
includes the auto-tuner, which will be straightforward to port for existing
functionality. We are also considering to extend the auto-tuner to support
tuning on a broader set of inputs.

As mentioned in Section 7.3.2, we also have plans for the construction
of a higher-level compiler driver.
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Appendix A

Glossary

A.1 Abbreviations

API Application programming interface
ASIC Application-specific integrated circuit
AST Abstract syntax tree
CSR Compressed sparse row (a sparse matrix storage format)
DSEL Domain-specfic embedded language (also EDSL)
EU FP7 European Union Seventh Framework Programme
FPGA Field-programmable gate array
GCC GNU Compiler Collection
GPGPU General-purpose graphics processing unit
HPC High-performance computing
IDE Integrated development environment
IEC International Electrotechnical Commission
ISO International Organization for Standardization
LLVM The LLVM Compiler Infrastructure (not an acronym)
MSI Modified–shared–invalid (cache coherence protocol)
NVCC Nvidia’s CUDA compiler
STL C++ Standard Template Library
TBB Intel Threading Building Blocks
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A.2. DOMAIN-SPECIFIC TERMS

A.2 Domain-Specific Terms

Accelerator
Broad term, referring to a processing unit more specialized than a
general CPU. Examples: GPU, FPGA, ASIC, DSP.

Heterogeneous (system or architecture)
Containing both one or more CPUs and one or more accelerators.

Performance-portable (parallel program)
Program which can be executed on different parallel and heterogeneous
architectures with reasonable performance.

(Algorithmic) skeleton
Parameterizable generic component with well defined semantics, for
which (sometimes multiple) parallel or accelerator-specific implemen-
tations exist.

Superscalar (computer architecture)
Processor core utilizing instruction-level parallelism by duplicating ex-
ecution units, thereby executing multiple instructions per clock cycle.

81



APPENDIX A. GLOSSARY

82



P̊a svenska

Detta dokument h̊alls tillgängligt p̊a Internet – eller dess framtida ersättare
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