Abstract

Carbon–based engineered nanoparticles have been widely used due to their small size and unique physical and chemical properties. At the same time, the toxic effect of these nanoparticles on human and fish cells has also been observed; therefore, their release and distribution into the surface and subsurface environment is a subject of concern. The aim of this research is to evaluate and compare transport and retention of two types of engineered nanoparticles (multi-walled carbon nanotubes (MWCNT) and \(\text{C}_{60} \)) and natural carbon nanoparticles collected from a fire accident. Several laboratory experiments were conducted to observe transport behavior of nanoparticles through a column packed with silica sand. The column experiments were intended to monitor the effect of ionic strength on transport of nanoparticles as a function of their shapes. It was observed that the mobility of both types of engineered nanoparticles was reduced with increase in ionic strength from 1.34 mM to 60 mM. However, at ionic strength upto 10.89 mM, spherical nanoparticles were more mobile than cylindrical nanoparticles but the mobility of cylindrical nanoparticles became significantly higher than spherical nanoparticles at 60 mM. In comparison with natural fire nanoparticles, both types of engineered nanoparticles were much less mobile at the selected experimental condition in this study. Furthermore, inverse modeling was used to calculate parameters such as attachment efficiency, the longitudinal dispersivity, and capacity of the solid phase for the attachment of nanoparticles. The results indicate that the combination of nanoparticles shape and their solution chemistry are responsible for the transport and retention of nanoparticles in natural environment however fire burned particles can be highly mobile at the natural groundwater chemistry.

Keywords: Carbon-based nanoparticles; transport; retention; porous media; modeling.
1. Introduction

The last decade has seen growth of nanotechnology into a prominent, interdisciplinary field that influences almost every major branch of science. Engineered nanoparticles (ENPs) constitute the fundamental building blocks in nano-technological applications and are compositionally categorized as carbonaceous (e.g., carbon black, fullerene (C$_{60}$), carbon nanotubes (CNTs)) and non-carbonaceous (e.g., oxide nanoparticles like TiO$_2$, ZnO, SiO$_2$ and quantum dots, dendrimers). Carbon-based nanoparticles have been the focus of much interest due to their unique physical and chemical properties. They have been proposed for many applications and implemented in various fields, such as nonlinear optical material (Wang et al., 2009), medical devices and pharmaceuticals (He et al., 2013), energy conversion, environmental monitoring and waste water treatments (Tan et al., 2012) and in lots of consumer products (Grassian, 2008). Because of the extensive usage, their production and disposal are expected to increase dramatically over the next several decades (Klaine et al., 2008).

Concerns over the potential adverse effects of exposure to carbon based nanoparticles (such as, nano C$_{60}$ and CNTs) have initiated research on their fate and transport in the environment (Petersen et al., 2011). Although allotropes of carbon, fullerene (C$_{60}$) and CNTs are hydrophobic in nature, the dispersion of multi-walled carbon nanotubes (MWNTs) and C$_{60}$ into water in the presence of natural organic matter (NOM) has been reported recently (Hyung et al., 2007; Mashayekhi et al., 2012; Zhang et al., 2014). Natural carbon-based nanoparticles can also be formed during the incomplete burning of coal, oil and gas, garbage or other organic substances (Nisbet and LaGoy, 1992). Migration of these particles, which typically contain large amounts of metals and poly-aromatic hydrocarbons (PAH), is a subject of concern (Hertzberg and Blomqvist, 2003; Sharma et al., 2016).
Chemical and physical conditions of the environment can affect mobilization of carbon based nanoparticles through porous media. Previous studies have investigated the effect of chemistry of the solution, water content, porous media grain size (Sharma et al., 2014; Mattison et al., 2011), degree of saturation (Mekonen et al., 2014), flow rate (Liu et al., 2009), concentration (Kasel et al., 2013) and the particle diameter (O’Carroll et al., 2013). However, the effect of shape of carbon based nanoparticles on their transport and retention is still scarcely reported (Seymour et al., 2013).

A spherical (C60), a cylindrical (CNT), and natural (fire born) nanoparticles are chosen in this study. Although the toxicity of C60 nanoparticles and carbon nanotubes (CNTs) in aqueous suspensions has been studied, the current understanding of their fate and transport in subsurface environments is quite limited. Furthermore, no comparative evaluation of the fate of C60, CNTs and other natural carbon particles (such as fire born particles (FBP)) has been reported in literature. This study proposes to fill this gap by comparing the effect of ionic strength on the transport and mobilization behavior of these three distinguished shape of carbon-based nanoparticles in saturated porous media by conducting a series of laboratory column experiments. A 1-D finite element model was also used to simulate the experiments, examine the ability of the model to capture the observed particle retention and find unknown transport parameters such as dispersivity, attachment efficiency and maximum adsorption capacity. Derjaguin-Landau-Verwey-Overbeak (DLVO) theory was employed to understand the effective mechanisms responsible for retention of these nanoparticles.

2. Material and methods

2.1. Nanoparticles

2.1.1. C60: A stable aqueous solution of spherical C60 was prepared by using the method proposed by Brant et al (2006). In brief, 20 gm of fullerene (C60, sublimed 99%) powder procured from Sigma-Aldrich was dissolved in 20 ml of toluene then the solution was diluted
by addition of 200 ml of de-ionized (DI) water and sonicated for 1.5 hours using ultra-probe sonicator (ultrasonic homogenizer, Biologics Inc., Model 3000) with 40% power output, followed by 1 h sonication using bath sonicator in order to disperse the nanoparticles in the solution (Kerry Ultrasonic LTD, 50 Hz). The large aggregations were then filtered through 11-µm nylon filter membrane (Nylon Net Filter, Merck Millipore Ltd, NY1100010, MA, USA). The final concentration of C₆₀ solution was 7 mg/l for column experiments. The zeta potential and hydrodynamic diameters of C₆₀ solution at their respective ionic strength were measured using zeta sizer (Malvern Instruments). A 24 h test to check the stability of the particles resulted in no change in concentration during the experimental period.

2.1.2. Multi-walled carbon nanotubes: Multi-walled carbon nanotubes (MWCNTs) (95% pure) with diameters 20-30 nm and length 0.5-2 µm were purchased from Cheap Tubes, Inc (Brattleboro, USA). In order to dissolve MWCNTs in aqueous solution for column experiments, functionalization using concentrated sulfuric/nitric acid in the ratio of 3:1 was performed (Liu et al., 1998; Sharma and Fagerlund 2014; Mekonen et al., 2014). Finally, the solution was filtered through 11-µm hydrophilic nylon filter membrane (Nylon Net Filter, Merck Millipore Ltd, NY1100010, MA, USA) and washed with hot Deionized water (DI water). The functionalized MWCNTs were finally diluted to a concentration of 7 mg/L with DI water and sonicated for 30 minutes using the ultra-probe sonicator (ultrasonic homogenizer, Biologics Inc., Model 3000). The zeta potential and hydrodynamic diameters of MWCNT solution at their respective ionic strength were measured using zeta sizer.

2.1.3. Fire born particles: A sample in aqueous phase was collected from a fire location, which was filtered with 11-µm nylon filter. SEM images of the sample revealed that the average size of irregular shaped particles was 200±5 nm, however, the hydrodynamic diameter of the filtered FBP stock solution were measured using zeta sizer. Chemical analysis of this sample reflected the presence of PAH (Sharma et al., 2016). The ionic strength of the
sample was estimated to be around 60 mM using eq 1, from its measured electrical conductivity value (Lind, 1970):

\[I_c = (1.4769 \times 10^{-5}) \times (EC) + 0.00015 \]

(1)

where \(I_c \) is ionic strength (M), EC is electrical conductivity (\(\mu \)S/cm). The pH of the sample was adjusted to 7 by addition of HCl acid to match the chemistry of the other two nanoparticles.

2.2. Porous media

The silica sand was purchased from Sibelco Nordic, Baskarp, Sweden to be used as porous media in the column experiment after sieving by 250 and 400 \(\mu \)m sieves. The sand was washed with hydrochloric acid (0.1 M) and hydrogen peroxide (7%) according to the method of Sharma and Fagerlund (2014) to remove impurities. Finally the sand was washed several times with DI water. The washed sand was dried in the oven at 105°C for 24 hours and stored in a plastic bottle. The surface potential of the sand at different ionic strength and the selected pH are determined using SurPASS Electrokinetic Analyzer (Anton Paar USA Inc., Ashland, VA).

2.3. Column experiments

A borosilicate glass column (Chormaflex Inc.) with two steel mesh filters (0.2 mm) combined with 100 \(\mu \)m nylon filters at each end was used for the column experiments. The size of the column chosen in this study was 15 cm length and 2.5 cm diameter, the length and diameter ratio of the column for the selected porous media was adequate to avoid the preferential flow along the wall (Arbuckle and Ho, 1990). The column was packed with 120 g silica sand and flushed with background solution which was buffered to pH 7 with sodium phosphate buffer. The properties of the sand filled column are listed in Table 1. A calibrated peristaltic pump (IPC8, Ismatic, Glattbrug, Switzerland) was used to inject the experimental solutions into the sand column. These experimental solutions were aqueous suspension of C\(_{60}\), MWCNT and
FBP with the same pH and ionic strength as the background solution. The experiments were started (at time zero) by injecting the main solution to the column for about five pore volumes of experimental solution (C₆₀, MWCNT or FBP) (Phase I) followed by three pore volumes of background solution (Phase II). Thereafter, three pore volume of DI water was introduced into the column (phase III) to investigate the remobilization of the retained particles. The effluent solution was directed to a UV/vis Spectrophotometer (Model DR 5000, Hach Lange Ltd) in order to measure the absorbance/concentration of the outflow sample at an interval of 1 min using an auto sampler at a fixed wavelength (344 nm for C₆₀, 332 nm for MWCNT, and 400 nm for FBP). The effluent fractions were also collected at 5 min interval using fraction collector (CF-2, Spectrum Labs Inc.). To assess the water flow and hydrodynamic dispersion in the column, a tracer test with a 2 mM sodium chloride solution was conducted. Five pore volumes of tracer solution were injected followed by three pore volume of DI-water. All other parameters were kept constant throughout these experiments (i.e. porous media characteristics, temperature, flow rate and pH) while the ionic strength was varied from 1.34 to 60 mM. All experiments are performed in triplicate and the experimental protocols are summarized in Table 2.

2.4. DLVO theory

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is the most common theory that has been used to explain aggregation, transport and retention of nanoparticles under different chemical conditions (Sharma et al., 2008a; 2008b; 2014; Jiang et al., 2009; Kasel et al., 2013; Mekonen et al., 2014). Based on DLVO theory, sum of van der Waals attractive energy (E_v) and electrostatic double layer energy (E_{edl}) controls the interaction between particles and the resulting net energies (the interaction energy (E_i)) can be used to predict the probability of particle attachment (Wang et al., 2008; Sharma et al., 2008c). Particles can have a net attraction in a primary or secondary minimum. Aggregation at the primary minimum is
irreversible but there is a possibility of attachment of a particle at secondary minimum only at a particular separation distance. E_v and E_{edl} can be calculated using following equations (Gregory, 1981):

$$E_v = -\frac{Aa}{12d} \left[1 - \frac{5.32d}{\lambda} \ln \left(1 + \frac{\lambda}{5.32d} \right) \right]$$ \hspace{1cm} (2)

$$E_{edl} = \frac{64\pi nkTa}{\kappa^2} \tanh\left(\frac{ze\zeta}{4kT} \right) e^{(-\kappa d)}$$ \hspace{1cm} (3)

where, A is Hamaker constant (6.7×10^{-21} J for C_{60} (Chen and Elimelch, 2006), 9.8×10^{-21} J for MWCNTs (Mekonen et al., 2014) and 3.84×10^{-21} J for FBP (Sharma et al., 2016), λ is the characteristic wavelength of the interaction, which is assumed to be 100 nm, a is the particle radius and d is the separation distance (m), k is the Boltzmann constant (1.38×10^{-23} J/K), T is the absolute temperature (K), z is the ion valence (-), e is the electron charge (1.6×10^{-19} coulombs), and ζ is the surface potential of particles and the sediments (the surface potential can be approximated by the determination of zeta potential) (Sharma et al., 2008c). If ε_r is the relative dielectric constant of water (78.55) and ε_0 is the vacuum permittivity constant, the inverse of Debye-Huckel length 'k' can be calculated from the following formula:

$$\kappa = \sqrt{\frac{2e^2N_A I_c}{\varepsilon_r \varepsilon_0 kT}}$$ \hspace{1cm} (4)

where N_A is the Avogadro number and I_c is the ionic strength of the solution (Wang et al., 2008). To calculate the interaction energy between MWCNTs and porous media, hydrodynamic diameter was used as their effective size (Tian et al., 2012).

2.5. Mathematical model

A numerical model (1-D finite element code) was used to simulate the transport of C_{60}, MWCNT, and FBP in porous media (Liu et al., 2009). The model is based on mass balance in the aqueous solution (eq 5) and solid phases (eq 6):

$$\frac{\partial C}{\partial t} + \rho_b \frac{\partial S}{\partial t} + \nu \frac{\partial C}{\partial x} - D \frac{\partial^2 C}{\partial x^2} = 0$$ \hspace{1cm} (5)
\[
\frac{\rho_b}{n} \frac{\partial S}{\partial t} - k_{\text{att}} \psi C + \frac{\rho_b k_{\text{det}}}{n} S = 0
\]

(6)

where \(C \) is the concentration of nanoparticle in the aqueous phase, \(t \) is time, \(\rho_b \) is the solid phase bulk density, \(n \) is porosity, \(S \) is the amount of particles associated with the solid phase, \(\nu \) is the pore water velocity, \(x \) is the spatial dimension in the column and \(D \) is the dispersion coefficient \((D = \nu \cdot \alpha_L \), where \(\alpha_L \) is the longitudinal dispersivity). \(k_{\text{att}} \) is the attachment coefficient associated with mechanisms typically linked with colloid filtration theory (Liu et al., 2009). \(\psi \) is an attachment site blocking term and \(k_{\text{det}} \) is the rate constant for the detachment of nanoparticles associated with the solid phase. The attachment site blocking term is defined as:

\[
\psi = 1 - \frac{S}{S_{\max}}
\]

(7)

where \(S_{\max} \) is the maximum adsorption capacity of the solid phase for the attachment of particles due to mechanisms typically associated with colloid filtration theory, the attachment rate constant \(k_{\text{att}} \) is defined as:

\[
k_{\text{att}} = \frac{3 \eta_0 \nu (1-n)}{2d_c}
\]

(8)

where \(\alpha \) is the attachment efficiency, \(\eta_0 \) is the total single collector efficiency and \(d_c \) is the mean diameter of the collector (sand grain). The attachment efficiency \((\alpha) \) typically fits to the experimental data whereas the total single collector efficiency is based on theoretical considerations.

The total collector efficiency \((\eta_o) \) is assumed to be the sum of three distinct collision mechanisms, collision due to particle interception \((\eta_i) \), gravity sedimentation \((\eta_s) \), and diffusion \((\eta_b) \) (Sharma et al., 2008a; Liu et al., 2009; Sharma 2012). In order to estimate the unknown parameters, the model was programmed to find the best set of parameters which produce the simulated breakthrough curve with minimum root-mean-square error (RMSE) from the observed breakthrough curve using an optimization routine.
3. Results

3.1. Experiments

Experimental results from sand-packed columns and dispersed aqueous suspensions of the nanoparticles (pH=7) at different ionic strengths ranging from 1.34 mM to 60 mM are shown in Fig 1. The response of spherical nanoparticles (C$_{60}$) and cylindrical nanoparticles (MWCNT) breakthrough curves with increasing ionic strength was in same order and the retention of both nanoparticles were enhanced with increase in ionic strength, which is consistent with previous studies (Brant et al. 2005; Zhang et al., 2012; Sharma et al., 2014). The concentration of nanoparticles in the effluent increased rapidly initially, and then the relative concentration increased at a much lower rate in phase I. As background solution was injected into the column during phase II, the concentration of nanoparticles decreased and reached close to zero. The shape of the breakthrough curves (BTCs) was also more asymmetric at elevated ionic strength, and the rate of increase in relative concentration was faster (steeper slope) for MWCNTs than for C$_{60}$. As the concentration of salt in the suspension increased, the difference between the breakthrough curves for MWCNTs and C$_{60}$ became larger (Fig 1). At ionic strength 1.34 mM and 10.89 mM, the breakthrough curves for both types of nanoparticles were less variable even though the C$_{60}$ particles were relatively more mobile than MWCNTs. The maximum relative concentration of both C$_{60}$ and MWCNTs in the effluent was 0.93 at ionic strength of 1.34 mM at 5.67 pore volume (PV) but slightly higher mobility was observed for C$_{60}$ nanoparticles as ionic strength increased to 10.89 mM. However, at the highest ionic strength (60 mM), MWCNTs became more mobile than C$_{60}$, and the relative concentration of MWCNTs in the effluent reached a maximum value of 0.69 while the corresponding maximum value was 0.4 for C$_{60}$ particles (Fig 1). In Section 3.3, the attachment term through numerical modeling for both cases has been discussed. The area under the BTCs was calculated and considered as the total mass of the
nanoparticles in the effluent for all the experiments, as shown in Fig 2a. Only 12% of the
total injected MWCNTs and 10% of C_{60} nanoparticles were retained in the column at ionic
strength 1.34 mM, while at an ionic strength of 60 mM about 40% of the MWCNTs and 68%
of the C_{60} were trapped in the porous medium (Fig 2a).

A column experiment was performed to investigate the transport of FBP at ionic
strength 60 mM and pH 7 (at their original solution chemistry), which is shown in Fig 3. The
BTC shape was asymmetric; the maximum relative concentration of FBP in the effluent was
0.92 which was achieved at 5.7 PV. After 11 PVs (phase I, II and III) 90% of the injected
mass was recovered in the effluent. The image analysis (using Scanning Electron
Microscope) indicates that the particle sizes of FBP in the influent and effluent samples were
in the same order of magnitude (Fig 4).

3.2. Remobilization
The mechanisms responsible for retention and transport of nanoparticles at different chemical
conditions in the experiments were investigated using DLVO energy profiles. The zeta
potential and hydrodynamic diameters of C_{60} solution at their respective ionic strength and
the average diameter of the nanoparticles in stock solution are shown in Table 3. The role of
secondary energy minima in retention of the particles in the sand column at different ionic
strengths was investigated by injecting DI water into the column during phase III. All BTCs
of the experimental data (MWCNT, C_{60} and FBP experiments) showed a secondary peak at
9.2 pore volumes which is 1.2 PV after injection of DI water into the column and the peak
height raised with increasing ionic strength (Phase III of Fig 2b for C_{60} and MWCNT
respectively but FBP data not presented in this paper). Mass calculations indicated that at low
ionic strength (1.34 mM), 7% of the total injected MWCNTs and C_{60} were remobilized
during phase III. This percentage increased to 40.3% for C_{60} and 28.9% for MWCNTs at high
ionic strength (60 mM) (Fig 2b). It was observed that only 12.32% of the retained FBP were remobilized during phase III (data not presented in the paper).

The DLVO energy profiles for both \(C_{60} \) and MWCNTs indicated that a reduction in primary energy height and increase in secondary energy minimum with increase in ionic strength (Fig 5). However, the separation distance for primary energy minimum reduces with increase in ionic strength, i.e., the nanoparticles need to stay more closer to the sand surfaces for primary minimum attachment for high ionic strength condition (but opposite for possible attachment at the secondary minimum).

3.3. Modeling

The model, which incorporates traditional colloid filtration theory with a site-blocking term and a detachment rate, was in a good agreement with the experimental results (Fig 1 & 3). The observed data of all column experiments were used in the inverse modelling to simulate breakthrough curves of MWCNTs, \(C_{60} \) and FBP and find the best set of unknown transport parameters. The fitted dispersivity with the observed BTC of the tracer experiment was 0.0026 m. Since dispersivity is a medium dependent parameter (Xu and Eckstein, 1997), this value was kept constant for the rest of the simulations. The calculation of theoretical single collector efficiency (\(\eta \)) for MWCNTs, tested under assumption of both end contact and side contact (as similar to Liu et al., 2009), revealed that diffusion, which is independent of orientation (Wang et al., 2008), is the dominant mechanism for transport of particles to the surfaces of sand. Thus, it was assumed that the attachment of MWCNTs was possibly through side contact with the collector. Similar calculations for \(C_{60} \) particles also confirmed that the dominant mechanism is diffusion (99.7%). To calculate the theoretical single collector efficiency for FBP, it was assumed that the particles are spherical in shape (based on SEM images in Fig. 4). The relative concentration at the end part of BTCs did not reach the background value which indicates that the attachment of particles to the sand was reversible.
even before injecting DI-water to the column. Therefore, a detachment coefficient (k_{det}) was considered in the modeling of these results. For experiments E1 to E7, k_{det}, α, and S_{max} were fitted to the observed breakthrough curves. The best fitted parameters with minimum RMSE are given by Table 2. Comparing the simulated parameters of all experiments revealed that the S_{max} and attachment efficiency values increased with increasing ionic strength (Fig 6).

4. Discussion

The experimental results showed that retention of MWCNTs and C$_{60}$ nanoparticles was enhanced by increasing the ionic strength of the solution, which has also been observed in previous studies (Brant et al., 2005; Tian et al., 2012; Zhang et al., 2012; Sharma et al., 2014). On the other hand, it was observed that cylindrical shaped MWCNTs were 30% more mobile than spherical shaped C$_{60}$ nanoparticles at high ionic strength (60 mM) while at lower ionic strength they had shown similar behavior. This means that the interaction force between nanoparticles and sand surface was in same order for both nanoparticles at low ionic strength however other mechanisms (such as aggregation, primary minima deposition, or straining due to large aggregates) are operative at higher ionic strength (Yang et al., 2013). Based on DLVO theory, increasing ionic strength reduces the size of the electrostatic double layer and repulsive forces (Hotze et al., 2010) which leads to higher retention of nanoparticles in the media at high ionic strength. Previous research has revealed that both E_v and E_{eff} forces are affected by change in the shape of nanoparticles (Vold, 1954; Bhattacharjee and Elimelech, 1997; Montgomery et al., 2000) which is consistent with our observations. Remobilization (phase III) results demonstrated that secondary minimum attachment between nanoparticles and porous media is more favorable for spherical C$_{60}$ nanoparticles than for cylindrical MWCNTs at ionic strength of 60 mM. Some other mechanisms than secondary energy minimum attachment may also be operative which led to irreversible attachment of C$_{60}$ nanoparticles to the sand (Fig 2b). This mechanism could be straining or aggregation in soil.
pores but cannot be confirmed based on the current study. Theoretically straining can happen when the ratio of particle diameter to sand diameter is greater than 0.003 (Bradford et al., 2002). This ratio, based on the length of MWCNTs is 0.0038 but it is 0.000076 if MWCNT’s diameter is being used, and it is 0.00049 for C$_{60}$ nanoparticles. The ratios are below the critical ratio based on previous literature (even by using MWCNT length), which means the straining is not likely an operative mechanism in these cases (Bradford et al., 2002; Jaisi et al., 2008). But the stability of particles in solution at high ionic strength was critical in this study. It was observed that the MWCNT solution was stable for several days even for 60 mM of ionic strength. However, C$_{60}$ solutions at ionic strengths 10.89 and 60 mM were semi-stable in long-term and aggregated C$_{60}$ particles were observed in the bottles after few hours of their preparation. For larger aggregates which can ultimately increase the particle size, straining and gravitational sedimentation will become more effective mechanisms for the retention of particles. Therefore gravitational sedimentation is a possible mechanism that would cause irreversible retention of C$_{60}$ particles.

FBPs were highly mobile for the conditions of this study and only 10% of the particles were retained, mostly irreversibly, in the sand column. Higher mobility of FBPs in comparison with the engineered nanoparticles can be due to their stability and interaction with the medium at chosen chemical and physical condition. Therefore it is not certain that the shape of the FBPs has influenced their mobility and a systematic study FBP at various chemical and physical conditions is needed to understand their transport scenarios in soil and groundwater.

The modeling results suggest that S_{max} increased with increasing ionic strength, which means that the site-blocking mechanism became more operative. This was probably due to lowering of the repulsive energy between sand and nanoparticles at higher ionic strength and an associated increase in particle attachment at primary and secondary energy minima. At
ionic strength of 1.34 mM, the value of S_{max} was greater for MWCNT than that of C$_{60}$, but the value of S_{max} became larger for C$_{60}$ than MWCNTs at higher ionic strength. Increasing ionic strength is related to increasing S_{max} and α, for both C$_{60}$ and MWCNTs in these experiments, which has also been observed in previous studies (Zhang et al. 2012). This trend indicated that increasing ionic strength results in greater attachment rate and more attachment sites, irrespective of the shape of the nanoparticles.

5. Conclusions

The aim of this study was to compare transport behavior of two types of engineered carbon-based nanoparticles (MWCNTs and C$_{60}$) and natural fire-born particles (FBPs) in saturated porous media. Several column experiments were conducted at a neutral pH and pore-water velocity of 7.5 m/d but the ionic strength was varied from 1.34 mM to 60 mM in order to examine the effect of ionic strength on transport of MWCNTs and C$_{60}$ in different chemical environment.

From the experimental results of two types of carbon-based nanoparticles (C$_{60}$ and MWCNT), it was observed that at low ionic strength (1.34 and 10.89 mM), C$_{60}$ was relatively more mobile than MWCNTs. While at high ionic strength, the mobility of MWCNTs was much higher than that of C$_{60}$ particles. About 50% of the retained C$_{60}$ particles in the column were not remobilized after injecting of DI water. This suggests that irreversible attachment between the nanoparticles and sand grains became more important at higher ionic strength. Straining and gravitational sedimentation are two possible mechanisms which may have been enhanced due to formation of larger aggregates of C$_{60}$ nanoparticles at high ionic strength and FBPs had higher mobility than engineered nanoparticles. Although the shape of nanoparticles is critical for their transport in subsurface systems, it was rather difficult to establish a quantitative relationship of transport behavior of MWCNTs and C$_{60}$ to their shape of the nanoparticles as the background chemistry play an important role in their mobility. However,
The results of this study suggest that MWCNTs, C$_{60}$ and also FBPs are highly mobile in sandy saturated environments. Therefore the risk of their transport to a greater depth and contamination of aquifers is considerable even at normally unfavorable conditions for particle transport, such as high ionic strength in the groundwater.
References

List of figures and tables

Figure 1: Observed breakthrough curves for C$_{60}$ (E1, E2, and E3) and MWCNTs (E4, E5, and E6) at different ionic strengths (phase I, II and III). The solid points represent the experimental data and solid lines represent the results of simulations for phase I and II.

Figure 2: Proportion of the outflow C$_{60}$ or MWCNTs nanoparticles to total input concentration during (a) phase 1 and 2, (b) phase 3. (The values are the average of three replication of the experiments±standard deviation.)

Figure 3: Comparison of observed BTCs for MWCNTs, C$_{60}$ and FBPs at pH of 7 and ionic strength of 60 mM, experimental data are shown in points with their corresponding simulations in lines.

Figure 4: Scanning electron microscopy images of filtered (< 11 μm size) samples (a) inflow for column experiments and (b) exited from column experiments.

Figure 5: DLVO energy profiles at different ionic strength for (a) C$_{60}$ and (b) MWCNTs with effective diameter for MWCNTs based as its hydrodynamic diameter obtained from particle size analysis.

Figure 6: Relationship of ionic strength with modeling parameter (a) attachment efficiency and (b) S_{max} for MWCNTs and C$_{60}$

Table 1: Properties during column experiments

Table 2: Experimental conditions, model fitted parameters and their root-mean square error.

Table 3: Parameters used for DLVO calculations
Table 1: Properties during column experiments

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain size</td>
<td>250-450 μg</td>
</tr>
<tr>
<td>Weight of sand</td>
<td>120 g</td>
</tr>
<tr>
<td>Bulk density</td>
<td>1.63 g/cm³</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.39</td>
</tr>
<tr>
<td>Saturated pore volume</td>
<td>28.35 ml</td>
</tr>
<tr>
<td>Temperature</td>
<td>21-22°C</td>
</tr>
<tr>
<td>Pore water velocity</td>
<td>7.5 m/d</td>
</tr>
</tbody>
</table>
Table 2: Experimental conditions, model fitted parameters and their RMSE

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Particle</th>
<th>IS (mM)</th>
<th>α</th>
<th>S_{max}</th>
<th>K_{det}</th>
<th>$α_1$ (m)</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>C60</td>
<td>1.34</td>
<td>9.15×10$^{-3}$</td>
<td>9.41×10$^{-5}$</td>
<td>3.42×10$^{-5}$</td>
<td>2.60×10$^{-3}$</td>
<td>0.061</td>
</tr>
<tr>
<td>E2</td>
<td>C60</td>
<td>10.89</td>
<td>1.47×10$^{-2}$</td>
<td>3.51×10$^{-4}$</td>
<td>1.10×10$^{-5}$</td>
<td>2.60×10$^{-3}$</td>
<td>0.083</td>
</tr>
<tr>
<td>E3</td>
<td>C60</td>
<td>60</td>
<td>2.66×10$^{-1}$</td>
<td>6.30×10$^{-4}$</td>
<td>3.33×10$^{-6}$</td>
<td>2.60×10$^{-3}$</td>
<td>0.021</td>
</tr>
<tr>
<td>E4</td>
<td>MWCNT</td>
<td>1.34</td>
<td>8.71×10$^{-2}$</td>
<td>1.80×10$^{-4}$</td>
<td>2.20×10$^{-5}$</td>
<td>2.60×10$^{-3}$</td>
<td>0.268</td>
</tr>
<tr>
<td>E5</td>
<td>MWCNT</td>
<td>10.89</td>
<td>1.41×10$^{-1}$</td>
<td>2.47×10$^{-4}$</td>
<td>3.06×10$^{-6}$</td>
<td>2.60×10$^{-3}$</td>
<td>0.072</td>
</tr>
<tr>
<td>E6</td>
<td>MWCNT</td>
<td>60</td>
<td>3.06×10$^{-1}$</td>
<td>6.13×10$^{-4}$</td>
<td>1.26×10$^{-5}$</td>
<td>2.60×10$^{-3}$</td>
<td>0.060</td>
</tr>
<tr>
<td>E7</td>
<td>FBP</td>
<td>61.12</td>
<td>8.79×10$^{-2}$</td>
<td>3.15×10$^{-4}$</td>
<td>3.45×10$^{-5}$</td>
<td>2.60×10$^{-3}$</td>
<td>0.302</td>
</tr>
</tbody>
</table>
Table 3: Parameters used for DLVO calculations

<table>
<thead>
<tr>
<th>Particle</th>
<th>Hydrodynamic diameter of NPs (nm)(^a)</th>
<th>Zeta potential of NPs (mV)</th>
<th>Ionic strength (mM)</th>
<th>Zeta potential of sand (mV)(^c)</th>
<th>Hamaker constant (J)(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(_{60})</td>
<td>618.9</td>
<td>-40</td>
<td>1.34</td>
<td>-57.3</td>
<td>6.7\times 10(^{-21})</td>
</tr>
<tr>
<td>C(_{60})</td>
<td>644.5</td>
<td>-39</td>
<td>10.89</td>
<td>-43.2</td>
<td>6.7\times 10(^{-21})</td>
</tr>
<tr>
<td>C(_{60})</td>
<td>701.2</td>
<td>-15</td>
<td>60</td>
<td>-29.1</td>
<td>6.7\times 10(^{-21})</td>
</tr>
<tr>
<td>MWCNT</td>
<td>106.7</td>
<td>-41.7</td>
<td>1.34</td>
<td>-57.3</td>
<td>9.8\times 10(^{-21})</td>
</tr>
<tr>
<td>MWCNT</td>
<td>111</td>
<td>-34.7</td>
<td>10.89</td>
<td>-43.2</td>
<td>9.8\times 10(^{-21})</td>
</tr>
<tr>
<td>MWCNT</td>
<td>141.2</td>
<td>-19.6</td>
<td>60</td>
<td>-29.1</td>
<td>9.8\times 10(^{-21})</td>
</tr>
<tr>
<td>FBP</td>
<td>360</td>
<td>-5</td>
<td>60(^b)</td>
<td>-29.1</td>
<td>3.84\times 10(^{-21})</td>
</tr>
</tbody>
</table>

\(^a\)Diameter measured using zeta-sizer. \(^b\)Converted from measured electrical conductivity. \(^c\)Zeta potential of sand was obtained using surface analyzer. \(^d\)Hamaker constant estimated from literature.