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Optimal Transmit Strategy for MISO Channels with

Joint Sum and Per-antenna Power Constraints
Phuong Le Cao, Student Member, IEEE, Tobias J. Oechtering, Senior Member, IEEE,

Rafael F. Schaefer, Member, IEEE, and Mikael Skoglund, Senior Member, IEEE

Abstract—In this paper, we study an optimal transmit strategy
for multiple-input single-output (MISO) Gaussian channels with
joint sum and per-antenna power constraints. We study in detail
the interesting case where the sum of the per-antenna power
constraints is larger than sum power constraint. A closed-form
characterization of an optimal beamforming strategy is derived.
It is shown that we can always find an optimal beamforming
transmit strategy that allocates the maximal sum power with
phases matched to the complex channel coefficients. The main
result is a simple recursive algorithm to compute the optimal
power allocation. Whenever the optimal power allocation of the
corresponding problem with sum power constraint only exceeds
per-antenna power constraints, it is optimal to allocate maximal
per-antenna power to those antennas to satisfy the per-antenna
power constraints. The remaining power is divided amongst
the other antennas whose optimal allocation follows from a
reduced joint sum and per-antenna power constraints problem
of smaller channel coefficient dimension and reduced sum power
constraint. Finally, the theoretical results are illustrated by
numerical examples.

Index Terms—Sum power constraint, per-antenna power con-
straint, MISO, beamforming, transmit strategy, transmission
rate.

I. INTRODUCTION

For the last two decades, there has been a huge interest in

vector-valued transmit strategies in wireless communications.

The optimization problem of finding the optimal transmit

strategy for a Gaussian channel has been extensively studied

subject to either sum power constraint or per-antenna power

constraints, but, to the best of our knowledge, a combination

of both constraints surprisingly has not been considered yet.

While a sum power constraint limits the total power of the

transmitter, a per-antenna power constraint limits the used

power on each transmitter chain of each antenna. Both con-

straints have reasonable physical motivations. For instance, the

former constraint may be imposed by regulations or to limit

the energy consumption, while the latter may be imposed by

hardware limitations of each RF chain. Thus, it is reasonable

to consider both constraints simultaneously.

Phuong L. Cao, Tobias J. Oechtering and Mikael Skoglund are with
the School of Electrical Engineering and the ACCESS Linnaeus Cen-
ter, KTH Royal Institute of Technology, Stockholm, Sweden (email:
{plcao,oech,skoglund}@kth.se); Rafael F. Schaefer is with the Information
Theory and Applications Chair, Technische Universität Berlin, 10587 Berlin,
Germany (email: rafael.schaefer@tu-berlin.de).

The work was supported in part by the Swedish Research Council (VR)
project under Grant C0406401; the Strategic Research Agenda Program,
Information and Communication Technology - The Next Generation (SRA
ICT - TNG), through the Swedish Government; and the German Research
Foundation (DFG) under grant WY 151/2-1.

A part of this paper was presented at IEEE ICC 2015.

Under a sum power constraint, when the channel state

is known at both transmitter and receiver, the maximum

transmission rate is obtained by performing singular value

decomposition and applying water-filling on the channel eigen-

values [1]–[3]. In contrast, the per-antenna power constraints

problem results in a different power allocation mechanism

because the power can not be arbitrarily allocated among the

transmit antennas. The per-antenna power constraints problem

has received considerable attention recently [4]–[13]. Partic-

ularly, the problem of finding the capacity of point-to-point

channels with per-antenna power constraints is well studied in

[4]–[7]. In [4], the closed-form solution of the capacity and

the optimal signaling scheme for MISO channels has been

established for two separate cases assuming a constant channel

which is known by both the transmitter and receiver, and also

assuming Rayleigh fading where the channel coefficient is

known at the receiver only. In addition, the optimal trans-

mission schemes for point-to-point multiple-input multiple-

output (MIMO) channels with per-antenna power constraints

are studied in [5] and [6]. In these works, the authors derived

necessary and sufficient conditions for the optimal MIMO

transmission schemes and developed an iterative algorithm

that converges to the optimal solution. The ergodic capacity

of the MISO channel with per-antenna power constraints is

considered in [4] and [7]. In [7], the authors characterize

the ergodic capacity of the fading MISO channel subject to

long-term average per-antenna power constraints with perfect

channel state information at all nodes. Then, they consider

an application to the fading two-user cognitive interference

channel.

The optimization problem with per-antenna power con-

straints for multi-user channels is studied in [8]–[15]. In

[8], the problem of transmitter optimization for the multi-

antenna downlink is considered. That work mainly focuses on

the minimum-power beamforming design and the capacity-

achieving transmitter design. It is shown that the solution

to the per-antenna power constraints problem arises from a

new interpretation of the uplink-downlink duality. In [9], the

authors focus on the discussion of linear signal processing

strategies dealing with two optimization problems: maximizing

the sum rate subject to per-antenna power constraints and

maximizing the minimum user rate under per-antenna power

constraints. Also, an iterative algorithm is proposed for solving

the problem of maximizing the weighted rate sum for multi-

user systems with per-antenna power constraints. In [10],

the optimal zero-forcing beamforming in multiple antenna

broadcast channels (BC) with per-antenna power constraints
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is considered. The results show that an optimization problem

subjects to per-antenna power constraints for the broadcast

channel may improve the rate considerably when the number

of transmit antennas is larger than the number of receive

antennas. The problem of linear zero-forcing precoder design

is investigated in [11]. The authors proved that under the

assumption of a sum power constraint, precoders based on the

pseudo-inverses are optimal among the generalized inverses.

However, this is not necessarily true under the assumption of

per-antenna power constraints.

The optimal power allocation problems for the MIMO

broadcast channels with per-antenna power constraints are

studied in [12] and [13]. In [12], the optimal power allocation

to maximize the weighted rate sum assuming a zero-forcing

precoder and a per-antenna power constraint are determined. In

their work, the precoding vectors for the sum power constraint

are adapted and then the power allocation is optimized to

maximize the sum rate under per-antenna power constraints.

In [13], the author focuses on the block diagonalization based

downlink precoding for a fully cooperative multi-cell system

with per-base-station power constraints. To meet the per-base-

station power constraints, a suboptimal heuristic method is

proposed which combines the block diagonalization precoder

design with an optimized power allocation scheme. In particu-

lar, the proposed solution in [13] can be reduced to the optimal

zero-forcing precoder design for weighted rate sum maximiza-

tion with per-antenna power constraints if single-antenna base-

stations and a mobile-station are used. Optimization problems

whose classical formulations have been extended by adding

unconventional constraints have been considered as well. For

instance, in [14], the authors focus on designing linear multi-

user MIMO transceivers subject to the different quality of

service constraints per user and per-antenna power constraints.

In [15], the transmitter optimization problem for a MISO

channel subject to general linear constraints is considered.

Algorithms that solve this problem with both the optimal dirty-

paper coding and simple sub-optimal linear zero-forcing beam-

forming are provided. The general linear constraints in their

work include the sum power constraint, per-antenna power

constraints and “forbidden interference direction” constraints.

Combinations of several power constraints have been con-

sidered in a range of other scenarios, for instance in the context

cognitive radio channels [16], [17] or wiretap channels [18].

These works build on known results considering sum power,

individual power or per-antenna power constraints, and extend

them with additional power constraints to limit the received

power at a third node. In particular for the cognitive radio

channel, Zhang et al. studied in [16] the weighted rate sum

maximization problem in which the secondary users have not

only the sum power constraint but also interference constraints.

The sum power constraint and interference constraints are

also considered in [17], where the authors used the idea of

antenna selection to jointly satisfy interference constraints at

primary users while improving the rates of secondary users.

In addition, the optimization problem with joint power and

interference constraints has also received much attention in

green radio setups [19]–[21]. The key difference of green

radio is to focus more on the optimization of the energy

efficiency instead of the transmission rate. In [19], authors

designed an effective multi-user MIMO transmission strategy

to maximize the system energy efficiency defined as the ratio

of the rate sum to the total power consumption. The energy

efficiency optimization problem for MIMO broadcast channels

subject to a sum power constraint, interference constraints,

and a minimum throughput constraint was studied in [20].

The solutions for the optimization problems in [19]–[21] are

based on the duality between multiple access and broadcast

channel as well as dirty paper coding.

In practical systems, the joint sum and per-antenna power

constraints setting applies either to systems with multiple an-

tennas or to distributed systems with separated energy sources.

A sum power constraint can be, for instance, motivated by

radiation limits or green aspects to limit the energy consump-

tion. On the other hand, a per-antenna power constraint can

be motivated to limit the power in the RF chain of each

antenna. This also allows operating the power amplifier in the

RF chain at a more energy efficient operating point. Since both

aspects can be relevant in practical scenarios, it is reasonable

to include them both in a classical MISO point-to-point setup.

However, the joint sum and per-antenna power constraints

are also relevant for future wireless systems in which base-

stations are connected via high-speed links so that they can

cooperate in the downlink transmission or in the uplink where

mobile users cooperate in the transmission and each user has

a limited power budget. Since the sum power constraint is not

active if the allowed sum power is larger than the sum of the

per-antenna power constraints, the problem is only interesting

if the sum power constraint is smaller than the sum of the

individual power constraints as illustrated in Fig. 1. Thus,

the main purpose of this paper is to characterize the optimal

transmit strategy for the point-to-point MISO channel with

joint sum and per-antenna power constraints with the assump-

tion of perfect channel state information at the transmitter.

The solution is developed from the two original problems

considering a sum power constraint or per-antenna power

constraints only. A special case with two transmit antennas

has been considered in [22], where we have shown that if

the sum power constraint only optimal power violates a per-

antenna power constraint then the optimal power allocation of

the considered joint power constraints is at the intersection of

the sum power constraint and the per-antenna power constraint.

The organization of this paper is as follows. In the next

section, we introduce the system model and the power con-

straints including the sum power constraint, the per-antenna

power constraint and the joint sum and per-antenna power

constraint. In Section III we briefly recapitulate the known

results for the problems of sum power constraint and per-

antenna power constraints only. Then the properties of the

optimal transmit strategy and power allocation for the joint

sum and per-antenna constraints are discussed. The algorithm

to find the optimal transmit strategy for joint sum and per-

antenna power constraints is given in Section IV. Then, the

results and numerical examples are discussed in the next

section. Finally, we provide some remarks and conclusions.
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Fig. 1: Feasible power allocation region with joint sum and

per-antenna power constraints with a) per-antenna power con-

straints are inactive, b) sum power constraint is inactive, c)

sum and power antenna power constraints are all active.

Notation

We use bold lower-case letters for vectors, bold capital

letters for matrices. The superscripts (·)T , (·)∗ and (·)H
stand for transpose, conjugate, and conjugate transpose; the

superscripts (·)(1), (·)(2), and (·)(3) denote the corresponding

optimal values of optimization problems according to the sum

power constraint, the per-antenna power constraints, and the

joint sum and per-antenna power constraints. We use < for

positive semi-definite relation, tr(·) for trace, rank(·) for rank,

and diag{·} for diagonal matrix. The expectation operator of

a random variable is given by E[·]. N, R+, and C are the

sets of non-negative integers, non-negative real, and complex

numbers.

II. SYSTEM MODEL AND POWER CONSTRAINTS

A. System Model

We consider a point-to-point MISO channel with Nt trans-

mit antennas and one receive antenna. Further, we assume

that channel state information (CSI) is available at both

transmitter and receiver. The channel input-output relation of

this transmission model can be written as

y = xT h + z (1)

where x = [x1, ..., xNt
]T ∈ CNt×1 is the complex transmit

signal vector, h = [h1, ..., hNt
]T = [hi]

T
i∈{1,...,Nt}

∈ CNt×1 is

the channel coefficient vector and z is zero-mean scalar ad-

ditive white complex Gaussian noise with power σ2. Without

loss of generality, we assume that |hi| > 0, ∀i ∈ {1, ..., Nt},
because otherwise we can consider a corresponding MISO

channel with a reduced number of antennas. In the following,

we focus on achievable rates using Gaussian distributed input.

Let Q = E
[

xxH
]

be the transmit covariance matrix of the

Gaussian input x, then the achievable transmission rate is

R = f(Q) = log

(

1 +
1

σ2
hHQh

)

. (2)

There are two questions which we are going to answer in the

upcoming sections. First, we show that Gaussian distributed

input is capacity-achieving for the channel (1) with joint sum

and per-antenna power constraints. Second, we identify the

optimal transmit strategy Q such that the transmission rate in

(2) is maximized.

B. Power Constraints

In this part, we formally introduce the sum power, the

per-antenna power and the joint sum and per-antenna power

constraints problems.

1) Sum Power Constraint: If we consider a sum power

constraint [1]–[3], [23]–[26], the total transmit power from

all antennas is limited by Ptot. This power can be allocated

arbitrarily among the transmit antennas, and the input covari-

ance matrix has to satisfy the condition tr(Q) ≤ Ptot. Let S1
denote the set of all power allocations which satisfy the sum

power constraint, then S1 can be represented as

S1 := {Q < 0 : tr(Q) ≤ Ptot}.

2) Per-antenna Power Constraints: In the per-antenna

power constraints case [4], [7]–[10], [27]–[29], each individual

transmit antenna has its own average power limitation P̂i,

∀i ∈ {1, ..., Nt}. In fact, there is no flexibility in allocat-

ing the transmit power over all transmit antennas. However,

the antennas can fully cooperate with each other for the

transmission. Thus, for the per-antenna power constraints,

the input covariance matrix Q has diagonal elements satisfy

qii = eTi Qei ≤ P̂i with ei is the ith Cartesian unit vector. Let

S2 denote the set of all power allocations which satisfy the

per-antenna power constraints, then S2 can be represented as

S2 := {Q < 0 : eTi Qei ≤ P̂i, i = 1, ..., Nt}.

3) Joint Sum and Per-antenna Power Constraints: In this

case, we combine the sum power and per-antenna power con-

straints. This means that each transmit antenna has a maximum

individual transmit power budget of P̂i, ∀i ∈ {1, ..., Nt} as

in the per-antenna power constraints problem. Additionally,

the sum power condition Ptot has to be satisfied as well. Let

S3 denote the set of all power allocations which satisfy the

joint sum and per-antenna power constraints, then S3 can be

represented as

S3 = S1 ∩ S2
= {Q < 0 : tr(Q) ≤ Ptot, eTi Qei ≤ P̂i, i = 1, ..., Nt}.

In Fig. 1, the power constraint domains are illustrated with

individual power constraints for two antennas and increasing

sum power. Let Ptot,A = min(P̂1, P̂2) and Ptot,B =
∑2

i=1 P̂i,

then we have three different cases of power domains as

follows:
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• Case 1 - Sum power constraint domain: This domain

occurs when the per-antenna power constraints are always

inactive, i.e., Ptot < Ptot,A [3].

• Case 2 - Per-antenna power constraints domain: This

domain occurs when the sum power constraint is inactive,

i.e., Ptot > Ptot,B [4].

• Case 3 - Joint sum and per-antenna power constraints

domain: This domain (gray area in Fig. 1) is considered

when the power relations satisfy Ptot,A ≤ Ptot ≤ Ptot,B ,

i.e., both sum and power antenna power constraints can

be active.

III. PROBLEM FORMULATIONS AND SOLUTIONS

In this section, we derive our main result on the optimal

transmit strategy that achieves the capacity of the Gaussian

MISO channel with joint sum and per-antenna power con-

straints. We first review the known results of the optimization

problems with a sum power constraint only and per-antenna

constraints only. After that, the optimization problem with

joint sum and per-antenna power constraints will be studied.

A. Review of Known Results

1) Optimization Problem 1 (OP1) - Maximum Transmission

Rate with Sum Power Constraint: This problem aims to find

the maximum transmission rate in (2) under the set of sum

power constraint S1. The optimization problem for our given

MISO channel, in this case, can be written as

maximize log

(

1 +
1

σ2
hHQh

)

(3)

subject to Q ∈ S1.
The transmit strategy for the MISO channel is to send the

information only in the direction of the channel vector h [1],

[2]. The optimal solution is to perform beamforming using

full power Ptot in the direction of the channel, i.e., Q(1) =
Ptotu1uH

1 with u1 = h/‖h‖. The MISO channel capacity with

a sum power constraint Ptot is

R(1) = log

(

1 +
Ptot

σ2

Nt
∑

i=1

|hi|2
)

= log

(

1 +
Ptot

σ2
‖h‖2

)

.

(4)

2) Optimization Problem 2 (OP2) - Maximum Transmission

Rate with Per-antenna Power Constraints: In [4], Vu estab-

lished the closed-form expression of the capacity and optimal

transmit strategy for the single-user MISO channel with per-

antenna power constraints. The capacity for this case can be

found by solving the optimization problem

maximize log

(

1 +
1

σ2
hHQh

)

(5)

subject to Q ∈ S2.
The problem in (5) can be solved by relaxing the semi-definite

constraint, reducing the problem to be solvable in closed-form,

and then showing that the optimal solution to the relaxed prob-

lem is also the optimal solution to the original problem [4].

In the per-antenna power constraints case, there is no power

allocation among the antennas. Therefore, the transmit power

from the ith antenna is fixed to be P̂i. The optimal covariance

matrix Q(2) has rank one with Q(2) = (
∑Nt

i=1 P̂i)v1vH1 where

the beamforming vector v1 has the elements given as

vk =

√

P̂k
√

∑Nt

i=1 P̂i

h∗
k

|hk|
, k = 1, ..., Nt. (6)

The capacity with per-antenna power constraints is then given

as

R(2) = log

(

1 +
1

σ2

Nt
∑

i=1

P̂i|hHv1|2
)

= log



1 +
1

σ2

(

Nt
∑

i=1

|hi|
√

P̂i

)2


 . (7)

B. Optimization Problem 3 (OP3) - Maximum Transmission

Rate with Joint Sum and Per-antenna Power Constraints

In the following proposition, we show that Gaussian dis-

tributed input is optimal for OP3.

Proposition 1. Gaussian distributed input x with covariance

Q = E
[

xxH
]

is capacity-achieving for the Gaussian MISO

channel (1) with joint average sum and per-antenna power

constraints, i.e., Q ∈ S3.

Proof: The proof can be found in Appendix A. The

achievability and converse proofs of this proposition can be

derived from [1] and [30]–[33].

Next, we are going to characterize the optimal transmit

strategy, i.e., the optimal Q ∈ S3.

1) Problem Formulation: The optimization problem to find

the MISO channel capacity with joint sum and per-antenna

power constraints is a convex optimization problem [34] given

as follows

maximize log

(

1 +
1

σ2
hHQh

)

(8)

subject to Q ∈ S3.

The objective function of problem (8) is concave while both

constraints tr(Q) ≤ Ptot and eTi Qei ≤ Pi ∀i ∈ {1, ..., Nt}
are linear in Q. Furthermore, since log

(

1 + 1
σ2 hHQh

)

is an

increasing function in hHQh, we can express the optimization

problem in (8) as

max
Q∈S3

log

(

1 +
1

σ2
hHQh

)

= log

(

1 +
1

σ2
max
Q∈S3

hHQh

)

.

(9)

Thus, we can equivalently focus on the following convex

optimization problem

maximize hHQh (10)

subject to Q ∈ S3.
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2) Properties of the Optimal Transmit Strategy: The results

in the following propositions will show that the optimal trans-

mit strategy for joint sum and per-antenna power constraints is

beamforming. The optimal transmission method is to transmit

with the maximal sum power while the per-antenna power

constraints have to be satisfied, i.e., at the optimum full

transmit power is used. The phase is chosen to match the

phase of the channel coefficient.

Proposition 2. For OP3 with Ptot <
∑Nt

i=1 P̂i and a given

channel h ∈ CNt×1 with hi 6= 0, ∀i ∈ {1, ..., Nt}, beamform-

ing is the optimal transmit strategy.

Proof: The proof can be found in Appendix B. The key

idea is to use Lagrange multiplier and slackness conditions of

the necessary Karush-Kuhn-Tucker (KKT) conditions to show

that the rank of Q(3) has to be one at the optimum.

In the following, let q denote a beamforming vector of a

rank one transmit strategy Q, i.e., Q = qqH .

Proposition 3. For OP3 with Ptot <
∑Nt

i=1 P̂i and a given

channel h ∈ CNt×1 with hi 6= 0, ∀i ∈ {1, ..., Nt}, the

maximum transmission rate R(3) is achieved when the op-

timal transmit strategy Q(3) uses full sum power Ptot, i.e.,

tr(Q(3)) = Ptot.

Proof: The proof can be found in Appendix C. The proof

of Proposition 3 follows from the monotonicity of the rate

function in terms of Q.

Next, we focus on characterizing properties of the optimal

beamforming vector q(3).

Lemma 1. Let q(3) be the optimal beamforming vector cor-

responding to the optimal covariance matrix Q(3). Then

q(3) ∈ Q :=







q : q =

[√
P1h

∗
1

|h1|
, ...,

√

PNt
h∗
Nt

|hNt
|

]T

, qqH ∈ S3







.

Proof: Consider optimization problem (10) with the op-

timization domain S3, we have

max
Q∈S3

hHQh
(a)
= max

q:qqH∈S3

|hHq|2

(b)
= max

q:qqH∈S3

|
Nt
∑

i=1

|hi|
√

Pie
j(ϕi−ϕhi

)|2

≤ max
q:qqH∈S3

(

Nt
∑

i=1

|hi|
√

Pi)
2

= max
q∈Q

(

Nt
∑

i=1

|hi|
√

Pi)
2

(c)

≤ max
q:qqH∈S3

|hHq|2 (11)

where

(a) follows from Propositions 1 and 2,

(b) follows from the definition hi = |hi|ejϕhi , qi =
√
Pie

jϕi

with ϕhi
, ϕi ∈ [0, 2π], and

(c) follows from the fact that Q ⊆ {q : qqH ∈ S3}.
From (11) it follows that maxQ∈S3 hHQh =

maxq∈Q |hHq|2, i.e., the optimal beamforming vector

q(3) is in Q.

3) Optimal Power Allocation for OP3: In the joint sum and

per-antenna power constraints problem, Proposition 3 states

that the capacity achieving transmit strategy always allocates

full sum power Ptot. However, the optimal power allocation

solution of OP1 may result in violating certain per-antenna

power constraints.

In the following theorem, we will show how to allocate the

powers for the MISO channel for the general case with an

arbitrary number of transmit antennas. We will show that if

there exists any antenna for which the optimal power allocation

of OP1 exceeds the per-antenna power constraints of OP3,

then for those the optimal power allocation is equal to the

per-antenna power constraints and (10) reduces to a new

optimization problem with a smaller total transmit power and

a reduced number of channel coefficients.

Theorem 1. Let I ⊆ {1, . . . , Nt} and PV := {i ∈ I : P
(1)
i >

P̂i}, if PV = ∅ then P
(3)
i = P

(1)
i ∀i ∈ I, else P

(3)
i = P̂i

∀i ∈ PV and the remaining optimal powers can be computed

by solving a reduced optimization problem

arg max
q′∈Q′

|h′H
q′|2 (12)

where h
′ = [hi]

T
i∈Pc

V
∈ C|Pc

V |×1, Q′ := {q′ : ∑i∈Pc
V
|qi|2 ≤

Ptot −
∑

i∈PV
P̂i, |qi|2 ≤ P̂i, i ∈ Pc

V } and Pc
V = I \ PV .

Proof: The proof can be found in Appendix D. Theorem

1 is proved in two steps. In the first step, we prove that

P
(3)
i = P̂i ∀i ∈ PV by pointing out that the per-antenna power

constraint is not active if the optimal power of OP1 solution

on the ith antenna does not exceed P̂i. After that, it is shown

that the remaining problem can be reformulated as a reduced

optimization problem using the properties in propositions and

lemmas above.

It can be seen from Theorem 1 that if there exists an optimal

power allocation of the OP1 solution which violates the per-

antenna power constraint, then it is optimal to allocate power

equal to the per-antenna power constraint for the correspond-

ing antenna. When more power constraints are active, we have

less freedom to allocate the power. In addition, Theorem 1

also shows a recursive process which leads to an efficient

optimization algorithm. After satisfying the per-antenna power

constraint on the power violated antenna, a reduced optimiza-

tion problem with the smaller size of channel coefficient and

total transmit power is formulated. The remaining optimal

power allocation can be computed by solving that reduced

optimization problem. The recursion finishes when all power

constraints are satisfied. The number of iterations equals the

times that the set of indices of optimal powers of the OP1

solution violating the per-antenna power constraints of OP3

is not empty. The following corollary states how the set of

powers which violated constraints can be computed.

Corollary 1. Let P(3)
V := {i ∈ {1, ..., Nt} : P

(3)
i = P̂i <

P
(1)
i } and K be the number of total iterations, then the set of

violated power constraints is the union of such a set at each
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iteration,

P(3)
V =

K
⋃

k=1

PV (k), (13)

where PV (k) = {i ∈ I(k) : P (1)
i > P̂i}, I(k + 1) = I(k) \

PV (k) and I(1) = I with I ⊆ {1, ..., Nt}.
Proof: The proof can be found in Appendix E for

completeness.

Remark 1. For a MISO channel with Nt transmit antennas

and Ptot ≤
∑Nt

i=1 P̂i, the maximum number of violated per-

antenna power constraints is Nt − 1, which also corresponds

to the maximal number of iterations, i.e., K ≤ Nt − 1.

4) Intersection Point: We discuss optima in the interesting

joint sum and per-antenna power constraints domain, i.e.,

we have Ptot,A ≤ Ptot ≤ Ptot,B . In this domain, we can

identify an intersection point where the trajectory of the sum

power constraint only optimal power allocation intersects a

per-antenna power constraint when increasing the allowed sum

power for both setups. This point plays an important role since

the power allocation behavior crossing this point changes and

therewith the growth of the maximal achievable rate.

Proposition 4. Let P̄tot denote the sum transmit power at the

intersection point. Then

P̄tot =

∑

i∈I |hi|2
∑

j∈PV
|hj |2

∑

j∈PV

P̂j , (14)

where I ⊆ {1, . . . , Nt} and PV := {i ∈ I : P
(1)
i > P̂i}.

Proof: The proof of the Proposistion 4 can be found in

Appendix F. The proof idea of this proposition follows from

the property that at the intersection point P
(3)
j = P̂j for j ∈

PV and R(3) = R(1).

In the next section, we propose an algorithm for optimal

transmit strategy of MISO channels with joint sum and per-

antenna power constraints derived from the analysis above.

IV. ALGORITHM FOR OPTIMAL TRANSMIT STRATEGY

We use OP1, Theorem 1, and Lemma 1 from the previous

sections to provide an algorithm to compute the optimum

power allocation and optimal transmit strategy for a MISO

system with a given channel h = [h1, ..., hNt
]T ∈ CNt×1, and

joint sum and per-antenna power constraints where the per-

antenna power constraints are denoted as P̂ = [P̂i, ..., P̂Nt
]

and the sum power constraint is denoted as Ptot <
∑Nt

i=1 P̂i.

In Algorithm 1, we start with computing the optimal power

allocation P(1) of optimization problem OP1 with sum power

constraint Ptot only. Since Ptot <
∑Nt

i=1 P̂i, we know from the

Proposition 3 that the optimal power allocation of OP3 always

allocates full sum power. Therefore, when all powers satisfy

the constraints, the optimal transmit strategy of OP1 and the

optimal transmit strategy of OP3 are the same. In this situation,

the optimal transmission rate is R(3) = R(1). Otherwise,

we have R(3) < R(1). From Theorem 1, it follows that for

any optimal transmit powers P
(1)
i of OP1 which violates the

Algorithm 1: OpTS(h, Ptot, p̂): finding optimal transmit

strategy for Ptot <
∑Nt

i=1 P̂i

Input : h, Ptot, p̂

Output: Q(3)

1 Set of indices I := {1, ..., Nt}.
2 Compute optimum power allocation P(1) with the

elements P
(1)
i , i ∈ I of OP1(h and Ptot).

3 Denote PV = {i ∈ I : P
(1)
i > P̂i} as a set of indices of

powers violating the per-antenna power constraints.

4 if PV = ∅ then

5 P
(3)
i ← P

(1)
i for all i ∈ I.

6 Go to 16.

7 else

8 for i ∈ PV do

9 P
(3)
i ← P̂i.

10 end for

// Formulate the reduced problem

11 I ← I \ PV ,

12 Ptot ← Ptot −
∑

k∈PV
P̂k,

13 h← [hi]
T
i∈I .

14 end if

15 Return to 2.

16 Compute optimal beamforming vector q(3) from Lemma

1 using [P
(3)
i ]Nt

i=1, [hi]
Nt

i=1.

17 Compute optimal transmit transmit strategy

Q(3) = q(3)q(3)H .

maximum per-antenna power constraint, the optimal transmit

power P
(3)
i is set equal to P̂i. The number of antennas

violating the per-antenna power constraints is |PV | with

PV = {i ∈ I : P
(1)
i > P̂i}. In the next step, we need to find

the optimal power allocation for the remaining antennas while

their total power budget has reduced to Ptot −
∑

i∈PV
P̂i. To

do this, we simply repeat the computation of optimum power

allocation of OP1 with a new total power Ptot −
∑

i∈PV
P̂i

and a reduced channel defined as a new h ← [hi]
T
i∈I with

I ← I \ PV . The algorithm stops when there is an OP1

solution with no per-antenna power constraint violated.

The optimal beamforming vector q(3) and optimal transmit

strategy Q(3) of OP3 are then calculated using Lemma 1. The

details of the algorithm are shown in Algorithm 1.

V. NUMERICAL EXAMPLES

In this section, we give some numerical examples to illus-

trate the theoretical results. We first show the power allocation

behavior and the feasible power domains when fixing the per-

antenna power constraints. After that, numerical examples to

show the trends of the transmission rate in different power

constraint domains with different transmit antenna configura-

tions are discussed. The unit of power and transmission rate

using in all examples in this paper are Watt and bps/Hz.

a) Power constraint domains: For the first numerical

example, we consider a MISO 2 × 1 system with complex

channel h = [1.0984 + 0.7015i,−0.2779− 2.0518i]T , noise
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Fig. 2: Power allocation behavior with P̂1 = 7, P̂2 = 20 .

variance σ2 = 1 and two per-antenna power constraints

P̂1 = 7, P̂2 = 20 as shown in Fig. 2. Therewith, we have

Ptot,A = min (P̂1, P̂2) = 7 and Ptot,B = P̂1 + P̂2 = 27. In

our simulation, we start to increase the total transmit power

Ptot from 0 to 30 gradually. For any total transmit power

Ptot < Ptot,A, the optimal solution of OP3 is the same as the

optimal solution of OP1. Similarly, when Ptot > Ptot,B , the

optimal solution of OP3 is the same as the optimal solution

of OP2.

For the case of two transmit antennas, the intersection

point can be identified at P̄tot = ((|h1|2 + |h2|2)/|h1|2)P̂1

if [P
(1)
1 = P̂1, P

(1)
2 ≤ P̂2] or P̄tot = ((|h1|2+ |h2|2)/|h2|2)P̂2

if [P
(1)
1 ≤ P̂1, P

(1)
2 = P̂2]. Regarding the optimal power

allocation behavior in this domain, we obtain from Fig. 2 that

if Ptot,A ≤ Ptot < P̄tot, then the optimal power allocation

satisfies P(3) = P(1). Otherwise, the optimal power P
(1)
1 of the

sum power constraint only problem violates the per-antenna

power constraint P̂1 and P
(3)
1 is set equal to P̂1.

The plot in Fig. 3 shows the power allocation behavior in

the case of three antennas. In this example, we consider a

MISO 3 × 1 system with channel h = [0.7 + 0.3i, 0.6 −
0.8i, −0.4+0.5i]T and noise variance σ2 = 1. The maximum

transmit power on each antenna is set as P̂1 = P̂2 = P̂3 = 10
and total sum transmit power is Ptot = 25. The optimal

power allocation region of OP3 is a polytope defined by

{p : P1 ≤ 10, P2 ≤ 10, P3 ≤ 10, P1 + P2 + P3 ≤ 25}.
The optimum point of OP1 is found at the transmission rate

R(1) = 5.0123 with P
(1)
1 = 7.3, P

(1)
2 = 12.6, and P

(1)
3 = 5.1.

In this case, P
(1)
2 > 10 violates the per-antenna power

constraint P̂2 so that following Theorem 1, to satisfy the power

constraint of OP3, P
(3)
2 is set as P

(3)
2 = P̂2. Therewith, the

optimal power allocation of OP3 is determined as P
(3)
1 = 8.8,

P
(3)
2 = 10, and P

(3)
3 = 6.2 at rate R(3) = 5.0017. This point

is allocated on the boundary of the joint sum and per-antenna

power constraints region.

b) Optimal transmission rate examples: In this part,

we illustrate the trend of the transmission rate in differ-
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Fig. 3: MISO 3×1 optimal power allocation with joint sum and

per-antenna power constraints where ’Region 1’ is sum power

constraint only region, and ’Region 2’ is joint sum and per-

antenna power constraints region when using full sum transmit

power Ptot.
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Fig. 4: Transmission rate in different power constraint domains

and different transmit antenna configurations.

ent optimization domains and with various number of an-

tennas. The examples in Fig. 4 consider 2 to 5 antennas

respectively. The setup of channel coefficient hn and per-

antenna power constraints P̂n corresponding to the num-

ber of antennas Nt = 2, ..., 5 are configured by taking

the first Nt elements of h = [0.9572 + 0.8003i, 0.4854 +
0.1419i, 0.6759+0.5236i, 0.5231+0.2563i, 0.2254+0.6225]T

and P̂ = [P̂1, P̂2, P̂3, P̂4, P̂5] = [7, 10, 8, 5, 7]. For instance,

when we use two antennas, i.e., Nt = 2, then h2 = [0.9572+
0.8003i, 0.4854+ 0.1419i]T and P̂2 = [P̂1, P̂2] = [7, 10]. The

noise variance is σ2 = 1. The total transmit power increases
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optimal power allocation and the capacity of 3 × 1 MISO

channel with Ptot = 25. The marker symbols correspond

to the following power constraint settings: sum power con-

straint ( ▽ ), additional per-antenna power constraints on

P1 ( ∗ ), P1 and P3 (− ⋆−), and P1, P2 and P3(−·♦·−).

from 0 to 40.

Since for cases 1 and 2 the optimal transmit strategies follow

directly from OP1 and OP2, the case Ptot,A ≤ Ptot ≤ Ptot,B is

the most interesting. In Fig. 4, the optimal transmission rates

are considered with respect to min(P̂i, ∀i = {1, ..., Nt}) ≤
Ptot,Nt

≤∑Nt

i=1 P̂i for Nt = 2, ..., 5. We observe that in these

ranges of total transmit power, the optimal transmission rates

of OP3 have similar trend as the optimal transmission rates of

OP1, but the growth is slightly smaller.

The intersection points are identified

when Ptot,Nt
= P̄tot,Nt

where P̄tot,Nt
=

(
∑Nt

i=1 |hi|2/
∑

j∈PV
|hj |2)

∑

j∈PV
P̂j and j is summed

over the indices of transmit antennas that violate the

per-antenna power constraints. For instance, considering

Nt = 4 transmit antennas, for which two antennas,

antennas 2 and 3, violate per-antenna power constraints, then

P̄tot,4 = (
∑4

i=1 |hi|2/(|h2|2 + |h3|2))(P̂2 + P̂3). We see that

P̄tot,Nt
changes with Nt. In this example, the intersection

points are found as P̄tot,2 = 8.2, P̄tot,3 = 11.5, P̄tot,4 = 14.7
and P̄tot,5 = 17.8.

In Fig. 4, it is clear to see that when we keep a maximum

sum transmit power while increasing the number of transmit

antennas, it happens that P
(1)
i violating P̂i for a few antennas

might not violates P̂i for a larger number of antennas since we

have more alternatives to allocate the power. Therefore, the gap

between the optimal transmission rate with joint sum and per-

antenna power constraints R(3) and the optimal transmission

rate with sum power constraint R(1) is decreased.

c) Choices of power constraints: In this numerical ex-

ample, we focus to clarify the impact of the choices of

the power constraints on the optimal power allocation and

the optimal transmission rate of the channel. The optimal

transmission rate is shown with joint sum and per-antenna

power constraints switching of a 3 × 1 MISO channel with

h = [−1.2507 − 0.5078i,−0.9480 − 0.3206i,−0.7411 +
0.0125i]T . The total transmit power is set as Ptot = 25.

The curves in Fig. 5 are plotted by adjusting per-antenna

power constraint on antenna 1 from 0 to 14 and setting per-

antenna power constraint configurations on antenna 2 and 3
as follows: (i) P̂2 = 7, P̂3 = 10, (ii) P̂2 > 25, P̂3 = 10, (iii)

P̂2 > 25, P̂3 > 25. For those settings, it turns out that at

the optimum, both per-antenna power constraints on antennas

2 and 3 are active in case (i), and only per-antenna power

constraint on the antenna 3 is active in case (ii). For the

last case, per-antenna powers on the antennas 2 and 3 are

not restricted. In Fig. 5, the OP1 solution is also shown,

which corresponds to the case when all per-antenna power

constraints are not active. The OP1 optimal power allocation

is P
(1)
1 = 13.51, P

(1)
2 = 7.42, P

(1)
3 = 4.07. We can see from

the figure that the optimal transmission rate decreases if more

per-antenna power constraints are added. In particular, we can

see from Fig. 5 that the capacity when all per-antenna power

constraints are included is always smaller or equal than the

others. For instance, when P̂1 = 6, the capacity of the case (i)

reaches R = 4.25. This value is smaller than the capacity of

case (ii) with R = 4.3; and both are smaller than the capacity

of case (iii) with R = 4.35. This happens because of the fact

that adding constraints limits the optimization domain, i.e., we

have less freedom to allocate the power.

VI. CONCLUSIONS

In this paper, we derived the optimal power allocation for

Gaussian MISO channels under joint sum and per-antenna

power constraints. We further presented an iterative algorithm

for this. The setup of the joint sum and per-antenna power

constraints is relevant in practical systems where we have

to limit the power in each RF chain for each antenna and

the total radiated power across all transmit antennas due to

regulation or other reasons. It is shown that beamforming is

the optimal transmit strategy and the capacity is achieved when

maximum sum power is used in the optimal transmit strategy.

In the joint sum and per-antenna power constraints problem,

the optimal powers are set equal to the per-antenna power

constraints if their optimal values in sum power constraint

only problem violate those per-antenna power constraints.

The remaining powers can be found by solving a reduced

optimization problem. Thus, we show that the optimal transmit

strategy for the joint sum and per-antenna power constraints

problem can be derived from the sum power constraint only

and the per-antenna power constraints only problems.

APPENDIX

A. Proof of Proposition 1

1) Proof of Achievability: We use C(n,Q, R, ǫ) to de-

note a codebook with codewords xn(m) for messages m ∈
{1, ...,M (n)} with M (n) = 2nR . This codebook is generated

by selecting codewords of length n i.i.d. Gaussian with zero-

mean and covariance Q − ρI , where Q ∈ S3 := {Q < 0 :
tr(Q) ≤ Ptot, eTi Qei ≤ P̂i, i = 1, ..., Nt}.
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Following [1, Theorem 8.6.5] and the proof of achievability

steps in [30]–[32] with Q ∈ S3, we know that the channel

capacity R(3) for the joint sum and per antenna power con-

strained channel must satisfy

R(3) ≥ sup
Q∈S3

R. (15)

2) Proof of Converse: Following [1], [30]–[33], with a

given codebook C(n,Q, R, ǫ), for a defined compact set S3
we obtain that 1

n

∑n
i=1 Qi ∈ S3 since 1

n

∑n
i=1 Qi < 0,

tr( 1
n

∑n
i=1 Qi) ≤ Ptot and eTk

1
n

∑n
i=1 Qiek ≤ P̂k, k =

1, ..., Nt hold. This implies that there exists a subsequence

(nl)l∈N of the codeword length such that 1
nl

∑nl

i=1 Qi → Q

as nl →∞ with Q ∈ S3. Then,

R ≤ lim sup
nl→∞

{log(1 + 1

σ2
hH(

1

nl

nl
∑

i=1

Qi)h) + ǫnl
}

= log(1 +
1

σ2
hHQh), (16)

which proves the converse. �

B. Proof of Proposition 2

We denote P = diag{P̂i} as diagonal matrix of the per-

antenna power constraints, Ptot as the total transmit power,

D = diag{νi} as diagonal matrix of Lagrangian multiplier for

the per-antenna power constraints, µ as Lagrangian multiplier

for the sum power constraint, and K < 0 as Lagrangian

multiplier for the positive semi-definite constraint. Then the

Lagrangian for problem (10) is given by

L = hHQh−tr[D(Q−P)]−µ(tr(Q)−Ptot)+tr(KQ). (17)

Taking the first derivative and set it equal to zero, we have

∂L
∂Q

= hhH − D− µI + K
!
= 0 (18)

or equivalently

hhH = W−K, (19)

where W = D + µI.

Using the slackness condition KQ = 0, we obtain

hhHQ = WQ. (20)

Since rank(W) = rank(D + µI), which has full rank, at the

optimum, we have

rank(Q(3)) ≤ rank(hhH) = 1. (21)

Obviously, since hi 6= 0, ∀i ∈ {1, ..., Nt}, rank(Q(3)) = 0 is

not optimal. Therefore, the optimal rank of Q(3) is one, i.e.

beamforming is the optimal transmit strategy. �

C. Proof of Proposition 3

Given function f : Q → R+ as defined in (2). Following

[35] and [36], we obtain that f(Q) is monotonic in terms of

Q. This implies that for any positive semi definite Hermitian

matrices Q1 < Q2, we have f(Q1) ≥ f(Q2).
Then, for OP3, if we suppose that Q(3) is the optimal trans-

mit strategy, the maximum transmission rate R(3) = f(Q(3))
is achievable when Q(3) allocates full sum power Ptot. �

D. Proof of Theorem 1

Given function f : Q→ R+ as defined in (2). For the proof

of Theorem 1, we need following lemmas

Lemma 2. Let A ⊆ I, B := {i ∈ I \ A : P
(S(A))
i > P̂i},

and A′ = A∪B. If B 6= ∅ then P
(S(A′))
i = P̂i ∀i ∈ B, where

S(A) and S(A′) are two given optimization domains defined

as S(A) := {Q < 0 : tr(Q) ≤ Ptot, eTj Qej ≤ P̂j , j ∈ A}.
Proof (by contradiction): Since S(A′) ⊆ S(A) we have

max
Q∈S(A)

f(Q) ≥ max
Q∈S(A′)

f(Q). (22)

For every B′ ⊆ B, B′ 6= ∅ we have

max
Q∈S(A)

f(Q) > max
Q∈S(A∪B′)

f(Q). (23)

If B 6= ∅, suppose there exists i ∈ B for which P
(S(A′))
i 6=

P̂i is optimal. Since P
(S(A′))
i ≤ P̂i has to be satisfied for

the opimization problem with domain S(A′), this implies that

P
(S(A′))
i < P̂i and therefore the per-antenna power constraint

is not active, i.e., maxQ∈S(A) f(Q) = maxQ∈S(A∪{i}) f(Q).
However, this contradicts with (23) with B′ = {i}. Thus, it

follows that P
(S(A′))
i = P̂i ∀i ∈ B. This proves Lemma 2.

Lemma 3. Let a = [a1, ..., an]
T ∈ Cn×1, x = [x1, ..., xn]

T ∈
D ⊆ Cn×1 where D has the property that if x ∈ D, then Dx ∈
D with arbitrary D = diag{ejϕk} ∈ Cn×n and ϕk ∈ (0, 2π]
∀k = 1, ..., n. For aT x ≥ 0 and c ≥ 0, we have

arg max
x∈D

|aT x + c|2 = arg max
x∈D

|aT x|2. (24)

Proof: We have

arg max
x∈D

|aT x + c|2 = arg max
x∈D

|aT x|+ |c|

= arg max
x∈D

|aT x|

= arg max
x∈D

|aT x|2. (25)

This proves Lemma 3.

Now, we prove Theorem 1. Since S3 ⊆ S1 where S1 :=
{Q < 0 : tr(Q) ≤ Ptot}, we have maxQ∈S3 hHQh ≤
maxQ∈S1 hHQh. The equality occurs when P

(1)
i = P

(3)
i

∀i ∈ I, i.e., P
(1)
i ≤ P̂i, ∀i ∈ I. Otherwise there exists at

least one power P
(1)
i in the optimal power allocation of the

OP1 solution that violates the per-antenna power constraints,

i.e., P
(1)
i > P̂i for some i ∈ I, where the set of indices is

defined as PV := {i ∈ I : P
(1)
i > P̂i}.

Next, we will use Lemma 2 with A = I \PV and B = PV .

First note that with this definition of A and B we have

max
Q∈S1

f(Q) = max
Q∈S(A)

f(Q) (26)

and

max
Q∈S(A′)

f(Q) = max
Q∈S3

f(Q). (27)

Then it follows from Lemma 2 that P
(3)
i = P̂i ∀i ∈ PV .
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Finally, we show that, in joint sum and per-antenna power

constraints problem, the remaining optimal powers can be

computed by solving a reduced optimization problem. We have

arg max
Q∈S3

f(Q) = arg max
q:qqH∈S3

|hHq|2

(d)
= arg max

q∈Q

|
∑

i∈I

|hi|
√

P
(3)
i ej(ϕi−ϕhi

)|2

(e)
= arg max

q∈Q

(
∑

i∈I

|hi|
√

P
(3)
i )2

(f)
= arg max

q∈Q

(
∑

i∈Pc
V

|hi|
√

P
(3)
i +

∑

i∈PV

|hi|
√

P̂i)
2

(g)
= arg max

q′∈Q′

|h′Hq′ +
∑

i∈PV

|hi|
√

P̂i|2

(h)
= arg max

q′∈Q′

|h′Hq′|2 (28)

where

(d) follows from the definition hi = |hi|ejϕhi , qi =
√

P
(3)
i ejϕi , ∀i ∈ I with ϕhi

, ϕi ∈ [0, 2π],
(e) follows from Lemma 1,

(f) follows from P
(3)
i = P̂i ∀i ∈ PV ,

(g) follows from substituting variables with q′ =

[

√

P
(3)
i ejϕi ]i∈Pc

V
and changing the optimization domain to

Q′,

(h) follows from Lemma 3 with a ← h′ and x ← q′, and

Q′ := {q′ :
∑

i∈Pc
V
|qi|2 ≤ Ptot −

∑

i∈PV
P̂i, |qi|2 ≤ P̂i, i ∈

Pc
V } satisfies the condition of a set D.

Thus, we have shown that if PV 6= ∅ then P
(3)
i = P̂i

∀i ∈ PV and the remaining optimal powers can be allocated

by solving arg maxq′∈Q′ |h′Hq′|2 which is equivalent to a

reduced S3 problem. �

E. Proof of Corollary 1

Let PV (k) = {i ∈ I(k) : P (1)
i > P̂i} be the set of indices

of optimal powers of the OP1 solution violating the per-

antenna power constraints of OP3 at the kth iteration. Consider

optimization problem (10) with the optimization domain S3
and the set of all indices is I ⊆ {1, ..., Nt}, the set of indices

of optimal power allocations of the OP1 solution violating the

per-antenna power constraints is given by

PV (1) = {i ∈ I(1) : P (1)
i > P̂i} (29)

where I(1) = I. From Theorem 1, we know that if PV (1) 6=
∅, then P

(3)
i = P̂i ∀i ∈ PV (1). The reduced problem (12)

with the set of all indices I(2) = I(1) \ PV (1) = I \ PV (1)
is considered instead of (10) with the set of all indices I. To

find the remaining optimal power allocation, we must solve

(12) in the next iteration. The set of indices of violated power

allocations in this iteration is given by

PV (2) = {i ∈ I(2) : P (1)
i > P̂i}. (30)

A new reduced problem can be formed if PV (2) 6= ∅.

The number of optimal powers of the OP1 solution violating

the per-antenna power constraints of the OP3 in first two

iterations is |PV (1) ∪ PV (2)|.
Similarly, for the kth iteration, the set of indices of violated

power allocations is given by

PV (k) = {i ∈ I(k) : P (1)
i > P̂i} (31)

where I(k) = I(k − 1) \ PV (k) = I \ {∪k−1
i=1 PV (i)}. The

number of optimal powers of the OP1 solution violating the

per-antenna power constraints of the OP3 solution in first k
iterations is |PV (1) ∪ PV (2) ∪ ... ∪ PV (k)|.

Thus, assume that K is the number of iteration that the

optimization problems have to reduce, it means that for any

l ≥ K , PV (l) = ∅, then the set of indices of total violated

powers in joint sum and per-antenna power constraints is

calculated as (13). �

F. Proof of Proposition 4

At the intersecetion point, we have:

P̄tot =
∑

k∈I\PV

P
(3)
k +

∑

j∈PV

P̂j , (32)

and it always holds
∑

i∈I

|hi|2 =
∑

k∈I\PV

|hk|2 +
∑

j∈PV

|hj |2. (33)

Furthermore, at the intersection point, we also have R(1) =
R(3). This implies

P̄tot

∑

i∈I

|hi|2 =





∑

k∈I\PV

|hk|
√

P
(3)
k +

∑

j∈PV

|hj |
√

P̂j





2

.

(34)

Using (32) and (33), we can express (34) as the following

equivalent equation

∑

k∈I\PV
P

(3)
k

∑

j∈PV
P̂j

=

∑

k∈I\PV
|hk|2

∑

j∈PV
|hj |2

. (35)

This can be reformulated as in (14) by using (32) and (33)

once again. This proves Proposition 4. �
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