
IN DEGREE PROJECT TECHNOLOGY,
FIRST CYCLE, 15 CREDITS

, STOCKHOLM SWEDEN 2016

A comparative study between a
simulated annealing and a genetic
algorithm for solving a university
timetabling problem

JONAS DAHL

RASMUS FREDRIKSON

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION

A comparative study between a simulated
annealing and a genetic algorithm for solving a

university timetabling problem

En jämförande studie mellan en algoritm baserad på simulerad glödgning och
en genetisk algoritm för att lösa ett universitetsschemaläggningsproblem

JONAS DAHL
RASMUS FREDRIKSON

Degree Project in Computer Science, DD143X
Supervisor: Dilian Gurov
Examiner: Örjan Ekeberg

CSC, KTH. Stockholm, Sweden. May 11, 2016.

iii

Abstract

The university timetabling problem is an NP-complete problem which schools
all over the world face every semester. The aim of the problem is to schedule
sets of events such as lectures and seminars into certain time slots without
violating numerous specified constraints. This study aimed to automate this
process with the help of simulated annealing and compare the results with a
genetic algorithm.

The input data sets were inspired by the Royal Institute of Technology in
Stockholm. The results showed a great run time difference between the two
algorithms where the simulated annealing performed much better. They also
showed that even though the simulated annealing algorithm was better during
all stages, the genetic algorithm had a much better performance in early stages
than it had in latter. This led to the conclusion that a more optimized, hybrid
algorithm could be created from the two algorithms provided that the genetic
algorithm could benefit from the improvements suggested in previous research.

iv

Sammanfattning

Universitetsschemaläggningsproblemet är ett NP-fullständigt problem som
skolor över hela världen måste hantera innan varje termin. Syftet med proble-
met är att schemalägga händelser, såsom föreläsningar och seminarier, utan att
bryta flertalet fördefinierade villkor.

Denna studie hade som mål att automatisera denna process med hjälp av
algoritmkonstuktionsmetoden simulerad glödgning och sedan jämföra resulta-
tet med en genetisk algoritm. De datamängder som användes är inspirerade av
den verkliga situationen på KTH. Resultaten visar stora tidsmässiga skillnader
där algoritmen baserad på simulerad glödgning går snabbare. De visar dock
också att den genetiska algoritmen har en bättre prestanda i tidigare stadier
än i senare. Detta ledde till slutsatsen att en mer optimerad hybridalgoritm
kan skapas av de två algoritmerna, förutsatt att den genetiska algoritmen kan
dra nytta av förbättringar som föreslagits i tidigare forskning.

Contents

1 Introduction 1
1.1 Purpose . 2
1.2 Problem statement . 2

1.2.1 Limitations . 2
1.3 Outline . 3

2 Background 5
2.1 The university timetabling problem 5

2.1.1 Time complexity . 5
2.2 Constraint based algorithms . 5

2.2.1 Three different classes of constraint based algorithms 6
2.3 Meta-heuristic algorithms . 6

2.3.1 Genetic algorithm . 7
2.3.2 Simulated annealing . 7

3 Method 9
3.1 Test approach . 9

3.1.1 Environment . 9
3.2 Algorithms . 10

3.2.1 Data structures . 10
3.2.2 Genetic algorithm . 10
3.2.3 Simulated annealing . 11

3.3 Data sets . 12
3.4 Constraints . 13

3.4.1 Assessment . 14

4 Results 15

5 Discussion 21
5.1 Time complexity . 21
5.2 Main differences between the two algorithms 21

5.2.1 Basic local search may be sufficient 22
5.3 Reliability . 22
5.4 Improvements . 22

v

vi CONTENTS

5.4.1 Refined fitness function . 22
5.4.2 Soft constraints . 23

6 Conclusions 25

Bibliography 27

A Source code 29

B Data sets 31
B.1 XL - Extra large . 31
B.2 L - Large . 33
B.3 M - Medium . 35
B.4 S - Small . 36
B.5 XS - Extra small . 37

Chapter 1

Introduction

Each day we face the problem of getting our schedule to align with other people’s.
Scheduling is in general a very difficult problem that can be found everywhere: at
universities and high schools, in public transport, at hospitals and a vast number
of other institutions.

Universities all over the world need to solve the scheduling problem at least once
before each semester. If done manually, massive amount of time need to be spent
on making a suitable schedule. The schedule needs to fulfill several constraints.
Common constraints are that only one teacher can teach one class at one specific
time, a room can only be occupied by one class at a time and students should not
have more than one class each time period. These constraints are often divided into
hard and soft constraints. [4] The hard constraints are not allowed to be violated,
while the soft constraints may be violated, but with the setback of a less optimal
schedule.

Due to the huge amount of time and money spent on scheduling manually, there
have been numerous attempts to automate this task with the help of computers.
Research has shown that this problem is most commonly NP-complete [2], however
this of course depends on how many and how complex the constraints are. Due to
the difficulty of the problem and the many different constraints, there is no general
algorithm which will find the optimal solution for every timetable problem.

To get around this problem, several optimization algorithms have been imple-
mented. These algorithms are mostly meta-heuristic and range from local search al-
gorithms like tabu search [14] and simulated annealing [9] to evolutionary algorithms
like particle swarm optimization [5] and genetic algorithms [13]. The reason for the
many different algorithms being implemented is because of the complex nature of
the problem. Almost every school has different constraints and pre-conditions which
need to be fulfilled. The evolutionary algorithms mostly performs better in the early
stages of the process whereas the local search algorithms performs better in the late
stages. This has led to the creation of many hybrid algorithms [11] which use evo-
lutionary algorithms to narrow down the search space and local search algorithms
to find the best solution in that space.

1

2 CHAPTER 1. INTRODUCTION

The original genetic algorithm was created by John Holland [6] in the early
1970’s. The genetic algorithm is inspired by the evolution of life and was made to
mimic some of life’s evolutionary processes. It is an adaptive heuristic algorithm
which uses an intelligent random search to find a solution to a problem. The in-
telligent random search is however by no means random. Instead it uses previous
acquired information to find a more suitable candidate solution in the search space,
thus fulfilling Darwin’s quote "Survival of the fittest".

The simulated annealing algorithm construction method was first proposed in
1983. [9] Annealing is a process in metallurgy where a metal is slowly cooled to
make it stronger by reaching a low energy state. Based on this process the simu-
lated annealing algorithm finds a solution to a problem. The simulated annealing
algorithm is like the genetic algorithm also a heuristic algorithm.

Both algorithms have already previously been implemented and have successfully
solved the university timetabling problem, for example by Andersson [1] as well as
Pertoft and Yamazaki [13].

1.1 Purpose
Previous research has shown that evolutionary algorithms are good for exploring the
whole search space. [7] As this might be the case for timetabling problems, a genetic
algorithm is interesting for a comparison. Renman and Fristedt [14] presents a tabu
search that does not perform as good as the genetic algorithm they compared it with.
They do however state that there are other kinds of local searches, like simulated
annealing, that might perform better than the genetic algorithm. Therefore, this
study compares a simulated annealing algorithm with a genetic algorithm.

Hybrids of several different algorithms are commonly used nowadays to solve the
timetabling problem. [14] Therefore it would be interesting to investigate whether
or not the two algorithms would perform better as a hybrid than by themselves.

1.2 Problem statement
The main study will be to investigate which of the genetic algorithm constructed by
Pertoft and Yamazaki [13] and the simulated annealing based algorithm constructed
by the authors of this report, is fastest when executed on five different data sets.

The study will also investigate the potential benefit of creating a hybrid of the
two algorithms.

1.2.1 Limitations

This study does not attempt to compare genetic algorithms with simulated anneal-
ing algorithms in general. The result of this study focuses on the differences between
the two specific implementations presented in chapter 3. However, the conclusions
can be used as an indication of how well implementations based on these heuristics

1.3. OUTLINE 3

will perform. There are also other types of algorithms, for example hybrid solvers
[11], that combine solution methods to create faster and better algorithms. This
study does only compare two specific kinds of solvers.

The data sets used as input to the algorithms are similar to the data sets used
by Pertoft and Yamazaki [13], extended with a fifth data set inspired by the real
course scheduling problem at the Royal Institute of Technology, KTH.

The algorithms use a common fitness function and the problem will be considered
solved when the fitness value of a solution has reached 0.

The genetic algorithm that originally was written by Pertoft and Yamazaki [13],
does not take soft constraints into consideration. Therefore, the simulated annealing
algorithm does not implement these either. Essentially, the algorithms share fitness
function to make them comparable. Due to this fact, an optimal solution will not
be found, only an accepted.

1.3 Outline
The report is divided into six chapters. The first chapter introduces the subject,
the problem statement and the purpose of the study. In chapter 2, Background,
the university timetabling problem and the two different algorithms are described
in general, whereas the third chapter, Method, consists of how the two specific
algorithms are implemented. The results are shown in the fourth chapter and are
discussed in the fifth, Discussion. Lastly the results are concluded in the final
chapter, Conclusion.

Chapter 2

Background

This chapter starts with a presentation of the university timetabling problem, which
is followed up by a section explaining constraints and three different classes of
algorithms. Two algorithms for solving the university timetabling problem are lastly
presented.

2.1 The university timetabling problem

The university timetabling problem is as aforementioned in the introduction, an
NP-complete problem. The problem could be explained as followed: given a certain
set of data and constraints a solution should be made which violates as few of the
constraints as possible. The data set usually consists of the teachers, students and
rooms and their capacity on the school. A room could also have certain abilities.
For example, only laboratories can hold laboratory classes.

2.1.1 Time complexity

When the density of events increases and the amount of time slots are constant,
the run time is increased more than linearly. Since the data sets and constraints
differ so much between schools and because of the time complexity, an effective,
general algorithm solver is infeasible to create. The problem is, however, considered
NP-complete when using non-trivial constraints. [2]

2.2 Constraint based algorithms

Constraints can be divided into soft and hard constraints. [4] Hard constraints
cannot be violated and should only be vital such as that a teacher can only have
one class at a time and a room cannot hold more people than its capacity. Soft
constraints consist of less important constraints such as: a student should not have
long free time between classes or too many classes the same day. These constraints

5

6 CHAPTER 2. BACKGROUND

can be violated in favor of not violating a hard constraint, however with the result
of a less optimal solution.

2.2.1 Three different classes of constraint based algorithms

There are three main classes of university timetabling algorithms according to Lewis
[10]: “one-stage optimisation algorithms, two-stage optimisation algorithms, and al-
gorithms that allow relaxations”. Each of the algorithm types has its own advantages
and disadvantages, and they have different efficiency for different kinds of problems.
The algorithm that allows relaxation is redundant for this study and is therefore
not described.

One-stage algorithms

The one-stage algorithms have one clear goal and a function returning a value of
how close to the goal the solution is. Therefore, these algorithms can break both
hard and soft constraints. High values are assigned to the hard constraints to
avoid breaking them, thus forcing the algorithm to choose a solution which at worse
only breaks the soft constraints. This category contains simple simulated annealing
attempts and local search implementations, provided they are made in a way so
that they do not start with a valid solution. [10]

Two-stage algorithms

The two-stage algorithms have two phases. In the first, only hard constraints are
taken into account. After the first stage, a valid solution will exist. However, the
solution found after stage one is not guaranteed to be optimized at all. The second
stage is about refining the solution from the first stage to make it closer to the
optimal solution. This stage also uses a function as in one-stage algorithms, but do
not need the hard constraints to be weighted with a very high weight to be taken
into account. This is because the solution during stage two only will be refined, and
never invalid. The simulated annealing can be used as an example in this category
too, if a valid solution is created before running the actual annealing. [10]

2.3 Meta-heuristic algorithms

Many different algorithms have been constructed to solve the university timetabling
problem. These are most commonly meta-heuristic algorithms using the power of
evolution such as the genetic algorithm or local search such as simulated annealing.
These kinds of algorithms calculate an approximate solution rather than the optimal
one. This is to severely decrease the run time of the program and still get an
acceptable solution.

2.3. META-HEURISTIC ALGORITHMS 7

2.3.1 Genetic algorithm

A genetic algorithm starts with a set of random solutions to the problem. The initial
solution is randomized and therefore crude. Each solution is called a chromosome
and consists of several genes which are values corresponding to certain properties in
the solution. These genes can then be used to control the fitness of the chromosome.
Based on the chromosomes’ fitness, they are crossed with each other to create a new
offspring. These offsprings are then randomly mutated to create a bigger search
space. When an offspring matches a specified fitness condition, this means an
acceptable solution has been found and the algorithm terminates. [12] There are
two main stages in the genetic algorithm: the selection and the crossover.

Selection

When to select which chromosomes are to be crossed there are a few different
ways. Some of these are elitism selection, roulette-wheel selection and tournament
selection. [13]

Crossover

It may vary which genes are carried over when two chromosomes are being crossed.
To decide this there are few different methods. Some of them are single point
crossover, two point crossover and uniform crossover. [13]

2.3.2 Simulated annealing

Simulated annealing is based on neighborhood search with the special property of
sometimes accepting a worse solution to avoid getting caught in a local optimum
and instead finding the global one. [8] The idea of simulated annealing is inspired
by the annealing process in metal work. The colder a metal is, the more stable its
shape is. To change the shape of the metal it is heated up and then processed while
it is cooling down, ultimately freezing its shape until reheated.

Simulated annealing works in a similar way, where it has a temperature vari-
able controlling the heating process. The temperature variable is initially set to a
high value and is then slowly decreased while the algorithm runs. The higher the
temperature is, the more probable the algorithm is to choose a worse solution than
the current one. This gives the algorithm the chance of avoiding getting stuck in a
local optimum early on. As the temperature decreases, so does the chances of the
algorithm choosing a worse solution, which in the end leads to a local search in a
much more narrow search space and hopefully finding a, close to, optimal solution.

Algorithms using only downhill search have a very large chance of getting stuck
in a local optimum, whereas a better global optimum might be found just a few
neighbors away. The graduated cooling process terminates this problem effectively
and makes it much better than the downhill algorithms on large search space with
numerous local optima. [9]

8 CHAPTER 2. BACKGROUND

Acceptance function

For the algorithm to be able to determine whether or not it should accept a worse
solution, an acceptance function is implemented. This function will return a value
between 0 and 1, and represents the probability of choosing the newly created
solution.

Commonly, the acceptance function will return a greater value when the tem-
perature is high, and a lower value when the temperature is low. It will also depend
on the difference between the two solutions. If the new solution is far worse than the
current, the acceptance function will return a small value. The acceptance function
should also immediately accept a better solution.

Process

A general description of the simulated annealing process can be viewed as followed:

1. A random solution, a specified temperature and a cool down rate is initially
set as start values.

2. The algorithm iterates until a stop condition is met. This condition could be
based on a time limit, the finding of an acceptable solution or the temperature
reaching zero.

3. After each iteration the solution will be altered in some way.

4. The algorithm will then compare the current and the altered solution and
choose a new current solution based on the outcome of the acceptance function.

5. Lastly the temperature will decrease by the value of the specified cool down
rate and a new iteration will commence.

Values

Depending on how high the initial temperature and cool down rate variables are
set, the algorithm will behave differently. If the initial temperature is high the more
likely the algorithm is to choose a worse solution. If the initial temperature is set
close to zero the algorithm will likely only choose better solutions and therefore
running the risk of only finding a local optimum.

If the cool down rate is high, less iterations will be made and the chance of finding
the global optimum will be lowered. The frequency of the algorithm choosing worse
solutions will also be drastically lowered each iteration since the temperature will
be lowered more rapidly.

Chapter 3

Method

This chapter describes the methodology of the comparative study. It includes a
brief description of the algorithm implementations used for the test, how the data
set was chosen and which constraints were used.

3.1 Test approach

A test was performed by providing the data set to the algorithm as a file, and run-
ning the algorithm in the test environment. The time was measured in milliseconds
by the test suite Java program, which can be found in appendix A. When finished,
the test suite printed the total time elapsed by comparing the system time with the
time stamp saved when starting the test. The algorithms were considered finished
when the fitness level had reached 0. The fitness level function can be found in
section 3.4.1.

A run time limit of 550 seconds was introduced since the genetic algorithm could
not find a solution in a reasonable amount of time for the XL data set.

To compare the algorithms the problem was solved 20 times per data set and
algorithm. The two algorithms runs were plotted on separate bar charts and the
median run time was then plotted into separate diagrams together with the standard
deviation.

3.1.1 Environment

The algorithms were run on an HP Envy 15 Notebook PC, with a 2.50 GHz AMD
A10 processor with 8 GB RAM. The only program running at the time was the
Command Prompt running the implemented Java files and the internet connection
was disabled. The algorithms were run one at a time, with different data sets under
equal conditions.

9

10 CHAPTER 3. METHOD

3.2 Algorithms

The source code for the test suite and the algorithms implemented in Java can be
found in appendix A. The algorithms are here explained in pseudo code.

3.2.1 Data structures

The data structures used by Pertoft and Yamazaki [13] were reused for the simulated
annealing algorithm. A solution consisted of a list of rooms and the timetable for
each room. These room timetables were represented as matrices with columns for
each day and rows for each time slot that day. The matrix contained integers
representing the identification number of the event for that time slot.

When creating a new solution, all the room matrices were copied element by
element. This can be done in a time, linear to the amount of time slots.

3.2.2 Genetic algorithm

The genetic algorithm was implemented by Pertoft and Yamazaki [13] and uses
single point crossover and roulette-wheel selection. The algorithm was optimized
by Pertoft and Yamazaki [13] with a weighted fitness function, since some of the
hard constraints were found to be more often violated in the beginning than others.
In general terms, it can be described with the pseudo code in algorithm 1, quoted
from the study made by Pertoft and Yamazaki [13].

The genetic algorithm was run with the same start condition as Pertoft and
Yamazaki [13] used, which was a population size of 100 timetables and a mutation
rate of 6 %. These conditions were chosen since Pertoft and Yamazaki [13] did
extensive testing and found out these were the best.

Algorithm 1 Genetic algorithm.
function Find_Best_GA

use a randomized population and evaluate fitness of its chromosomes
while most fit individual is not fit enough do

while offspring population is not full do
select two parent chromosomes with roulette selection
perform single point crossover with the two parent chromosomes
mutate offspring chromosome
repair offspring chromosome
evaluate fitness of offspring chromosome
add offspring chromosome to offspring population

end while
merge the parent and offspring populations
delete the rest of the chromosomes

3.2. ALGORITHMS 11

end while
return most fit chromosome from population

end function

3.2.3 Simulated annealing
The concept of simulated annealing was followed strictly when constructing the
algorithm shown in algorithm 2. A random solution was generated and start (Tstart)
and final (Tfinal) temperatures were given, to create an interval. The cooling rate k
was also provided. The algorithm iterates over the temperatures in the interval, and
cools it with a factor k each time. A modified solution is produced, and compared
to the current.

The acceptance function shown in equation 3.1 was used. It was chosen due to
it being commonly used [8]. Enew represents the fitness of the new solution, Eold

the fitness of the old solution and T the temperature.

e
Enew−Eold

T (3.1)
For this study the values in table 3.1 were used as this created an even spread

and right amount of iterations while still being time efficient.

Parameter Value
Tstart 100
Tfinal 0.7

k 0.9995
Table 3.1. The values provided for the simulated annealing algorithm.

As each solution is its own Java object instance, the timetable will be copied
each iteration. This can be done with a time consumption linear to the amount of
time slots.

Algorithm 2 Simulated annealing.
1: function Find_Best_SA(solbad, Tstart, Tfinal, 0 < k < 1)
2: solcurrent ← solbad

3: solbest ← solbad

4: T ← Tstart

5: while T > Tfinal do
6: solnew ← MODIFY(solcurrent)
7: if accept(energy(solcurrent), energy(solnew), T) > rand(0,1) then
8: solcurrent ← solnew

9: end if
10: if energy(solnew) > energy(solbest) then
11: solbest ← solnew

12: end if

12 CHAPTER 3. METHOD

13: T ← T ∗ k
14: end while
15: return solbest

16: end function
17:
18: function accept(Eold, Enew, T)
19: if Enew ≥ Eold then
20: return 1
21: else
22: x← Enew−Eold

T
23: return ex

24: end if
25: end function
26:
27: function modify(solution)
28: return A randomly modified solution, where two time slots switched events
29: end function

3.3 Data sets
The algorithms were run on five different data sets. Four of them were the same
as the ones used by Pertoft and Yamazaki [13]. The XL data set was created with
inspiration from the real situation at the Royal Institute of Technology, KTH.

The data was formatted according to figure 3.1. Each section started with an
octothorpe (#) followed by the name of the section. Each section then contained a
number of entries for all the different properties.

1 # ROOMS
2 RoomName RoomCapacity RoomType
3 . . .
4 # COURSES
5 CourseName NumOfLectures NumOfLessons NumOfLabs
6 . . .
7 # LECTURERS
8 LecturerName CourseA CourseB
9 . . .

10 # student groupS
11 student groupName NumOfStudents CourseA CourseB
12 . . .

Figure 3.1. The format of the data set used by the algorithms.

3.4. CONSTRAINTS 13

The different data sets are summarized in Table 3.2 and can be found in whole in
appendix B. The smaller data sets have less rooms, courses, lecturers and students.
However, the event density, the ratio between the number of events and time slots,
is kept between 0.41 and 0.54 due to the changing amount of time slots.

Input Data File XS S M L XL
Lecture Rooms 1 2 2 3 4
Lesson Rooms 2 3 5 6 10
Lab Rooms 2 3 5 7 11
Total number of rooms 5 8 12 16 25
Courses 6 12 15 21 29
Lecturers 4 9 12 15 21
Student Groups 3 6 8 12 21
Total Events 41 70 115 159 293
Total Time slots 100 160 240 320 540
Event Density 0.41 0.44 0.48 0.50 0.54

Table 3.2. Summary of the different test data sets, inspired by the real scheduling
problem at the Royal Institute of Technology, KTH.

3.4 Constraints
The problem is considered solved when the following criteria are satisfied:

• Every event in every course is assigned a time slot.

• All events are in the right kind of room.

• No student group has two events at the same time.

• No lecturer has two events at the same time.

• No two events are scheduled in the same room at the same time.

• No event is in a room with less capacity than the number of students at the
event.

These constraints are referred to as hard constraints, which means that they
are absolutely necessary for the solution to be valid. This is in contrast to soft
constraints, which are not taken into consideration in this report.

14 CHAPTER 3. METHOD

3.4.1 Assessment
To grade the solution, a fitness level function, f , was used.

f(x1, ..., x4) = 2x1 + x2 + 4x3 + 4x4 (3.2)

In equation 3.2, x1, ..., x4 are as in table 3.3.

variable meaning
x1 number of double booked student groups
x2 number of double booked lecturers
x3 number of room capacity breaches
x4 number of room type breaches

Table 3.3. Description of the variables used in equation 3.2.

The reason why some constraints are being weighted more than others is because
Pertoft and Yamazaki [13] noticed that their algorithm performed faster if these
constraints were solved early. By increasing their weight, both algorithms will avoid
these violations early on, thus making their fitness value increase faster.

Chapter 4

Results

The results from the genetic algorithm can be found in figure 4.1. Notice the
logarithmically scaled y-axis. Each bar represents a test run, with run time on
the y-axis. Each cluster represents a data set. The XS data set produced a valid
solution in less than 0.5 seconds for all runs, while the S data set had two runs that
took almost doubled time compared to the others.

Figure 4.1. The results from the genetic algorithm on all timetables.

As can be seen in figure 4.1, the M, L and XL data sets need much more time
to produce a solution.

When the XL data set was run with the genetic algorithm, no solution had been
found after 550 seconds on any of the 20 runs. The fitness level had approximately
been improved from −1076 to −69.

15

16 CHAPTER 4. RESULTS

The simulated annealing results can be found in figure 4.2. This chart also has a
logarithmically scaled y-axis, however the chart in figure 4.1 has a ten times higher
value on the y-axis. The bars and clusters still represent run time and data sets.

As can be seen in figure 4.2, the spread between runs is noticeable. However, the
time consumption is for all test runs smaller than the genetic algorithm’s respective
test runs.

Figure 4.2. The results from the simulated annealing on all timetables.

The median time consumption and the standard deviation for the different
timetables were plotted in figure 4.3 and figure 4.4. For comparative reasons, the XL
runs were plotted in the genetic algorithm chart, even though they did not produce
a valid solution. Both charts are drawn with a logarithmically scaled y-axis. The
genetic algorithm overall performs worse than the simulated annealing algorithm
with respect to time consumption.

17

Figure 4.3. The median time consumption and standard deviation of the genetic
algorithm on each of the timetables. A valid solution for the XL timetable was not
produced.

Figure 4.4. The median time consumption and standard deviation of the simulated
annealing on each of the timetables.

18 CHAPTER 4. RESULTS

An overview over the fitness improvement of one test run on the L timetable
can be found in figure 4.5 and figure 4.6, for each algorithm. The genetic algorithm
improved the solution quickly in the early stage of the run, and then slowly com-
pleted the solution. The simulated annealing based algorithm improved the fitness
more evenly over the run. Noticeable is also the scale of the x-axis.

Figure 4.5. The genetic algorithm’s fitness of the best solution found over time.

Figure 4.6. The simulated annealing’s fitness of the best solution found over time.

19

The fitness value of the current solution for one test run on the L timetable with
simulated annealing was plotted in figure 4.7. An increasing segment indicates that
a better solution was accepted, and a decreasing segment indicates that a worse
solution was accepted.

Figure 4.7. The simulated annealing’s fitness of the current solution over time.

Chapter 5

Discussion

This chapter presents an analysis of the time consumed by the algorithms, fol-
lowed by the differences between them. After that, the reliability of the study is
commented, and some possible improvements are suggested.

5.1 Time complexity
The time consumed by the algorithms for solving the same problems increased more
than linear when adding events and time slots to the data set. However, the genetic
algorithm showed to grow faster when the input data increased.

What is interesting is the relatively rapid increase in fitness in the beginning of
the genetic algorithm. The simulated annealing algorithm is however still better for
every given time interval. In their report, Pertoft and Yamazaki [13] makes a few
proposals to further improve their algorithm.

Given that these improvements would indeed result in a more optimized genetic
algorithm, a hybrid of the two algorithms could turn out to perform better than each
alone. This is due to their very different behaviors, where the genetic algorithms
performs best in the early stages and the simulated annealing in the final stages.
By integrating the two, the genetic algorithm would be used in the early stages to
narrow down the search space and the simulated annealing algorithm would be used
to find the best solution in that search space.

This hybrid will of course only work if it is possible to improve the genetic
algorithm, but due to the scope of this study the suggestions given by Pertoft and
Yamazaki [13] have not been implemented.

5.2 Main differences between the two algorithms
The reason for the difference in time complexity between the two algorithms are
most probably due to their different implementations. The genetic algorithm creates
a large amount of bad solutions, and crosses them with each other to finally get
a good one. There is, however, no assurance that the solution will get acceptable

21

22 CHAPTER 5. DISCUSSION

fast, or even ever. This randomness is most likely the reason why there are two
runs which took twice the amount of time in the S data set in figure 4.1.

The simulated annealing on the other hand, is steering its way to the final
solution by forcing only better solutions to be produced when it approaches the
end. The partial solutions are randomized over the whole search space, which the
genetic algorithm only does in special cases.

The genetic algorithm written by Pertoft and Yamazaki [13] clearly performs
worse than the simulated annealing method in these five test cases.

5.2.1 Basic local search may be sufficient

The study found the concept of these advanced meta-heuristics quite excessive.
When running the simulated annealing, a random neighboring time slot is picked
and substituted. Figure 4.7 does however show that almost every substitution of
neighbors to a free time slot is improving the fitness. Therefore, a local search over
these time slots would not get stuck into too many local optima. When the event
density is around and below 50 %, as in these tests, these two algorithms may be
too sophisticated. The computational power needed to produce and maintain all
the instances of solutions quickly becomes unmanageable.

5.3 Reliability

The tests are not very lifelike, due to the vast number of free time slots available
when the problem is solved. The closest data set to the situation is the XL one,
which the simulated annealing algorithm handles quite well. This shows that the
most benefit is obtained when there are few possible moves that do not increase
fitness, where there are many local optima.

5.4 Improvements

There are some different improvements that can be made, both to the simulated
annealing algorithm specifically and the university timetabling problem solving in
general, in order to make them better. These are presented in this section.

5.4.1 Refined fitness function

The fitness function presented by Pertoft and Yamazaki [13] is optimized in order
to make the genetic algorithm perform better. This makes the algorithm prioritize
some properties before others. Since the same fitness function is used for the sim-
ulated annealing, these properties will also be prioritized by it. These are however
different algorithms that are working differently. Therefore, a more detailed study
of the impact of the fitness function can be done to improve the overall results.

5.4. IMPROVEMENTS 23

5.4.2 Soft constraints
In the real world an algorithm which only returns a fair schedule would not be used.
To be relevant it would also need to evaluate constraints which are not vital, but
which should still be fulfilled if possible. These are the soft constraints as mentioned
in chapter 2. To fulfill these objectives our simulated annealing algorithm would
need an implementation of soft constraints.

These constraints could be implemented in the two ways described in chap-
ter 2.2.1: either as a one stage or a two stage algorithm. If implemented as a
two stage algorithm a hard constraint solution would first need to be found by the
algorithm. By then using a fitness function which gives positive values if a soft
constraint is fulfilled, the hard constraint solution could be optimized further.

If the algorithm was going to be designed as a one stage algorithm, both of the
soft and hard constraint would need to be evaluated at the same time. To avoid
getting a solution which fulfills soft constraints but violates hard constraints, the
hard constraint fitness function would have to return higher penalty values than
the soft constraint fitness function. This would result in that a breaking of a hard
constraint would be such a high negative value that a fulfillment of several soft
constraints would not nearly balance the end value. For future work, inspiration
can be taken from Bogdanov [3], who presents a solution using this method.

Chapter 6

Conclusions

The implemented simulated annealing algorithm performs much better than the
genetic algorithm by Pertoft and Yamazaki [13], with respect to time consumption
in the context of this problem. The genetic algorithm performs relatively better
than the simulated annealing in the early stages, whereas the latter performs better
in the final stages. Increasing the event density and number of time slots results
in a seemingly exponential time increase for both of the algorithms, which was to
be expected since the university timetabling problem in general is NP-complete.
Possible future work would be to improve the genetic algorithm in accordance to
Pertoft and Yamazaki [13], to complement the simulated annealing thus creating a
more optimized, hybrid algorithm.

25

Bibliography

[1] H. Andersson. “School Timetabling in Theory and Practice”. Bachelor’s thesis.
Umeå: Umeå Universitet, 2015.

[2] Y. Awad, A. Badr, and A. Dawood. “An evolutionary immune approach for
university course timetabling”. In: IJCSNS International Journal of Computer
Science and Network Security 11.2 (2011), pp. 127–135.

[3] D. Bogdanov. “A Comparative Evaluation of Metaheuristic Approaches to
the Problem of Curriculum-Based Course Timetabling”. Bachelor’s thesis.
Stockholm: Royal Instititue of Technology, KTH, 2015.

[4] E. Burke et al. “Automatic University Timetabling: The State of the Art”.
In: The computer journal 40.9 (1997), pp. 565–571.

[5] R. Chen and H. Shih. “Solving University Course Timetabling Problems Using
Constriction Particle Swarm Optimization with Local Search”. In: Algorithms
2013.6 (2013), pp. 227–244.

[6] N. Dulay. Genetic Algorithms. Visited 2016-03-27. 1999. url: http://www.
doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1.html.

[7] M. Fesanghary et al. “Hybridizing harmony search algorithm with sequential
quadratic programming for engineering optimization problems”. In: Comput.
Methods Appl. Mech. Engrg doi:10.1016/j.cma.2008.02.006 (2008).

[8] L. Jacobson. Simulated Annealing for Beginners. Visited 2016-03-17. 2013.
url: http : / / www . theprojectspot . com / tutorial - post / simulated -
annealing-algorithm-for-beginners/6.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated
Annealing”. In: Science 220.4598 (1983), pp. 671–680.

[10] R. Lewis. “A survey of metaheuristic-based techniques for university timetabling
problems”. In: OR Spectrum 30 (2007), pp. 167–190.

[11] Z. Lü and J. Hao. “Solving the Course Timetabling Problem with a Hybrid
Heuristic Algorithm”. In: AJMSA LNAI 5253 (2008), pp. 262–273.

[12] M. Mitchell. An Introduction to Genetic Algorithms. Cambridge, MA: MIT
Press, 1996. isbn: 9780585030944.

27

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1.html
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1.html
http://www.theprojectspot.com/tutorial-post/simulated-annealing-algorithm-for-beginners/6
http://www.theprojectspot.com/tutorial-post/simulated-annealing-algorithm-for-beginners/6

28 BIBLIOGRAPHY

[13] J. Pertoft and H. V. Yamazaki. “Scalability of a Genetic Algorithm that solves
a University Course Scheduling Problem Inspired by KTH”. Bachelor’s thesis.
Stockholm: Royal Instititue of Technology, KTH, 2014.

[14] C. Renman and H. Fristedt. “A comparative analysis of a Tabu Search and
a Genetic Algorithm for solving a University Course Timetabling Problem”.
Bachelor’s thesis. Stockholm: Royal Institute of Technology, KTH, 2014.

Appendix A

Source code

The Java source code for the implemented algorithms can be found in the public
GitHub repository found at https://github.com/jonasdahl/algorithm-comparison.

29

https://github.com/jonasdahl/algorithm-comparison

Appendix B

Data sets

B.1 XL - Extra large

1 # ROOMS
2 Q1 250 0
3 D1 200 0
4 D2 50 1
5 D3 50 1
6 D45 40 1
7 D46 40 1
8 D31 40 1
9 D32 40 1

10 E1 350 0
11 E35 40 1
12 E36 40 1
13 E51 40 1
14 E52 40 1
15 F1 300 0
16 Q1 300 0
17 ALBA 400 0
18 TEXC 60 2
19 SPEL 40 2
20 SPOR 30 2
21 MUSI 40 2
22 ROD 30 2
23 ORA 30 2
24 VIO 40 2
25 GRA 30 2
26 KAR 30 2
27 MAG 30 2
28 BRU 30 2
29 # COURSES
30 CALC 2 1 0
31 JAVA 1 0 1

31

32 APPENDIX B. DATA SETS

32 MULT 2 0 1
33 CTEC 1 2 0
34 CSEC 0 1 1
35 SCON 1 1 1
36 DIGI 1 0 1
37 ENGM 1 0 1
38 ALGD 1 1 0
39 ELEC 1 0 0
40 PROB 1 0 1
41 OPER 1 1 0
42 TERM 2 0 1
43 DIFF 2 1 0
44 MECH 0 1 2
45 QUAN 1 1 0
46 OOPC 1 1 1
47 TCHE 2 1 0
48 PERS 1 0 0
49 REAC 1 0 2
50 POLY 1 1 0
51 MAGN 2 2 0
52 POLT 3 2 1
53 NUMD 2 2 3
54 TERT 2 0 0
55 DDED 3 2 0
56 MAGA 3 1 0
57 NUMA 3 1 3
58 TERA 3 1 0
59 # LECTURERS
60 SVEN CALC MULT
61 BERT JAVA SCON OOPC
62 KARL CSEC
63 GUNN CTEC
64 BERI DIGI
65 ERIK DIFF POLT
66 SARA OPER
67 OLLE ENGM ELEC
68 BENG ALGD
69 JUDI TERM REAC
70 MANS MECH MAGN
71 MICH QUAN
72 PELL PROB
73 DARI TCHE POLY
74 MORT PERS
75 LEFT TERA
76 PATR TERT
77 MIHA DDED
78 DILI NUMA
79 CGRI NUMD
80 STEF MAGA

B.2. L - LARGE 33

81 # STUDENTGROUPS
82 COMP_1 200 CALC JAVA
83 COMP_2 120 MULT CTEC
84 COMP_3 70 CSEC SCON
85 INFO_1 200 DIGI ENGM
86 INFO_2 100 ALGD ELEC
87 INFO_3 50 PROB OPER
88 PHYS_1 200 CALC TERM
89 PHYS_2 180 DIFF MECH
90 PHYS_3 100 QUAN OOPC
91 CHEM_1 150 CALC TCHE
92 CHEM_2 130 PERS DIFF
93 CHEM_3 100 REAC MAGN
94 DDOS_1 150 POLY POLT
95 DDOS_2 140 NUMD TERT
96 DDOS_3 120 MAGA DDED
97 BIZZ_1 150 POLY POLT
98 BIZZ_2 140 TERA
99 BIZZ_3 120 NUMA

100 MIZZ_1 50 POLY MECH
101 MIZZ_2 40 CALC
102 MIZZ_3 20 ELEC

B.2 L - Large

1 # ROOMS
2 D1 200 0
3 D2 50 1
4 D3 50 1
5 D45 40 1
6 D46 40 1
7 E1 350 0
8 E35 40 1
9 E36 40 1

10 F1 300 0
11 SPEL 40 2
12 SPOR 30 2
13 MUSI 40 2
14 ROD 30 2
15 ORA 30 2
16 VIO 40 2
17 GRA 30 2
18 # COURSES
19 CALC 2 1 0
20 JAVA 1 0 1
21 MULT 2 0 1
22 CTEC 1 2 0

34 APPENDIX B. DATA SETS

23 CSEC 0 1 1
24 SCON 1 1 1
25 DIGI 1 0 1
26 ENGM 1 0 1
27 ALGD 1 1 0
28 ELEC 1 0 0
29 PROB 1 0 1
30 OPER 1 1 0
31 TERM 2 0 1
32 DIFF 2 1 0
33 MECH 0 1 2
34 QUAN 1 1 0
35 OOPC 1 1 1
36 TCHE 2 1 0
37 PERS 1 0 0
38 REAC 1 0 2
39 POLY 1 1 0
40 # LECTURERS
41 SVEN CALC MULT
42 BERT JAVA SCON OOPC
43 KARL CSEC
44 GUNN CTEC
45 BERI DIGI
46 ERIK DIFF
47 SARA OPER
48 OLLE ENGM ELEC
49 BENG ALGD
50 JUDI TERM REAC
51 MANS MECH
52 MICH QUAN
53 PELL PROB
54 DARI TCHE POLY
55 MORT PERS
56 # STUDENTGROUPS
57 COMP_1 200 CALC JAVA
58 COMP_2 120 MULT CTEC
59 COMP_3 70 CSEC SCON
60 INFO_1 200 DIGI ENGM
61 INFO_2 100 ALGD ELEC
62 INFO_3 50 PROB OPER
63 PHYS_1 200 CALC TERM
64 PHYS_2 180 DIFF MECH
65 PHYS_3 100 QUAN OOPC
66 CHEM_1 150 CALC TCHE
67 CHEM_2 130 PERS DIFF
68 CHEM_3 100 REAC POLY

B.3. M - MEDIUM 35

B.3 M - Medium

1 # ROOMS
2 D1 200 0
3 D2 50 1
4 D3 50 1
5 D45 40 1
6 D46 40 1
7 E1 350 0
8 E35 40 1
9 SPEL 40 2

10 SPOR 30 2
11 MUSI 40 2
12 ROD 30 2
13 ORA 30 2
14 # COURSES
15 CALC 2 1 0
16 JAVA 1 0 1
17 MULT 2 0 1
18 CTEC 1 2 0
19 CSEC 0 1 1
20 SCON 1 1 1
21 DIGI 1 0 1
22 ENGM 1 0 1
23 ALGD 1 1 0
24 ELEC 1 0 0
25 PROB 1 0 1
26 OPER 1 1 0
27 TERM 2 0 1
28 DIFF 2 1 0
29 MECH 0 1 2
30 QUAN 1 1 0
31 OOPC 1 1 1
32 TCHE 2 1 0
33 PERS 1 0 0
34 REAC 1 0 2
35 POLY 1 1 0
36 # LECTURERS
37 SVEN CALC MULT
38 BERT JAVA SCON OOPC
39 KARL CSEC
40 GUNN CTEC
41 BERI DIGI
42 ERIK DIFF
43 SARA OPER
44 OLLE ENGM ELEC
45 BENG ALGD
46 JUDI TERM REAC

36 APPENDIX B. DATA SETS

47 MANS MECH
48 MICH QUAN
49 PELL PROB
50 DARI TCHE POLY
51 MORT PERS
52 # STUDENTGROUPS
53 COMP_1 200 CALC JAVA
54 COMP_2 120 MULT CTEC
55 COMP_3 70 CSEC SCON
56 INFO_1 200 DIGI ENGM
57 INFO_2 100 ALGD ELEC
58 INFO_3 50 PROB OPER
59 PHYS_1 200 CALC TERM
60 PHYS_2 180 DIFF MECH

B.4 S - Small

1 # ROOMS
2 D1 200 0
3 D3 50 1
4 D45 40 1
5 E1 350 0
6 E35 40 1
7 SPEL 40 2
8 SPOR 30 2
9 MUSI 40 2

10 # COURSES
11 CALC 2 1 0
12 JAVA 1 0 1
13 MULT 2 0 1
14 CTEC 1 2 0
15 CSEC 0 1 1
16 SCON 1 1 1
17 DIGI 1 0 1
18 ENGM 1 0 1
19 ALGD 1 1 0
20 ELEC 1 0 0
21 PROB 1 0 1
22 OPER 1 1 0
23 TERM 2 0 1
24 DIFF 2 1 0
25 MECH 0 1 2
26 QUAN 1 1 0
27 OOPC 1 1 1
28 TCHE 2 1 0
29 PERS 1 0 0
30 REAC 1 0 2

B.5. XS - EXTRA SMALL 37

31 POLY 1 1 0
32 # LECTURERS
33 SVEN CALC MULT
34 BERT JAVA SCON OOPC
35 KARL CSEC
36 GUNN CTEC
37 BERI DIGI
38 ERIK DIFF
39 SARA OPER
40 OLLE ENGM ELEC
41 BENG ALGD
42 JUDI TERM REAC
43 MANS MECH
44 MICH QUAN
45 PELL PROB
46 DARI TCHE POLY
47 MORT PERS
48 # STUDENTGROUPS
49 COMP_1 200 CALC JAVA
50 COMP_2 120 MULT CTEC
51 COMP_3 70 CSEC SCON
52 INFO_1 200 DIGI ENGM
53 INFO_2 100 ALGD ELEC
54 INFO_3 50 PROB OPER

B.5 XS - Extra small

1 # ROOMS
2 D1 200 0
3 D45 40 1
4 E35 40 1
5 SPEL 40 2
6 SPOR 30 2
7 # COURSES
8 CALC 2 1 0
9 JAVA 1 0 1

10 MULT 2 0 1
11 CTEC 1 2 0
12 CSEC 0 1 1
13 SCON 1 1 1
14 DIGI 1 0 1
15 ENGM 1 0 1
16 ALGD 1 1 0
17 ELEC 1 0 0
18 PROB 1 0 1
19 OPER 1 1 0
20 TERM 2 0 1

38 APPENDIX B. DATA SETS

21 DIFF 2 1 0
22 MECH 0 1 2
23 QUAN 1 1 0
24 OOPC 1 1 1
25 TCHE 2 1 0
26 PERS 1 0 0
27 REAC 1 0 2
28 POLY 1 1 0
29 # LECTURERS
30 SVEN CALC MULT
31 BERT JAVA SCON OOPC
32 KARL CSEC
33 GUNN CTEC
34 BERI DIGI
35 ERIK DIFF
36 SARA OPER
37 OLLE ENGM ELEC
38 BENG ALGD
39 JUDI TERM REAC
40 MANS MECH
41 MICH QUAN
42 PELL PROB
43 DARI TCHE POLY
44 MORT PERS
45 # STUDENTGROUPS
46 COMP_1 200 CALC JAVA
47 COMP_2 120 MULT CTEC
48 COMP_3 70 CSEC SCON

www.kth.se

	Introduction
	Purpose
	Problem statement
	Limitations

	Outline

	Background
	The university timetabling problem
	Time complexity

	Constraint based algorithms
	Three different classes of constraint based algorithms

	Meta-heuristic algorithms
	Genetic algorithm
	Simulated annealing

	Method
	Test approach
	Environment

	Algorithms
	Data structures
	Genetic algorithm
	Simulated annealing

	Data sets
	Constraints
	Assessment

	Results
	Discussion
	Time complexity
	Main differences between the two algorithms
	Basic local search may be sufficient

	Reliability
	Improvements
	Refined fitness function
	Soft constraints

	Conclusions
	Bibliography
	Source code
	Data sets
	XL - Extra large
	L - Large
	M - Medium
	S - Small
	XS - Extra small

