
Synchronized audio playback over WIFI and
Ethernet

A proof of concept multi-room audio playback system

FREDRIK ABEFELT

Master’s Thesis at ICT
Supervisor: Christer Eriksson

Examiner: Håkan Olsson

TRITA-ICT-EX-2015:112

Abstract

This thesis aims to develop an audio playback system, which can perform synchro-
nized audio playback on multiple devices. Two different approaches for developing
the system has been investigated, one using an already existing off the self product,
and the other using an open source framework.

The system developed is a proof-of-concept that can perform synchronized play-
back five devices, connected by Wi-Fi or Ethernet. The system developed can use
Bluetooth devices or common media players as the sound source for the system.

Referat

Huvuduppgift med detta examensarbete har varit att utveckla ett synkroniserat
ljuduppspelningssystem, vilket kan spela upp ljud samtidigt på flera enheter, en-
heterna är anslutna med antingen med Wi-Fi eller Ethernet. Två olika tillvä-
gagångsätt har undersökts för att utveckla systemet, ett redan färdigt system och
ett system baserat på ett ramverk med öppen källkod.

Det utvecklade systemet kan utföra synkroniserad uppspelning på fem olika
enheter och kan använda Blueetooth enheter och olika mediaspelare som ljudkälla.

Contents

Abstract

Referat

1 Introduction 1
1.1 Introduction . 1
1.2 Benefits, sustainability . 1
1.3 Method and Ethics . 2
1.4 Problem description . 2

1.4.1 Why? . 2
1.5 Goals . 2
1.6 Outline of the thesis . 3

2 Background 5
2.1 Opalum . 5
2.2 Pulseaudio . 5

2.2.1 Setup . 6
2.2.2 Pulseaudio over network . 6
2.2.3 RTP Multicast . 6

2.3 User Datagram Protocol . 8
2.4 WIFI and Ethernet . 8

2.4.1 WIFI . 8
2.4.2 Ethernet . 8

2.5 Pulse Code Modulation . 8
2.6 AllJoyn framework . 10

2.6.1 How does it work, cross platform and cross technology com-
munication . 11

2.6.2 About Announcement Message 12
2.6.3 Audio API . 12

2.7 Raspberry PI . 12
2.7.1 Raspbian . 13
2.7.2 Kodi . 13
2.7.3 VLC . 13

2.8 Integrated Interchip Sound bus . 13
2.9 Daughter card . 14
2.10 Advanced Linux Sound Architecture 14

2.10.1 ASoC . 15

3 Implementation 17
3.1 How the Raspberry PI and the daughter card is connected 17
3.2 Overview of the synchronized multi-room system 18
3.3 ALSA sound card . 19

3.3.1 Codec driver . 20
3.3.2 Platform and Machine driver 20

3.4 Synchronous multi-room playback using Pulseaudio 20
3.5 AllJoyn framework for synchronized multi-room playback 21

3.5.1 General idea of synchronized playback 21
3.5.2 Source . 21
3.5.3 Sink . 22
3.5.4 Out of synchronization . 22
3.5.5 Out of synchronization, repair 23
3.5.6 Brief summary of the system 23

3.6 Deeper description of the source device 24
3.6.1 Handle a new Sink . 25
3.6.2 Emit audio thread . 25

4 Results 29
4.1 Result of the approach of using Pulseaudio for the synchronized

multi-room playback system . 29
4.1.1 The sink and source devices connected trough Ethernet . . . 29
4.1.2 The source device connected trough WIFI and the sink de-

vices connected trough Ethernet 30
4.2 ALSA sound card . 30
4.3 Result of the implementation of the synchronized multi-room play-

back system using AllJoyn . 32
4.3.1 Synchronization . 32
4.3.2 Stability . 33

4.4 Conclusions and future work . 33
4.4.1 Goals . 33
4.4.2 Implementation . 33
4.4.3 Future Work . 34

Appendices 35

A Appendix 37
A.1 Run the AllJoyn applications . 37
A.2 Compile the code . 38

A.3 Cross-compile the Linux kernel for Raspbian operating system . . . 38

Bibliography 39

Chapter 1

Introduction

1.1 Introduction
This thesis aims to develop an audio system, witch can preform synchronized audio
playback on multiple devices located on a local network. The system collects an
audio stream from common media players or a Bluetooth device and distributes
it to other devices connected on the network, which preforms synchronized audio
playback.

Today there already exist similar solutions, but whats differentiates this system
towards the already existing systems is that this system can preform synchronized
audio playback, from common media players or from a Bluetooth device (e.g. a mo-
bile phone). The other systems are usually dependent on that a specific application
is used as the audio source, but the developed system is less dependent on which
audio source is used and therefor more versatile.

1.2 Benefits, sustainability
Benefits

The benefits from this thesis is a proof-of-concept system for achieving synchro-
nized playback on multiple devices using standard hardware and open source soft-
ware, which can be integrated with standard audio programs, Bluetooth devices
and speakers.

The system developed can be used as a foundation for new similar systems,
or further development of the system with increased functionality. The intention
with this thesis is to provide a concept on how to achieve synchronized playback on
multiple devices, which can be useful for systems in the future.

Sustainability

The system developed can be used together with existing speakers using standard
outputs, which will reduce the need of buying new speakers for achieving synchro-

1

CHAPTER 1. INTRODUCTION

nized playback on multiple units, which is the sustainable goal of this thesis.

1.3 Method and Ethics

Method

The method used for this thesis is a trial and error approach. The reason for using
such method is based on the fact that the author never have done something similar,
and has no prior knowledge in the subject.

Ethics

During this thesis the ethics described in the IEEE code of ethics [1] is used, and
with no conflicts.

1.4 Problem description

Opalum [2] is interested in developing a solution for synchronized multi-room play-
back. A synchronized multi-room playback system is a system that can produce
synchronized audio playback on multiple devices located on different locations (i.g.
play the same audio in synchronization on different devices at the same time). The
audio playback units in the system should be connected to a Local Area Network
(LAN), and the possibility to both use wired and wireless connection approach using
Wi-Fi and Ethernet.

1.4.1 Why?

This thesis is conducted because the company Opalum are interested in a concept on
how to achieve synchronized audio playback on multiple devices, that both can use a
common media player or Bluetooth devices as audio source. The system developed
is a proof-of-concept system with limited functionality and is not intended to be a
fully functional system.

1.5 Goals

The goals for this thesis are divided in two different categories: mandatory goal and
main goal.

• Mandatory Goal: Demonstrate synchronized playback on at least three
playback units, the synchronization should be within 50 ms difference between
the sink devices. The system should be connected by either Wi-Fi or Ethernet
and output the audio through a connected daughter card.

2

1.6. OUTLINE OF THE THESIS

• Main Goal: Same as Mandatory, but with 10 sinks and 30 ms difference in
synchronization between the sink devices. Use a Bluetooth device as audio
source.

1.6 Outline of the thesis
The remaining part of this thesis is divided into four chapters. Chapter 2 contains
the background information about the subjects used within this thesis. Chapter 3
contains the implementation of two different approaches of the synchronized audio
playback system and a description about a sound card implemented. Chapter 4
contains the results of the thesis and the system. Chapter 5 contains the conclusions
about the thesis and a future work section.

3

Chapter 2

Background

In this chapter the theoretical background used within this thesis is described, and
is intended to give the reader knowledge about subjects that will be used in the
implementation chapter.

2.1 Opalum

This thesis was preformed in collaboration with the company Opalum [2]. Opalum
is a Scandinavian company specialized in speakers and sound.

2.2 Pulseaudio

This section describes some basic knowledge about the Pulseaudio sound server.
Pulseaudio has been tested as a candidate platform for the synchronized multi-
room playback system in this thesis.

Pulseaudio is a open-source network distributed sound server designed for Linux
operating systems. Pulseaudio is integrated in many relevant Linux distribution,
such as Ubuntu and Archlinux [3]. Pulseaudio runs as a deamon, so no interaction
is usually needed for controlling the program.

A sound server is a program that manages access to audio devices, usually
to the sound cards. Sound servers were originally designed to provide Unix-like
operating systems the possibility to mix different audio streams and produce one
output stream. The reason behind needing this kind of functionality is that unix-
like operating system can usually only output one audio stream, therefore its not
possible e.g. play an audio file and have a movie (with sound) simultaneously
playing and produce an audio stream containing sound from both sources.

A typical workflow for Pulseaudio, Pulseaudio receives calls from different pro-
grams and mixes the sound together (to a preferred format) and produces one output
stream containing raw audio.

5

CHAPTER 2. BACKGROUND

Pulseaudio also contains the functionality of distributing audio streams across
a network, Pulseaudio can redirect audio streams from one computer to other com-
puters connected on the network.

Key features of Pulseaudio [3]

• Software mixing, mixing multiple audio streams to one audio stream

• Network transparency, allow playback on an other machine located on the
network

2.2.1 Setup

The Pulseaudio daemon is built with a module based approach, so for using a
specific functionality provided by Pulseaudio, the correct module must be loaded.

2.2.2 Pulseaudio over network

Pulseaudio provides the functionality of distributing audio streams across a network
from one Pulseaudio device to other Pulseaudio devices. Pulseaudio provides the
techniques: Direct Connect, Tunneling and Real Time transport Protocol (RTP)
multicast [4] for distributing audio streams across a network, the technique tested
in this thesis is the RTP multicast technique.

The RTP multicast module provides the functionality of transmitting an audio
stream from one source device to multiple receiving devices connected on the net-
work, the receiving devices will preform synchronized playback of the audio stream
[4], which is the requested functionality of the synchronized multi-room playback
system.

2.2.3 RTP Multicast

This section contains information about the techniques used by the RTP multicast
module, provided by Pulseaudio.

The RTP Multicast is a module that can be loaded in the Pulseaudio daemon,
which provides the functionality of synchronized playback of an audio stream on
multiple devices.

Real-Time Transport Protocol

The Real-Time transport protocol (RTP) is a network transport protocol suited for
transmitting real-time data, such as audio and video over a network. The RTP can
both be used over the commonly used transport protocols, Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP), and can be used in unicast
and multicast fashion. The RTP does not provide any guarantees for synchronized
delivering of packages or delivering packages in sequence.

6

2.2. PULSEAUDIO

The idea of using RTP is to let the receiver deal with out-of-order delivery and
losses of packages, with the provided information from the RTP package. [5]

Internet Protocol multicast

IP multicast is a technique used for sending data packages to multiple receivers
without having to send the data packages specific to each receivers. IP multicast
will only transmit data to nodes connected to a specific multicast group. A multicast
group is identified by its IP address. In IPv4 there is a reserved span of IP addresses
reaching from 224.0.0.0 to 239.255.255.255 [6].

All data packages transmitted will be addressed to the multicast group address,
the responsibility of transmitting the message to the specific node connected to the
multicast group lays on the router or switch.

A multicast datagram is delivered to its destination with best-effort reliability,
there is no guarantees of delivering datagrams intact or in order. Therefor the
underlying protocol is usually User Datagram Protocol (UDP).

For registration to a multicast group the Internet Group Management Protocol
(IGMP) is used. The IGMP protocol operates between the connected node and its
connected router or switch. The IGMP protocol provides the service of informing
the router that the node wants to join a specific multicast group.

Internet Group Management Protocol

The IGMP is used by hosts (computers connected on the network) and connected
routers on the network to establish multicast memberships to multicast groups.
There exist two types of messages carried by the IGMP [7].

• Host membership Query: used by routers to search for members of a
specified multicast group

• Host membership Report: used by host to declare that they are members
of a specified multicast group

The router will send multicast traffic to all ports in the broadcast domain, which
leads to host that are not members of the multicast group will receive data packages
that are unwanted (which will be discarded), extra load will be put on the network
and the host, since the host device must open every package, to se if it wants it.
In order to reduce the problem with sending data on all ports, a technique called
IGMP snooping can be used.

IGMP snooping

IGMP snooping is a techniques that is used in the Pulseaudio implementation of
the synchronized multi-room system to reduce data traffic, within the network.

7

CHAPTER 2. BACKGROUND

The switches connected in the network eavesdrops on the IGMP traffic, the
switch records which host are a member of which multicast group, and only sends
multicast traffic to the host under the circumstance that the host are a member
of the specific multicast group. Which reduces the traffic on the network and the
incoming traffic to the host.

2.3 User Datagram Protocol
The transport protocol User Datagram Protocol (UDP) is used by both the Pulseau-
dio implementation and the AllJoyn implementation in this thesis.

The UDP is a connectionless transport protocol, i.e. there exist no connection
between the sender and receiver. UDP provides no guarantees that the package ar-
rive at its destination or that the package arrives in the right sequence. Application
suited for using UDP are application with low latency and if a package is lost or
scrabbled isn’t the end of the world [8].

2.4 WIFI and Ethernet
In order to connect devices to the network both WIFI and Ethernet has been used
trough out this thesis.

2.4.1 WIFI

WIFI is a name for products using IEEE 802.11 standards given by the organization
WI-FI alliance. The 802.11 is a group of standards for wireless local area networks
(WLAN). WLAN uses radio waves for transmitting data. The frequency used by the
IEEE 802.11 is 2.4 GHz, 5 GHz and 60 GHz, which in Sweden are free to transmit
frequency bands, if the output power is smaller then 100 mW[9].

Since the frequency bands are free to transmit, the medium is shared with other
devices, which leads to interference, which can lead to variation in network delay
(jitter) and lost data packages.

2.4.2 Ethernet

Ethernet is a group of standardized data communication methods for communica-
tion over cable for Local Area Network (LAN), Ethernet is standardized as IEEE
802.3.

2.5 Pulse Code Modulation
Pulse code modulation (PCM) is a digital representation technique for analog sig-
nals, which is often the standard modulation of audio in computers. The audio

8

2.5. PULSE CODE MODULATION

transmitted in the synchronized multi-room playback system described in this the-
sis uses PCM.

PCM converts the analog signal to a digital representation by sampling the
amplitude of the analog signal.

The properties of PCM is the sample rate and resolution, the sample rate spec-
ifies at which rate the samples are collected from the original signal, and the res-
olution specifies which possible amplitude the sample can take. Higher resolution
gives more precision, since the sample can take a more precise amplitudes.

9

CHAPTER 2. BACKGROUND

Figure 2.1. Pulse Code Modulation in the time-domain [10].

In figure 2.1 an analog signal has been coded with PCM with a resolution of
four bits, which gives 16 discrete amplitudes.

In order to fully represent an analog signal digitally, the sampling rate must be
greater or equal to two times the Nyquist frequency [11].

2.6 AllJoyn framework

This section describes some of the basic features of the AllJoyn framework. The
AllJoyn framework has been used for the implementation of the synchronized multi-
room playback system.

AllJoyn is an framework dedicated for developing systems for the Internet of
Things (IoT). The IoT is a term used for describe the trend of connecting things
to the Internet, the thing can be any type of electrical circuit, for example a lamp
connected to the Internet. One of the major challenges with the IoT, is connecting
devices together. The problem with connecting devices together is that different
manufactures uses different technologies (WI-FI, Ethernet, Bluetooth etc) and op-

10

2.6. ALLJOYN FRAMEWORK

erating systems(Android, Linux, Windows, IOS). The idea behind the framework
is to provide a service to connect things together in a simple fashion regardless of
the communication technology, manufacture and operating system.

The AllJoyn framework was originally developed by the company Qualcomm,
but is now an open source framework hosted by The Allseen Alliance.

The Allseen Alliance is a nonprofit organization dedicated to drive services that
supports the adoption of the IoT, trough the AllJoyn framework. Today the Allseen
Alliance is supported by over 160 companies [12].

2.6.1 How does it work, cross platform and cross technology
communication

The AllJoyn framework provides a distributed software bus as the communication
channel. The bus is of type ad-hoc, no existing infrastructure exist, connected nodes
participates in routing by forwarding messages. The transport protocol used on the
software bus is network protocol independent, therefor a device using Ethernet can
communicate with a device using Bluetooth.

The protocol that the distributed software bus uses is based on the D-Bus-wire
protocol, which is used within Linux operating systems for inter process communi-
cation. The AllJoyn software bus extends it by supporting distributed devices on
the bus.

Architecture

An AllJoyn network is composed of two different nodes, with two different roles.

• Routing Node (RN)

• Leaf Node (LN)

A routing node is responsible for managing the software bus, and routing mes-
sages across the network. A routing node can both be implemented as a standalone
node or integrated in a application.

A leaf node can only communicate with routing nodes, a routing node can com-
municate with both routing nodes and leaf nodes. If two Leaf Nodes wants to
communicate with each other they communicates through the routing node. Since
the distributed messages bus is network protocol independent, two nodes can com-
municate even if they are not using the same transport protocol, by communicate
trough the routing node (if the routing node supports both technologies) [13].

Device discovery

In order to establish communication between devices on a Network, the devices must
first discover each other, since the network bus is of type ad-hoc, there is no base
station keeping track on witch nodes are connected on the network. For discovery

11

CHAPTER 2. BACKGROUND

of other nodes on the network, an announcement message is used, there exist two
methods for announcement.

• About announcement

• Well known name

2.6.2 About Announcement Message
The About Announcement message is the recommended method for announcing a
device (and the method used in the implementation). The About message contains
a set of meta-data which includes information about, model, name, manufacture,
and supported interfaces. The most important information in the about message
is the supported interfaces. When a device announces itself, the about message is
broadcasted on the network, and if another device supporting the same interfaces,
they have the possibilities to connect to each other and form a session, a session
exist if at least two devices are connected on the same message bus (if a session
already exist, the device joins the session instead) [14].

2.6.3 Audio API
The AllJoyn framework provides an audio API which offers the functionality of
synchronized playback of a local file, the framework also provides functionality of
controlling settings such as, volume, pause and mute [15]. The implementation made
in this thesis adds the functionality of synchronized streaming of an audio steam.
The difference between using a local file compared to using an audio stream is that
an audio stream is not depended on having a local copy of the audio, but instead
can be used together with a audio program or another source which generates a
audio stream.

2.7 Raspberry PI
This section contains information about the hardware, operating system and media
players used within this thesis.

The Raspberry PI 2 Model B has been used as the hardware platform for the
synchronized multi-room playback system described in this thesis.

The Raspberry PI is a single board computer, with the size of a credit card, the
specification of the Raspberry PI 2 Model B is [16]

• 900 MHz quad-core ARM Cortex-A7 CPU

• 1 GB RAM

• Full HDMI

12

2.8. INTEGRATED INTERCHIP SOUND BUS

• Ethernet Port

• 40 GPIO pins, (I2C, I2S, SPI, UART)

The Raspberry PI does not come with an operating system, it is up to the user
to choose one.

2.7.1 Raspbian
This subsection contains the information about the operating system used within
this thesis.

The operating system used within this thesis is the Raspbian. Raspbian is a
POSIX LINUX operting system based on the Linux distribution Debian, optimized
for running on the Raspberry PIs hardware.

2.7.2 Kodi
Kodi (previously known as XBMC) is an open source media center which is used
within this thesis. Kodi possess the functionality of playing videos, music, pictures
and games [17]. Kodi can run on the Raspberry PI using the Raspbian operating
system.

2.7.3 VLC
VLC is an open source media player used within this thesis, which is capable of
playing audio and video, and can run on the Raspberry PI using the Raspbian
operating system [18].

2.8 Integrated Interchip Sound bus
This section contains information about the Integrated Interchip Sound (I2S) bus,
which is a serial bus for transfer PCM-audio streams between integrated circuits in
electronic devices. On the I2S bus, there exist two roles

• Master

• Slave

The master device, controls the clocks on the bus, and the slave device uses the
clock provided by the master device [19].

The bus consists at least of three different lines, but can also include 2 extra
lines.

Mandatory lines

• Bit clock line

• Word clock line

13

CHAPTER 2. BACKGROUND

• Multiplexed data line

Extra lines (not mandatory)

• Master clock line

• Extra multiplexed data line

The bit clock controls the bit rate on the bus. The bit clock will pulse once
for each discrete data bit on the data line. The Word Clock line determines which
channel the incoming bits refer to. Multiplexed data line carries all data transmitted
on the bus.

2.9 Daughter card
One of the goals with the thesis is to input and output audio trough a daughter
card connected to the Raspberry PI GPIO pins. The daughter card uses the I2S
bus to communicate with the Raspberry PI. The daughter card has the possibility
to output the audio trough analog channel, S/PDIF and Bluetooth. The daughter
card can also receive an input audio stream using Bluetooth.

The card is developed by Opalum, and the reason for using it is to provide better
speaker connection possibilities and the ability to receive an audio stream from a
Bluetooth device (e.g. a mobile phone). The daughter card act as a slave device on
the I2S bus, and the Raspberry PI acts as the master.

2.10 Advanced Linux Sound Architecture
In this section the Advanced Linux Sound Architecture (ALSA) layer is described.

In Linux operating systems the ALSA layer is provided to simplify communica-
tion between user space programs and sound cards.

ALSA is an open source software framework and a part of the Linux kernel,
ALSA provides an API for creation of sound card device drivers and a user space
library.

The user space library provides functionality hosted by the sound card to a user
space program without having direct interaction with the sound card. The API for
sound card device drivers is used for writing sound card device drivers, used for
communication with the hardware.

The main functionality of the ALSA userspace library is to provide the function-
ality of playback and capture of audio. Playback offers the functionality of playing
sound on specific sound device. While captures offers the functionality of capturing
sound from the sound cards input.

The main functionality functionality of the sound card device drivers API is to
provide an interface for creating sound card device drivers. The sound card device

14

2.10. ADVANCED LINUX SOUND ARCHITECTURE

drivers is used for creating an interface for sound cards, that can be used by the
userspace library.

To improve ALSAs performance on embedded devices, the ALSA System on
Chip layer (ALSA ASoC) is used for creating device drivers for sound cards.

2.10.1 ASoC
An ALSA ASoC device driver consists of three components for creating a sound
card [20].

Codec driver - The codec driver is platform independent and contains audio in-
terface capabilities (e.g. number of channels, sample rates and format), and
codec I/O functions (e.g. determines who is the master on the I2S bus).

Platform driver - The platform driver is platform dependent and contains the
information on how to retrieve the data, and which interface should be used
(e.g. I2S).

Machine drivers - The Machine driver handles machine specific settings and con-
trols, (e.g. enabling the Digital-Analog-Converter (DAC) on the receiving side
of the system).

15

Chapter 3

Implementation

This chapter contains the implementation of the synchronized multi-room playback
system, and an implementation of an ALSA sound card with the intended use of
transferring audio from the Raspberry PI to the connected daughter card.

Two different approaches have been investigated to develop the synchronized
multi-room playback system, one using the Pulseaudio sound server and the other
one using the AllJoyn framework.

The Pulseaudio approach is based on the Pulseaudio sound server, Pulseaudio
is an off the self product and no implementation has been done within this thesis.

The AllJoyn approach is based on the AllJoyn framework and the ALSA client
library. The system is developed with the programming language C++.

The reason for testing the Pulseaudio approach is: if an already existing open
source product existed on the market with the requested functionality, the scope of
the thesis would lack significance.

3.1 How the Raspberry PI and the daughter card is
connected

In order to output audio from the Raspberry PI to the daughter card, the I2S bus is
used. The Raspberry PI acts as a master on the bus and the daughter card acts as
slave device. To easily emit audio on the I2S bus, an ALSA soundcard that outputs
the audio on the I2S bus is used.

Figure 3.1 shows the connection between the Raspberry PI and the daughter
card.

17

CHAPTER 3. IMPLEMENTATION

Figure 3.1. Basic Idea of I2S.

3.2 Overview of the synchronized multi-room system

The synchronized multi-room playback system consists of two different types of
devices:

• The source device transmits the audio

• The sink device receives the audio

The source device is responsible for capturing PCM-audio from a program (some
media player e.g.) and distribute the it across the network to each connected sink
device. The sink device are responsible for receiving the audio and preform playback
in synchronization with the other sink devices.

In figure 3.2 the basic idea of the synchronized multi-room playback system is
shown with one source device and three sink devices. The source device captures
the PCM-audio from an audio program and distributes it to the connected sink
devices over the network, the sink devices preforms synchronized playback of the
PCM-audio delivered by the source device.

18

3.3. ALSA SOUND CARD

Figure 3.2. Basic Idea of the synchronous multi-room system .

3.3 ALSA sound card

This section contains the information about the sound card that is developed for
emitting and receiving audio from the daughter card.

The ALSA ASoC library is used for creating a sound card, which can emit and
receive audio trough the I2S bus located on the Raspberry PIs GPIO pins. The
implemented sound card is based on the sound card for the Hifiberry DAC [21],
which is a sound card that can be connected to the Raspberry PIs I2S bus.

Since the daughter card doesn’t need any type of configuration, the sound card
is a dumb sound card, that will emit audio onto the I2S bus without any knowledge
what is connected to it.

ALSA ASoC uses three components

• Codec driver

• Platform driver

• Machine driver

19

CHAPTER 3. IMPLEMENTATION

3.3.1 Codec driver

The codec driver is based on existing driver named PCM5102a which is written by
Florian Meier and is intended for the digital-analog-converter PCM5102a [22] from
Texas Instruments.

The codec driver specifies the audio capabilities of sound card, this is the capa-
bilities used for the sound card

Playback and capture capabilities

• Minimum number of channels: 1

• Maximum number of channels: 2

• PCM rate 8000-192000Hz

• Formats: 16bit, 24bit, 32bit

3.3.2 Platform and Machine driver

The platform driver specifies that the I2S bus should be used as output and that
the PCM5102a codec driver should be used.

The machine driver controls the machine specific settings on the sound card
(e.g. determine if the sound card connected, set up the initialization and hardware
parameters). But since the daughter card does not need any configuration, no
settings are set.

3.4 Synchronous multi-room playback using Pulseaudio

This section describes how Pulseaudio is setup, in order to use the RTP multicast
module for synchronized playback.

The reason for using the Pulseaudio approach for synchronized multi-room play-
back system, is that Pulseaudio is a well known of-the-self-product that might solve
the problem. Pulseaudio possesses the functionality of synchronized playback of an
audio stream using the RTP multicast module.

Pulseaudio can capture a PCM-audio stream from an user space programs (un-
der the circumstances that the user space program supports Pulseaudio). VLC is a
media player that supports Pulseaudio, which was used as the audio source for the
system.

If the RTP multicast modules is enabled on the source and sink devices in the
system, the source device will distribute a PCM-audio stream to the connected sink
devices in the system, which will preform synchronized playback.

20

3.5. ALLJOYN FRAMEWORK FOR SYNCHRONIZED MULTI-ROOM PLAYBACK

3.5 AllJoyn framework for synchronized multi-room
playback

This section contains information about the implementation of the synchronized
multi-room playback system using the AllJoyn framework. First the general prin-
ciple of the system is described, then a deeper description of the different parts in
the system.

The reason for using the AllJoyn framework is that it is a well supported frame-
work, has a big community and that it contains an audio API usable for this thesis.

The AllJoyn approach works in a similar way as Pulseaudio, there exist two
types of devices

• Source device outputs the audio on the network

• Sink device receives the audio from the network

The source device is responsible for capturing the PCM-audio stream and dis-
tribute it to connected sink devices on the network. The source device captures the
PCM-audio stream from the sound card, and distributes the PCM-audio as data
chunks in an unicast fashion to the connected sink devices.

The sink device is responsible for receiving and playback of the data chunks
provided by the source device, the sink device has no knowledge about the other
sinks in the system. In order to achieve synchronized playback, the same data chunks
must be played at the same time on all connected sinks, since the sink devices has
no knowledge about the other sink devices in the system, it is the source device
responsibility to make sure that the same data is played at the same time.

3.5.1 General idea of synchronized playback
The method for achieving synchronized playback on multiple sinks is based on
that there exist one clock which is used both by the source and the sink devices.
Every data chunks that is distributed is provided with a timestamp, the timestamp
provides the functionality of determining that the data chunks is not to old. If a data
chunks is to old, it will be discarded. The distribution uses the Internet protocol
UDP with an unicast delivering approach. UDP is unreliable, package may not
arrive to it’s destination.

3.5.2 Source
The source device captures the PCM-audio data chunks from the sound card using
the ALSA userspace library. The source device is independent of which program
produces the PCM-audio stream (as long as the program outputs it’s audio to the
ALSA sound card, and that the sound card supports capture). Every data chunk
captured is provided with a timestamp, the intended use of the timestamp is to
prevent old audio chunks to be played at the sinks.

21

CHAPTER 3. IMPLEMENTATION

3.5.3 Sink

The sink is the receiving end of the system, which is responsible for receiving and
playback of the PCM-audio provided by the source device. The job of the sink
device is to receive data chunks and determine if the data chunk arrived within it’s
timeframe. The timeframes upper limit is set by the timestamp provided by the
source. If the data chunk arrived within it’s timeframe, the data chunk is added into
a FIFO-buffer for playback, else the data chunk is discarded. The sink preforms
playback of the data stored in the FIFO-buffer at a constant rate.

The System is based on that all sinks FIFO-buffers have the same data, and are
played at the same rate, which will result in that the same data is played at the
same time on all sinks.

3.5.4 Out of synchronization

Under optimal condition, all sink devices FIFO-buffer contains exactly the same
data, all data chunks arrived within it’s timeframe and no losses has occurred, but
that is not necessarily the always the case. Since the network protocol used is un-
reliable, the data can arrive to late or not at all, which is a problem.

The out of synchronization problem arises when data chunks are not added into
the FIFO-buffer for a specific sink device, this may happened due to packet loss or
that the data chunks is too old (other sinks may have received data chunk, since
the distribution is unreliable and unicasted). The data in the FIFO-buffer will be
different between the connected sinks, if one or more sinks, but not all sinks lost
a data chunk. When a new approved data chunk is added to the FIFO-buffer, the
new data chunk will have a different FIFO-position compared to the same data
chunks in the other sinks FIFO-buffers, because of the lost data chunk, which leads
to unsynchronized playback.

In figure 3.3, two scenarios exist, the first scenario shows a situation were no
losses has accrued and will lead to synchronized playback. The other scenario shows
a situation were losses has accrued which will lead to unsynchronized playback.

In scenario 1 at time 0 all sinks FIFO-position are the same when the new data-
chunk is added into the sinks FIFO-buffer. At time 1 in scenario 1 the data-chunk
still have the same FIFO-position which will lead to that the data-chunk will be
played simultaneously on all sinks sometime in the future.

In scenario 2 at time 0 the sink Bs FIFO-position is different compared to the
other sinks when the new data-chunk is added. At time 1 in scenario 2 the sink B
FIFO-position still differentiates compared to the other sinks, which will result in
that the data-chunk in sink B will be played earlier compared too the other sinks,
which will lead to unsynchronized playback.

What this example shows is that if no losses has accrued and the sinks FIFO-
position are the same it will lead to synchronized playback, since the data in the
FIFO-buffers are played at the same rate. If the FIFO-buffers contains different

22

3.5. ALLJOYN FRAMEWORK FOR SYNCHRONIZED MULTI-ROOM PLAYBACK

Figure 3.3. Out of synchronization scenarios

amount of data it will lead to unsynchronized playback.

The system is of type best effort for preventing sinks from getting out of synchro-
nization i.e. no effort is invested in preventing sinks for becoming unsynchronized.
In order to maintain synchronization, the system strives to maintain the same FIFO-
positions on all connected sinks, which generates synchronized playback.

3.5.5 Out of synchronization, repair

The playback on multiple sinks will be out of synchronization if different data chunks
are played on the sink devices at the same time. All sinks will have the same data
addressed to them, but it is not a certainty that they all receive it. To detect sinks
that are out of synchronization, their position in the FIFO-buffer is used. On a
given interval, the source collects the sinks FIFO-position, and compare them, if
the FIFO-positions differentiates to much over a time period, extra data is sent to
compensate by the source.

3.5.6 Brief summary of the system

The source device captures and distributes the PCM-audio as a data chunk to the
connected sinks. The audio is provided with a timestamp. The sink receives data
chunk and determine if the data arrived within its timeframe. The sinks preforms
playback with a given rate on data stored in the FIFO-buffer. At a given interval the
source examines the sinks FIFO-positions, if the positions differentiates to much,
extra data is sent to compensate. In figure 3.4 the block diagram describes which
components exchange data to each other.

23

CHAPTER 3. IMPLEMENTATION

Figure 3.4. Block diagram for a source and a sink

3.6 Deeper description of the source device

The source device is responsible for capturing and distribution of PCM-audio. In
order to distribute data, the source device must find and connect to sink devices on
the network. The source device searches for new sinks on the network by looking
for about announcement messages with matching interfaces.

When there exist a session (a session exist if at least one source device and one
sink device is connected to the same message bus), an audio player is started on
the source device. The main responsibility of the audio player is to provide the
connected sinks with PCM-audio. The audio player starts an emit audio thread for
each sink device connected, the thread is responsible for providing PCM-audio, and

24

3.6. DEEPER DESCRIPTION OF THE SOURCE DEVICE

maintain synchronization (each sink device has an own emit audio thread in the
audio player).

3.6.1 Handle a new Sink

When a new sink device is found, the new sink device internal clock must be syn-
chronized with the source device internal clock. The clock is based on clock started
at the time point of the UNIX epoch which started the year 1970 [23]. The sink
device adjusts the internal clock with the source device internal clock plus the net-
work delay in the system. The network delay is measured as the round trip time
divided by two between the source and the new sink.

This will ensure that the clocks are similar, it’s not necessarily for the clocks to
be exact in this system.

3.6.2 Emit audio thread

The Emit audio thread is the heart of the source device, which is responsible for the
main functionality

• Capture PCM-audio from the sound card

• Transmit PCM-audio to the sink device

• Repair synchronization mechanism

Extract PCM-audio from the sound card

To capture PCM-audio from a sound card (that supports ALSA capture), the ALSA
userspace library is used. A sound card generally has a circular buffer that stores
recorded samples. When extracting data from the sound card, the buffer keeps
track of witch data has been read, which ensures that new data always will be read
from the sound card (consecutive if read fast enough).

Transmit PCM-audio to the sink devices

The same data chunks captured from the sound card must be transmitted by every
emit audio thread to it’s respective sink device, because all sink devices need the
same data. Only one of the emit audio thread will capture the data chunk from
the sound card, and the data chunk captured will be shared with the other threads.
The time of the capture will be used as a timestamp for the data, the timestamp is
increased with some extra time to compensate for the time it takes for all threads
to run and the delay in the system. Every thread can only run once in one session,
a session is from when a new data chunk has been captured until all emit audio
thread has transmitted it.

25

CHAPTER 3. IMPLEMENTATION

Out of synchronization, repair

On a given time interval the emit audio thread collects the sink devices FIFO-
position. When all emit audio thread have collected their sink FIFO-position, the
FIFO-positions are compared with the biggest FIFO-position collected, if the dif-
ference is to big, the sink is marked as might be out of synchronization.

If a specific sink has been marked as might be out of synchronization consecutive
throughout a fixed time period, the sink is marked as out of synchronization, and
will receive extra data next session to compensate for the difference in amount of
data in their FIFO-buffer. The extra data is the same data chunk as it is suppose
to emit (the same data is emitted twice).

In figure 3.5 the repair synchronization mechanism of the system is described.

26

3.6. DEEPER DESCRIPTION OF THE SOURCE DEVICE

Figure 3.5. Synchronization repair mechanism

27

Chapter 4

Results

In this chapter the results of the implementation is discussed, and how the verifica-
tion of it is conducted. The implementation discussed is

• Implementation of synchronized multi-room playback system using Pulseaudio

• Implementation of synchronized multi-room playback system using the AllJoyn
framework

• Implementation of the ALSA sound card.

4.1 Result of the approach of using Pulseaudio for the
synchronized multi-room playback system

In this section the results of the Pulseaudio solution for the synchronized multi-room
playback system is described, two different setups of the system has been tested

• Devices connected trough Ethernet

• Devices connected both trough WIFI and Ethernet

The Pulseaudio implementation was tested using Pulseaudio 2.0 together with
the media player VLC, playing a local audio file. The result of the implementation
was not satisfying enough to be used in the system.

The test system contained two sink devices and one source device. The source
device captured the audio-stream from the media player VLC. The synchronization
within the system was measured by listing with a headphone from each sink device,
and if the audio appeared to be played synchronously, the synchronization was good
enough.

4.1.1 The sink and source devices connected trough Ethernet
The playback of the system appeared to be in good enough synchronization by
listening with a headphone from each sink.

29

CHAPTER 4. RESULTS

4.1.2 The source device connected trough WIFI and the sink devices
connected trough Ethernet

The sinks couldn’t preform playback, the sinks only emitted crackling sounds, it was
clear that a lot of package was lost on the way. The reason for the crackling sound
was because the router could not handle the rate of packages that was emitted from
the source device. The bandwidth for transmitting sound onto the network is not
high, but Pulseaudio emitted data package at a rate that could not be handled by
the router used in the test.

In order to reduce the traffic used for the IP-multicast within the network, the
technique ICMP-snooping was used but with no positive results, the router had the
same problems as before.

The problem with using RTP-multicast module is a known bug, there exist bug
reports tracing back to 2009 with the same bug and is not fixed today [24].

4.2 ALSA sound card

The ALSA sound card has been proven to successfully work together with daugh-
ter cards, it is possible both to use the daughter card as an input source and an
output source. In order to verify the functionality of the sound card three test was
preformed

• Analyzing the I2S data using a signal analyzer

• Listen to the audio, by connecting speakers

• Record input audio from the daughter card

Analyze I2S data, using a signal analyzer

The idea for using a signal analyzer is to verify that the output of the I2S bus is
correct. Given a known signal with expected output, the signal analyzer will analyze
the signal and a human can compare the analyzed signal with the expected result.
If the data matches the expected data, the emitted data is correct.

The signal analyzer used for this test is the Saleale 8 pro [25], which possess the
functionality of analyzing I2S data. The Saleae 8 pro analyzes the I2S clocks and
data line.

A ramp function has been used as the test signal, the ramp functions PCM-
audio sample height starts from zero and is increased by one for each sample until
it reaches 31 then it starts over again. The analyzer will sample the signal and
displays the height of the sample.

The result of the test was a success as seen in figure 4.1 , the analyzed data
matched the excepted output.

30

4.2. ALSA SOUND CARD

Sheet1

Page 1

Time Channel Height
0.00078464 1 0

0.0008073 1 1
0.00082998 1 2
0.00085266 1 3
0.00087534 1 4

0.000898 1 5
0.00092068 1 6
0.00094336 1 7
0.00096604 1 8

0.0009887 1 9
0.00101138 1 10
0.00103406 1 11
0.00105674 1 12
0.00107942 1 13
0.00110208 1 14
0.00112476 1 15
0.00114744 1 16
0.00117012 1 17
0.00119278 1 18
0.00121546 1 19
0.00123814 1 20
0.00126082 1 21
0.00128348 1 22
0.00130616 1 23
0.00132884 1 24
0.00135152 1 25

0.0013742 1 26
0.00139686 1 27
0.00141954 1 28
0.00144222 1 29

0.0014649 1 30
0.00148756 1 31

Figure 4.1. Analyzed data from the signal analyzer.

31

CHAPTER 4. RESULTS

Analyze the audio

To analyze the sound, speakers were connected to the daughter cards analog output,
and the outcoming audio sounded as expected.

Record input from the daughter card

To verify that the input functionality of the daughter card, a cellphone was con-
nected to the daughter card using Bluetooth. The cellphone provided an audio
stream which was recorded by the Raspberry PI. The recorded audio was played
on Raspberry PI trough the analog output and sounded as expected, which verifies
the input functionality of the daughter card.

4.3 Result of the implementation of the synchronized
multi-room playback system using AllJoyn

In this section the results of the implementation using AllJoyn framework is dis-
cussed.

The AllJoyn implementation was tested with the Alljoyn framework version
14.12.00a together with the media player Kodi version 14.1. The test setup, consist
of one source device running the Kodi media player as audio source, the source
device is connected to network trough Wi-Fi, five sink devices is connected to the
system either by WiFi or Ethernet (both techniques are used). In order to evaluate
the synchronization, headphones are connected to the sink devices trough an analog
output on the Raspberry PI.

The sound card used on the Source device is a sound card called snd-aloop [26].
Which is a virtual sound card with two devices. The audio from the media player
Kodi is outputted onto first device as output, the data is mirrored to the second
device as input, which can be captured by the source program.

The AllJoyn implementation also works together with the implemented sound
card described in this thesis, with a cellphone as the audio source connected by
Bluetooth.

4.3.1 Synchronization

The Synchronization is only measured by connecting headphones to each sink device
and pairwise compare the sound. The synchronization appear to be in good enough
synchronization, it is sometimes possible to here a small difference.

Since no effort is made to prevent the system for going out of synchronization,
it is possible to loose the synchronization between sink devices, which must be
repaired. The repair algorithm will emit extra data to the sink device with not
enough data in their FIFO-buffers, the extra data is the same data transmitted

32

4.4. CONCLUSIONS AND FUTURE WORK

twice, which will generate a small crackling sound that is audible, but will repair
the out of synchronization.

4.3.2 Stability

The system has been tested that it can maintain synchronized playback on multiple
sink device for several hours, with good results. The longest test preformed was
eight hours test, the synchronization were manually checked sporadically through
out the test, and if the synchronization was lost, the system recovered from it.

The overall stability of the system is not good, there exist several limitations
that needs to be addressed. The system has a problem with recovering from a lost
sink, if a sink is lost when the system is active, it either freezes or crashes. The
reason for it is that there exist no mechanism for handling a loss of a sink.

4.4 Conclusions and future work
This chapter contains the conclusions about the thesis and future work of the system.

4.4.1 Goals

Mandatory goal
The mandatory goals of the thesis has not been verified completely. The manda-

tory goal was to achieve synchronized playback on at least three sinks using Wi-Fi
and that the synchronization should be within 50 ms, and the possibility to output
the audio trough the daughter card. The goal of achieving synchronized playback on
three sinks was achieved, but the difference in synchronization has not been verified
that it is within 50ms. The synchronization is according to me good enough for a
proof of concept system, since it’s hard to hear difference between different sinks.
The goal of outputting the audio trough the daughter card has been tested with
good results, since both the data is verified and it sounds correct.

Main goal
One of the main goals for this thesis was to achieve synchronized playback on at

least 10 sinks, connected both trough WIFI and Ethernet, and that the synchro-
nization should be within 30 ms. The system has only been tested with five sinks
connected trough both WiFi and Ethernet. No time measurement has been done,
but listening to the sinks reveals it is "good enough", no significant difference could
be heard. The goal of receiving audio from the daughter card is tested with good
results.

4.4.2 Implementation

In this section the thoughts about the two different approaches for the synchronized
multi-room system is discussed.

33

CHAPTER 4. RESULTS

Pulseaudio
The Pulseaudio sound server is not a suitable platform for a synchronized multi-

room playback system, since Pulseaudio emitted data package at a rate that could
not be handled by the router.

Alljoyn
The Alljoyn framework is a suitable platform for developing a synchronized multi-

room playback system, since it has proven to function. The system developed in this
thesis is not stable and lacks crucial functionality, but since it is a proof-of-concept
it proves that is possible to develop a synchronized multi-room playback system
based on AllJoyn framework.

4.4.3 Future Work
This section contains information about my vision for the future of the system and
also suggestions on how to increase the number of sink devices and extra function-
ality.

My future vision for the system

My future vision of the system is

• Increased functionality

• At least 10 sink devices can be connected

• Stable enough to handle connecting and disconnecting sink devices, without
loosing synchronization

My vision of the increased functionality is that the user is able to choose which
sinks that should be connected to a session, the user should be able e.g. to choose
the sink devices located in the kitchen and living room for playback, but not the
bedroom.

Increase the amount of sinks

To increase the amount of sinks that can be connected to the system a smarter
thread handling of the emit audio thread might be needed.

My Idea
The emit audio thread should only run once every session (a session exist from

when a new data-chunk is collected from the sound card until all emit audio thread
has transmitted the data-chunk to its sink device), and when a thread has executed,
the thread shall remain blocked for the remaining part of the session and unblocked
when a new session is started. That approach will guarantee that each thread only
tries to executes once every session.

34

4.4. CONCLUSIONS AND FUTURE WORK

Current implementation
In the current implementation the emit audio thread it is only allowed to execute

its functionality once every session, but it is possible for the thread to try to execute
multiple times during a session. When an emit audio thread has executed, the thread
will be blocked for a time period. After the time period ended, the thread is ready
to execute again, which means that a emit audio thread can try to execute multiple
times during a session, which is a waste of execution time.

Idea to add functionality for choosing witch sinks to include in a session

Every sink device can provide a name within its about message, the source device
can inspect the about message, and can choose to accept or reject a sink based on
the name provided.

35

Appendix A

Appendix

A.1 Run the AllJoyn applications
This section contains information about how to run the system, there exist two
different programs, one source program and one sink program.

The sink program is called SinkService and the source program is called SinkClient.

Start the source and sink

To start the applications the environment variable to the library must first be set:

• ,set the environment variable export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/pi/WD/alljoyn-
14.12.00a-src/services/audio/build/linux/arm/debug/dist/audio/lib

A router node must be started at both the source device and the sink device.
To start the router node:

• change directory:
cd /home/pi/WD/alljoyn-14.12.00a-src/services/audio/build/linux/arm/debug/dist/cpp/bin

• Run the router application
./alljoyn-deamon

To start the sink and source program:

• change directory
cd /home/pi/WD/alljoyn-14.12.00a-src/services/audio/ build/linux/arm/debug
/dist/audio/bin/samples

• Run the source program:
./SinkClient

37

APPENDIX A. APPENDIX

• Run the sink program:
./SinkService

A.2 Compile the code
Compiling the source code:

• change directory:
cd /home/pi/WD/alljoyn-14.12.00a-src/services/audio

• Compile:
scons OS=linux CPU=armWS= off OE-BASE= /usr BINDINGS=cpp CROSS-
COMPILE /usr/bin/arm-linux-gnueabihf-

A.3 Cross-compile the Linux kernel for Raspbian operating
system

This section contains instructions on how to recompile the Linux kernel, which have
been used to build the ALSA sound card described in this thesis.

In order to cross-compile the Raspbian Kernel, a computer running Linux must
be used, the operating system used in this thesis is Ubuntu 14.04 LTS.

Follow the steps described in [27].

38

Bibliography

[1] Ieee code of ethics, [accessed 16-June-2015], 2015. [Online]. Available: http:
//www.ieee.org/about/corporate/governance/p7-8.html.

[2] Opalum — opalums homepage, [Online; accessed 12-June-2015], 2015. [Online].
Available: http://www.opalum.com/.

[3] Pulseaudio — information about pulseaudio, pulseaudio sound server, [Online;
accessed 12-June-2015], 2015. [Online]. Available: http://www.freedesktop.
org/wiki/Software/PulseAudio/About/.

[4] Pulseaudio — pulseaudio network setup, pulseaudio sound server, [Online;
accessed 12-June-2015], 2015. [Online]. Available: http://www.freedesktop.
org/wiki/Software/PulseAudio/Documentation/User/Network/.

[5] Real-time transport protocol, [Online; accessed 12-June-2015], 2015. [Online].
Available: http://tools.ietf.org/html/rfc3550.

[6] Ip multicast, [Online; accessed 12-June-2015], 2015. [Online]. Available: http:
//tools.ietf.org/html/rfc1112.

[7] Internet group management protocol, version 3, [Online; accessed 12-June-
2015], 2015. [Online]. Available: http://tools.ietf.org/html/rfc3376.

[8] User datagram protcol, [Online; accessed 12-June-2015], 2015. [Online]. Avail-
able: https://tools.ietf.org/html/rfc768.

[9] Post- och telestyrelsens författningssamling [swedish], [Online; accessed 12-
June-2015], 2015. [Online]. Available: http://www.pts.se/upload/Foreskrifter/
Radio/ptsfs-2013_4-undantag-tillstand.pdf.

[10] Pulse code modulation picture, [Online; accessed 16-June-2015], 2015. [Online].
Available: https://upload.wikimedia.org/wikipedia/commons/b/bf/
Pcm.svg.

[11] Nyquist frequency, [Online; accessed 12-June-2015], 2015. [Online]. Available:
http://mathworld.wolfram.com/NyquistFrequency.htm.

[12] Why use allseeen, [Online; accessed 12-June-2015], 2015. [Online]. Available:
https://allseenalliance.org/about/why-allseen.

[13] The alljoyn architecture, [Online; accessed 12-June-2015], 2015. [Online]. Avail-
able: https://allseenalliance.org/developers/learn/architecture.

39

BIBLIOGRAPHY

[14] The alljoyn discovery, [Online; accessed 12-June-2015], 2015. [Online]. Avail-
able: https://allseenalliance.org/developers/learn/core.

[15] The alljoyn audio service, [Online; accessed 12-June-2015], 2015. [Online].
Available: https : / / allseenalliance . org / developers / learn / base -
services/audiostreaming/interface.

[16] Raspberry pi 2 model b specification, [Online; accessed 12-June-2015], 2015.
[Online]. Available: https://www.raspberrypi.org/products/raspberry-
pi-2-model-b/.

[17] Kodi media center, [Online; accessed 12-June-2015], 2015. [Online]. Available:
http://kodi.tv/about/.

[18] Information about the media player vlc, [Online; accessed 12-June-2015], 2015.
[Online]. Available: http://www.videolan.org/vlc/.

[19] I2s bus specification, [Online; accessed 12-June-2015], 2015. [Online]. Avail-
able: https://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.
pdf.

[20] Alsa asoc, [Online; accessed 12-June-2015], 2015. [Online]. Available: http:
//www.alsa-project.org/main/index.php/ASoC.

[21] Information about the hifiberry, [Online; accessed 12-June-2015], 2015. [On-
line]. Available: https://www.hifiberry.com/dacplus/.

[22] Information about the chip pcm5102a, [Online; accessed 12-June-2015], 2015.
[Online]. Available: http://www.ti.com/product/pcm5102A.

[23] Information about the audio stream interface, [Online; accessed 12-June-2015],
2015. [Online]. Available: hhttps://allseenalliance.org/developers/
learn/base-services/audiostreaming/interface.

[24] Bug in the pulseaudio rtp-multicast module, [Online; accessed 12-June-2015],
2015. [Online]. Available: https://bugs.launchpad.net/ubuntu/+source/
pulseaudio/+bug/411688.

[25] Information about the signal analyzer saleae 8 pro, [Online; accessed 12-June-
2015], 2015. [Online]. Available: https://www.saleae.com/.

[26] Information about the sound card snd-aloop, [Online; accessed 12-June-2015],
2015. [Online]. Available: http://www.alsa- project.org/main/index.
php/Matrix:Module-aloop.

[27] Cross-compiling the raspbian kernel, [Online; accessed 16-June-2015], 2015.
[Online]. Available: http://noiseisgood.com/howto- easy- i2s- audio-
with-your-raspberry-pi/.

[28] Operating systems for the raspberry pi, [Online; accessed 12-June-2015], 2015.
[Online]. Available: https://www.raspberrypi.org/downloads/.

[29] Information about the raspberry pi, [Online; accessed 12-June-2015], 2015.
[Online]. Available: https://www.raspberrypi.org/help/what- is- a-
raspberry-pi/.

40

BIBLIOGRAPHY

[30] Information about the tas2552 evm, [Online; accessed 12-June-2015], 2015.
[Online]. Available: http://www.farnell.com/datasheets/1853364.pdf.

41

