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Abstract 

We review recent developments in the field of first-principles simulations of magnetic materials 
above the magnetic order-disorder transition temperature, focusing mainly on 3d-transition 
metals, their alloys and compounds. We review theoretical tools, which allow for a description of 
a system with local moments, which survive, but become disordered in the paramagnetic state, 
focusing on their advantages and limitations. We discuss applications of these theories for 
calculations of thermodynamic and mechanical properties of paramagnetic materials. The 
presented examples include, among others, simulations of phase stability of Fe, Fe-Cr and Fe-Mn 
alloys, formation energies of vacancies, substitutional and interstitial impurities, as well as their 
interactions in Fe, calculations of equations of state and elastic moduli for 3d-transition metal 
alloys and compounds, like CrN and steels. The examples underline the need for a proper 
treatment of magnetic disorder in these systems.  
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1. Introduction: a description of the paramagnetic state of magnetic materials.  

 
Materials play very important role in the history of humankind. In the 1900-s the advent of 
electricity, aviation, nuclear power, and information technology was governed by the explosion 
of materials discoveries.  Plastic and silicon, superconductors and biomaterials, photonic 
materials and ceramic composites became available. Moreover, accelerating technological 
development greatly increased demands for the materials design. So far, the prevailing search 
methods were based on trial-and-error development. However, the time it takes to discover 



advanced materials and to prove their usefulness to a commercial market is far too long. Thus, 
there is a need to reduce it significantly, from 10-20 years at present to 5-10 years or less [1]. 
Theoretical understanding of fundamental properties of materials and a possibility to carry out 
advanced computer simulations of materials properties should be considered as a key in 
achieving this goal.  
 
A challenging problem for the condensed matter theory in this respect is to bring simulations as 
close as possible to conditions at which materials operate when used as tools and devices. Indeed, 
the physical and mechanical properties of materials depend on the chemical content, on the 
internal structure, which is formed during their manufacturing and service, as well as on 
temperature, stresses, and other external parameters. In the case of a magnetic material the 
situation becomes even more complex, turning fundamental study of magnetism into a subject of 
great scientific and practical interest, and leading to enormous amount of experimental and 
theoretical investigations in this field [2].  
 
Great progress has been achieved in understanding of magnetically ordered materials. 
Consideration of relatively trivial types of collinear magnetic order, ferromagnetic, with all 
magnetic moment pointing in the same direction, or simple antiferromagnetic, say with magnetic 
moments in neighboring planes of the crystal pointing antiparallel to each other, is nowadays 
extended to significantly more rich spin textures, e.g. helical and skyrmion structures [3]. First 
principles calculations in the framework of Density Functional Theory (DFT) [4] have been 
recognized in the field as an extremely useful research tool. With a development of efficient 
computational methods [5] and increasing power of modern computers calculations of key 
magnetic characteristics, like the local magnetic moments or magnetic exchange interactions, 
have transformed into a routine task, and theoretical treatments of noncollinear spin 
configurations [6,7], magnetic phase transitions [8], and spin dynamics [9, 10, 11, 12,13] have 
become possible. 
 
 
An interplay between magnetic and chemical effects in magnetic materials was recognized 
several decades ago [14,15].  Unfortunately, the effects of finite temperature magnetic excitations 
on their structural and elastic properties attracted much less attention. Often these effects were 
assumed small, the second-order effects, which should not be taken into account in simulations of 
phase stability and mechanical behavior. Moreover, paramagnetic phases of magnetic materials 
were modeled as non-magnetic in many works, and researchers did not distinguish between the 
two terms. Such misinterpretation could lead to erroneous conclusions [16].   Indeed, in most 
cases local magnetic moments survive above the magnetic transition temperature, seriously 
modifying the picture obtained in theoretical simulations [17]. The proper treatment of magnetic 
disorder is essential for the predictive description of materials properties [18,19], especially just 
below or above the Curie temperature [20].  
 
Early attempts to understand the behavior of magnetic materials were dominated by two 
seemingly orthogonal pictures, the local magnetic moments model and the itinerant (band 
electrons) model. The former could be traced to the work of Heisenberg [21], and assumed that 
electrons were localized on atoms producing a local spin moment. The inter-atomic exchange 
interactions determined the magnetic order, and transverse spin fluctuations were excited at finite 
temperature, eventually leading to a disorder of the localized moments above the magnetic 



transition temperature. The itinerant model was based on the band theory of electrons, and was 
best represented by the Stoner description [22]. The competition between the kinetic energy of 
the itinerant electrons and the exchange interaction between them could give rise an imbalance in 
the numbers of spin up and spin down electrons, stabilizing  a magnetic order, e.g. 
ferromagnetism. The longitudinal components of the local spin fluctuation lead to the variation of 
the magnetic moment with temperature and dominated the thermodynamic properties of magnetic 
materials.  
 
Experimental data for the Curie-Weiss constant and the saturation magnetization of a wide 
variety of ferromagnetic substances were used by Rhodes and Wohlfarth to calculate values for 
the numbers of magnetic carriers from the former and from the latter, qC and qS, respectively 
[23]. Plotting their ratio as a function of the Curie temperatures of corresponding materials, 
Rhodes and Wohlfarth revealed two branches, one with qC/qS ~1, and the other with qC/qS  > 1. 
The former corresponded to substances, such as Gd and MnSb, which could be described with a 
purely localized model of ferromagnetism. The second branch corresponded to substances, such 
as nickel and its alloys, dilute alloys of palladium and the compounds Sc3In and ZrZn2, which 
Rhodes and Wohlfarth classified according to collective electron model of ferromagnetism.  
 
Probably, purely localized or the purely itinerant moment models could describe some materials. 
However, in general any of them alone should not be sufficient. Nowadays we understand that 
itinerant electrons determine the magnetic properties of transition metals and their alloys. 
Electronic structure calculations within DFT, which can be viewed as a modern extension of the 
Stoner-type description of magnetism, are capable to reproduce ground state magnetic properties 
of 3d transition metals and their alloys with very high accuracy, and to explain them [24]. 
However, applications of the Stoner picture fail for the description of magnetism at finite 
temperature. It greatly overestimates the Curie temperatures for ferromagnetic metals Tc, by 
factor of five, and there are no moments and no Curie-Weiss law above Tc [25].   
 

Very important step in the development of modern understanding of transition metal magnetism 
can be traced back to works of Moriya, who resolved the controversy between the itinerant and 
localized models into a more general problem of spin density fluctuations [26]. His interpolation 
theory was based on the functional integral formalism and the average amplitude of the local spin 
fluctuation was taken as one of the most important physical variables. Moriya has developed a 
method of taking into account the nonlocal nature of spin fluctuations so that the local moment 
limit and the weakly ferro- and antiferromagnetic limit were properly interpolated.  
 
Moriya’s works inspired the development of several first-principles approaches for the 
description of paramagnetic materials that we review in this paper. We restrict ourselves with a 
discussion of 3d-series transition metals, their alloys and compounds, to limit nearly endless field 
to a manageable amount of information.  However, the approaches and concepts that we discuss 
have sufficient generality, and should be applicable to a broad set of substances. Our starting 
point can be described as follows. Itinerant electrons determine the magnetism of 3d-transition 
metals. However, they are relatively strongly bounded to their sites. Figure 1 illustrates that the 
magnetization density in these systems is well localized. Consequently, each atom could be 
associated with a local moment parallel to the net magnetization density at the site. These local 
moments behave in a Heisenberg-like manner, that is like localized moments, and become  



 

 
 

 

Figure 1. Magnetization density calculated for orthorhombic antiferromagnetic phase of CrN 
simulated by 2x1x1 unit cells. The density is shown by iso-surfaces at 0.06, 0.57, 1.14, and 1.71 
electrons / Å3. Red (blue) colors correspond to a surplus of majority (minority) spin electrons. It 
is seen that the magnetization density is well localized at Cr atoms (large bulbs) though some 
induced spin polarization at N atoms is also seen. Details of calculations are the same as in Ref. 
[27]. 
 
 
 

 
Figure 2. The model of the paramagnetic state considered in this work consists of non-collinear 
and fluctuating local moments, which become disordered above the magnetic order-disorder 
transition temperature, the Cure TC or Neel TN temperature for ferromagnets and 
antiferromagnets, respectively.  



disordered above the magnetic order-disorder transition temperature, the Cure TC or Neel TN 
temperature for ferromagnets and antiferromagnets, respectively, as illustrated in Fig. 2. Of 
course, in weak itinerant magnets with qC/qS  >> 1like ZrZn2, this picture does not hold. Here the 
magnetization arises because of specific narrow peaks in the electronic density of states at the 
Fermi level, fulfilling the Stoner criteria. Under such circumstances, the concept of the moments 
rotating nearly rigidly probably breaks down and the excitations can be more from electron-hole 
pairs than from moment rotations [10]. We will not consider weakly itinerant magnets in this 
review. 

 
At the same time, magnitudes of the local moments do not have to be constant even for 
chemically equivalent atoms. They depend on the local chemical environments of the respective 
atoms, e.g. due to disorder in alloys or the proximity to defects, on thermally induced atomic 
displacements, as well as on local magnetic environments of the atoms. Moreover, formed by 
itinerant electrons magnetic moments fluctuate in space and time due to the presence of 
longitudinal spin fluctuation. These fluctuations are closely linked to the itinerant nature of 
electron magnetism, where electron-electron exchange interaction is responsible for the formation 
of local atomic magnetic moments [13]. The longitudinal fluctuations have a significant effect on 
the high-temperature properties of magnetic materials, influencing the description of their finite-
temperature thermodynamics [28]. Longitudinal spin fluctuations can be incorporated into the 
local moment picture, either self-consistently, at the level of DFT calculations, by replacing the 
Weiss field in the calculation with a generalized Onsager cavity field in the framework of the 
disordered local moment picture [29], or at a level of model Hamiltonians [30-34].  

 

An approach described above has been widely used for studies of finite temperature magnetism, 
but mainly in the context of simulations of magnetic properties, like TC and TN.  On the other 
hand, first-principles simulations of phase stability, thermodynamic and elastic properties of 
magnetic materials above these temperatures is a relatively young field, despite the fact that 
Zener underlined the importance of magnetic excitations for the allotropic phase transitions in Fe 
almost 60 years ago [35]. Körmann et al. have given a comprehensive overview of state-of-the-
art computational techniques to thermodynamically model magnetic and chemical order–disorder 
transitions [28]. Reviewing recent progress in this field with a focus on first-principles 
description of paramagnetic materials based on 3d-series transition metals is the main task of this 
work.  

 

 

 



2. Theoretical models for description of paramagnetic state of magnetic materials: general 
considerations. 

To understand the complexity of the problem, let us consider a magnetic material above its Curie 
or Neel temperature that is in the paramagnetic phase. To describe its thermodynamic properties 
one must determine the Gibbs free energy: 

magnvibelPM GGGG ++=    ,                            (1) 

which contains electronic Gel, vibrational Gvib, and magnetic Gmagn contributions. State-of-the art 
approach to this type of tasks would be to employ the adiabatic decoupling between the three 
degrees of freedom, motivating it by the fact that their excitations usually have very different 
time scales [36]. The separation of the electronic, the fastest, and atomic vibration degrees of 
freedom are well justified within the Born–Oppenheimer approximation,  assuming that lighter 
electrons adjust adiabatically to the motion of much heavier nuclei, remaining at any time in their 
instantaneous ground state. Indeed, as discussed in [25] the characteristic time for d-metals as 
given by intersite hopping is ∼ 10−15 s, while for the lattice vibrations the characteristic time is 
proportional to the inverse of the Debye frequency, which is of the order of ∼10−12 s.  Excitations 
associated with magnetic degrees of freedom are commonly related to the to the inverse spin-
wave frequency, which is ∼ 10−13 s, and therefore they are assumed to be order of magnitude 
faster than vibrational degrees of freedom, and several orders of magnitude slower than the 
electronic ones.  

 

On the other hand, in the paramagnetic state the magnetic excitations are qualitatively different 
from those at the low temperature. In contrast to the spin wave excitations, other transverse as 
well as longitudinal excitations of the magnetic moments, like the spin flips, dominate.  The 
relevant time scale can therefore be better estimated from the spin decoherence time tdc rather 
than from the inverse spin-wave frequency. For body-centered cubic (bcc) Fe above TC tdc is of 
the order of 20–50 fs [11]. Thus, the magnetic degrees of freedom in the paramagnetic state 
should be considered as much faster in comparison to those in magnetically ordered materials, of 
the order of 10−14 - 10−15 s. Moreover, it is important to realize that the paramagnetic state is the 
high-temperature state of a magnetic material. Thus, a consideration of atomic motions is 
essential. The time scale given by the Debye frequency is therefore getting less relevant, and one 
should consider the atomic motions on the time scales familiar from molecular dynamics 
simulations. Here the typical time step for a proper description of the (Born–Oppenheimer) 
dynamics is ~10−15 s. Finally, the potential energy surface can be influenced by magnetic and 
vibrational excitations. In summary, an argument for the decoupling of electronic, magnetic and 
vibrational contributions to the free energy, well justified for magnetically ordered materials at 
low temperatures becomes questionable for the theoretical description of their paramagnetic state. 



All the terms in Eq. (1), Gel, Gvib, and Gmagn are coupled to each other and in principle should be 
treated simultaneously in first-principles calculations of paramagnetic materials.  

 

To complicate the picture further, it is important to underline that the physics of strongly 
correlated electron systems recognizes the description of the finite-temperature itinerant electron 
magnets and the existence of local magnetic moments above TC or TN as one of the central 
problems [37]. For a system with itinerant electrons local magnetic moments become temperature 
dependent. Besides the thermal fluctuations which disorder the moments, a variety of competing 
many-body effects should be considered, such as Kondo screening and the induction of local 
magnetic moment by temperature.  These effects go beyond the state-of-the-art local (local spin 
density approximation, LSDA) or semi-local (generalized gradient approximation, GGA) 
implementations of DFT, and require applications of advanced, but time-consuming techniques, 
e.g. based on the dynamical mean-field theory (DMFT) [38].  

Thus, the problem of the description of the paramagnetic state of magnetic materials appears to 
be challenging for the first-principles theory. However, the great practical importance of e.g. 
steels has motivated intense research in the field, and several research groups have dealt with it, 
from different starting points. In particular, DMFT calculations have been carried out for several 
systems, despite their complexity.  On the other hand, it has been realized that some of the many-
body effects can be taken into account, in an approximate way, in the framework of more 
traditional density functional techniques. Below we discuss these theoretical developments.  

 

3. Dynamical Mean-Field Theory. 

Perhaps the most consistent way to describe the paramagnetic state of a magnetic material with 
account of correlation effects is given at present by a combination of DFT with model treatments 
of many-body effects, like the Hubbard model, e.g. within the dynamical mean-field theory. The 
DMFT [39] maps the Hubbard model, which in principle is a lattice model, onto quantum 
impurity model subject to a self-consistent condition in such a way that the many-body problem 
for the crystal splits into a one-body impurity problem for the crystal and a many-body problem 
for an effective atom. The relevant degrees of freedom at a single site are the quantum states of 
the atom, while the rest of the crystal is described as a reservoir of non-interacting electrons that 
can be emitted or absorbed in the atom [40]. The effect of the environment on the site is to allow 
the atom to make transitions between different configurations. The quantum nature of the 
problem requires a hybridization function that plays the role of a mean field and describes the 
ability of electrons to hop in and out of a given atomic site, ensuring a self-consistency condition 
to the quantum impurity problem. In the case of weak hybridization the electrons will behave as 
localized, while in the opposite case they will behave as itinerant. The field is determined self-
consistently: one uses the solution of the quantum many-body impurity problem to build self-



energy for the lattice Green’s function that in turn gives a new approximation for the dynamical 
mean-field. A combination of DFT and DMFT is realized in the following way: the electronic 
structure calculation results obtained by DFT methods are used to calculate parameters for a 
general DMFT Hamiltonian and then the problem defined by this Hamiltonian is solved within 
the DMFT [41]. More detailed introductory information on the DMFT can be found in  [40], 
fundamental basics of DMFT have been reviewed by Kotliar et al.[38], while a review on recent 
investigation of real materials with strong electronic correlations by the LDA+DMFT method has 
been presented by Anisimov and Lukoyanov[41].  

Consider the problem of the paramagnetic state of magnetic materials. Solving the quantum 
impurity problem within DMFT, one describes the spin, orbital, energy, and temperature 
dependent interactions of a particular magnetic atom with the rest of the crystal. The uniform spin 
susceptibility in the paramagnetic state dHdMq ==0χ can be extracted from Quantum Monte-

Carlo (QMC) simulations [37] used for the solution of DMFT quantum impurity problem by 
measuring the induced magnetic moment in a small external magnetic field. It includes the 
polarization of the impurity Weiss field by the external field. For a Fermi liquid one expects 
temperature independent Pauli behavior of 0=qχ . On the other hand, if the local moments survive 

above the magnetic transition temperature, the uniform spin susceptibility follows the Curie-
Weiss law:  

)(3

2

0
C

eff
q TT −

==

µ
χ          ,         (2) 

which allows one to extract high-temperature magnetic moments effµ and the magnetic transition 

temperature TC from calculations. Of course, the latter should be overestimated due to the mean-
field approximation, underlying the DMFT.  

 

Another important quantity that one can compute using the LDA+DMFT approach for a 
paramagnetic system is the dynamic local magnetic susceptibility [42]:  

ωτβ
ττµωχ iz

j
z
jBloc eSSdi ∫=

0

2 )()0()(      ,   (3) 

where Bµ is the Bohr magneton, z
jS  is the z-component of single-site spin operator S at site j, and 

β=T-1.  Taking analytical continuation of )( ωχ iloc to the real frequency axis ω, one can try to fit 

locχRe  by the simple Lorentzian form, denoting half-width of the peak at a half-height as δ.  δ 
describes the inverse lifetime of local excitations, and the large is it the smaller is lifetime of the 
local moments in the paramagnetic state.  The static susceptibility in the local-moment regime is 
given by )0(locχ  . In contrast to the uniform spin susceptibility, the dynamic local magnetic 



susceptibility cannot be measured in experiments, but its temperature dependence characterizes 
the degree of correlations in the system. locχ  should be nearly temperature independent in weakly 
correlated systems, while in strongly correlated systems one expects the Curie-Weiss behavior at 
high temperatures [37]: 

)3(

2
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=

µχ            ,     (4) 

For the system with well-defined local moments the DMFT is expected to yield δ ~ T and 

locµ should be temperature independent, while in the more itinerant system one should see 
significant temperature dependence of locµ .   

In original applications of the LDA+DMFT the procedure was carried out without charge self-
consistency. However, state-of-the-art applications of the method include the charge self-
consistency, making it possible to calculate the total energy and to access thermodynamic [43] 
and vibrational [44] properties of paramagnetic materials in addition to the magnetic properties.  
At the same time, it is important to understand that the DMFT itself contains several 
approximations, which should be well understood in its practical applications. Being the mean-
field theory, it neglects intersite magnetic exchange, and it should in general overestimate 
magnetic transition temperature. Magnetic short-range order present in any system not too far 
above the magnetic transition temperature cannot be captured as well. Note that a comparison of 
the values of the local and the q= 0 susceptibilities could give a crude measure of the degree of 
the short range order [37]. Methods to add nonlocal corrections to the DMFT have been 
developed, for example the dynamical cluster approximation [45,46], the cellular dynamical 
mean-field theory [47], and the dual fermion approach [48] . However, their application in 
simulations relevant for the materials design are still illusive due to very high computational 
costs.  

 

Another big problem for practical applications of the LDA+DMFT scheme is the existence of 
two parameters of the model, the Coulomb U and exchange J interaction parameters.  Often these 
parameters are varied to achieve the best agreement between experimental data and calculations 
for some known and well-characterized property. Within such approach, the model parameters 
are considered as adjustable parameters. In principle, one can estimate the value for the Coulomb 
interaction parameter U from the energy separation of the spectral peaks interpreted as Hubbard 
bands [41]. Moreover, there are computational schemes proposed to calculate U and J from first 
principles, e.g. employing the constrained random-phase-approximation (cRPA) method [49,50]. 
However, their use is still quite rare. Unfortunately, the LDA+DMFT calculations are still time 
consuming, and the method is most often applied to materials with few atoms in the unit cell and 
with relatively high degree of symmetry. Moreover, until recently forces between atoms were 



calculated from the numerical derivation of the total energies, ruling out efficient consideration of 
lattice dynamics. Fortunately, Leonov et al. [51] has just proposed a novel computational 
approach which makes it possible to evaluate interatomic forces within DMFT approach. Still, 
there is a need for theoretical methods that treat many-electron effects at more approximate level.  

 

4. Spin dynamics 

The key point for a theory that aims at simplifying the treatment of the many-body effects in 
paramagnetic materials is the equivalence between a many-body interacting system with 
Coulomb onsite interactions and a one-electron system in fluctuating charge and spin fields. This 
equivalence is a base of spin-fluctuation theories of itinerant-electron magnetism [26]. In a 
complete theory, the charge and spin fields are dynamically fluctuating in both space and time. 
One could try to capture these fluctuations with DFT calculations for a system which magnetic 
state is excited, and where the arrangement of local moments differs from that in the magnetically 
ordered ground state and fluctuates with time. Perhaps, ab initio spin dynamics gives the most 
consistent realization of this approach.  

 

Antropov et al. [9] inspired the interest to this technique, and presented a detailed derivation of 
the equations about a year later [10]. Starting with basic DFT formalism and considering each 
electron moving in the average ‘‘charge’’ and ‘‘spin’’ self-consistent fields V (r) and B(r) of the 
electrons and ions, Antropov et al. derived the equation of motion (EOM) for spin density m(r,t): 
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where sg is the gyromagnetic ratio, Ψ is the electronic spinor, σ̂ represents a vector of Pauli 
matrices, and c.c. stays for complex conjugate.  

 

To make the solution of equation (5) possible in practice and to include temperature effects, 
Antropov et al. introduced the quasiclassical spin approximation [9,10]. They assumed that the 
magnetization density in the immediate vicinity of an atom has a uniform orientation, divided the 
space into spheres or polyhedra, and within each such region associated a unit vector ei with the 
instantaneous magnetization direction. Associating such a region with one particular atom with 
the local moment Mi=μei, they arrived at the local moment picture, which we discussed in the 
introduction and illustrated in Fig. 2. The next simplification consisted in introducing the rigid 
spin approximation (RSA), assuming that the time evolution of the orientation is described by a 
simultaneous (or rigid) rotation of the magnetization density at each point inside the atomic 



sphere or polyhedra. Note that the amplitude of the magnetization density was allowed to change. 
With these approximations quasi-classical EOM of ab initio spin dynamics take the form:  

Iee
×−=

µ
2

t
d                         ,       (6) 

where  

 

eBI ∂∂=−= Eµ                             (7) 

is the first variation of the total energy E for a differential rotation of a local moment, and 
therefore in analogy with molecular dynamics can be viewed as a magnetic “force” acting on the 
spin.  It can be calculated, for instance, using the magnetic force theorem within the multiple 
scattering formalism [52]. To include temperature effects, Eq. (6) can be modified, e.g. in the 
framework of a stochastic method based on Langevin-type dynamics [10]:  
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In Eq. (8) Ri is a relaxation term and f i is a random force at each site i in the system.  

 

Despite the simplifications mentioned above, an approach proposed by Antropov et al. remained 
computationally demanding. Simulations were performed, but for relatively simple systems, like 
pure Fe [9,10] or FeNi alloys [6,7]. Further development of the idea was associated with bringing 
model Hamiltonians into play to calculate the magnetic “force” in Eq. (7). The simplest model 
can be based on the classical Heisenberg Hamiltonian cHH :  

ji
iji

ijcH J eeH ∑
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,

                    ,      (9) 

known to work well for transition metals and their alloys [52]. Of course, this means that one 
goes from quasi-classical to semi-classical description. Indeed, the exchange parameters ijJ are 

calculated within DFT, thus linking first-principles theory to the classical spin-dynamics. Skubic 
et al. [12] presented an excellent overview of the semi-classical approach that greatly simplifies 
the problem. Moreover,  they proposed to use more complex Hamiltonian as compared to Eq. (9), 
adding to the classical Heisenberg Hamiltonian terms corresponding to uniaxial magnetic 
anisotropy, dipolar interactions, and the Zeeman term that described the interaction of the 
magnetic system with an external magnetic field.  

 



One should note however, that while the semi-classical approximation was demonstrated as a 
useful tool to study spin dynamics in many systems [11,12], very limited number of simulation 
had a description of the paramagnetic state as the primary task [53]. Several issues have to be 
considered here, like the importance of longitudinal spin fluctuations, the dependence of 
exchange parameters on the global magnetic state of the system, deviations between the classical 
and quantum solution of the Heisenberg model, and the effect of lattice vibrations.  

 

The lack of longitudinal fluctuations (LFs) was a fundamental drawback of the classical 
Langevin-type spin dynamics. Ma and Dudarev [13] proposed a scheme to include LFs in a semi-
classical dynamics of evolution of interacting magnetic moments. Their method was based on the 
generalization of Langevin spin dynamics to a fully three-dimensional stochastic dynamics of 
moments. In this approach, both the longitudinal and rotational degrees of freedom of atomic spin 
vectors were treated on equal footing. This removed a fundamental limitation associated with the 
lack of longitudinal fluctuations in semi-classical spin dynamics equations, but retained the 
capacity of the method to simulate a very large system of interacting spins. 

 

A key aspect in a development of semi-classical theories that incorporate the longitudinal spin 
fluctuations has been a generalization of the classical Heisenberg Hamiltonian (9). Several 
suggestions have been put forward, which could be classified in two groups. The first group was 
based on an idea of merging the Heisenberg Hamiltonian (9) with a Ginzburg-Landau like energy 
expansion into a Heisenberg-Landau Hamiltonian [13, 30, 31, 33, 34]:  
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where )(n
iA were the parameters of the Ginzburg-Landau like energy expansion. The second 

suggestion by Ruban et al. [32] introduced the longitudinal spin-fluctuation Hamiltonian LSFH  
by making the parameters of the classical Heisenberg-type Hamiltonian dependent on the 
magnitudes of local moments:  
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In both approaches, the parameters of the Hamiltonians should be fitted to constrained DFT 
calculations.  

 

Ruban et al. [32] underlined another important aspect of the use of model Hamiltonians, the 
dependence of the model parameters on the global magnetic state. In particular, they calculated 



the parameters of Eq. (11) for the magnetically disordered state simulated with the Disordered 
Local Moment (DLM) model (see Sec. 5 below). Thus, the parameters of the model Hamiltonian 
in Eq. (11) have the following physical meaning. )()0( MJ  corresponds to the energy of the 
magnetically disordered state, which represents a system with randomly oriented spins with a 
fixed value of the magnetic moment M . ),()1(

iMMJ is the energy required to change the value 

of the spin from the corresponding average value M to the value Mi. The pair exchange 
interaction parameter Jij describes the magnetic interaction between atoms in positions i and j in 
the system where all other local moments were completely disordered.  Ruban derived an 
expression for calculation of Jij in the paramagnetic state [54] using the multiple scattering 
theory, which differed from that of Ref. [52], where it was derived for a ferromagnetic ground 
state. As a matter of fact, for many itinerant systems there were significant differences in the 
results, calculated with the two expressions [54,55]. The problem is well recognized by now, and 
several groups propose their own schemes for taking into account the dependence of the model 
Hamiltonians parameters on the global magnetic state for the itinerant systems [56,57,58].  

 

Another interesting question is associated with possible deviations between the classical and 
quantum solution of the Heisenberg model. This problem has been studied in Ref.[59]. Based on 
a comparison between numerically exact results obtained from spin QMC simulations and 
classical simulations for different model systems and various thermodynamic properties, 
Körmann et al. have concluded that below TC the classical treatment could deviate significantly 
compared to the quantum treatment. On the other hand, for high temperatures well above TC as 
well as for increasing spin quantum numbers quantities such as the internal energy and the 
specific-heat capacity have approached each other as expected.  

 

5. Models of the paramagnetic state based on static DFT calculations at zero temperature.  

5.1 Disordered Local Moment model in the framework of the coherent potential 
approximation.   

Disordered Local Moment model was introduced by Hubbard [60] and Hasegawa [61]. Gyorffy 
et al. [25] gave the modern derivation of the DLM and combined it with the LSDA-DFT. Within 
this model one assumes that the system consisting of all the electrons, although ergodic, does not 
cover its phase space uniformly in time. Rather, it gets stuck for long times, which we here 
denote as the spin-flip time tSF, near points characterised by a finite moment at every site pointing 
in more or less random directions and then moves rapidly to another similar point. Gyorffy et al. 
supposed that the motion of temporarily broken ergodicity is mainly characterised by changes in 
the orientational configuration of the moments. Furthermore, Gyorffy et al. demonstrated [25] 
that neglecting the spin-orbit interaction  and assuming the complete disorder between the local  



 

 

Figure 3. Schematic representation of the Disordered Local Moment model. The paramagnetic 
state consisting of fully disordered non-collinear and fluctuating magnetic moments (Fig. 2) is 
approximated by fully disordered, collinear and static picture.  

 

moments the noncollinearity of the local moments (Fig. 2) could be ignored. Note that the model 
of complete disorder should work well at temperatures max

ijJT >> , where max
ijJ  is the strongest 

interaction of the classical Heisenberg Hamiltonian (9) for the corresponding system. Thus, 
within the DLM picture, the local magnetic moments exist in the paramagnetic state above the 
magnetic transition temperature, but the are fully disordered and collinear (Fig. 3). With this 
simplification, the magnetically disordered state can be described as a pseudo-alloy of equal 
amounts of atoms with spin up and spin down orientations of their local moments, and its 
electronic structure and the total energy can be calculated within the conventional alloy theory 
using the coherent potential approximation (CPA) [25]. 

 

A great advantage of the DLM picture consists of the possibility to formulate a consistent 
electronic-structure based thermodynamic theory, that accounts for the interplay between the 
configurational and magnetic degrees of freedom. In particular, Gyorffy and Stocks [62], and 
then  Staunton et al.[63] derived a general formalism to describe the atomic short range order in 
the compositionally disordered phases, the so-called S(2) method. S(2) is defined as the second 
derivative with respect to concentration of the grand potential of the disordered alloy, and its 
physical meaning is related to the effective energy of the interchange of atoms in the alloy, the 
so-called effective cluster interactions [36]. If calculated in the reciprocal space,  S(2) is directly 



related to the lattice Fourier transform of the short-range order parameter. In Ref. [54] Ruban et 
al. combined the corresponding real space appraoch, the generalized perturbation method, with 
the DLM model. These approaches allowed for the description of the configurational 
thermodynmaics in many alloys (for the recent review, see Ref.[36]).  

Status of the DLM approach in the many-body lattice models like the Hubbard or s-f exchange 
“Kondo lattice" model was discussed, e.g. in Ref. [64]. It was argued that though in a complete 
theory the charge and spin fields were dynamically fluctuating both in space and time, a “static" 
DLM approximation, where one neglected the dynamics of the fluctuations might capture an 
important part of the correlations. Indeed, DLM combined with the CPA became equivalent to 
the “Hubbard III" approximation for the original many-body problem, which jusified the use of 
the DLM for systems with dominating transverse magnetic fluctuations and explained its success 
in many applications, ranging from basic simulations of magnetic phase transitions [25] to the 
design of new steels[65]  and hard coatings [66,67]. Moreover, the DLM approach can be 
combined with techniques, that go beyond the conventional LSDA or GGA implementations of 
the DFT in terms of the tretment of many-body effects. In particular, it can be easily combined 
with the so-called LDA+U method [41,68,69], the static mean-field approximation (unrestricted 
Hartree–Fock) to the many-body problem. LDA+U method was found to be very successful 
when applied to systems with long-range spin and orbital order, but it was considered unsuitable 
for the desription of the paramagnetic state of correlated magnetic materials [70,71]. Alling et al.  
[17,72] demonstrated that a combination of LDA+U with the DLM picture allowed them to lift 
off this restriction. We should discuss this problem in more details in Sec. 7.4.  

 

On the other hand, DLM-CPA has other limitations, besides the approximate treatment of the 
many body effects. The codes that implement this approach are most often based on multiple-
scattering formalism and involve other approximations, e.g., the spherical approximation for the 
one-electron potential. This limits a possibility to treating materials with complex underlying 
crystal lattices and alloys with significant size mismatch between the alloy components, systems 
with point defects, like vacancies and interstitial impurities, or extended defects, like interfaces, 
grain boundaries and stacking faults. If local lattice relaxations are large and effects of local 
chemical environment are important, they cannot be treated explicitly within the single-site 
approximation, on which the CPA is based. Furthermore, despite the fact that Taylor formulated 
the CPA for the lattice dynamics problem [73], we are not aware of a broad application of the 
methodology in practice. Thus, a simultaneous treatment of magnetic excitations and lattice 
vibrations is hardly feasible at present. Thus, approaches that go beyond the CPA are highly 
requested.  

 

 



5.2 Supercell approach 

Following [72], let us start with the classical Heisenberg Hamiltonian (9) and introduce the 
average spin-spin correlation functions for coordination shell α : 

∑
∈

=
α

α
ji

jiN ,

1 eeΦ ,                                  (12) 

where N is the number of atoms in the system. In this formalism, the energy of a magnetic state 
can be written as: 

αα
α

α ΦnJEmagn ∑−=                      ,            (13) 

where jJJ 0=α for α∈j , αn is the number of atoms in the α -th coordination shell on the lattice. 

For example, one can immediately see that the magnetic contribution to the energy of the 
ferromagnetic state ∑−=

α
αJEFM

, while for the fully disordered paramagnetic state 0=PME , 

because in the high-temperature paramagnetic state with the complete disorder between the local 
moments the average spin-spin correlation functions fulfil the condition 

αα ∀= 0Φ                     ,             (14).  

One way to fulfil Eq. (14) in first-principles simulations is to employ the idea of the so-called 
special quasirandom structures (SQS) put forward by Zunger et al. to describe chemically 
disordered alloys [74], and generalized for the case of magnetic disorder by Alling et al. [72]. 
Because the exchange parameters should decay with distance, one assumes the finite range of the 
interactions, which simplifies condition (14): 0=αΦ  only for α  with 0≠αJ . Indeed, if 

0=αJ , any value of αΦ  does not influence the left-hand side of Eq. (13). Note that while the 

original condition (14) requires to dealing with in principal infinite system, the SQS condition 
can be fulfilled in the finite size periodic supercell. Moreover, as has been emphasized in Sec. 
5.1, for the ideal paramagnetic state only collinear spin configurations should in principal be 
sufficient. The formalism is easily generalized to include multi-site interactions [72]. Of course, 
in using magnetic SQS one should have in mind all the limitations of the conventional SQS 
methodology for the treatment of configurational disorder, reviewed in details in Ref. [36].   

 

Moreover, as pointed out by Ruban and Razumovskiy [75], if one deals with an ideal Heisenberg 
model system, the magnetic interactions are constant, and the way condition (14) is satisfied does 
not matter. Therefore, one can perform averaging over a proper set of magnetic systems. Every 
member of such a set can have an arbitrary magnetic structure, but their average should fulfil Eq. 
(14). One method that achieves this goal is the magnetic sampling method (MSM) suggested by 



Alling et al. [72]. In the MSM, one generates a set of magnetic distributions with random 
orientation of local magnetic moments, though without taking care of the obtained correlation 
functions, in contrast to the SQS approach. This can be easily done, for instance, using a random 
number generator.  Then the electronic structure calculations are carried out for each 
configuration, and the average of the obtained total energies is taken as the potential energy of the 
paramagnetic sample. In Ref. [72] it was shown that for paramagnetic CrN with B1 crystal 
structure MSM calculations converged already at 40 different magnetic distributions. Moreover, 
three different approaches, the DLM-CPA, the magnetic SQS and the MSM gave almost identical 
results for the potential energy of this system. 

 

It is important to underline that because the goal of the supercell calculations is most often to 
approximate the potential energy PME  of the paramagnetic alloy at high temperature T, strictly 

speaking it should be defined as a thermal average over the ‘fast’ magnetic degrees of freedom 
[76]:  

   
  ln

σ
σ

σPM EP=
β
(Z)=E ∑∂

∂
−

                      ,               (15)  

where  { }∑ ∑ −
σ σ

σσσ βEg=Z=Z exp   is the canonical partition function,  σP is the thermal 

probability of a particular (magnetic) configuration σ , 
Tk

=β
B

1 , where Bk  is the Boltzmann’s 

constant. σE and σg  are the energy (per atom) and the multiplicity of each magnetic 
configuration, respectively. In fact, using Eq. (15) one can check whether the DLM approach is 
adequate for the problem at hand or not. Indeed, if the condition for the applicability of the DLM 

max
ijJT >> is fulfilled the potential energy calculated from Eq. (15) should be in good agreement 

with the result obtained by an arithmetic average over different magnetic configurations. For 
example, in the case of substitutional (N, V) and interstitial (C, N) impurities in fcc Fe 
Ponomareva et al.  have found negligible difference between the two averaging methods at the 
temperatures corresponding to the stability field of austenite  [76], which has justified the use of 
the DLM picture in that study.  

 

Ruban and Razumovskiy [75] also pointed out that one has to be careful using the supercell 
approach because it provides a DLM-like distribution of the magnetic moments only on average 
for the whole supercell, while specific local correlation functions are quite arbitrary. In the case 
of modeling of local defects, such as vacancies, impurities, surfaces, interfaces, one therefore has 
to perform the corresponding averaging over magnetic configurations locally. Consider, for  



(a) (b)   

Figure 4. (a) Supercell realization of the disordered local moment model for calculations of the 
solution energy of an interstial impurity, like C (small yellow atom) in paramagnetic fcc Fe (large 
red atoms). (b) Using a combination of magnetic special quasirandom structure and magnetic 
sampling methods, one calculates energies of  supercells with different impurity positions in the 
magnetic SQS representing the host, which are shown here versus the total magnetic moment of 
Fe atoms located in the first coordination shell of the impurity. Significant variation of the 
calculated energies depending on the impurity positions in the supercell is clearly seen in the 
figure.  

 

instance a straightforward use of the magnetic SQS approach for the calculations of impurity 
solution energies. By placing the impurity at one particular position in the supercell representing 
the host, the former will sense only one magnetic configuration (Fig. 4a). Indeed, the magnetic 
SQS approach gives a static picture of the “frozen” magnetic disordered and does not account for 
the spin dynamics.  Note that atomic diffusion processes are several orders of magnitude slower 
than the magnetic degrees of freedom, therefore on the time scale associated with the diffusion 
magnetic fluctuations are almost instant. This means that the impurity will sense many different 
magnetic configurations rather than only one. 

 

Ponomareva et al. [76] has addressed this issue and proposed a combination of the magnetic SQS 
and MSM approaches for calculations of point defects in paramagnetic hosts. To catch the 
dynamic behavior of the magnetic system Ponomareva et al. approximated the paramagnetic 
material by a set of many magnetic configurations, following the idea of the MSM. However, 
they combined it with magnetic SQS method, which was used to represent the host and to allow 
for an accurate description of small energy differences between the systems with and without the 
impurity. The proposed MSM-SQS scheme for calculation of solution enthalpies is as follow. 
First, one uses the magnetic SQS method to simulate the paramagnetic host. Next one varies 



magnetic distributions around the impurity by changing its positions inside the magnetic SQS and 
calculates the total energies, which depend strongly on the impurity position (Fig. 4b). Then one 
averages the energies using Eq. (15) and obtains the potential energy of the paramagnetic system 
with the defect. If the convergence with respect to the SQS size is achieved, the magnetic SQS 
for the host with or without the defect ensures that Eq. (14) is fulfilled globally, while MSM 
sampling of the position of the defect inside the SQS ensures the fulfillment of Eq. (14) for the 
average local spin-spin correlation functions on the defect site.   

 

In using the supercell realizations of the DLM picture, one should keep in mind that the random 
distribution of spins on the underlying lattice does not guarantee that the result of the self-
consistent calculations corresponds to the ideal DLM state [75].  In the DLM it is assumed that 
all the local magnetic moments for chemically equivalent atoms have exactly the same 
magnitude. This is usually not the case for the systems with the itinerant type of magnetism 
treated within the supercell approach. Another important issue is related to calculations of 
interatomic forces and a possibility to account for the local lattice distortions, e.g. around the 
defects. In fact, this is one of the main motivations for the use of the supercell approach rather 
than the DLM-CPA scheme.  

 

Unfortunately, fixing a magnetic state in time would lead to artificial static displacements of 
atoms off their lattice sites due to forces between the atoms with different orientations of their 
local moments and with different local magnetic environments. In the case of CrN this was 
clearly demonstrated in Ref. [27]. On the other hand, in a real paramagnet the fluctuations of the 
local moments in time should average out and suppress this effect, at least partially. The 
existence of the local lattice relaxations for the ideal crystal with chemically equivalent atoms at 
high symmetry positions is an obvious artifact of the model that describes high-temperature state 
with fluctuating spin fields and moving atoms in a static picture suitable for conventional 
electronic structure calculations at T=0K. It can have significant effect on the calculated potential 
energy. Figure 5 illustrates this for the case of CrN. The static relaxation energy of the fixed 
magnetic SQS (circles) is quite large - 0.036 eV/f.u., and unphysical. This is a clear signature of 
the brake-down of an attempt to model a space and time fluctuations with a purely spatial 
disorder. However, the artificial effects of the local lattice relaxations can cancel each other in 
calculations where potential energies of two paramagnetic systems have to be compared, for 
instance in calculations of the impurity solution energies or mixing enthalpies of the 
paramagnetic alloys [77].  

 



 

Figure 5. (Color online) Relaxation energies (in eV per f.u.) in the 64-atom CrN supercell as a 
function of relaxation iteration step. The spurious and relatively large static relaxation energies of 
the fixed magnetic SQS configuration (black circles) is contrasted with the relaxation energy of 
the magnetic sampling method (green diamonds) which is nearly vanishing within the accuracy 
of the method. Here a series of magnetic samples is considered and the forces acting on each 
nucleus in all the samples are averaged. This average force is then used to guide the nuclei to 
their optimal static positions. Also the energy of the SQS configuration calculated on the 
structure obtained with the magnetic sampling method is shown for comparison (red squares). 
Here we perform one small relaxation step in all the calculations of the magnetic samples. Then 
we put together the new positions and average them, resulting in the actual relevant new 
positions. The agreement between the two later methods with magnetic SQS calculations without 
local lattice relaxations underlines artificial nature of the conventional static approach. Details of 
calculations are the same as in Ref. [72].  
 

5.3 Spin wave method 

 

Besides the above-mentioned complications of the supercell approach, it becomes quite time 
consuming in the case of random alloys or large and inhomogeneous systems. Ruban and 
Razumovskiy have proposed another scheme that fulfills condition (14), the spin wave method 
(SWM) [75]. They considered a set of the planar spin spirals with the azimuth angle π/2 for all 
the wave vectors q in the corresponding Brillouin zone and showed that the spin-spin correlation 
function for a superposition of all the spin spirals with different wave vectors averages to zero, 
thus fulfilling Eq. (14). The energy of the paramagnetic state in the SWM is given by the integral 
over the Brillouin zone of the energies of each planar spin spiral with the wave vector q. In 
practice, one does this using the special point technique, requiring to carry out DFT calculations 
for a finite set of q-vectors.   



In application of the SWM method for calculating properties of Fe and Co, the results were found 
to be very close to those obtained by means of the DLM-CPA calculations. However, the former 
can be combined with the supercell geometry, for example to describe defects or local relaxations 
in chemically disordered systems. In particular, the SWM allows one to calculate the defect-
formation energies, elastic constants [75], and phonon spectra [78]. One of the advantages of the 
spin-wave method is a possibility to model a magnetic state with specific magnetic short-range 
order, the effect, which is difficult or impossible to study with other approaches described above. 
Of course, the method describes the high-temperature paramagnetic state as a set of non-
interacting magnons. This can be questioned from the fundamental point of view. On the other 
hand, semi-classical spin-dynamics simulations using Eq. (6,7,9) carried out to elucidate a long-
standing controversy regarding the existence, or otherwise, of spin waves in paramagnetic bcc 
iron, point to their existence [53]. In addition, one has to remember that the justification of the 
SWM involves the independence of the exchange parameters on the magnetic state, which is not 
the case in many itinerant systems. One should bear in mind, however that the SWM method 
gives the field very new and interesting idea. Its evaluation in future applications will contribute 
to better understanding of its advantages and limitations.  

 

6. Lattice dynamics of paramagnetic materials. 

  

In most applications, the simulations of the magnetic materials in the paramagnetic state are still 
carried out at the fixed crystal lattice, neglecting contributions from lattice vibrations, which 
ought to be increasingly important when one goes from low-temperature magnetically ordered 
state to the high-temperature paramagnetic state. As has been pointed out in Sec. 3, the 
LDA+DMFT calculations are too time consuming. Moreover, at present forces within the 
LDA+DMFT approach have only been calculated directly from the derivative of the total energy. 
In particular, this approach was employed by Leonov et al.  [44] in the calculations of the phonon 
dispersion relations for Fe. Leonov et al.  computed the lattice dynamics of paramagnetic iron 
using the GGA + DMFT approach in combination with the method of frozen phonons. The 
phonon frequencies were calculated by introducing a small set of displacements in the 
corresponding supercells of the equilibrium lattice, which results in a total energy difference with 
respect to the undistorted structure. Unfortunately, computational costs associated with these 
types of calculations are very high at present.  This makes it difficult to efficiently couple 
magnetic and vibrational degrees of freedom within the DMFT calculations in a simultaneous 
treatment of molecular and spin dynamics, needed for a description of materials behavior at high 
temperature and fro calculations of all free energy contributions to Eq. (1) at the same footing, as 
discussed in Sec. 2. 

 



 

Figure 6. (Color online) Schematic illustration of DLM-MD algorithm. See text for more 
discussion.   

 

Theoretical formalism that combines quasi-classical spin dynamics with molecular dynamics was 
presented in Ref. [10]. However, it is too time consuming and to the best of our knowledge, it is 
not realized in practice yet. A combination of semi-classical spin dynamics and molecular 
dynamics should be more numerically efficient, and there is a significant progress in this 
direction [79,80].  For example, Perera et al. [81] have simulated properties of bcc Fe at room 
temperature, while Tao et al.  [53] have studied its spin dynamics above TC. However, in addition 
to the problems of the semi-classical approach discussed in Sec. 3, one would have to treat a 
dependence of effective exchange parameters on the distances between atoms. The latter may be 
significant [58,82]. Thus, more approximate solutions to the problem are sought.  

 

6.1 Disordered local moment molecular dynamics.  

Steneteg et al. [27] suggested to implementing the DLM picture in the framework of ab initio 
molecular dynamics (MD) within the DLM-MD method. DLM-MD algorithm shown in Fig. 6 
realizes numerically the concept of of temporarily broken ergodicity [25] discussed in Sec. 5.1. 
According to it the magnetic subsistem gets stuck for time tSF at a point of the phase space 
corresponding to the particular magnetic configuration and then moves rapidly to another point. 
Remember that tSF denotes the time between spin-flips which is long enough (in the particular 
case of Fig. 6 it corresponds to 10 fs). Steneteg et al. made an approximation that the magnetic 
state of the system is completely randomly rearranged with a time step tSF, and with a constraint 
that the net magnetization of the system should be zero. To simulate a paramagnetic system, they 
initialize calculations by setting up a supercell where collinear local moments are randomly 
oriented and the total moment of the supercell is zero. Then they run collinear spin-polarized MD 
for the number of MD time steps. Denoting the MD time step as tMD and requiring that tMD << 
tSF, the number of the MD time steps that the system stays in the same magnetic state is given by 

MDSF
SF
MD ttN = . During the run, the magnitudes of the local magnetic moments are allowed to 



vary as dictated by the self-consistent solution of the electronic structure problem at each step of 
the MD simulation. In principle, the orientations of the magnetic moments are not restricted, so 
they are allowed to flip as well. Thus, the net magnetic moment in the simulation cell should be 
checked to make sure that the system remains in the DLM state. When SF

MDN steps of the MD are 
executed the spin state is randomized again by setting up another configuration of disordered 
local moments, while the lattice positions and velocities are unchanged, and the simulation run 
continues (Fig. 6). In several applications of the DLM-MD [27, 77] it was demonstrated that the 
algorithm depicted in Fig. 6 was numerically stable and led to well-converged values of 
observable properties, like the potential energy.  

 

Of course, tSF remains the model parameter, which cannot be determined self-consistently within 
DLM-MD simulations. In fact, spin-lattice dynamics simulations for ferromagnetic bcc Fe at 300 
K [79] demonstrated that the characteristic time scale for the quasiperiodic motion of an atom is 
of the order of 0.1 ps (which is the inverse Debye frequency of the material).  The time scale that 
characterizes the dynamics of precession of atomic spins is significantly shorter, of the order of 
fs. Thus, following arguments given in Sec. 2, tSF value of the order of 10 fs should be 
reasonable, though it might be system-dependent.  
 
As a matter of fact, Steneteg et al. conducted an additional numerical experiment that allowed 
them to argue for their choice of tSF  (in Ref. [27] DLM-MD calculations were carried out for 
paramagnetic cubic B1 phase of CrN). They analyzed the Cr- Cr metal nearest neighbor 
distances, and separated them into pairs with parallel and antiparallel orientations of the local 
moments. Thus, the effect of tSF on the distribution of pair distances became apparent. If tSF  was 
very short, ~10 fs, there were no noticeable difference between the two sets of pairs, indicating 
that the atoms did not have time to adjust their positions for the current orientation of local 
magnetic moments. If tSF  was increased to 100 fs, the atoms had sufficient time to move towards 
the energetically more favorable positions, leading to an observable shift in distances between 
pairs with parallel and antiparallel local moments. We could not rule out a possibility of 
statistical correlations between the atomic distances and the orientation of atomic moments in a 
dynamically changing paramagnetic phase. However, to the best of our knowledge it has never 
been reported in experiments. Moreover, its appearance would be contra-intuitive. Therefore, 
Steneteg et al. argued [27] that in practical applications of the DLM-MD one should use smaller 
values of tSF, that would ensure the absence of differences in distances between atoms with 
parallel and antiparallel local moments. Importantly, they also observed that the potential energy 
shift obtained in the DLM-MD simulations for paramagnetic cubic CrN was ~1 meV/f.u. for tSF   
less than 15 fs, while it increased substantially for the larger values tSF . The presence of an 
energy plateau on the potential energy vs tSF curve may justify further the choice of short spin-
flip times in DLM-MD simulations. In fact, it indicated that one could use the adiabatic 
approximation and to consider spin-flips as fast degrees of freedom with respect to atomic 
motion. The adiabatic approximation could significantly simplify the simulations of lattice 
dynamics in paramagnetic materials, as will be discussed in Sec. 6.2.  
 



Shulumba et al. [83] used the DLM-MD approach to develop a framework for calculation of the 
Gibbs free energy of a paramagnetic material, Eq. (1), which coupled all the terms, Gel, Gvib, and 
Gmagn to each other and treated them simultaneously in first-principles calculations. Shulumba et 
al. has combined the DLM-MD simulations of disordered magnetism with the temperature-
dependent effective potential method [84] to obtain the vibrational contribution to the free 
energy. This has made it possible to model the phase stability of a magnetic material in its high-
temperature paramagnetic phase, including temperature-induced anharmonic and harmonic 
vibrational, as well as the magnetic effects simultaneously. Shulumba et al. have applied the 
technique to investigate the phase diagram of CrN and have found that the vibrational 
contribution have favored the stability of the cubic paramagnetic phase with respect to the 
orthorhombic antiferromagnetic phase. The predicted temperature for the transition has been 
lowered as compared to the static calculations, bringing it in better agreement with experiments.  

Once again, here we deal with a new methodology, and its evaluation should take some time. 
Major approximations in the present realization of the DLM-MD method, which are likely to 
introduce inaccuracies, include the usage of collinear moments, the temporarily broken ergodicity 
of the DLM approach, and the existence of the parameter tSF. In addition, so far the scheme has 
been applied in simulations of very good Heisenberg systems.  

 

However, our recent results indicate that also more itinerant systems, like fcc-Fe can be 
addressed with DLM-MD. Figure 7 shows a histogram of resulting values of local Fe magnetic 
moments during several pico-seconds run of DLM-MD simulations of fcc-Fe at 1662 K, a 
temperature just below the gamma-to-delta transition. The figure shows that the vast majority of 
Fe local moments have magnitudes around 2 μB, but they point into positive or negative 
directions depending on their initial orientation. Nevertheless, these results illustrate that there is 
a considerable variation in magnitudes of the moments. This variation is not related to the 
longitudinal spin fluctuations discussed in Secs. 2 and 4, but is instead the direct impact of atomic 
vibrations, as well as sensitivity of magnetic interactions to the local magnetic environments. 
Thus, the result shown in Fig. 7 explicitly demonstrates that lattice vibrations and local 
environment effects have to be considered in a quantitative description of the paramagnetic state 
of itinerant magnets. Clearly, the DLM-MD technique has high potential to become a valuable 
tool for studies of magnetic materials at high temperature. 

 



 

Figure 7. Histogram of resulting values of local magnetic moments during several pico-seconds 
run of DLM-MD simulations of fcc-Fe at 1662 K.  

 

 

 

 

Figure 8. (Color online) The Hellmann-Feynman forces in x̂ , ŷ , and ẑ  direction acting on a Cr 
atom (open symbols) and a N-atom (solid symbols) for each MSM configuration of the supercell. 
The lines indicate the accumulated average of the forces over MSM configurations in each 
direction for the Cr-atom (solid lines) and N-atom (dashed line). Details of calculations are the 
same as in Ref.[72].  
 

 



6.2. Averaging of interatomic forces in the adiabatic limit. 

In the adiabatic limit, qualitatively justified in Sec. 6.1, the magnetic degree of freedom is fast 
with respect to lattice vibrations. This means that the instantaneous forces acting on the atomic 
nuclei will change rapidly in the paramagnetic state of the system, on the same time-scale as the 
fluctuations of the local orientations of the magnetic moments. Thus, the relevant forces that 
determine lattice dynamics are not the instantaneous forces of any particular magnetic 
configuration. Instead, a better approximation for the lattice dynamics should use the forces 
averaged over the magnetic fluctuations to govern the nuclei in its motion. In particular, in the 
adiabatic approximation for the paramagnetic state the fluctuations of the magnetic 
configurations are much faster than the relaxation of the nuclei to their equilibrium positions. 
Thus, the forces acting on each nucleus (the forces averaged over the magnetic fluctuations on 
the time scale relevant for the lattice dynamics) can be approximated with the forces averaged 
over different magnetic configurations. 

 

To illustrate this concept we consider the case of paramagnetic B1 CrN without defects. In this 
system, due to symmetry, there should not be any static lattice displacements of the atoms away 
from the ideal lattice points. This means that the forces averaged over the magnetic fluctuations 
on the time scale relevant for the lattice dynamics should be zero. Figure 8 shows calculated 
Hellmann-Feynman forces acting on a Cr and a N atoms placed on ideal B1 lattice positions in 
the supercells with different magnetic configurations, generated in the framework of MSM 
simulations (Sec. 5.2).   

Typically, the forces are rather large reflecting the magnetic strain effects in CrN discussed in 
Ref. [85] and the low symmetry of each structure induced by the magnetic disorder. However, 
considering the average force of a series of MSM samples, the situation is very different. In fact, 
the average forces are converging towards zero already after 40 iterations, which coincides with 
the convergence of the potential energy for this system [72]. This means that the cubic symmetry 
of B1 CrN is retained only in calculations that use the average forces.  

 
Thus, the following strategy for calculating forces acting on individual atoms in the paramagnetic 
state of magnetic materials can be used in the adiabatic limit. A series of magnetic configurations 
are considered and the forces acting on each nucleus in all the samples are averaged. Then this 
average force is used to determine the dynamics of nuclei in MD or phonon calculations.  In fact, 
Ruban and Razumovskiy [75] have used this strategy in calculations of phonon dispersion 
relations in paramagnetic bcc Fe by means of the SWM. Körmann et al. [86,87] employed it in 
the spin-space averaging method (SSA) coupled to the magnetic SQS method for simulations of 
lattice dynamics in bcc and fcc Fe by using. A justification of the adiabatic approximation 
presented here provides a support to these works.  
 



7. Overview of recent applications.  

The development of techniques that allow one to simulate magnetic materials in their 
paramagnetic state, reviewed in Secs. 3-6, together with the significance of these materials for 
fundamental studies and technological applications stimulated enormous research activity. Here 
we give an overview of selected recent applications, without claiming its completeness, which is 
hardly feasible in this rapidly developing field of research. For earlier applications we refer to the 
recent papers discussed below, which generally contain high-quality literature overviews.  
Moreover, we are mostly interested in simulations that considered effects of temperature induced 
magnetic disorder rather than treated studied systems either as magnetically ordered or as 
nonmagnetic. In addition, in most cases, except Sec. 7.4, we are interested in simulations of 
thermodynamic and mechanical properties, rather than in the studies of the electronic structure 
and magnetic phase transitions. 

 

7.1 Transition metals.   

Iron represents the base metal for steels, and its paramagnetic state has been in focus of intense 
research.  It is the most abundant element on our planet. It is one of the most important 
technological materials and, at the same time, one of the most challenging elements for the 
modern theory. The ground state of Fe at ambient conditions, the α-phases (ferrite, bcc) is 
ferromagnetic, with a Curie temperature TC~1043 K. The γ  phases (austenite, fcc) is stabilized at  
~1185 K, but upon further heating up to ~1670 K the bcc structure reappears again (δ-iron). All 
phases of Fe are paramagnetic above the bcc TC, and therefore the description of the structural 
phase transitions in Fe requires a careful treatment of the magnetic disorder. To make the 
problem even more complicated, the accuracy needed for the description of the phase diagram of 
Fe should be ~1 meV [88].  

 

While it is broadly accepted that the bcc Fe can be characterized as a system with well-defined 
local magnetic moments in the paramagnetic state [23,37], the situation on the fcc-Fe is less clear. 
Igoshev et al. [42] have applied the LDA+DMFT approach to the paramagnetic γ-iron and have 
revisited the problem of the theoretical description of its magnetic properties in a wide 
temperature range. Their results show that at low temperatures γ -iron is better described in terms 
of the itinerant picture. At the same time, in the temperature range T = 1200–1500 K, 
corresponding to the stability field of the fcc phase of iron, it can be characterized by 
temperature-dependent effective local moments, which yield relatively narrow peaks in the real 
part of the local magnetic susceptibility, Eq. (3), as a function of frequency. In particular, in this 
temperature window inverse susceptibility has depended nearly linearly on the temperature, 
following the Curie-Weiss law.   



 

Leonov et al. [43] underlined the importance of correlation effects for the description of the α- to 
γ-phase transition in Fe at elevated temperature and ambient pressure. Considering the variation 
of the total energy of paramagnetic iron with temperature along the bcc-fcc Bain transformation 
path, Leonov et al.  have observed the energetic stabilization of the latter with respect to the 
former at reduced temperature T~1.3 TC. The authors emphasize that the difference between the 
temperatures at which the magnetic transition and the vanishing of the structural energy 
differences between the two phases occurs is in remarkable agreement with the experimental 
difference in temperatures between magnetic and structural phase transitions in Fe, that is ~ 200 
K. However, Belozerov et al. [89] pointed out that the agreement was achieved only in terms of 
the reduced temperature T/TC, while the calculated Curie temperature TC was found to be 
significantly larger than the experimental value of 1043 K. In fact, Belozerov et al. showed that if 
quantum Monte-Carlo calculations within DMFT were limited to the Ising-type exchange 
interaction, the calculated Curie temperature of Fe should be overestimated almost by factor 2. 
They proposed the rotationally invariant Hirsch-Fye quantum Monte Carlo algorithm that 
reduced calculated TC in bcc Fe to ∼ 1260 K, bringing it in better agreement with the experiment. 
However, to the best of our knowledge the importance of this modification for the description of 
structural properties of Fe has not been reported yet.  
 

Several concerns with the LDA+DMFT calculations for Fe have been put forward in the 
literature [90]. In particular, they have shown the increasing instability of the bcc lattice with 
temperature with respect to the fcc lattice, which would make it difficult to explain γ to δ 
transition in iron. Moreover, the fcc-bcc structural energy difference have converged towards the 
value obtained from 0 K nonmagnetic calculations, and the bcc structure at high temperature (T 
>1.3TC) has shown the mechanical instability. In fact, DFT calculations by Okatov et al. [91] 
using magnetic SQS also predicted significantly higher stability of the paramagnetic fcc Fe with 
respect to its paramagnetic bcc phase, and mechanical instability of the latter. DLM-CPA DFT 
calculations by Zhang et al. [90], on the contrary, showed that the paramagnetic bcc Fe should be 
mechanically stable, while the energy difference between the two phases should depend strongly 
on their lattice parameters. However, Ruban and Razumovskiy [75] showed that the mechanical 
stabilization of the paramagnetic bcc Fe obtained by Zhang et al. could be an artefact of the use 
of spherical approximation for the one-electron potential in Ref.[90].  

 

Unfortunately, the LDA+DMFT calculations in Ref. [43], as well as magnetic SQS calculations 
by Okatov et al. [91] and DLM-CPA calculations by Zhang et al. [90] focused exclusively on the 
total energy differences between competing structures of Fe. On the other hand, the importance 
of vibrational contribution to the free energy is well recognized in the field. In particular, 
Körmann et al. [92] calculated thermodynamic properties of ferromagnetic bcc iron up to the bcc-
fcc phase transition temperature including vibrational, electronic, and magnetic contributions at 
the GGA-DFT level. An excellent agreement was obtained with available experimental data, but 



only when all three types of excitations were included. Note, however, that the adiabatic 
decoupling between vibrational, electronic, and magnetic contributions to the free energy was 
employed in Ref. [92]. In particular, phonon dispersion relations were calculated for 
ferromagnetic Fe at T=0K, and used at high temperature, neglecting the modification of the 
magnetic state by temperature induced excitations.  In the subsequent work by Körmann et al. 
[86] the authors demonstrated that in the case of bcc iron the longitudinal branches obtained in 
phonon calculations assuming the ferromagnetic state were in reasonable agreement with 
experiment. On the contrary, for paramagnetic bcc Fe the experimentally observed pronounced 
softening at high temperatures, in particular of the transversal modes between H and P points in 
the Brillouin zone, as well as between Γ and N points were not reproduced.   

 

Lavrentiev et al. [34] employed the magnetic cluster expansion, Eq. (10) to model bcc-fcc 
transitions in Fe, including both, the α-γ and γ-δ phase transitions. Their calculations 
demonstrated that both the magnetic and phonon excitations contribute to the free energies of the 
α, γ and δ phases. Unfortunately, the approach was not fully ab initio. In particular, the phonon 
contribution to the free energy of bcc α-iron was derived from experimental elastic constants 
measured for the highest available temperature, 1173 K, at which bcc iron remained mechanically 
stable. For fcc γ iron Lavrentiev et al. used a force-constants model derived from experimental 
data on inelastic neutron scattering at 1428 K.  

Ma and Dudarev [80] performed the spin-lattice-dynamics simulations of the magnetocaloric 
effect in bcc Fe (and hcp Gd), with the Heisenberg and Landau parameters of Hamiltonian (10) of 
interacting atomic magnetic moments derived from ab initio simulations. The simulations 
described the complete thermodynamic cycles involving dynamic adiabatic magnetization, 
isofield thermalization, adiabatic demagnetization, and isofield thermalization, and the 
microscopic equilibrium and nonequilibrium relaxation aspects of the magnetocaloric 
phenomenon. 

The importance of vibrational contribution in simulations of the temperature induced phase 
transitions in Fe stimulated several groups to calculate the phonon dispersion relations for 
paramagnetic bcc and fcc Fe from first principles. Leonov et al. [44] carried out GGA+DMFT 
calculations of the phonon dispersion relations and obtained surprisingly good agreement with 
experiment for the both, bcc and fcc Fe at reduced temperatures 1.2TC and 1.4TC, respectively. 
Both phases of Fe were found to be dynamically stable at their respective temperatures. In the bcc 
Fe Leonov et al. observed a weak anomaly in the transverse T1 acoustic mode along the [ξξ0] 
direction, indicating that at T ∼ 1.2TC the bcc phase may be close to an instability, and ascribed 
this result to a dynamical precursor effect of the bcc-to-fcc phase transition. 

 



Interestingly, much simpler calculations of Körmann et al. [86] in the framework of GGA-DFT 
using the SSA method and the averaging of the interatomic forces in the adiabatic limit 
reproduced very well the DMFT calculations of Leonov et al.[44], as well as the experiment. In 
particular, for the bcc Fe the strong softening of the transversal ΓN modes, as well as the 
softening around the dip in the HP branches were reproduced. Thus, Körmann et al. [86] clearly 
demonstrated the large impact of magnetic disorder on the vibrational properties of bcc iron. 
Ruban and Razumovskiy [75] calculated the phonon dispersion relations for the bcc Fe in the 
paramagnetic phase using the SWM [75]. The agreement between the SWM results, DMFT 
calculations [44] and experiment was good [78], except the T1 mode in the Γ−N direction for 
which two of the three chosen spin-wave sets yielded negative energy indicating the dynamical 
instability of the considered phase. Ruban and Razumovskiy argued that magnetic short-range 
order above TC should be taken into account to correctly describe lattice dynamics of the 
paramagnetic bcc Fe. In a subsequent study Körmann et al. [87] proposed a simplified scheme for 
the interpolation of forces calculated in the ferromagnetic and paramagnetic states (by means of 
the SSA) to account for the effects of magnetic short-range order. They confirmed the strong 
impact of the latter on the phonon dispersion relations in bcc Fe even significantly above the 
Curie temperature. 

 

Turning to the problem of phase stability of Fe upon compression, the bcc Fe is transformed into 
the hcp phase (ε-iron) above ~12 GPa.  The magnetic state of the latter is still debated [93]. While 
numerous DFT calculations require complex magnetic order in the hcp Fe to explain its lattice 
parameters and bulk modulus, the experimental information favors the picture of non-magnetic or 
paramagnetic hcp phase up to very low temperatures [94]. Using the LDA+DMFT calculations, 
Pourovskii et al. [95] have demonstrated the possibility to reproduce the properties of the hcp Fe 
without the requirement of an antiferromagnetic order. Ruban et al. [96] have simulated magnetic 
properties of the bcc phase of Fe at extreme conditions of the Earth’s core, at ultra-high pressure  
~350 GPa and temperature above 5000-6000 K, while Pourovskii et al. [97] carried out the 
LDA+DMFT calculations for the hcp, fcc  and the bcc phase at the same conditions. Both groups 
have put forward very interesting possibility of the survival of local magnetic moments in the bcc 
Fe at the Earth’s core conditions. The bcc Fe have been suggested theoretically as a possible 
stable crystal structure of this metal in the Earth’s core [89,99], and some experiments on Fe-
based alloys supported this suggestion [100,101], though the issue is still under debate [102].  

 

As compared to Fe, the paramagnetic state of other magnetic transition metals, Mn, Cr, Co, and 
Ni, is less studied. The temperature dependence of the inverse paramagnetic susceptibility of fcc 
nickel was calculated by Staunton and Gyorffy using generalized Onsager cavity field in the 
framework of the disordered local moment picture[29] . Staunton et al. [103] developed a scheme 
for making ab initio calculations of the dynamic paramagnetic spin susceptibilities of solids at 
finite temperatures, and studied incommensurate and commensurate antiferromagnetic spin 



fluctuations in paramagnetic Cr, as well as in compositionally disordered Cr95V5 and Cr95Re5 
alloys. Belozerov et al. [89] computed the electronic structure and magnetic properties of 
paramagnetic nickel by employing the LDA+DMFT implemented with rotationally invariant 
Hirsch-Fye quantum Monte Carlo method. Their comparison of the spin-spin correlation 
functions between α iron and nickel calculated at T = 2.5 TC showed that the magnetism of nickel 
is more itinerant. Interestingly, despite this fact, recent experimental and theoretical studies 
[104,105] demonstrated that the ferromagnetic state of Ni is stable at least up to 260 GPa, the 
highest pressure where magnetism in any material has been observed so far. DMFT calculations 
carried out by Di Marco et al. [106] for fcc Mn and Ni, pointed out the importance of the 
correlation effects for the former. Note that Di Marco et al. considered the antiferromagnetic 
phase of the fcc Mn rather than the paramagnetic phase of this metal.  
 

Körmann et al. calculated various thermodynamic functions, like specific heats and free energies, 
for Co, Ni [107] and Cr [108], in addition to Fe [107] in the broad temperature interval, including 
the temperatures above the magnetic transition temperatures. Thermodynamic properties were 
computed based on quasiharmonic, anharmonic, electronic and magnetic free energy 
contributions in Eq. (1) calculated from first principles. For the description of magnetic 
properties, Körmann et al. proposed an approach that mapped the magnetic long-range system 
onto an effective, nearest-neighbor quantum Heisenberg model, for which the QMC approach 
provides a numerically exact solution. Of course, serious approximations were introduced. For 
example, all the terms in Eq. (1) were considered as adiabatically decoupled from each other, 
meaning that the dependence of lattice vibrations on the magnetic state of the system was 
neglected.  The temperature dependence of local magnetic moments was neglected as well, and 
the effect of longitudinal spin fluctuations was not taken into account.  Still, Körmann et al. 
obtained encouraging results for the calculated thermodynamic functions [107,108]. However, it 
is clear that more work needs to be done on improving theoretical models for transition metals, 
like Cr and Ni, which are more itinerant than Fe.  

7.2 Phase stability of Fe-based alloys.   

Fe-based alloys belong to the most important structural materials. A recent review on advances of 
density functional theory to finite temperatures and on its applications in steel design can be 
found in Ref. [109]. Here we concentrate on two systems, Fe-Cr and Fe-Mn based alloys, where 
the studies of thermodynamic properties in the paramagnetic state are quite intensive.  

 

The binary Fe-Cr alloys are the base for many important industrial steels. The four major types of 
stainless steel are the austenitic steels with very high corrosion resistance, weldability and 
ductility, the martensitic steels with high strength and moderate corrosion resistance, the duplex 
steels characterized by both strength and ductility, and ferritic steels known for their excellent 
corrosion resistance. For example, Fe-Cr ferritic steels are used to manufacture reactor pressure 
vessels (RPV). Irradiation-induced accelerated ageing is one of the crucial issues that limits the  



 

Figure 9. Mixing enthalpies H (in eV/atom) of paramagnetic bcc Fe-Cr alloys simulated by 
means of DLM-CPA approach (green dashed line). Excellent agreement with experimental data 
from [112] (red squares) is obtained in DLM calculations. Ferromagnetic results (FM, black solid 
line) are shown for comparison. Note that FM bcc Fe was used as the standard state in the 
calculations of the mixing enthalpies of the ferromagnetic alloys, in contrast to DLM bcc Fe, used 
as the standard state for calculations of the mixing enthalpies in the paramagnetic alloys.   

 

lifetime of nuclear reactors. Fe-Cr steels with 7-18 at. % Cr are promising structural materials for 
fast neutron reactors due to their relatively low rate of swelling at elevated temperatures [110]. In 
the binary Fe-Cr alloy a spinodal decomposition can lead to a formation of precipitates of α’ 
phase, but at low chromium concentrations the alloys are anomalously stable. This effect received 
significant attention, and motivated large number of studies of mixing thermodynamics of bcc 
Fe-Cr alloys, following pioneering work by Olsson et al. [111].  

 

In Fig. 9 we show results of our calculations which are in good agreement with those presented in 
Ref. [111]. Much attention is usually called to a small region of Fe-rich compositions, where the 
mixing enthalpy, calculated for ferromagnetic bcc Fe-Cr alloys is negative. In view of our focus 
on the description of the paramagnetic state, we would like to call the attention to an excellent 
agreement of the mixing enthalpy of bcc Fe-Cr alloys simulated by means of the DLM-CPA 
method with experimental values measured in the paramagnetic state [112]. The agreement 
confirms the reliability of the DLM picture for the description of potential energy of magnetic 
materials in the paramagnetic state. In addition, Fig. 9 underlines the importance to using the 



proper magnetic state for thermodynamics description of magnetic alloys. Indeed, calculated 
mixing enthalpies differ significantly between ferromagnetic and DLM calculations.  

 

The dependence of chemical interactions on the global magnetic state of the alloy has been 
emphasized by Ruban et al. in a series of papers dealing with phase stability of Fe-Cr alloys 
[113,114,115]. In fact, this is very general effect [36], importance of which has been 
demonstrated in other alloys, e.g. in Co-Pt [54], Fe-Ni [20], Fe-Cu [116] and Fe-Pd [117]. 
Moreover, Ponomareva et al.[118] demonstrated that it should be possible to tune the effective 
chemical interactions in an alloy by its global magnetic state. The effect allowed the authors to 
predict theoretically and to synthesize experimentally new cubic Fe2Si phase with B2 structure. 
For Fe-Cr system, Ruban et al. demonstrated [113] that the dependence of chemical interactions 
on the global magnetic state of the alloy had important implications for phase equilibria: the 
experimentally reported concentration interval of anomalous ordering in Fe-Cr alloys should be 
determined by the thermal history of the alloys through the value of global magnetization at the 
annealing temperature.  

 

In a subsequent work [115], Ruban et al. proposed a model, which includes magnetic, electronic, 
phonon, and local atomic relaxations contributions to the free energy derived from ab initio 
calculations, as well as the effects of magnetic short-range-order above TC. The approximations 
here included, for example, a description of finite temperature ferromagnetic state with partial 
DLM (PDLM) model, that is with non-equal fractions of spin up and spin down atoms. Ruban et 
al. successfully used this model earlier for the description of Fe-Cr alloys [113], Ekholm et al. 
employed it for simulations of phase stability in FeNi3 permalloy [20] and Gorbatov et al. [116] 
in the studies of Cu precipitation in α-Fe.  However, one has to be careful with the PDLM 
approach, as it is limited to the Ising-like collinear description of the partially disordered 
ferromagnetic state. Non-collinear components, however, may be more important than collinear 
spin-flip transitions below TC or TN and may dominate the magnetic disorder. Lavrentiev et al. 
[119] demonstrated this recently by means of the Monte Carlo simulation algorithm based on a 
Heisenberg-Landau Hamiltonian (10).  In addition, the treatment of vibrational contribution in 
[115] was limited to the ferromagnetic state and to the use of a simplified average force constants 
model. Despite these limitations, Ruban et al. successfully calculated isostructural phase diagram 
for the bcc Fe-Cr system, which turned out to be in reasonable agreement with the CALPHAD 
assessment. In particular, the calculations reproduced the abnormal decrease in the solubility of 
Cr in Fe-rich alloys at high temperatures close to the magnetic phase transition, the feature 
known as a Nishizawa horn, and identified its origin in a relative stabilization of Cr alloying in 
the ferromagnetic state compared to that in the paramagnetic Fe-rich alloys with up to 20 at.% Cr.  

 



Lavrentiev et al. [34] used the magnetic cluster expansion based on the Heisenberg-Landau 
Hamiltonian (10) in combination with empirical treatment of lattice vibrations, to describe the 
occurrence of the γ-loop in the phase diagram of Fe-Cr alloys. The region where fcc γ-Fe-Cr was 
found to be more stable than bcc α -Fe-Cr extended to 10.5% Cr, in agreement with the 
experimental phase diagram showing that the γ-loop extended to 11.9 at. % Cr. Of course, the 
shape of the γ-loop predicted by the magnetic cluster expansion was different from the shape 
observed experimentally, indicating a need for an improvement of the model. In particular, 
Korzhavyi  et al. [114] pointed out that the magnetic cluster expansion, Eq. (10), is based on  the 
structure inversion method (SIM). The effective interactions in an alloy entering Eq. (10) were 
derived from the calculated enthalpies of formation for a set of Fe-Cr superstructures, which were 
all considered in the ferromagnetic state. Thus, the approach missed the dependence of the 
interactions on the magnetic state, volume, as well as on concentration, which strongly influenced 
the interactions [113,114,115, 120], changing them so dramatically that a transformation of the 
concentration-, volume- and magnetic-state-dependent interactions to the usual concentration-, 
volume- and magnetic-state-independent forms, as assumed in SIM, seemed to be a formidable 
and hardly achievable task. As a matter of fact, similar shortcomings of the scheme are relevant 
to the recent application of the magnetic cluster expansion to simulations of fcc Fe-Ni alloys 
[121]. Thus, more work can be expected on simulations of Fe-Cr system, as well as on Fe-Cr 
based alloys containing other alloying elements, like Ni, Mn, and Mo.  

 

Fe-Mn alloys represent another system where simulations of magnetic disorder have made impact 
[122]. It has come into focus of intense research within the last 5 years due to technological 
importance of high-manganese steels (15 to 35 at.-%). The steels exhibit superior ductility and 
extraordinary strengthening behaviour during plastic deformation due to different metal-physical 
deformation mechanisms, providing, e.g. a great potential for structural components in 
automotive engineering. The microstructure parameter that attracted the highest interest in this 
respect was the stacking fault energy (SFE). It determines the deformation mechanisms, the 
transformation induced plasticity (TRIP) or the twinning-induced plasticity (TWIP). In Fe-Mn 
alloys, the SFE is believed to depend strongly on the chemical composition. Unfortunately, 
calculation of the SFE in magnetic alloys, especially including the finite temperature effects still 
represents a significant challenge for the ab initio theory, because of difficulties with the proper 
description of the atomic-scale structure of the SF and a need for the accurate treatment of lattice 
vibrations and thermally induced magnetic excitations [123]. On the other hand, SFE can be 
estimated from the structural energy difference between fcc and hcp alloys. In the simplest 
approximation, one just calculates this difference. In a somewhat more advanced approach, SFE γ 
is evaluated using the axial next-nearest-neighbor Ising (ANNNI) model [106] as γ (T ) = Ghcp(T ) 
+ 2Gdhcp(T ) −3Gfcc(T ), which still brings the problem to an evaluation of the Gibbs free energies 
of defect-free solid solutions with hcp, double-hcp (dhcp) and fcc crystal structures. 

 



Gebhardt et al.[124] used the former model and studied the lattice stability of random Fe–Mn 
alloys. Considering the fcc phase, which has TN  above room temperature as magnetically ordered 
(antiferromagnetic), while simulating the hcp alloys with TN  below room temperature within  
DLM-CPA Gebhardt et al. observed a crossover of the lattice stability with increasing Mn 
concentration,  from hcp to fcc,  at approximately 24 at.% Mn, in good agreement with 
thermodynamic calculations (~26 at.% Mn). On the contrary, when both phases were considered 
as paramagnetic, the hcp alloys were found to be more stable with respect to the fcc alloys at all 
considered compositions, 15-40 at.% Mn. Interestingly, the increase of the Mn content was found 
to stabilized the hcp phase further, while thermodynamic calculations displayed a contrary trend. 
Gebhardt et al. explained the disagreement by a complete neglect of magnetic effects in the 
thermodynamic modeling.  

 

Reyes-Huamantinco et al. [123] used the ANNNI model for the estimation of the SFE in Fe-22.5 
at.% Mn alloy. Moreover, beyond the total energy contributions calculated at zero temperatures, 
Reyes-Huamantinco et al. included other contributions to the free energy, e.g. the vibrational and 
magnetic contributions in Eq (1). Of course, very serious approximations had to be involved. In 
particular, magnetic thermal excitations have been considered by modeling longitudinal spin 
fluctuations using Hamiltonian (11), followed by the use of the calculated average magnitudes of 
the DLM magnetic moments mp in an expression for magnetic entropy Smag = kB ln(mp + 1). The 
effects of lattice vibrations were treated within the Debye-Grüneisen model. The limitations of 
these models showed up, for instance, in a strongly overestimated value of the thermal expansion 
coefficient and in certain quantitative discrepancy of the SFE with the experimental data. Despite 
this, the temperature dependence of the SFE was reproduced quite accurately in Ref. [123]. Thus, 
calculations by Reyes-Huamantinco et al. clearly demonstrated the need to considering the 
interplay between the thermally induced magnetic excitations and the lattice vibrations for 
accurate treatment of the phase stability in magnetic alloys.  

 

In fact, we would like to make another warning on ab initio simulations of Fe-Mn alloys, which 
most probably should be considered in all other Fe-based systems. Ekholm and Abrikosov [125] 
considered magnetically ordered  fcc alloys, and demonstrated that the two most frequently used 
GGA parameterizations not only failed to reproduce the equilibrium lattice constant of FeMn 
alloys, and consequently the magnetic properties, but also internally yield qualitatively different 
results. This underlined the limitations of conventional local (LSDA) and semi-local (GGA) 
approximations for magnetic materials containing transition metals, a conclusion which is in line 
with the one drawn by Dick et al. [126] in the studies of cementite. Also, the observation is 
consistent with the importance of correlation effects for the description of ground state properties 
of hcp Fe, emphasized recently in Refs.  [93, 95] on the basis of the DMFT calculations.   



 

However, Ekholm and Abrikosov also demonstrated that for practical studies of Fe-Mn alloys, a 
set of approximations used by Gebhardt et al. [124] turned out to be internally consistent, and 
gave the equilibrium lattice constant and magnetic properties in good agreement with the 
experiment in the whole range of alloy compositions. Supported by very good agreement with 
experiment, this scheme allowed for important follow up studies, e.g. of the influence of 
additions of Al and Si on the lattice stability of fcc and hcp Fe-Mn random alloys [127], as well 
as elastic properties of Fe-Mn-based alloys [128], discussed in Sec. 7.5 

 

7.3 Formation energies of point defect in Fe  

Finite temperature properties of defects play an important part in determining high-temperature 
deformation modes of structural materials, such as iron alloys and steels. The impurities and 
alloying elements play a decisive role in the microstructure formation. For example, a 
precipitation of carbides and nitrides of V and Nb increases strength of the steels and prevents the 
austenite grain growth during hot rolling. Clusters of interstitial Cr atoms have been identified as 
the primary reason for radiation induced swelling of RPV steels in modern nuclear reactors. 
High-manganese steels (15–35 at.%) exhibit superior mechanical properties, which are ultimately 
related to the energies of stacking faults, as has been discussed in Sec. 7.2. In turn, DFT 
calculations show substantial variations of magnitudes of magnetic moments in the strongly 
distorted core regions of defect structures, at surfaces and interfaces [13]. A recent review of this 
issue can be found in [129]. Unfortunately, in most cases the defects in magnetic materials are 
still simulated using approximations of the complete magnetic order, or treating the paramagnetic 
state as non-magnetic. Thus, simulations of defects in magnetic materials above the magnetic 
transition temperature represent an important task for the field.  

 

In particular, Gorbatov et al. [130] carried out a systematic study of solution energies for 3d 
impurities in paramagnetic bcc Fe using the DLM approach similar to the one described in Sec. 
5.1. The solution energies were found to vary regularly depending on the position of the element 
in the Periodic Table, underlying the fact that the main factor that determined the solubility of the 
3d elements was their electronic structure. Interestingly, quite strong dependence of impurities 
characteristics on the magnetic state of the matrix was observed, especially with respect to the 
magnetic moments on the impurities. Moreover, the impurity solution energies differed 
significantly between ferromagnetic and DLM calculations for V, Cr, Co and Cu, underlying the 
necessity of a proper treatment of the magnetic state of the matrix in these types of studies. 
Unfortunately, the effects of local lattice relaxations in the paramagnetic state were neglected in 
this study, because the use of spherical approximation for one-electron potential in the DLM 
calculations.  



 

Vacancy formation energies in paramagnetic bcc Fe have been calculated by Ruban and 
Razumovskiy [75] using the SWM formalism. Very good agreement with the experiment has 
been obtain in calculations that have included the effect of magnetic short-rang order, 1.90 eV 
(theory, 1200 K) vs 1.79 eV (experiment), though the ratio between the vacancy formation 
energies in the ferromagnetic and paramagnetic bcc Fe was somewhat overestimated in theory. 
Later, Ding et al. [131] demonstrated that improving the accuracy of the calculations, the results 
for the difference mentioned above could be improved. Moreover, using the SWM Ding et al. 
have computed vacancy formation energy differences between ferromagnetic and paramagnetic 
states also for Mn and Co and investigated the trend in the series Mn-Fe-Co for the bcc and fcc 
crystal structures. There results have shown a certain crystal structure effect (the energy 
differences between ferromagnetic and paramagnetic states have been less pronounced in the 
latter structure), but the largest effect have been shown to come due to the transition from “weak” 
ferromagnets (Fe and Mn with a strong effect) to the “strong” ferromagnet Co, where the effect 
have been  almost absent.  

 

Moreover, in addition to the vacancy formation energies, Ding et al. [131] calculated vacancy 
migration energies for bcc Fe and fcc Co, both in the ferromagnetic and the paramagnetic states, 
as well as diffusion coefficients. Calculated results for the latter have accurately reproduced 
measured values for T/TC ranging from 0.7 to 1.1, including the anomaly in the Arrhenius plot for 
Fe near TC. Note, however, that the influence of the magnetic state on the relaxation energy 
around the defect, as well as on the diffusion prefactor have not been included in calculations by 
Ding et al., who extracted these values from first-principles simulations in the ferromagnetic 
state.  

Ponomareva et al. [76,132] have carried out a study of substitutional (V, Nb) and interstitial (C, 
N) impurities in paramagnetic fcc Fe using SQS-MSM method (Sec. 5.2). A summary of results 
obtained in these works is given in Table I. Calculated solution enthalpies for C, N, V, and Nb 
impurities qualitatively agree with known experimental trends. In fact, SQS-MSM approach 
gives estimations of solution enthalpies with accuracy similar to what is expected for first-
principles calculations in magnetically ordered and non-magnetic materials, although, as the 
calculated and measured solution enthalpies are small relative deviations between them are 
significant in the cases of C and N.  Nevertheless, solubility products for corresponding carbides 
and nitrides in the paramagnetic state calculated in [76] have been found in good quantitative 
agreement with available experimental data. Similarly, C-C impurity interactions, which have 
been calculated in [132] have been found in good agreement with semi-empirical estimations 
from the literature (Table I).  

 



Table I. Values of solution enthalpy  ( I
solH , in  eV )  for  C, N, V, and Nb impurities, as well as 

C-C impurity interactions ( )(int iECC  , in eV) as a function of coordination shell i in paramagnetic 

fcc iron.   

 C
solH  N

solH  V
solH  Nb

solH  )1(int
CCE  )2(int

CCE  )3(int
CCE  )4(int

CCE  

MSM-
SQS 

0.20a -0.39a -0.24a -0.36a 0.18b 0.17b -0.004b 0.004b 

Other 
works 

0.36 -
0.43c 

-0.18c   0.086 -
0.15d 

0.17 – 
0.40d 

-0.042d 0.04d 

a Ref. [76]; b Ref. [132]; c Experimental estimations from [133]; d Semiempirical estimations 
from [134]. 

 

7.4 First-principles simulations of the paramagnetic state of transition metal compounds: 
the metal-to-insulator transition  

 

Properties of transition-metal compounds are of central importance to condensed matter theory 
because of their fundamental scientific interest and the importance for technological applications. 
Let us take iron oxides as an example. They are products of iron corrosion in air, one of the most 
detrimental processes from the technological perspective. In addition, the iron oxide is one of the 
fundamental components in the Earth’s lower mantle. Finally, FeO has been in focus of 
experimental and theoretical studies of the metal-to-insulator transition (MIT), one of the central 
issues of the condensed matter physics. Transition metal oxides, carbides and nitrides are used in 
many applications, ranging from electronics to hard coatings of cutting tools. In many cases, the 
magnetic transition temperatures of transition metal compounds are quite low. For instance, 
V2O3, MnO, FeO, the prototype materials for the studies of the MIT [8, 70,135,136],  all have TN 
below the room temperature.  On the other hand, magnetic properties of the transition metal 
compounds above the magnetic transition temperature are highly important for the description of 
their other physical properties, like mechanical and thermodynamic properties [17].  

 

One of the main issues that one should have in mind dealing with transition metal compounds is 
that for many of them the local and semi-local approximations within the DFT fail to reproduce 
the correct electronic ground state, predicting them to be metals rather than insulators. Thus, 
more advanced computational schemes, like the LDA+DMFT (Sec. 3) are often employed. In 
fact, the LDA+DMFT is believed to be the best available method for the investigation of real 



systems close to a Mott-Hubbard MIT [70]. It was applied with success for the studies of this 
problem in classical systems, V2O3 [70], MnO [8], FeO [135,136], Fe2O3 [137], as well as in 
other materials, e.g. rare-earth-element nickelates [71]. The nickelates attracted significant 
attention in recent years. Their insulating state was characterized by a two-sublattice symmetry 
breaking.  

 

At the same time, an application of the LDA+DMFT approach is still a challenge, because of 
numerical complexity, as well as some fundamental challenges (see Sec. 3 for the discussion). 
For instance, the former forced Held et al. [70] to approximate the effect of Cr doping of V2O3 

by carrying out calculations for stoichiometric V2O3 compound with an expanded lattice 
parameter. While well justified for the purpose of study presented in Ref. [70], such 
simplifications could be too strong for other tasks. Another interesting example is represented by 
the LDA+DMFT studies of FeO carried out by Shorikov et al. [135] and by Ohta et al. [136]. 
Though the both groups reproduced the MIT, they arrived at quite different conclusions with 
respect to its details. In the former work, the metallization was found at 60 GPa already at room 
temperature. Moreover, Shorikov et al. found that in FeO average value of magnetic moment was 
nearly the same in the insulating phase at ambient pressure and in the metallic phase at high 
pressure. On the contrary, in calculations by Ohta et al. [136] FeO metallized at around 70 GPa, 
but at high temperature of 1900 K, and the observed metallization was related to spin crossover,  
similar to MnO [8] and Fe2O3 [137] where metal-to-insulator transition was also accompanied by 
the high-spin to low-spin transition. Ohta et al. pointed out to several differences in their 
calculations and in the calculations by Shorikov et al., e.g. that the calculations in Ref. [135] were 
restricted only to Fe 3d orbitals, and they were not charge self-consistent. This discrepancy 
underlines that the use of the LDA+DMFT approach is still not straightforward.  

 

The LDA+U method is significantly less demanding numerically than the LDA+DMFT.  
However, while it can be easily used to describe the magnetically ordered phases, it is generally 
believed that the correlated paramagnetic phases are beyond the scope of the LDA+U approach 
since the Coulomb interaction is treated within Hartree-Fock  [70,71]. However, Alling et al. [72] 
suggested to using LDA+U calculations in combination with supercell approaches for the 
treatment of magnetic disorder, magnetic SQS or MSM methods (Sec. 5.2). For instance, using 
this combination, Alling et al. successfully reproduced the electronic structure of cubic B1 phase 
of CrN, a well-known example of correlated paramagnetic material (see Fig. 10). A combination 
of the LDA+U and the DLM-MD (Sec. 6.1) allowed Alling et al.to approach, with success, such 
complex problems, as a description of substitutional disordered in correlated paramagnetic 
materials at finite temperatures [77].   

 



 

Figure 10. Valence-band electronic density of states (solid line) of the paramagnetic cubic B1 
phase of CrN calculated in Ref. [60] using LDA+U approximation (with U=3 eV) and a 
description of magnetic disordered by means of the supercell approach.  The experimental 
ultraviolet photoemission spectroscopy measurement from [138] is shown by a dashed line. 

 

Of course, for large groups of transition metal compounds LSDA or GGA calculations are 
sufficient, and they are used with considerable success. Enormous interest is generated by great 
importance of this class of systems, and a full survey of recent literature in this field would be too 
extensive. We therefore restricted ourselves by the consideration of methodological challenges to 
dealing with the paramagnetic state of magnetic transition metal compounds.  

 

7.5 Simulations of elastic properties.  

Performance of steels is based on an impressive variety of competing mechanisms on the 
microscopic/atomic scale, and includes dislocation gliding, solid solution hardening, mechanical 
twinning or structural phase transformations [109]. Among their most important properties are 
the elastic properties, which determine mechanical response of the system. Moreover, it has been 
demonstrated that the elastic and the plastic processes simultaneously involved in the 
deformation may be closely related. For example, there exists a significant correlation between 
the product of the macroscopic parameters of localized plastic flow auto-waves in deforming 
alloys, their length and propagation rate  (Fig. 11) and the product of the microscopic (lattice) 
parameters of these materials, the spacing between close-packed planes of the lattice and the rate 
of transverse elastic waves [140]. A possibility to predict elastic properties of magnetic materials, 
e.g. in the paramagnetic state is therefore highly requested.  

 



 

Figure 11.  Example of localized plastic flow autowave generated at the linear work hardening 
stage in the single crystal of fcc Fe – 18 % Cr – 12 % Ni –2 % Мо alloy oriented along [001]  
direction; xxε - local elongation; x and y- specimen length and width, respectively;  λ - nucleus 

spacing (autowave length); awV  - autowave propagation rate. The kinetics of macro-localization 
pattern evolution was investigated using time evolution of local nuclei’s positions [139].  

 

Starting with pure Fe, Leonov et al. [44] computed elastic properties of paramagnetic bcc and fcc 
phases of this metal using the result for the phonon dispersions, calculated within the 
LDA+DMFT approach at reduced temperatures 1.2TC and 1.4TC, respectively. Zhang et al. Ref. 
[90] carried out similar calculations within DLM-CPA picture using conventional DFT 
calculations. Ruban and Razumovskiy calculated elastic properties of paramagnetic bcc Fe using 
both, DLM-CPA and the SWM [75]. A comparison of all three data sets with experiment can be 
found in Ref. [75]. The average deviation between calculated and experimental results, 
independently on the methodology used, is around 30%. But in some cases, especially if 
corresponding elastic moduli are small, like C’ in bcc Fe (13.3 GPa at 1173 K), the spread 
between different theoretical results is significant, ranging from -5 GPa in calculations within the 
SWM without magnetic short-range order to 36 GPa in LDA+DMFT calculations. In addition, 
the elastic moduli C11 calculated within LDA+DMFT approach for the paramagnetic fcc Fe (210 
GPa) differs significantly from experiment (154 GPa).  Note that the elastic moduli C’ and C11 
are directly involved in the structural transformation path (the so-called Bain path) from bcc to 
fcc, and therefore are critical to understanding mechanical failure of ferritic steels at high T [86].  

 

Several comments should be made at this point. First, magnetic short-range order present in the 
paramagnetic bcc Fe at temperatures of interest may significantly affect the results of the 



calculations. For instance, in calculations by Ruban and Razumovskiy [75] C’ has increased from 
-5 GPa to 10 GPa when the magnetic short-range order have been included. Perhaps almost 
perfect agreement of the calculated C’ with experiment has been fortuitous. However, the most 
important improvement has been at a qualitative level: the bcc phase of Fe has become 
mechanically stable.  

 

Next, the main way how the temperature has been incorporated in the above mentioned 
calculations has consisted of approximate (that is, excluding the implicit effect of lattice 
vibrations) ab initio [44] or empirical [75, 90] incorporation of the thermal expansion of the 
lattice. While it is believed to be the most important contribution to the temperature dependence 
of the elastic moduli, it would be very interesting to investigate directly the full effect of lattice 
dynamics.  Such an opportunity is offered by the DLM-MD approach (Sec. 6.1). Figure 12 shows 
equations of state of orthorhombic antiferromagnetic phase of CrN, calculated with conventional 
ab inito MD, and cubic (B1) paramagnetic phases of CrN, calculated with the DLM-MD. The 
accuracy of the calculations for the paramagnetic phase is comparable to that of conventional ab 
inito MD simulations for magnetically ordered materials. Both results are in excellent agreement 
with experiment.  

 

 

Figure 12. (Color online) Equations of state of orthorhombic antiferromagnetic phase of CrN, 
calculated with conventional ab inito MD (green squraes), and cubic (B1) paramagnetic phases of 
CrN, calculated with DLM-MD (blue circles). Experimental data for the orthorhombic (orange 
triangles up) and cubic (red triangles down) phases are from Ref. [16]. The strong effect on the 
equation of state due to the neglect of magnetism is demonstrated by non-magnetic calculations 
shown with long dashed – dotted line.  

 



 

Figure 13. Calculated (open circles) and experimentally determined (filled rectangles) Young’s 
modulus values for fcc Fe–Mn–Cr and Fe–Mn–Co with a Fe=Mn ratio of 2.3. From [128]. © IOP 
Publishing. Reproduced with permission. All rights reserved. 

 

On the other hand, calculations of elastic constants of paramagnetic phases of Fe at very high 
temperatures represent extreme challenge for modern theory. In many cases, one deals with 
materials with significantly lower magnetic transition temperatures. Usually their elastic 
properties are better reproduced in static DFT calculations that model the magnetic disorder in 
one or another way. In particular, DLM-CPA approach (Sec. 5.1) has been highly successful. Its 
recent applications include calculations of elastic moduli in Fe-Cr [141], Fe-Ga [142], Ni3Fe 
[143], and multicomponent Fe-Mn alloys [128]. As an example, we show in Fig. 13 excellent 
agreement between calculated (within DLM-CPA) and experimentally determined room 
temperature Young’s modulus values for fcc Fe–Mn–Cr and Fe–Mn–Co alloys, reported in Ref. 
[128]. 

 

Further, Vitos et al. used the DLM-CPA calculations for guiding a design of austenitic stainless 
steels with the aim to combine high mechanical characteristics with good resistance against 
localized corrosion [65].  Cubic elastic moduli C11, C12 and C44 of fcc Fe-Cr-Ni alloys were 
calculated from first principles in the whole composition range. They were found to be in good 
agreement (~4% ) with available experiment. From the values of the single-crystal elastic moduli, 
a database of the polycrystalline shear modulus G and bulk modulus B were established, and it 
was shown that an optimal combination of G and B should be achieved in alloys within the 
compositional range of commercial stainless steels. In particular, Vitos et al. predicted that 
Fe58Cr18Ni24 alloys possess an intermediate hardness combined with improved ductility and 
excellent corrosion resistance. Then a study of additional alloying elements on elastic properties, 
lattice parameters and lattice stability of Fe-Cr-Ni alloys was carried out. As a result, 



Fe58Cr18Ni24 austenitic alloys containing a few per cent Os or Ir were proposed for practical 
applications.  

 

Here we note that the cost optimization is seldom present in theoretical considerations. However, 
in a recent review by Sandström and Korzhavyi [144] the use of materials optimization 
techniques combined with first-principles calculations of the elastic moduli to develop new 
materials that are systematically adapted to specific components has been discussed. In particular, 
cost, weight, and environmental impact minimization can be included in the design criteria. In 
addition, this review contains excellent collection of literature on ab initio calculations of elastic 
constants, e.g. in the paramagnetic state of magnetic alloys.  

 

8. Conclusions and outlook 

The effects of finite temperature magnetic excitations in magnetic materials on their structural 
and elastic properties are still not well understood. Because of the complexity of the problem, 
they are seldom included in first principles calculations. Their neglect is often accompanied by an 
argument that they should be small, and that these are the second-order effects in simulations of 
phase stability and mechanical behavior. Moreover, paramagnetic phases of magnetic materials 
are still modeled as non-magnetic and many researchers do not distinguish between the two 
terms. We reaffirm that the non-magnetic and paramagnetic state should always be distinguished, 
as argued by many over the years. Furthermore, we provide an overview of several theoretical 
techniques available at present to address such states more properly including critical electronic 
and thermodynamic effects. 

 

Specifically, we discuss recent developments in the field of first-principles simulations of 
magnetic materials in their paramagnetic state, that is above the magnetic order-disorder 
transition temperature. We focus on 3d-transition metals, their alloys and compounds. Itinerant 
electrons determine the magnetic properties of these systems. However, for a large class of the 
materials the magnetization density is well localized (Fig. 1), and each atom could be associated 
with a local moment parallel to the net magnetization density at the site.  These local moments 
survive but disorder above the magnetic order-disorder transition temperature.  

 

The magnetic disorder makes theoretical description of the system at hand highly non-trivial. 
Indeed, starting with the Gibbs free energy for a magnetic system in its paramagnetic state, Eq. 
(1) we argue that a conventional adiabatic decoupling of the terms into electronic Gel, vibrational 
Gvib, and magnetic Gmagn contributions may not work. This is so because of a comparable time 



scales for vibrational and magnetic excitations, as well as the effect of the latter on the potential 
energy surface and consequently its influence on Gel. Thus, in principle all the terms should be 
treated simultaneously and at the same footing. Moreover, for the itinerant electron systems local 
magnetic moments become temperature dependent. Besides the thermal fluctuations, which 
disorder the moments, they should depend on local chemical and magnetic environment, as well 
as they should be influenced by the temperature induced structural disorder. In addition, a variety 
of competing many-body effects should be considered, such as Kondo screening and the 
induction of local magnetic moment by temperature.   

 

We review theoretical tools, which allow for description of such a complex problem, focusing on 
their advantages and limitations. In particular, the dynamical mean-field theory gives perhaps the 
most consistent way to describe the paramagnetic state of a magnetic material with account of 
correlation effects. However, its numerical complexity, as well as conceptual challenges 
discussed in Sec. 3 motivate the use of alternative methods, which treat many-electron effects at 
more approximate levels. Based on the equivalence between a many-body interacting system 
with Coulomb onsite interactions and a one-electron system in fluctuating charge and spin fields, 
one can argue for the use of more traditional DFT-based schemes implemented in ab initio spin 
dynamics or its quasi- or semi-classical simplifications (Sec. 4). Moreover, employing the 
concept of temporarily broken ergodicity one inroduces the disordered local moment picture 
(Sec. 5). In the DLM the magnetically disordered state can be described as a pseudo-alloy of 
equal amounts of atoms with spin up and spin down orientations of their local moments, and its 
electronic structure and the total energy can be calculated within the tools borrowed from the 
alloy theory, e.g. using the coherent potential approximation or supercell approaches.  

Further, we argue that contributions from lattice vibrations ought to be increasingly important 
when one goes from low-temperature magnetically ordered state to the high-temperature 
paramagnetic state. In order to couple magnetic and vibrational excitations, we introduce the 
concept of disordered local moment molecular dynamics (Sec 6). In addition, we present 
arguments that interatomic forces in the paramagnetic state may be calculated in the adiabatic 
limit, considering magnetic degrees of freedom as fast with respect to atomic motions and 
averaging over the former.  

 

We discuss recent applications of the theories reviewed in Secs. 3-6 for calculations of 
thermodynamic and mechanical properties of materials in the paramagnetic state. We are mostly 
interested in simulations that considered effects of temperature induced magnetic disorder. In 
most cases, except Sec. 7.4, we are interested in simulations of thermodynamic and mechanical 
properties, rather than in the studies of the electronic structure and magnetic phase transitions. 



The considered examples underline the need for a proper treatment of magnetic disorder in first-
principles simulations. They also underline challenges that remain to be solved within this field.  

 

The following questions have to be addressed. First, an improvement on the efficiency of state-
of-the-art many body techniques, like the LDA+DMFT method is highly desirable, as well as a 
solution of its fundamental problems, related to the presence of model parameters, difficulty to 
calculate interatomic forces, and the mean-field nature of the approach. Second, we foresee 
increased activities on combining molecular and spin dynamics into the same framework. Such 
combination will allow one to treat thermally induced magnetic and vibrational excitations on the 
same footing. Third, it will be very important to develop a consistent first-principles framework 
for the treatment of magnetic entropy term, which at present is most often approximated by a 
mean-field expression adopted for it in the thermodynamic modeling community [28]. Next, the 
limitations of conventional local (LSDA) and semi-local (GGA) approximations for magnetic 
materials containing transition metals, discussed e.g. in Sec. 7.2 would have to be addressed by 
the community involved in the density functionals development. Unfortunately, at present, 
magnetic systems are not considered as a primary task for these works. It is also clear that more 
work needs to be done on improving theoretical models for transition metals, like Cr and Ni, 
which are more itinerant than Fe, and on more consistent way to including the effects of 
longitudinal spin fluctuations. At last, but not least, more simulations have to be done on 
magnetic materials using the existing tools, especially newly developed methods to verify their 
reliability, or otherwise.  Development of consistent theory of magneto-structural coupling will 
certainly give enormous new possibility for the knowledge-based design of magnetic materials. 
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