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Abstract  In a global economy, manufacturers mainly compete with cost efficiency of production, as the price of raw 

materials are similar worldwide. Heavy industry has two big issues to deal with. On the one hand there is lots of data which 

needs to be analyzed in an effective manner, and on the other hand making big improvements via investments in cooperate 

structure or new machinery is neither economically nor physically viable. Machine learning offers a promising way for 

manufacturers to address both these problems as they are in an excellent position to employ learning techniques with their 

massive resource of historical production data. However, choosing modelling a strategy in this setting is far from trivial and 

this is the objective of this article. The article investigates characteristics of the most popular classifiers used in industry today. 

Support Vector Machines, Multilayer Perceptron, Decision Trees, Random Forests, and the meta-algorithms Bagging and 

Boosting are mainly investigated in this work. Lessons from real-world implementations of these learners are also provided 

together with future directions when different learners are expected to perform well. The importance of feature selection and 

relevant selection methods in an industrial setting are further investigated. Performance metrics have also been discussed for 

the sake of completion. 
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1. Introduction 

Heavy process industry, such as paper manufacturing, oil 

refineries, and steel manufacturing, never stops. This is 

mainly due to the large close-down and start-up costs 

associated with interruptions of complex and energy 

demanding machinery. These industries are faced with a 

unique challenge in that their produced good undergoes an 

energy demanding refinement process. The goods are 

differentiated not by the raw material, but rather by how the 

raw material is treated. As consumers demand ever more 

specialized goods the different manufacturers compete in 

producing to keep the production costs low. Since price of 

raw material and energy is, more or less, similar worldwide, 

efficiency in manufacturing processes is of high importance. 

Among the largest inefficiencies in continuous 

manufacturing is changeovers, that is, the time when the 

manufacturing facility changes from one good to another. 

During a changeover the produced good is unmarketable, 

thus energy and raw material is wasted. Storck et al. [1] 

estimated that as much as four Euro per produced tonne of 

produced stainless steel could be saved in shortened 

changeovers. 
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To perform efficient changeovers the manufacturers need 

strong models. Models that can predict effects of actions and 

time taken for effects to propagate and manifest in the final 

product. In continuous manufacturing plants long lead times 

are inevitable. Holistic models that can indicate the optimal 

time to initiate sub-processes to prepare for changeovers are 

needed. Historically it has been hard to perform holistic 

modelling using classical modelling approaches. The 

manufacturing plants are simply too complex and non-linear 

for on-sight engineers to formalize complete models. 

Manufacturers have historically been good at collecting 

sensor readings and setpoints from production, keeping 

extensive databases of historical performance and states of 

the production. This has led to the collection of large 

volumes of data, which has to be analysed. Modelling based 

on machine learning methodologies has become a feasible 

way to utilize this data to gain system knowledge where the 

classical modelling approaches has failed. 

In this article different topics related to selection of 

classifier in an industrial setting is discussed. The main focus 

is binary classifiers, as most classification problems can be 

reformulated into a binary. Many researchers have tried to 

find the best binary classifier, but they conclude that that 

modelling scheme should be picked with regards to the 

problem at hand [2-5]. 

The goal of this article is two-folded. The first one is to 

campaign the use of feature selection in an industrial setting. 

Since heavy process manufacturing usually produces 
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thousands of features and there is a real need to reduce the 

complexity of the problem and give domain experts a mean 

to analyse the data used for the building of the classifiers. 

Two popular feature selection techniques are described and 

guidelines for how to chose between the different feature 

selection methods are given. The second goal is to provide 

insights under which circumstances different classifiers are 

expected to perform well in an industrial setting. The article 

specifically examines properties of the Multilayer 

Perceptron, Support Vector Machines, Decision Trees and 

Random Forests; examples of these classifiers in real world 

industrial problems are also provided. Special attention is 

also given to the use of meta-algorithms to enhance the 

performance of the classifiers. The article analyses the 

differences in classifiers’ abilities to solve problems based 

on what performance metric they optimize against. 

Characteristics such as training time, model size, ability to 

handle high dimensional, noisy or missing data is also 

discussed. 

The article is organized as follows. In the next Section, 

key concepts within machine learning are defined. In Section 

3 and 4, above mentioned classifiers are defined and their 

properties analysed. Section 5, addresses performance 

metrics and their their connection to the classifiers. Section 6 

introduces calibration, which is a set of techniques used to 

enable classifiers, that are not natively suited to utilize, 

probabilistic performance metrics. Section 7, discusses the 

importance feature selection in high dimensional problems, 

such as in heavy process manufacturing. In Section 8, 

machine learning used in real-world problems are presented. 

In Section 9, the future directions of the work are presented. 

Section 10 summarizes the article and practical advice is 

provided and the article ends with conclusions drawn from 

this work. 

2. Machine Learning Concepts 

Machine learning is a field in the cross-section between 

computer science, statistics, artificial intelligence, and 

mathematical optimization. One popular definition of 

machine learning is provided by Mitchell [6], who said that a 

machine learning algorithm is one that learns from 

experience with respect to a class of tasks.and a performance 

metric. The essence of machine learning is thus the study of 

algorithms and methods which are constructed in such a way 

that they find generalized patterns within observed examples 

in order to make prediction or decisions when evaluating 

novel data. 

With statistical models and models based on differential 

equations, the structure of the model is defined via 

assumptions regarding the system that is to be modelled. 

Assumptions that, sometimes, are mathematically 

convenient rather than descriptive of the real system. 

Breiman [7] argued that most articles in statistical modelling 

start with the below mentioned phrase to then be followed by 

hypothesis testing and assumptions. 

“Assume that the data are generated by the following 

model: ... ” 

If the system that is modelled is highly complex and 

non-linear, it is not feasible to formalize a model which 

describes the data. In machine learning the approach is 

flipped, and one lets the model be governed by the data. 

Instead of making hard assumptions regarding the form of 

the model, one lets an algorithm grow the model’s structure. 

The rest of this section is dedicated to the introduction of 

some key concepts in machine learning that might need some 

clarification. 

2.1. Supervised Learning 

In industrial classification tasks, the data used in the 

learning is generally labelled. Labelled in the sense that the 

dataset, 𝒟, has a labelled class variable  𝑦𝑖 =  0,1  which 

specifies what class in which a sample belongs to. The 𝑖: 𝑡ℎ 

sample also contains a feature vector, 𝐱𝑖 , which specifies the 

feature values available to predict 𝑦𝑖 . The vector 𝐱𝑖  can 

contain both numerical and categorical data. Supervised 

learning is formalized as follows: 

𝒟 =   𝐱𝑖 , 𝑦𝑖 |𝐱𝑖 ∈ ℝ𝑑 , 𝑦𝑖 ∈  0,1  
𝑖=1

𝑛

         (1) 

Where d is the dimensionality of the feature vector and n is 

the number of instances in the dataset. In supervised learning 

the task is to find a generalized description of the class 

variable given a feature vector, that is, a classifier 𝐻  𝐱 = 𝑦 . 

The classifier, 𝐻  𝐱  optimizes some performance metric 

given the dataset, 𝒟. 

2.2. Unsupervised Learning 

In unsupervised learning, there are no class labels. An 

unsupervised learner rather seeks to cluster data that is 

similar. This paper does not emphasis unsupervised learning, 

but it is an essential preprocessing step used to understand 

data before putting it through a supervised learner. In an 

industrial setting, some data points are bound to be 

nonsensical, so called outliers. By making a supervised 

learner consider too many outliers will force it to not only 

model a complex non-linear system, but also model to the 

erratic behaviour of the outliers. Basically, a non-linear 

model is extrapolating across a discontinuity, which is not a 

sensible thing to do. Likewise, manufacturers might produce 

goods that are non-similar to each other. For example, a steel 

rolling mill might be rolling different alloys over time. 

Clustering data as preprocessing can greatly aid in the 

understanding of different production states, and different 

models based on supervised learning can be employed for 

the different clusters of data. 

2.3. Overfitting and Validation 

Machine learning models have a tendency to overfit with 

regards to the training data. Overfitting means that classifier 

has encoded noise within training data instead of finding the 

generalizing patterns in the dataset. To combat overfitting 

one usually samples the original dataset into subsets, i.e. 
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training and validation sets. A training set is the one which 

the algorithm uses in order to approximate the class variable. 

The validation set is disjunct from the training set and is used 

to evaluate performance of a learner on unseen data. The 

trick is here to find the appropriate model complexity such 

that the learners performance on the validation set is 

maximized. 

A popular way of assessing a models performance is to use 

k-fold cross-validation. The idea is to sample the dataset, 𝒟, 

into k equally sized disjunct subsets,  𝒟1, … , 𝒟𝑘 . For each 

fold, one of the subsets 𝒟𝑖  is held out as a validation set, 

while training the learner using remaining datasets, 𝒟𝑖
𝐶 . The 

performance is then measured as the mean performance for 

each fold. The strength of cross-validation is that the entire 

dataset will be used for both training and validation, where 

each point is validated exactly exactly once. Common 

practice is to perform 10-fold cross-validation to find 

appropriate model complexity. 

3. Classifiers 

This section will discuss some top performing 

classification algorithms. A brief presentation of the 

structure for each algorithm is provided. Discussion on 

training time, linearity, optimizing performance metric, and 

general performance for each algorithm is also provided. 

3.1. Multilayer Perceptron 

The multilayer perceptron (MLP) trained with 

backpropagation is arguably the most used and famous 

machine learning algorithm. Its usefulness has been proven 

in many industrial applications [8]. The MLP is a 

feedforward artificial neural network, and is simply a 

directed graph consisting of multiple layers of nodes. The 

most common structure of the network consists of three 

layers. One input layer, one hidden layer, and one output 

layer. More hidden layers can be used, but Cybenko [9] 

proved that a single hidden layer is sufficient to fulfil the 

universal approximation theorem. 

Classification with an MLP containing one hidden layer 

with k hidden nodes is defined by two weight matrices, 

WandV, an activation function 𝑓(𝐱)  which operates 

element wise, and the Heaviside step-function, 𝐻(𝐱). In this 

case, W∈ ℝ𝑘×𝑑  and V∈ ℝ𝑘×1 . The classification itself is 

expressed using Equation 2. 

𝑦 = 𝐻 𝐕𝑇𝑓 𝐖𝐱                     (2) 

The MPL is usually trained using backpropagation which 

is a gradient decent algorithm. As the name implies the 

gradient of prediction error is traced back through the 

network in order to appropriately update the weight matrices. 

Backpropagation can be performed both in batch and in an 

on-line manner. Wilson and Martinez [10] argues that the 

on-line variant is faster since a higher learning rate can be 

used without becoming unstable. When using 

backpropagation one should be aware that the produced 

MLP is deterministically dependent on the initial weights in 

W and V. These weights are usually initialized as near-zero 

white noise. Different local minima can be reached 

depending on these initial weights. Several networks with 

different initial values should be trained to ensure that the 

network does not get stuck in a poor performing local 

minima. However, LeCun argues that this is not necessary an 

issue in most real-world problems [11]. One property of 

backpropagation is that it minimizes Means Squared Error 

[12]. The MLP, therefore, performs well when evaluating a 

probabilistic performance metric, which is discussed in 

Section 5.3. 

Training of MLP is slow compared to the other methods 

presented in this article. This is due to a large number or 

parameters which needs to be tuned. Some of the parameters 

to tune are: number of hidden nodes, weight decay, 

momentum, and learning rate. Grid search is the 

conventional approach for parameter tuning, but Bergstra  

et al. [13] argued that random search is more efficient, 

especially when the number of parameters to tune is large. 

Because of the slow training of the MLP, it is not 

particularity good at handling datasets with high 

dimensionality, especially when working with thousands of 

features. In this case, feature selection should be performed 

in order to achieve efficient training of the MLP, this is 

discussed in Section 7. According to Sharpe and Solly, 

backpropagation is poor at handling missing data and they 

proposed techniques to tackle this issue[14]. 

Many heavy industrial problems are basically descriptions 

of physical systems that are continuous in nature. In a certain 

vector space, MLP produces a linear discrimination 

boundary between classes which makes it naturally apt to 

work well on continuous problems. 

3.2. Support Vector Machine 

The foundations for Support Vector Machines (SVM) 

were laid in 1963 by Lerner and Vapnik [15]. The idea 

behind an SVM is to create a hyperplane that is as flat as 

possible and divides the feature space into two disjunct parts. 

The hyperplane divides the vector space such that there is a 

maximum margin between the two classes. The hyperplane 

defines a class boundary allowing new features to be 

evaluated to perform classification. A sample located under 

the plane is said to belong to one class, and vice versa. The 

initial idea was later extended to perform an implicit 

mapping into an infinite dimensional vector space via the so 

called kernel trick [16]. This enabled the SVM to perform 

classification on non-linear problems. Further improvements 

with soft margins were proposed in 1995 [17] allowing the 

SVM to work with dataset that were not separable by 

associating a cost to misclassification rather than forbidding 

it. Soft margins allow the SVM to work with noisy and 

mislabelled data. Since then the algorithm itself has 

remained relatively unchanged. The hyperplane itself can be 

expressed via a normal vector W and a bias b. Several 

researchers have found that the SVM is not the best 

performing general algorithm for classification [3] [5]. 

Nevertheless, it remains competitive due to its simple form. 
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The SVM can be implemented on low grade hardware and 

the models are small in size and fast to evaluate. 

When training an SVM, a quadratic programming 

problem is solved; there are readily available methods for 

solving these kinds of problems and training is relatively fast. 

SVM has a good ability to handle high dimensional data and 

is among the fastest algorithms for working with large 

datasets. As with MLP it is not natively adapted to handle 

missing and categorical data and encoding schemes are 

needed to enable this type of data. The SVM generally 

performs well on rank and threshold metrics in its basic form 

[18]. It is, however, not well suited for probability metrics, 

such as MSE, without calibration. 

Due to the space transformation via the kernel trick, it is 

not trivial to analyse an SVM with regards to variable 

importance or inner workings of the model. This is the case 

when the classification problem is complex and high 

dimensional interactions are hidden in obscurity. Some 

indications of variable importance can be seen on the size of 

elements in the normal vector, W, that defines the 

hyperplane.  

3.3. Decision Trees 

One of the major strengths of the Decision Tree, DT, is 

that it is human interpretable. It is easy for domain experts, 

without knowledge in machine learning, to understand and 

analyse. The structure of the classifier itself is extremely 

simple, see Figure 1. 

 

Figure 1.  The structure of a Decision Tree, where ŷ  is estimated via 

logical tests of the features in a feature vector ix , and },,,{ dcba  are 

numerical or categorical constants determined by the learning algorithm 

The DT is a binary tree which divides the feature space 

into hyper-rectangles at each node via a logical test. One leaf 

of the tree represents a hyper-rectangles via the boundaries 

defined by its ancestor nodes. Each leaf is assigned the class 

which best represents the training data that are located in its 

hyper-rectangle. The DT is fast to train and evaluate. 

Training is done using a top-down construction, with 

splitting criterion such as Gini impurity or information gain. 

The top-down construction is then followed by a bottom-up 

pruning process to remove leafs that lead to overfitting. The 

most popular DT algorithms are CART, C4.5, and C5.0. All 

of these algorithms share the same structure, but use different 

splitting criteria and pruning strategies in the tree 

construction. 

The DT in its basic form is not considered a strong 

classifier but can be enhanced with bagging or boosting to 

achieve state-of-the-art performance, see Section 4. 

Unfortunately boosting or bagging will reduce the 

comprehensibility of the tree and increase the total size of the 

model. This makes them impractical to implement if target 

systems are restricted by storage constraints. 

It is well known that DTs are good at maximizing 

threshold metrics, such as accuracy (ACC). Depending on 

how they are constructed they can also optimize rank metrics 

such as area under the curve[19]. The same article concluded 

that the DT is not well suited for probability metrics. 

Calibration techniques can be employed to remedy this. 

3.4. Random Forest 

It is well known that it is possible to combine the 

predictive capabilities of multiple learners. This is something 

that the Random Forest (RF) exploits in order to produce a 

strong learner out of multiple weak learners. RF is an 

ensemble technique which combines multiple weak tree 

classifiers in a bagging procedure, see Section 4.1. The RF 

was introduced by Breiman [20] and is defined as follows: 

"A random forest is a classifier consisting of a collection 

of tree-structured classifiers  ℎ 𝐱, Θ𝑘 , 𝑘 = 1, … , 𝐾  where 

the Θ𝑘  are independent identically distributed random 

vectors and each tree casts a unit vote for the most popular 

class at inputx."   

What governs the strength of the RF is that each tree in the 

forest only sees a small part of the problem and specialize by 

only considering a small portion of the features. The 

individual trees in the forest are grown using the CART 

algorithm. Instead of letting the tree use all features, one 

samples p features which the tree is allowed to use as a basis 

for classification. Individual trees in the RF are not pruned, 

since bagging is used in the final prediction. It does not 

matter if individual trees overfit as long as there are 

sufficiently many trees in the forest as a whole. Breiman 

pointed to the strong law of large number to show that 

overfitting is not an issue for RF. It has also been shown that 

RF is robust against mislabelled, noisy, missing samples, and 

no special encoding scheme is needed. The RF is also fast in 

training, evaluation, and scales well with both training 

samples as well as high dimensional feature vectors. Few 

parameters need to be tuned making it easy to implement 

without much training and testing. 

However, the Random Forest has some weaknesses that 

are apparent in industrial applications. Since RF is an 

ensemble algorithm, it produces a rather complex and hard to 

comprehend model. Looking at individual tree gives little 

insight regarding the full model and there is no clear way of 

visualizing the forest in its entirety. Furthermore, the model 

itself tends to be rather large which can prove a limitation for 

implementation on weak hardware. 

Unlike learners such as SVM and MLP, neither of the tree 

learners produces a smooth surface in any vector space. This 
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behaviour comes from the fact that the trees do binary splits. 

This enables the tree learners to work nicely on problems that 

are discrete, such as market forecasting [21]. 

4. Meta-Algorithms  

In the search for stronger classification algorithms, 

researchers have devised methods for combining sets of 

classifiers to produce a single stronger classifier. These types 

of indirect strategies are called meta-algorithms with the 

most popular ones being Bagging and Boosting. These 

meta-algorithms can be used with any learner as they are 

generic methods. However, both Bagging and Boosting are 

commonly used only with DT or Stumps (DT having only a 

root node). As both Bagging and Boosting requires 

construction and assembly of multiple models, it is preferred 

to use with cheap modelling schemes. 

4.1. Bagging 

Bootstrap aggregation, or bagging for short, is an 

ensemble technique aimed at reducing variance and 

overfitting of a classifier. With regards to model 

performance, it never hurts to implement bagging. However, 

the drawback is that an ensemble of classifiers must be 

produced. As there are more models, there is a negative 

impact on training time, model size, and model 

comprehensibility. 

Breiman [22] introduced the idea of bagging. Given a 

training set 𝒟  with size n, re-sample 𝒟  uniformly with 

replacements into m new datasets 𝒟𝑖  each with size 𝑛′ . 

Usually one chooses 𝑛′ = 𝑛. In this case, 1 − 1/𝑒 of the 

samples are expected to be unique within each of the 

produced subsets. The value of m should be sufficiently large 

in order to utilize all samples at least once. After re-sampling, 

a model of choice is fitted for each 𝒟𝑖 . The final prediction is 

made by having a majority vote with all produced models, 

each being equally weighted. 

Bagging is especially suitable when there are many 

features compared to the number of samples. For example, 

the number of changeovers for a manufacturer might be in 

the range of hundreds per year while the number of features 

are in the range of thousands. Bagging is also widely used in 

other fields where the number of features is large compared 

to the number of samples, such as bioinformatics [23]. 

Some learners, like RF, have bagging incorporated as a 

part of the algorithm itself and contributes to its strength in 

generalization. For these types of learners, there is no need to 

have extra bagging as post-improvement method of the 

produced classifier. 

4.2. Boosting 

Boosting is another meta-algorithm that is somewhat akin 

to bagging. However, instead of lowering variance it reduces 

the bias. Schapire [24] was the first to show that it was 

possible to construct a strong learner by combining a set of 

weak learners each of which just needs to perform better than 

random guesses. With boosting, it is possible to construct a 

classifier with arbitrary good classification ability with 

respect to the training data. 

The most widely used boosting algorithm is AdaBoost 

constructed by Freund and Schapire [25]. The main idea of 

AdaBoost is to iteratively train weak classifiers and increase 

weights on training data which previous weak classifiers 

where unable to classify correctly. This procedure forces 

new learners to specialize and put more emphasis on 

previously misclassified samples. The weak classifiers are 

then weighted with regards to their general performance and 

the final output consist of a weighted vote. One of the biggest 

criticisms of boosting is that it is somewhat sensitive to 

faulty labelled training data. This is a problem since the 

boosting will tend to increase its efforts to classify the 

mislabelled data [26]. This leads to making boosting 

ill-suited for noisy data in real-world problems. 

Boosting is a margin optimizing method and thus shares 

some properties with the SVM. Boosting models yields good 

performance in threshold and rank metrics but does not 

necessarily improve the probability metrics of the classifier. 

5. Performance Metrics 

Before choosing modelling algorithm, one should 

consider what type of classification problem that is to be 

solved and what exactly is to be optimized. There are three 

main types of metrics which are often interesting in 

classification and different algorithms are apt to optimize 

different performance metrics. Three common families of 

performance metrics are investigated. 

1.  Threshold Metrics: Classifiers often produce an 

output between 0 and 1. This output does not 

necessarily reflect the probabilities of the output 

belonging to one class or the other. A threshold metric 

defines a discrimination threshold, usually 0.5, which 

is used to discriminate output to the two classes. A 

threshold metric measures the rate of correctly 

classified examples given athreshold. Examples of 

threshold metrics are ACC and F1-score. A Threshold 

Metric is suitable if one needs a classifier that is 

correct in a certain rate of the cases. Class distribution 

greatly affects threshold metrics performance and the 

class distribution should be comparable between 

training data and operational data when threshold 

metrics are used. 

2.  Rank Metrics: A rank metric measures how well a 

classifier is able to rank outputs with regards to the 

class. The actual predicted values are not interesting 

for the rank metrics but rather how well the output 

values reflects the ordering of the two classes. AUC is 

arguably the most commonly used rank metric and 

will be described later in this section. 

3.  Probability Metrics: A probability metric gives a 

measure of the expected probability of a learner’s 

output to be correctly classified. Well calibrated 
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models, such as MLP, are designed such that they 

minimize a probability metric. This means that one can 

judge how probable an output is to be correctly 

classified. In an industrial setting one can, for example, 

estimate the probability of achieving desired output 

given certain actions. Mean squared error (MSE) 

belongs to the class of probability metrics. Probability 

metrics has gained the reputation to be good at 

assessing the general performance of a learner. This is 

so since a learner that performs well on a probability 

metric naturally performs well on a rank metric but not 

necessarily the other way around [19]. 

5.1. Accuracy 

ACC is a metric to assess proportion of true results among 

the total number of samples evaluated in binary classification 

problems. It ranges between 0 and 1, where 0 means no 

examples were correctly classified and 1 means that all 

examples were correctly classified. A binary classifier can 

achieve four results given a validation set: 

●  TP: True Positives, the number of examples in the 

positive dataset which are correctly classified. 

●  TN: True Negatives, the number of examples in the 

negative dataset which are correctly classified. 

●  FP: False Positives, the number of examples in the 

positive dataset which are incorrectly classified 

(classified as the negative dataset). 

●  FN: False Negatives, the number of examples in the 

negative dataset which are incorrectly classified 

(classified as the positive dataset). 

ACC in its standard form is calculated using Equation 3. 

𝐴𝐶𝐶 =
𝑇𝑃  + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
             (3) 

ACC is a threshold metric and only consider a single 

threshold, usually 0.5. This means that ACC can be 

misleading if the learner is trained on imbalanced classes. 

The learner can, in such cases achieve high accuracy without 

having any sensitivity whatsoever. By associating weights to 

FN and FP the impact of different types of errors can be 

adjusted in accordance to its severity. Classifiers produces an 

output  𝑦 ∈ ℝ|0 ≤ 𝑦 ≤ 1  and a discrimination threshold 

is used to determine if the output should belong to one class 

or the other. 

5.2. Area under Curve 

The Receiver operating characteristic curve (ROC) 

considers False Positive Rates (FPR) and True Positive Rates 

(TPR) at different thresholds. FPR and TPR are calculated 

with to Equation 4. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃  + 𝑇𝑁
 , 𝑇𝑃𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
        (4) 

If one plots the FPR against TPR for all discrimination 

thresholds, ROC-curve is obtained. The ROC is rich in 

information regarding the performance of the classifier at 

different thresholds but since it is a graph it needs to be 

converted into a scalar in order to be considered as a proper 

performance metric. One can integrate the ROC to get the 

area under the curve (AUC). The AUC describes the 

probability that a classifier given a randomly chosen positive 

example ranks it over randomly chosen negative one and is, 

therefore, called a rank metric [27]. 

5.3. Mean Square Error 

Mean Square Error (MSE) is a metric which incorporates 

both the bias and variance of the predictor which has made it 

into one of the most popular performance metrics for 

classifiers. MSE of an classifier, 𝐻 , is calculated as follows: 

𝑀𝑆𝐸 𝐻  =
1

𝑛
  𝑦 𝑖 − 𝑦𝑖 

2𝑛
𝑖=1              (5) 

It also expresses the expected squared error of the 

estimator,  𝑀𝑆𝐸 𝐻  = 𝐸   𝐻 − 𝐻 
2
 , where H is the true 

classifier. With the standard definition of variance, the MSE 

can be reformulated as: 

𝑀𝑆𝐸 𝐻  = 𝑉𝑎𝑟 𝐻  +  𝐵𝑖𝑎𝑠 𝐻 , 𝐻  
2

      (6) 

It is the combination of these statistical entities that makes 

MSE such a popular performance metric. The MSE thus 

provides insights in both how biased an classifier is as well 

as how precise a classifier is. 

5.4. Combined Metric  

In many cases, it is not possible to know what 

performance metric to use for the classifier in order to best 

emulate a certain problem. Caruana et al. [28] performed an 

extensive analysis of different performance metrics and their 

correlations for a wide set of problems. The authors formed a 

novel metric called SAR which combines ACC, AUC and 

MSE, as described in Equation 7. 

𝑆𝐴𝑅 =
𝐴𝐶𝐶+𝐴𝑈𝐶+  1− 𝑀𝑆𝐸 

3
           (7) 

They claimed that this to be a robust metric when the 

correct metric is unknown. One can compare different 

families of classifiers against each other using this fair 

metric. 

6. Calibration 

Some machine learning methods such as SVM and DT are 

notoriously bad at optimizing probability metrics of the 

classification outputs. A way of addressing the poor 

probability estimation from models is to introduce 

calibration. Calibration maps a model’s output in an injective 

monotonic manner. This means that rank metrics are 

unaffected by calibration while improving the probability 

metrics. Models that have the most to gain from calibration 

are the margin maximizing ones, such as SVMs and boosted 

models. In this section two calibration techniques, Platt 

scaling and Isotonic regression, are discussed. At the end of 

the section some conclusions are presented. 
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6.1. Platt Scaling 

Platt scaling [29] is a post-training calibration method to 

address the issue of poor probability estimations. The 

method was originally designed to work with SVMs, but has 

proven useful for other learning algorithms as well. Platt 

scaling estimates the probability of an output belonging to 

the positive class given a feature vectorx. That is,      

𝑃 𝑦 = 1|𝐱 . Platt argued from empirical experience that a 

logistic regression, as illustrated in Equation 8, is a good 

transformation of outputs for many real world problems. 

𝑃 𝑦 = 1|𝐱 ≈ 𝑃𝐴,𝐵 𝑓 𝑥  ≡
1

1+𝑒𝐴𝑓  𝑥 −𝐵       (8) 

Where the parameters A and Bare estimated using 

maximum likelihood methods described by Platt. The author 

showed that the post-calibration with SVM and sigmoid 

yielded probabilities of comparable quality to regularized 

likelihood methods. 

6.2. Isotonic Regression  

Isotonic regression is another calibration method. It has 

been shown to supersede the Platt scaling in problems 

regarding multi-class probabilities, the Isotonic regression 

also provides better computational scaling with regards to 

the number of samples [30]. 

In contrast to Platt scaling, which is parametric method, 

the Isotonic regression only assumes that probabilities are 

monotonically increasing or decreasing. This is a more 

general assumption. Meaning that Isotonic regression is 

better suited for a wider range of problems where the output 

distribution is not limited to logistic-curves. 

Isotonic regression performs a weighted least-square 

approximation, in which the PAVA-algorithm [31] is used to 

solve the QP-problem in Equation 9. The PAVA-algorithm 

itself operates in linear time, O(n), and sweeps through the 

data and re-adjusts the estimator’s output for the points 

which violates the monotonicity constraint. 

min  𝑤𝑖 𝑦𝑖 − 𝑦 𝑖 
2

𝑖

 

such that 𝑦 𝑚𝑖𝑛 = 𝑦 1 ≤  𝑦 2 …  ≤  𝑦 𝑛 =  𝑦 𝑚𝑎𝑥      (9) 

6.3. Choosing Calibration Technique  

As another training set is needed for the calibration, Platt 

calibration is preferred when there are only a few training 

examples to spare for calibration. This is because it uses 

maximum likelihood estimates. If there is an abundance of 

post-calibration samples, Isotonic regression is preferred due 

to its fast execution. 

Methods that are naturally well-calibrated, such as MLP 

or bagged trees, get little to no benefit and sometimes even 

worse performance after calibration. If these methods are to 

be implemented calibration is not needed [32]. 

When choosing between Platt scaling and Isotonic 

regression, Figure 2 can be consolidated in order to select 

between the two calibration strategies. 

 

Figure 2.  Decision process to chosecalibration technique 

7. Feature Selection  

Given a dataset, 𝒟 , consisting of N samples and M 

features 𝑥1, … , 𝑥𝑀. The task of the feature selection is to find 

a compact subset ℱ ⊂  𝑥1, … , 𝑥𝑀 . Where ℱ  imposes no 

significant loss in predictive information regarding the target 

class compared to 𝒟. 

When working with thousands of different features, some 

are bound to be important in describing the process while 

others are virtually meaningless. There are three main 

objectives in feature selection: 

1.  Provide better insight in the underlying process. If the 

dimensionality of the problem can be reduced, it 

becomes easier for domain experts to analyse and 

validate produced models. 

2.  Since machine learning algorithms fits their view of 

reality based on the data, they is trained on they can 

have a tendency to find patterns within noise. Meaning 

that if there are too few samples with a high 

dimensionality, there is a substantial risk that a model 

encodes the noise and overfits. With a compact feature 

set better generalization can be achieved. 

3.  If a predictor is to be implemented limitation of the 

feature set makes models both smaller, faster and more 

cost-efficient. 

When choosing feature selection approach there are, as 

always, multiple things to consider. Things regarding 

optimality of feature sets, time taken to perform feature 

selection, complexity of the problem to model, and the actual 

structure of the data. For more discussion regarding the 

subject see Guyon and Elisseeff’s introduction to feature 

selection [33]. 

In feature selection, there are three main classes of 

methods for performing the selection of variables, namely 

wrappers, filters, and embedded methods. 

7.1. Wrappers 

Wrappers iteratively creates subsets of features which are 

used to form models. These models are trained and validated 

on a hold-out validation set. This is done in order to measure 
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the error rate given different feature-subsets. The advantage 

of wrappers is that they can be tuned and evaluated on 

specific modeling algorithms. Wrapper methods have the 

ability to find best feature set, but wrappers are unfortunately 

computationally expensive since there are combinatorially 

many feature sets to train and evaluate. The combinatorial 

possibilities in feature sets often makes a wrapper infeasible 

to use on large scale problems. If the feature set is large, 

some search strategy is needed, such as best-first, 

branch-and-bound, simulated annealing or genetic 

algorithms [33]. 

7.2. Filters  

Due to the computational costs of wrappers, filters have 

gained support in many real-world applications. Filter 

methods do not consider what model is to be implemented in 

the end. They analyse rather correlation between feature 

variables and the class variable. Two popular filter 

techniques are Correlation-based Feature Selection (CFS) 

[34] and Fast Correlation-Based Filter (FCBF) [35] were 

both share the same heuristic for selecting features: 

“A good feature subset is one that contains features highly 

correlated with (predictive of) the class, yet uncorrelated 

with (not predictive of) each other.” 

Both CFS and FCBF consider two-way interactions 

between the features which means that they are able to find 

features that are closely correlated with the class. More 

complex feature interactions are, however, not detected and 

filtered out. Filter techniques generally culls the feature set 

hard and only detects the top-most important features. 

Giving the ability to find feature sets that are good for 

generalization often leads to slight loss in predictive 

capability if complex feature interactions occur. 

7.3. Embedded Methods  

Embedded methods have emerged as a middle ground 

between the filter and wrapper methods. An embedded 

method incorporates a natural machine learning technique in 

its feature selection. This avoids the combinatorial explosion 

seen in the wrapper methods, while not just looking at 

correlations as in a filter method. There is a number of 

different embedded methods which have gained popularity. 

Two of the most popular ones are SVM with recursive 

feature elimination (SVM-RFE) and Regularized Trees. 

SVM-RFE works by training an SVM with the entire 

feature set. At each iteration, the feature with the lowest 

weight in the W-vector is removed and performance stored. 

At the end, a performance profile can be plotted and one can 

chose the smallest feature set with the best performance. 

Other learners than SVM can be used for RFE but due to 

SVMs great ability of working with high dimensional data, it 

is often preferred. 

Regularized Trees (RT) proposed by Deng et al. [36] is an 

computational efficient technique based on ensemble tree 

learners. As with other tree learners, it can handle categorical 

and continuous data naturally. The idea behind RT is to 

penalize the use of the same feature in multiple nodes. This 

strategy forces the RT to consider a wider range of features 

in the building of the trees. RT generally selects a larger set 

of features compared to the filter techniques. 

At the same feature set size, both algorithms achieve 

comparable performance. However, as the SVM-RFE must 

train one classifier per size of the feature set, it takes more 

computational effort to reach the same feature set size 

compared to RT. However, with the performance profile of 

the SVM-RFE, one can on the other hand chose the number 

of features desired to use. 

8. Classification in Continuous 
Manufacturing  

In this section, techniques previously discussed in this 

article together with some practical examples of how they 

have been utilized in real world problems are presented. 

8.1. Feature Selection 

A field very different albeit similar to heavy industrial 

manufacturing is Bioinformatics and genetics. These fields 

face a similar problem with feature selection, as there are 

usually a high number of features compared to samples. In 

both areas, feature selection is essential to gain knowledge 

regarding the underlying mechanics of the system to be 

analysed. 

Deng et.al [37] compared Regularized Random Forests 

with the more conventional feature selection technique 

LASSO [38]. In total 10 genetic classification problems were 

evaluated. None of these problems had more than 102 

samples and none had less than 2000 features. When the 

sample/feature ratio is this low, feature selection is essential 

for gaining knowledge within the data. The authors found 

that the regularized random forest feature selectors generally 

produced a larger feature sets which captured more of 

information regarding the class variables. For a strong 

classifier such as RF, this is a clear advantage while a weaker 

DT will not benefit from the larger feature set since it unable 

to capture the complex feature interactions anyway. The 

authors also discussed the convenience of not needing to 

pre-process the data with RRF. 

8.2. MLP Examples 

MLP was the first algorithm which really takes off in an 

industrial setting and has seen many uses since its popularity 

began to rise in the early 1990’s. Meireles et al. [8] 

performed a comprehensive review of industrial applications 

using MLPs. There is no shortage of applications in 

continuous manufacturing where MLPs has been employed 

in the real world. Kandroodi et al. [39] used an MLP to 

identify the dynamical behaviour of continuously stirring 

tank. Further, the neural network was also used for predictive 

control of the system. Singh et al. [40] used MPLs to model 

and control a non-linear continuous chemical process. Weng 

et al. [41] used bagged MLPs to successfully predict curl of 
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paper in paper manufacturing. 

As discussed earlier, MLP generally are quite expensive to 

train and are unable to handle missing and categorical data. 

Preprocessing is essential but when correctly tuned the MLP 

is an excellent model for a wide range of problems. 

8.3. SVM Examples  

Due to its good generalization and ability to produce a 

smooth classifier, SVM has been a popular tool in industrial 

applications. In a survey by Saybani et al. [42] the uses of 

SVM within oil refineries where examined. Some of the uses 

were classification of gasoline, classification of gases, and 

prediction of electrical energy consumption. 

In an article by Xu el.al [43] an MPL and SVM were 

compared. Both learners were used to predict yield from a 

furnace used in steel production. As remarked earlier both 

MLP and SVM produces a hyperplane which discriminates 

the classes. The authors states that the models can be 

transformed into each other. However, the SVM has a better 

ability to make a trade-off between model complexity and 

predication precision. Moreover, the SVM is better at 

avoiding over-fitting which makes it especially interesting 

when there are few training examples. 

In paper production, the so called Kappa number is an 

interesting quality measure of the paper pulp. Measuring this 

quality directly with on-line sensors is hard. Li et al. [44] 

proposed SVMs as a means of inferring the Kappa number 

from measurements of surrounding sensors. In this 

experiment the SVM outperformed an MLP. 

8.4. Decision Tree Examples 

As mentioned earlier, the DT rarely achieves top 

performance in its basic form. It has, however, seen uses due 

to its human interpretability. For example, in a report by 

Coopersmith et al. [45], the authors discusses the usage of 

Decision Trees in oil and gas industry. They concluded that 

DT to be useful tools to get an hierarchical overview of 

variable importance as an aid in decision making. They 

specifically presented examples where a company should 

decide if it is worth drilling on a test sight or not. 

Aghdam et al. [46] found that single decision trees were 

unable to produce sufficiently good fault detection accuracy 

compared to MLP and SVM in a steel production facility. 

The authors suggested and implemented bagged decision 

trees which were able to outperform the conventional DT, 

MLP and SVM. 

For stronger classification, bagging or boosting should be 

employed. For example, Halawani [47] used decision trees in 

combination with AdaBoost to perform fault detection of 

steel plates with good accuracy. 

8.5. Random Forest Examples 

RF is yet to be widely employed in industrial applications 

but has proven to be useful in a number or areas that involves 

modeling of complex continuous systems such as electricity 

markets [21] or prediction of transitions between weather 

regimes [48]. 

Berrado et al. [49] modeled Thixoforming in a steel 

making process in order to find operational parameters and 

how they affects the quality of the produced good. The 

authors used a RF to model this process and determined 

appropriate operational conditions to improve the forming 

load. 

Further, Laha et al. [50] used RF to model the yield of an 

open hearth steel manufacturing process. In this study, 

several learning algorithms such as SVM and MLP are 

discussed and used for the same problem. The authors found 

that SVM worked best for this particular problem. 

Auret et al. [51] performed an analysis of how RF could be 

used within mineral processing, which is a continuous 

process that is highly complex and hard to analyse with 

linear models. The authors found the RF to be a practical tool 

for root cause detection of abnormal behaviours. The RF 

were able to handle highly non-linear relationships between 

features and class variables. Comparing with other classifiers 

such as MLP and DT, the RF are able to perform analysis of 

complex feature interactions. However, the authors pointed 

out that RF models might be impractical to implement into 

existing systems but can act as strong analytical tools for 

extracting knowledge from historical data. The authors 

pointed to a big advantage with RF in that users need not be 

overly concerned with tuning of parameters or other issues 

related to model specification. The algorithm’s strength in 

handling missing and noisy data is another advantage. 

Kotsiantis et al. [52] used a RF to estimate tissue softness 

in paper production. This is an important quality measure. 

The authors found that the RF outperformed other learners in 

this problem. 

9. Future Work  

This article will serve as a guideline for implementation of 

a classifier in one of Sweden’s largest paper mill. When 

changing the type of paper that is produced the paper pulp 

must be treated in advance to fulfil certain requirements. 

More specifically, a bleaching process of the paper pulp 

needs to be initiated hours before being used. The time it 

takes to bleach paper pulp is hard to predict since the process 

is affected by multiple variables that interact non-linearly. 

These variables are non-trivial to incorporate into a classical 

modelling scheme as they are both categorical and numerical 

as well as noisy or missing. 

First on the agenda is to evaluate the accuracy of the 

current bleach time model. The paper mill has recorded 

performance and set variables for years and this data will be 

used to analyse the historic predictive performance of the 

current model. 

It is known that the current model is largely simplified and 

only accounts for a small number of parameters that actually 

determines the bleach time. The different feature selection 

techniques discussed in this article will be employed in order 

to identify relevant variables as well as reducing the size of 
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the massive feature set to enable modelling based on 

machine learning techniques. Domain experts at the paper 

mill will aid in the validation of the selected feature set. 

Finally, models described in this article will be 

implemented to see if they can outperform the current 

solution with regards to increased accuracy of the bleach 

time prediction. With access to large amounts of historical 

data there is good potential that an improved model can 

significantly reduce the expected change overtime. 

10. Summary  

As seen throughout this entire article there are many ifs 

and buts when choosing a modelling scheme. In this section 

loose ends are tied together and future directions are 

provided. With the reservation that there are exceptions that 

contradicts these rules! 

10.1. Selecting Features 

Given cleaned data that is clustered it in such a way that 

each individual cluster of data is consistent and ready to be 

modelled. The first decision faced is that of feature selection. 

Does it make sense to reduce the dimensionality of the data 

set? In an industrial context, with possibly thousands of 

features, feature selection most often makes sense! Not all 

setpoints and sensor readings can possibly be useful 

descriptors for the classification. The feature selection might 

also be one of the most important tools for domain experts to 

validate and gain insight in the produced models. With a 

more compact feature set it is easier to appreciate and 

visualize the characteristics of the data. Figure 3 shows a 

simplified decision tree which summarizes Section 7. 

Consolidate this figure when choosing feature selection 

technique. It is worth noting that wrappers is an attractive 

approach if there are sufficient computational resources 

available to perform the feature selection, although smart 

search techniques need to be employed even if the problem is 

relatively small. 

 

Figure 3.  Decision process for whatfeature selection technique to employ 

10.2. Selecting Type of Metric 

At this point it is time to decide what performance metric 

the machine learner is going to optimize against. In the list 

below situations are described that should be considered. 

●  The class distribution in the training data corresponds 

well with future operational data and the classifier 

should be able to make the correct classification in a 

certain percent of the cases. Then chose threshold 

metric. 

●  The most important thing is to get good ordering 

between positive and negative examples. That is, 

given one random positive example and one random 

negative one, and the goal is to to maximize the chance 

of ranking the positive examples above the negative 

class. Then chose rank metric. 

●  If good ranking ability is sought as well as the ability 

to perform statistical analysis of the efficiency of the 

predictor a probability metric is suitable. As it allows 

individual example to be analysed with regards to the 

certainty of the prediction. 

Probability metric generally contains the most information 

regarding a classifiers strength and is therefore often a 

preferred metric. Unless a well calibrated learner is used, 

such as MLP or Bagged DTs, post-calibration is needed in 

order to yield good probability metrics. Consolidate Figure 2 

in Section 6 if choosing between Platt scaling or Isotonic 

regression. 

10.3. Selecting Model 

10.3.1. Best in Class 

If computational resources is not a limiting factor the 

ensemble techniques generally tends to perform the best. 

These techniques are able to produce robust models with 

high accuracy. Also no special attention needs to be put to 

data normalization or missing values. They handle high 

dimensions well and natively performs variable ranking 

which can be measured. The models themselves are, 

however, quite large and hard to interpret. 

●  On threshold metrics RF generally achieve 

uncontested performance. 

●  On rank metrics all three ensemble learners, BST-DT, 

BAG-DT and RF achieve good general performance. 

●  On probability metrics the calibrated BST-DT 

generally has best performance [3]. 

10.3.2. Bound by Reality 

Many industrial facilities utilize old computer hardware. 

As the ensemble techniques tends to produce models that are 

big, they are not always feasible to implement directly into 

the existing hardware. In real world applications this can be a 

serious obstacle which hinders implementation of these 

models into the production facility. In these cases a slightly 

weaker classifier might suffice. 
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●  MLP generally performs well under all performance 

metrics but are, unfortunately, expensive to train. They 

can produce compact models consisting of only two 

matrices. Evaluation is fast and they do not need 

probabilistic calibration. 

●  SVM is terrible with regards to probability metrics, 

and require calibration in order to handle such metrics. 

That said they can produce a compact classifier with 

good generalization abilities over the entire feature 

space. 

These two classifiers produces continuous hyperplanes, 

which enables them to make classification over the entire 

feature space. Whereas the tree based learners cannot 

extrapolate outside the bounds of the training data. 

The DT rarely produces competitive classification 

performance. It is, however, easy to interpret and can be 

useful tools for educational purposes. It can be used to 

produce a simple rule based decision support tool which can 

be printed on a paper and used by humans. 

11. Conclusions 

Selecting a strategy for binary classification in an heavy 

industrial setting is no trivial task. There are many things to 

consider and aspects to take into consideration as discussed 

in this article. 

Firstly the use of feature selection is encouraged, 

especially in heavy process manufacturing where the number 

of features are often in the range of thousands. There is a 

clear need to structure and understand data in order for 

domain experts to validate and analyse produced models. 

Examples where classifiers are compared without 

considering what performance metric each algorithm are apt 

to optimize have been seen throughout literature. This article 

has summarized under which conditions different learning 

algorithms are expected have good performance. Further, the 

use of calibration techniques is encouraged since most 

learners naturally are uncalibrated with regards to 

probabilistic performance metrics. 

Finally, examples from continuous process manufacturing 

where machine learning classifiers has been employed for 

different problems has been presented. Some general 

patterns under which circumstances different learners are 

appropriate has been observed and the article has commented 

on these characteristics. Both from a practical industrial 

point of view as well as some theoretical limitations of the 

different learners. 

A general conclusion is that ensemble learners based on 

trees often produces the strongest classifiers in an industrial 

setting due to their excellent generalization ability as well as 

their natural ability to handle missing and noisy data. 

As a second best alternative SVM possess many nice 

properties in that they handle high dimensional data well, 

produce a compact model and give some insight into variable 

importance. 
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