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On Re-weighting, Regularization Selection,
and Transient in Nuclear Norm based
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Abstract: In this contribution, we consider the classical problem of estimating an Output Error
model given a set of input-output measurements. First, we develop a regularization method
based on the re-weighted nuclear norm heuristic. We show that the re-weighting improves the
estimate in terms of better fit. Second, we suggest an implementation method that helps in
eliminating the regularization parameters from the problem by introducing a constant based on
a validation criterion. Finally, we develop a method for considering the effect of the transient
when the initial conditions are unknown. A simple numerical example is used to demonstrate
the proposed method in comparison to classical and another recent method based on the nuclear

norm heuristic.

Keywords: Output error identification; low-rank estimation; nuclear norm; least squares;

regularization.

1. INTRODUCTION

In this paper we revisit the classical problem of estimat-
ing the transfer function of an output error model, in
open-loop, from a set of input-output measurements. The
classical approach is to use the Prediction-Error Method
(PEM); Ljung (1999), which coincides with the Maximum-
Likelihood (ML) method under the assumption of Gaus-
sian noise. The estimation problem under this framework
is non-convex and one may be trapped into local minima
or ill-conditioned problems. A major difficulty associated
with this approach is the problem of model order selection.
One possible technique that can be used to select a suitable
model order is cross validation. Using this technique, we
evaluate the objective function for the different model
orders for another independent set of data, validation data,
and select the model order which gives the best fit to
this independent data set. Alternatively, one may treat
the problem as a hypothesis test or from an information-
theoretic point of view. Among the most common methods
are the Akaike’s Information Criterions (AIC), Schwarz’s
Bayesian Infromation Criterion (BIC), and Rissanen’s
Minimum Description Length (MDL) criterion.

On the other hand, under stability conditions, the sim-
plest approach that can be used to estimate the transfer
function is to truncate its infinite expansion to a finite
number of impulse response coefficients. The resulting
high-order FIR model can be estimated using the least-
squares method. The only drawback of this approach is
that the estimate may suffer from high variance. This issue

* This work was supported by the European Research Council under
the advanced grant LEARN, contract 267381 and by the Swedish
Research Council under contract 621-2009-4017.

may be solved by regularization techniques as shown, for
example, in Pillonetto et al. (2014).

In order to regularize the estimate, we add a regularization
term to the least-squares objective function. So far, regu-
larized least-squares methods have been developed using
the [;-norm, the ls-norm and the nuclear-norm. In this
paper, we focus on nuclear-norm regularization methods.

The nuclear-norm is a unitarily invariant matrix function
defined as the sum of the singular values. It is also known
as the Schatten 1-norm, Ky-Fan r-norm, and the trace
norm. It has been used to produce (exact or approxi-
mate) convex formulations of problems including a rank
constraint (Recht et al., 2010). The heuristic was first
proposed in Fazel et al. (2001) where it was shown that the
nuclear-norm of a matrix is the best convex approximation
of its rank and it gave the representation of nuclear-norm
optimization problems as a Semidefinite-Program when
the feasibility set is given by Linear-Matrix-Inequalities.

In the system identification community, there has been
some interest in the nuclear norm heuristic as a surrogate
for the rank. Several contributions based on this idea have
been published already. In Liu and Vandenberghe (2010),
Liu and Vandenberghe (2009), Mohan and Fazel (2010),
Gebraad et al. (2011), Hansson et al. (2012), Liu et al.
(2013), and Verhaegen and Hansson (2014), the heuristic
has been used to formulate and solve subspace identifica-
tion methods in terms of nuclear norms. For example, Liu
et al. (2013) suggests a subspace identification method de-
noted by N4SID-NN, in which the low rank approximation
step is done using the nuclear norm heuristic. In Gross-
mann et al. (2009), nuclear norm regularization has been
used to estimate high order FIR models. In Hjalmarsson
et al. (2012), nuclear-norm regularization is extended to



estimate high order ARX models with an extensive simula-
tion study. In both cases the regularization parameter was
determined by cross validation techniques. So far, there is
no rigorous analytical analysis of the performance of the
nuclear norm heuristic as a tool for system identification.
However, as noted in Markovsky (2012), the results ob-
tained by nuclear norm heuristics could be suboptimal -
especially when it is used to approximate a fixed rank.

In this paper, we revisit the idea of nuclear norm regular-
ization, as in Hjalmarsson et al. (2012), with three contri-
butions. We first develop a regularization method based
on the re-weighted trace heuristic (Fazel et al., 2003),
as an alternative heuristic for the rank. We show by a
numerical example that the re-weighted heuristic is better
than the unweighted approach. Then, we use the idea of
SPARSEVA method (Rojas and Hjalmarsson, 2011), to
eliminate the regularization parameter from the problem
by introducing a constant based on a validation criterion.
By doing this we reduce the computational burden sig-
nificantly. Finally, we extend the method to estimate the
transient in cases with unknown initial conditions.

2. THE PROBLEM

Let a linear-time-invariant (LTI), causal, discrete-time
system with single input u(t) and single output y(t) be
described by

y(t) = Go(qQ)u(t) +e(t), t=1,2,3,... (1)

where
Go=>_go(k)g* (2)

k=1
1

is the transfer operator, ¢~ is the backward shift operator.
We will assume that the system is stable in the sense that

> lgo(k)| < oo. (3)
k=1

The input u(¢) is deterministic, and the additive term e(t)
represents additive white (measurement) noise, indepen-
dent from wu(t), with zero mean and variance o2. In this
sense, the LTT system is represented by the infinite se-
quence {g(k)}72 ,, which we shall call the impulse-response
of the system.

The problem can be stated as follows. Given a finite set of
observations ZV := {(y(t),u(t)) |t = 1,..., N}, construct
an estimator G(Z") of the transfer operator Go(-) in terms
of an estimate of the impulse-response

G 2 S (G ()
2.1 Finite Impulse-Response (FIR) approximation

Given any arbitrary real number €, there exists an integer
n such that the impulse-response can be split into two
parts, such that

Z lgo(k)| = Sn + Ty, = Z lgo (k)| + Z lg0(K)|,  (5)
k=0 k<n k>n
with a finite sum S,, and a tail T}, < e. This means that
if n is large enough, the elements of the impulse response
go(k) for all k > n will be approximately zero and

Golg) =Y go(k)a™. (6)
k=1

Therefore, one way to estimate the transfer operator is by
truncating the impulse-response at k = n, and estimating
the vector 6y := [go(1)...go(n)]*. This can be done by
solving a linear regression problem of the form

Y = &0y + E (7)
where
Y =ly(n+1)...yN)"
E=le(n+1)...e(N)*,
u(n) u(n—1) u(1)
u(n+1) u(n—2) u(2)
¢ = : : . :
w(N —1) w(N —2) ... u(N —n)
Observe that since the initial conditions u(—n+1), ..., u(0)

are not known, the first n outputs, y(1),4(2),...,y(n) in

the data set ZV are not used.

The least-squares estimator of 6 is given by the solution
of the normal equation

7ol = dTY. (8)
However, the resulting estimate will lack accuracy due
to the large size of the unknown vector #. This can be
solved by using regularization methods which prevent
over-fitting by penalizing model flexibility. A general reg-
ularized linear-regression problem can be written in the
form

minignize |Y — ®0|3 + T(0,p) 9)

in which J is a scalar function of # and the regularization
vector p € R™. Two common variants for J are the
weighted [y and Iy norms in R™ corresponding to the
LASSO and the kernel-based estimators. In this paper,
we will use the nuclear norm of the Hankel matrix of 6.

2.2 Nuclear norm regularization for FIR systems

Consider the LTI system defined in (1), and define the
square Hankel matrix
4

g
H’ﬂ (g) = . . .. : 9

glk+1) glk+2) ... g(2k+1)
with n = 2k + 1. It is known from system theory that if

the transfer operator can be written as a rational function
in q; i.e,

(10)

(11)

where B, and F are coprime polynomials in ¢, and
deg(F) = r then

rank(H,1,(g9)) =r foralli=0,1,2... (12)
In this situation, with n > r the estimate
0 := argmin Y — o092
in Y - o3 )

such that rank(H,(0)) =r

will have better accuracy compared to the ordinary least-
squares estimate defined in equation (8), because the



model order is known and taken into account. Using
Lagrange relaxation, the problem is equivalent to

0 ::argngm |V — ®0||3 4+ X rank(H,,(0)) (14)

for some \.

Unfortunately, there are two difficulties with this formu-
lation. Firstly, the rank function is a non-convex function
on the unconstrained domain, and secondly, the positive
integer 7 is unknown and hence also A. The problem can
be relaxed to a convex problem by introducing the nuclear
norm as a convex heuristic for rank approximation.

The nuclear norm of a matrix X € R™*™ is equal to the
sum of its singular values, i.e,

X[l := D 0il(X) (15)
i=1

where ;(X) denotes the i'" largest singular value of X and
it is equal to the square-root of the i*! largest eigenvalue
of XX7T. The relaxed problem is

minimize [[Y — BO||2 + M| Hn(0)]]+- (16)
This is a regularized linear-regression in which the function
J is given by the nuclear norm of the Hankel matrix of
0. The solution of this problem is given by the solution of

the semidefinite program
Y — @05 + A trace(X)

minimize
6,X a7
) X H,(0)
such that |:Hn 0 X

in which X is a symmetric slack matrix. The regularization
parameter A is determined by using the cross validation
technique. The data set is divided into two parts. The
first part is used for estimating 6 for a grid of values of A,
and the second part is used for evaluating the quality of
the corresponding models. The parameter A corresponding
to the model with the minimum prediction-error on the
validation data is selected. Then the whole data set is
used to re-estimate a model with the selected \. Let us
denote this method by NN-CV, in which the NN stands
for nuclear norm, and the CV stands for cross validation.

E

3. R2NEVA

3.1 Re-weighted mnuclear norm regularization for FIR
systems

A better heuristic for rank minimization is the logarithm
of the determinant (Fazel et al., 2003). This is a smooth
concave approximation for the rank function. Using the
function log det(H,,(0) + 01,,), the regularization problem
in (17) becomes

migi&ize |Y — ®0|| + A log det(X + d1,)
X Ha(6) (18)
such that [Hn(e) X } =0

where § > 0 is a small regularization parameter. The
minimization is done locally via a sequence of convex
problems using local minimization techniques. In the k™
step of the algorithm we solve

mirgigize |V — ®0||3 + A trace(X" +61,) ' X
’ 19)
X Ha(0) (
such that [7—["(9) X } =0

to get 1. In the first step of the algorithm X° = I,
which is equivalent to solving the nuclear norm regulariza-
tion problem in (17). Therefore, the algorithm is equivalent
to solving the re-weighted nuclear norm regularization

1Y = @Ol[3 + N[W* A (0)W"]. (20)

in which each iteration builds on the top of the nuclear
norm regularization without re-weighting. As shown in
Mohan and Fazel (2010), we have

Xk+1 — (Wk)(fl)UZUT(Wk)(fl)
Wk+1 _ (Xk+1 +5In)_1

in which UXVT is the singular value decomposition of the
symmetric matrix W*H,, (9*+1) Wk,

minimize
0

(21)

One way to select the value of the regularization parameter
A is by using cross validation. Let us denote this method
by RNN-CV, in which the RNN stands for re-weighted
nuclear norm. Unfortunately, since the problem is solved
iteratively, the cross validation technique will be time-
consuming and will add to the computational complexity
of the method. In the next section, we suggest a method
for solving this issue.

3.2 R2NEVA

An alternative idea for dealing with the regularization
parameter in (20) is to combine the estimation and the
validation problems into one problem. This idea was first
introduced in Rojas and Hjalmarsson (2011) for /;-sparse
estimation.

The idea of the SPARSEVA method is to relax the least-
squares objective to what the least-squares method would
achieve on validation data and then use this as a constraint
in the minimization of the regularization term. Therefore,
instead of solving the problem

minimize ||V — ®0)|3
o (22)
such that |01 <7
we solve
minimize 19111
0 A (23)
such that  V(0) < (14 enx)V(0Ls)

where the constant ey corresponds to the loss of fit

that can be expected on validation data. The choice ZW”
corresponds to the AIC, % to the BIC, and
V(0) =Y — 26]5. (24)

This allows us to eliminate all the tuning parameters from
the problem.

Using this approach, instead of solving the problem in (20),
we solve the problem

W H,, ()W .
V(0) < (1+en)V(0Ls).

minimize
v (25)
such that

In the k' step of the algorithm we solve the semidefinite
program



migigize trace(X" 4+ 61,,) 71X
X H, (9) 26
such that [Hn(e) X } >0 (26)

(1+ex)V(lrs) —V(0) >0

and update the weight matrix W* and the matrix X*
according to (21). We will call this re-weighted nuclear-
norm estimation method R2NEVA (Re-weighted Nuclear-
Norm Estimation based on VAlidation criteria). When the
number of iterations is set to one (k = 0 with X° = I), we
will call the method 2NEVA (Nuclear-Norm Estimation
based on VAlidation criteria).

3.8 Likelihood approach for validation

In this section, we will suggest an alternative choice
for the constant ex based on a test statistic and the
maximum likelihood principle. Observe that according to
the assumed linear regression model we have

éLS =0 + (@T(I))ilq)TE (27)
and
Vn(0) = [|Y — 93 (28)
= (0—0.5)"T®(6 — O5) + V(0Ls).
Therefore
V(6o) —2V(éLS) _ETo(@"e) 'TE Py (29)

2

o o
by the assumption on E and the properties of the matrix
O(d7Te) 1T,

An estimate of the variance o2 can be found using the LS

solution of the linear regression problem to be

o V(frs)
2 _ 30
0t = o (30)
and we notice that
V(frs) = ET(I —®(@Td)"*07)E, (31)
therefore ,
(N —2n)6 o
s X (N —2n). (32)
From (29) and (32) we get the statistic
fo) — V(0
Vibo) = Vi0is) F(n,N — 2n) (33)

né2
Given that 6y = 0, the value

V(0) — V(fLs) _V(0) - V(0rs) _

o V(dLs)
n N-—-2n

(n—2)(N —2n)

n(N —2n+2)
(34)

maximizes the probability distribution function of the

distribution F(n, N — n). Thus with maximum likelihood
we have

noé?

(n—2) A

This suggests taking

(35)

(n—2)
(N—-2n+2)
In what follows, we will call this choice of €y, the
maximum-likelihood approach for validation.

EN —

4. ESTIMATING THE TRANSIENT

When solving the linear regression problem in equa-
tion (7), the first n inputs and outputs are not used
because the initial conditions are not known. If n is rel-
atively large with respect to the size of the data set Zy,
a considerable amount of information is lost by removing
the first part of the data. In this section, we show how it
is possible to make use of the full data set by estimating
an additional FIR model of size n.

Assume that we have a rational model as described in (11),

with )
Flg)=1+fig +-+ fra" (36)
B(g) =big™ 4 +bg "
Then we have the following difference equation
y(t) + fry(t = 1) + - +fry(t —7) =
biu(t —1)+ -+ byu(t — ) (37)

+b50¢ + 0701 4 -+ -+ b6
The values b, ..., b7 are used to compensate for the initial
conditions, namely the values u(—r + 1),...,u(0), and
y(—r+2),...,y(0) so that we can consider y(k) = u(k) =0
for all k£ < 0. Define the transient polynomial

Br(q) =by+biqg " +---+blg " (38)

Then we have the following output-error model with two-
inputs and one-output

Vit = Pttt +
= Go(q)u(t) + G-(q)d¢ + e(t)
with zero initial conditions.

The second transfer operator G (¢) has an impulse input
and it represents the effect of the transient due to the
unknown initial conditions. This reformulation maps the
unknown initial conditions into a corresponding unknown
LTT system with the same order and poles as the original
system. To proceed numerically, we approximate both
operators G and G, as before, with FIR models of order
n>r,lie.

Golg) =Y go(k)g ™", Gr(q) =Y g-(k)g™"  (40)
k=1 k=1
and solve the linear regression problem
Yy = {@N I”] [ZO] + En

in which I, is the identity matrix and
0o = [g0(1) ... o))", 0- =[g-(1)...g-(m)]"

(41)

Vi = [y(1) .. y(N))T, By = [e(1) ... ()],
i 0 0 0 1
u(1) 0 0
u(2) u(1) 0
=1 um) wn—1) ... w(l)
un+1) un—2) ... u(2)
W(N = 1) (N =2) ... u(N=n)]

Notice that Gy and G, share the same poles. Therefore
the block-Hankel rectangle matrix



8w
waoo)=| T T )
gk+1) glk+2) ... g(n)
in which g(m) := [go(m) g-(m)] for all m = 1,...,n and

n = 2k + 1, will have rank » whenever n > r.

Using this, we formulate a similar problem as before. In
the k' step of the regularization problem we solve

minimize ||V — ®n0 — 7|3 + A( trace(X* 4+ 61,) ' X
0m,X,7 2
+ trace(Z* +01,)712)
X Ha(0,m)
5 -
such that M (6, 77)T 7 =0
(43)
to get AFT1, n**1 Then we have
Xk = (whHEDusuT (wkED
Zk+1 — Wk (_1)VEVT Wk‘ (—1)

Wi = (XFH 4 61,) 7,
Wyt = (2" 4 61,)

in which USV7 is the singular value decomposition of the
rectangle matrix W{H,, (0¥, p*+1)WE. The regulariza-
tion parameter ) is selected by using cross-validation. We
will denote this method by RNN-CV+Transient.

5. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, the algorithm is tested on a 6th order
system with poles at 0.5 £+ 0.75¢, —0.8 + 0.45¢, —0.4 + 0.7¢
and zeros at —0.24+0.857,0.44+0.2¢, —0.5, 0.1 and one delay.
The experiment is conducted in MATLAB using YALMIP
and the solver SDPT3. We have used a Gaussian white
input with variance 1, and the noise variance is 30. The
sample size for each run N = 500, and the number of
estimated parameters is n = 69. It was chosen to guarantee
that go(k) for k& > n are close to zero. In the following we
compare the different methods discussed in the previous
sections. The comparison is done in terms of model fit as
measure of accuracy of the estimate. The fit is defined as

G — 100 <1 i loo(k) - g(k)?) (45)

> k=1 190(k) — Go|?
in which

1 n
gy = — k 46
go = — ;90( ) (46)
When the fit = 100, the estimate coincides with the true
parameters. The results are shown in terms of box plots
in which the median (of all runs) is represented by the red
line, and the mean is given by the diamond.

5.1 NN-CV vs. RNN-CV

We first compared the two methods:

e NN-CV; nuclear-norm regularization with cross vali-
dation, and

e RNN-CV; re-weighted nuclear norm regularization
with cross validation. The parameter 6 = 0.1.

As shown in Fig. 1, RNN-CV performed better that NN-
CV for the considered system.
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Fig. 2. Box plots for 50 fits comparing NN-CV, 2NEVA|
R2NEVA, and RNN-CV methods

5.2 CVwus. EVA

Next we compare the results obtained by the cross-
validation techniques to the methods:

e 2NEVA; nuclear norm regularization based on ML
approach for validation (see subsection 3.3), and

e R2NEVA; re-weighted nuclear norm regularization
based on ML approach for validation. The regular-
ization parameter § = 0.1. The initial weights W'
are taken to be the identity.

Fig. 2 shows that 2NEVA gives very close result to that
obtained with NN-CV. For this example, R2NEVA gives a
slightly less favorable performance compared to RNN-CV,
but the computational burden is reduced significantly (40
times in this example).

5.3 Comparison to other methods

Finally we compare the following three methods

e RNN-CV+Transient; re-weighted nuclear norm regu-
larization with cross validation and estimated tran-
sient. The regularization parameter 6 = 0.1,

e N4SID-NN; nuclear norm for subspace identification
using the true system order (Liu et al., 2013). The
weighting matrices of the algorithm are chosen ac-
cording to CVA (canonical variate analysis), and
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Fig. 3. Box plots for 50 fits comparing RNN-
CV+Transient, N4ASID-NN, and OE methods

e OE; PEM using an output-error model using the true
system order. The MATLAB function oe is used with
tolerance = 0.0001, and the initial conditions are set
to ’estimate’.

Fig. 3 shows that the two nuclear norm based methods
perform best on this example. NASID-NN has a slightly
better median behavior while RNN-CV+Transient has
slightly better average behavior and less spread.

It is important to emphasize that the two methods N4SID-
NN and OE are not performing any order selection. They
are equipped with an orcale that gives the true system
order. This is in contrast to RNN-CV+Transient which
does not use this prior knowledge.

6. CONCLUSIONS

In this contribution we developed a new regularization
technique for estimation of output error models. The
method is based on a re-weighted nuclear approximation
of the rank of the Hankel matrix of the impulse-response.
For the implementation, the method from SPARSEVA has
been used to remove the regularization parameter from
the problem. We suggested a new value for ey based on
a test statistic and the ML-principle. We also developed
a method for estimating the transient in cases where the
initial conditions are unknown.

The numerical example shows that the re-weighting in the
nuclear norm heuristics can improve the performance. By
using the methods 2NEVA and R2NEVA we are able to
reduce the computational burden of the method on the
cost of a slightly inferior performance. The simulation
shows that the developed method is capable of achieving
competitive performance when compared to other meth-
ods.
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