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Abstract

Here I study the “plasma interactions with icy bodies in the solar system”, that is, my quest
to understand the fundamental processes that govern such interactions. By using numerical
modelling combined with in situ observations, one can infer the internal structure of icy
bodies and their plasma environments.

After a broad overview of the laws governing space plasmas a more detailed part follows.
This contains the method on how to model the interaction between space plasmas and
icy bodies. Numerical modelling of space plasmas is applied to the icy bodies Callisto
(a satellite of Jupiter), the dwarf planet Ceres (located in the asteroid main belt) and the
comet 67P/Churyumov-Gerasimenko.

The time-varying magnetic field of Jupiter induces currents inside the electrically con-
ducting moon Callisto. These create magnetic field perturbations thought to be related to
conducting subsurface oceans. The flow of plasma in the vicinity of Callisto is greatly
affected by these magnetic field perturbations. By using a hybrid plasma solver, the
interaction has been modelled when including magnetic induction and agrees well with
magnetometer data from flybys (C3 and C9) made by the Galileo spacecraft. The magnetic
field configuration allows an inflow of ions onto Callisto’s surface in the central wake.
Plasma that hits the surface knocks away matter (sputtering) and creates Callisto’s tenuous
atmosphere.

A long term study of solar wind protons as seen by the Rosetta spacecraft was conducted
as the comet 67P/Churyumov-Gerasimenko approached the Sun. Here, extreme ultraviolet
radiation from the Sun ionizes the neutral water of the comet’s coma. Newly produced
water ions get picked up by the solar wind flow, and forces the solar wind protons to
deflect due to conservation of momentum. This effect of mass-loading increases steadily
as the comet draws closer to the Sun. The solar wind is deflected, but does not lose much
energy. Hybrid modelling of the solar wind interaction with the coma agrees with the
observations; the force acting to deflect the bulk of the solar wind plasma is greater than
the force acting to slow it down.

iii



Ceres can have high outgassing of water vapour, according to observations by the Herschel
Space Observatory in 2012 and 2013. There, two regions were identified as sources of
water vapour. As Ceres rotates, so will the source regions. The plasma interaction close to
Ceres depends greatly on the source location of water vapour, whereas far from Ceres it
does not. On a global scale, Ceres has a comet-like interaction with the solar wind, where
the solar wind is perturbed far downstream of Ceres.
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Sammanfattning

Här studerar jag “plasmaväxelverkan med isiga kroppar i solsystemet”, det vill säga,
min strävan är att förstå de grundläggande processerna som styr sådana interaktioner.
Genom att använda numerisk modellering i kombination med observationer på plats vid
himlakropparna kan man förstå sig på deras interna strukturer och rymdmiljöer.

Efter en bred översikt över de fysiska lagar som styr ett rymdplasma följer en mer
detaljerad del. Denna innehåller metoder för hur man kan modellera växelverkan mellan
rymdplasma och isiga kroppar. Numerisk modellering av rymdplasma appliceras på de
isiga himlakropparna Callisto (en måne kring Jupiter), dvärgplaneten Ceres (lokaliserad i
asteroidbältet mellan Mars och Jupiter) och kometen 67P/Churyumov-Gerasimenko.

Det tidsvarierande magnetiska fältet kring Jupiter inducerar strömmar inuti den elektriskt
ledande månen Callisto. Dessa strömmar skapar magnetfältsstörningar som tros vara
relaterade till ett elektriskt ledande hav under Callistos yta. Plasmaflödet i närheten av
Callisto påverkas i hög grad av dessa magnetfältsstörningar. Genom att använda en hybrid-
plasma-lösare har växelverkan modellerats, där effekten av magnetisk induktion har
inkluderats. Resultaten stämmer väl överens med magnetfältsdata från förbiflygningarna
av Callisto (C3 och C9) som gjordes av den obemannade rymdfarkosten Galileo i dess
bana kring Jupiter. Den magnetiska konfigurationen som uppstår möjliggör ett inflöde av
laddade joner på Callistos baksida. Plasma som träffar ytan slår bort materia och skapar
Callistos tunna atmosfär.

En långtidsstudie av solvindsprotoner sett från rymdfarkosten Rosetta utfördes då kome-
ten 67P/Churyumov-Gerasimenko närmade sig solen. Ultraviolett strålning från solen
joniserar det neutrala vattnet i kometens koma (kometens atmosfär). Nyligt joniserade
vattenmolekyler plockas upp av solvindsflödet och tvingar solvindsprotonernas banor att
böjas av, så att rörelsemängden bevaras. Denna effekt ökar stadigt då kometen närmar sig
solen. Solvinden böjs av kraftigt, men förlorar inte mycket energi. Hybridmodellering av
solvindens växelverkan bekräftar att kraften som verkar på solvinden till störst del får den
att böjas av, medan kraften som verkar till att sänka dess fart är mycket lägre.
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Ceres har enligt observationer av rymdteleskopet Herschel under 2012 och 2013 haft
högt utflöde av vattenånga från dess yta. Där har två regioner identifierats som källor
för vattenångan. Eftersom Ceres roterar kommer källornas regioner göra det också.
Plasmaväxelverkan i närheten av Ceres beror i hög grad på vattenångskällans placeringen,
medan det inte gör det långt ifrån Ceres. På global nivå har Ceres en kometliknande
växelverkan med solvinden, där störningar i solvinden propagerar långt nedströms från
Ceres.

xii



We are not likely to know the right questions until we are close to knowing the
answers.

Steven Weinberg

CHAPTER 1

Introduction

The continuously expanding ionized atmosphere of the Sun, the solar wind, is travelling
at a supersonic speed radially outwards in our solar system. The solar wind is a highly
ionized plasma, consisting mostly of protons and electrons. It carries with it a magnetic
field which is frozen in to the particles’ motion. As the solar wind flows through the solar
system, it interacts with all obstacles in its way: planets, moons, comets and asteroids.
Eventually, the solar wind reaches so far that it interacts with the plasma in-between stars,
called the interstellar medium, at a distance of ∼ 100 astronomical units (AU), i.e. 100
times the average distance between the Sun and the Earth. This can be considered the
approximate extent of the solar system.

Water, or H2O, is the second most common molecule in the solar system, surpassed
only by molecular hydrogen, H2. In the early solar system, water and rock with various
compositions formed solid bodies made of ice and rock, where bodies of higher ice content
are found farther out in the solar system.

Icy bodies are present in almost all possible environments of our solar system. Some have
direct interaction with the solar wind, both near to the Sun (comets and asteroids), and
far from the Sun (Kuiper belt objects such as Pluto). Icy satellites around the gas giants
interact with the magnetospheric plasma of their parent bodies, like the Galilean moons of
Jupiter, Rhea and Enceladus around Saturn, the satellites of Uranus and Neptune’s moon
Triton.

The ambient plasma environment, and how the plasma interacts with the icy bodies, can
best be measured by in situ observations. These measurements are paramount inputs when
using numerical models of such physical systems. The internal structure of an icy body
can be inferred by modelling how the plasma environment interacts with such a body,
while at the same time comparing the results to observations.
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CHAPTER 1. INTRODUCTION

This knowledge, combined with observations using spectroscopy, imaging, gravitational
mapping, etc., all aim to reach the ultimate goal: to understand the origin and evolution of
icy bodies. This is another jigsaw piece needed in order to explain the big puzzle of our
solar system’s past, present and future.

1.1 Modelling space plasmas

Space plasmas are often modelled as a magnetohydrodynamical (MHD) fluid. However,
many observed physical phenomena cannot be captured by such models, e.g., a non-
Maxwellian velocity distribution or finite gyroradius effects [20]. Therefore kinetic models
are used, which can discretise the velocity space, making the problem six-dimensional.
With a particle in cell (PIC) approach, the charge distributions of particles are represented
as discrete particles, while the electromagnetic fields are stored on a spatial grid. Since
the electric potential by each particle felt by their neighbours needs to be considered, the
potential should not be Debye shielded, and thus the cell size should be smaller than the
Debye length. This makes great computational demands, since the Debye length, e.g., in
the solar wind, is around 10 m, as discussed in Section 2.1.1.

Many macroscopic problems in space plasma physics are characterized by an ion gy-
roradius comparable to the scale of the system. For these problems, a fluid description
of the ions is inadequate. When the frequencies of interest are low compared to the ion
cyclotron frequency, the effects of high-frequency phenomena, such as electromagnetic
radiation and waves associated with electron inertia, are generally negligible [35]. For
global interactions, e.g., between planets and the solar wind, a hybrid model is more
adequate, where ions are represented as fully kinetic macroparticles and electrons as a
fluid.

In order to model the plasma interaction with icy bodies, a thorough breakdown of the
laws governing plasmas is needed; these are summarized in Chapter 2.

The hybrid solver used in the included papers has been developed by Holmström [20],
and is since 2012 part of the open FLASH software developed by the Flash Center at the
University of Chicago [13]. In Chapter 3 the general approximations and implementations
of the hybrid code are presented, along with several useful techniques when dealing with
numerical simulations.

The background to various icy bodies and their environments which have been investigated
in the included papers are presented in Chapter 4.

The main conclusions of the included papers are summarized in Chapter 5.
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The mathematician plays a game in which he himself invents the rules while the
physicist plays a game in which the rules are provided by Nature, but as time
goes on it becomes increasingly evident that the rules which the mathematician
finds interesting are the same as those which Nature has chosen.

Paul Adrien Maurice Dirac

CHAPTER 2

Space plasma physics

This chapter presents a breakdown of the laws governing plasmas. This is the foundation
needed in order to describe the dynamics of plasmas, which in turn are implemented in
numerical plasma models to study the plasma interaction with icy bodies.

The chapter begins with a brief explanation of what defines a plasma. This is followed
by charged particle dynamics, both single particle motion and when represented as
collective distributions. In the end, more detailed representations are presented, including
atmospheric (neutral) outflow from bodies, magnetic induction inside conductive bodies
and waves in the plasma.

2.1 Definition of a plasma

Plasma is a fundamental state of matter, consisting of ionized gas. However, any ionized
gas cannot be called a plasma, since there is always some small degree of ionization in
any gas. A useful definition of a plasma:

A plasma is a quasi-neutral gas of charged and neutral particles which exhibits collective
behaviour [7].

These conditions must be satisfied in a non-collisional plasma:

1. Quasi-neutrality (Debye shielding): λD� L,
where λD is the Debye length introduced in Section 2.1.1 and L is the typical length
scale of a system.

2. Collective behaviour (free particles): Λ� 1,
where Λ is the plasma parameter, i.e. the amount of particles within a volume of

3



CHAPTER 2. SPACE PLASMA PHYSICS

λ 3
D, introduced in Section 2.1.2.

3. Non-collisional: ωp,eτn,e� 1,
where the electron plasma frequency ωp,e and electron-neutral collisional frequency
τn,e are introduced in Section 2.1.3.

A more detailed description of these conditions is given in the following sections.

2.1.1 Debye shielding

For a plasma to be quasi-neutral, it must have about equal number of positive and negative
charges per volume element [4]. Such a volume element needs to be large enough to
contain a sufficient number of particles, yet be small compared to the characteristic
lengths for variations of macroscopic parameters such as density and temperature. In each
volume element, the microscopic fields of each individual charged particle must cancel
each other out. Consider a plasma consisting of two charged species: ions with charge,
qi = Z e and electrons with charge, qe =−e, where e is the elementary charge, and Z is an
integer describing how many electrons have been stripped from a neutral atom/molecule,
resulting in an ion. When considering a large enough volume element, the ambient plasma
(electron) density is defined as: n0 = ne = Zni, where ne is the electron density and ni the
ion density.

Consider a motionless ion in the plasma (denoted ‘t’). The electric Coulomb potential
field,

φC(r) =
qt

4πε0r
, (2.1)

of the ion will be partially compensated by particles of opposite sign in its vicinity, i.e.
the electrons. Here ε0 is the free space permittivity and r is the radial distance from the
point charge.

Because electrons are highly mobile, they will accelerate toward the ion, pass it, and
continue on. On average, this results in more electrons near the ion than at larger distances.
In a region where the density is distorted, charge neutrality becomes violated and the
resulting electric potential, φD(r), must satisfy Poisson’s equation,

∇
2
φD(r) =−

1
ε0

∑
s

nsqs, (2.2)

which is Gauss’s law for an electrostatic field (see Equation 2.22), and can in our case be
written as

∇
2
φD(r) =−

e
ε0

[Zni−ne(r)] . (2.3)

4



2.1. DEFINITION OF A PLASMA

The ion number density is unchanged, ni = n0/Z, while the electron number density,
ne(r), will include the perturbation caused by the ion. If one assumes the electrons are
Maxwellian distributed in velocity at constant temperature, Te, the stationary momentum
density conservation equation without convective derivatives is

0 =−∇pe(r)−ne(r)eE, (2.4)

where pe is the electron scalar pressure and E the electric field. Since this is electrostatic,
the electric field is expressed as E =−∇φD. The pressure is pe(r) = kBTene(r), where kB
is Boltzmann’s constant. Rewriting Equation 2.4 yields

kBTe ∇ne(r) = ene(r)∇φD(r). (2.5)

The solution of this equation is called Boltzmann’s law for the electron number density,

ne(r) = n0 exp
[

eφD(r)
kBTe

]
, (2.6)

at equilibrium [4].

For weak potentials, e |φD| � kBTe, Poisson’s equation (Equation 2.3) takes the form

∇
2
φD(r) =

n0e2

ε0kBTe
φD(r) (2.7)

when applying a Taylor expansion of first order to Equation 2.6.

Solving this differential equation with the condition that the distorted potential must look
like the Coulomb potential in Equation 2.1 close to the ion, i.e. φD(r)→ φC(r) when
r→ 0, the potential assumes the form

φD(r) = φC(r) exp
(
− r

λD

)
, (2.8)

and becomes Debye shielded [4], where λD is the Debye length and equal to

λD =

(
ε0kBTe

n0e2

)1/2

. (2.9)

The Debye length is thus the typical screening distance of the electrostatic field made by
an ion in a quasi-neutral plasma. In order for a plasma to be quasi-neutral, the physical
dimension of the system, L, must be large compared to the Debye length, which gives the
first plasma criterion:

λD� L. (2.10)

5



CHAPTER 2. SPACE PLASMA PHYSICS

This means that two regions of plasma separated by a distance, L, will appear neutral to
each other if λD� L. On the scale of the Debye length, the motion of a single electron
will be significantly affected by the individual potentials of all its neighbouring particles,
while on average it follows the dynamics of macroscopic fields.

The screening of electron charges by the ions can be derived in a similar way [4]. By
adding that potential into Poisson’s equation (Equation 2.7), the effective Debye length
becomes

λ
−2
D,eff = λ

−2
D +λ

−2
D,i ∝ n0

(
1
Te

+
Z
Ti

)
, (2.11)

where the ion Debye length is

λD,i =

(
ε0kBTi

Zn0e2

)1/2

. (2.12)

In hybrid simulation codes, which will be discussed in Chapter 3, quasi-neutrality is
assumed. Therefore the smallest length scale of the system, the cell size, should be much
larger than the Debye length to achieve a physical solution.

In the solar wind, accounting for only electrons and protons with number density n0 =
5 cm−3 at typical temperatures Te = 1 ·105 K and Ti = 5 ·104 K [10], the Debye lengths
are λD = 10 m and λD,i = 7 m. When studying plasma interactions with solar system
bodies, the interesting length scales are usually at least of the order of kilometres.

In the Jovian magnetosphere at Callisto’s orbit, assuming a plasma consisting of electrons
and single-charged oxygen with number density n0 = 0.15 cm−3 and temperatures Te =
5 ·106 K and Ti = 6 ·105 K [28], the corresponding Debye lengths are λD = 430 m and
λD,i = 150 m. Compared to the size of Callisto, which has a radius of about 2410 km, the
Debye lengths are small.

2.1.2 Plasma parameter

The sphere around the ion with a radius of the Debye length is called the Debye sphere.
Since the shielding effect is the result of the collective behaviour inside a Debye sphere, it
is necessary that this sphere contains sufficiently many charged particles. The number of
electrons within this sphere is the Debye number,

ND =
4π

3
n0 λ

3
D ∝ T 3/2

e n−1/2
0 . (2.13)

The term n0λ 3
D is often called the plasma parameter, Λ, which gives the second plasma

criterion:
Λ� 1. (2.14)

6



2.1. DEFINITION OF A PLASMA

This quantifies what is meant by free particles, i.e. the assumption of weak potentials,
e |φD| � kBTe [4]. The mean inter-particle distance in the plasma is approximately λip ≈
n−1/3

0 . Rewriting Equation 2.14 with the definition of Debye length from Equation 2.9
yields

Λ
2/3 = (4π)−1 kB Te

e
∣∣φD(λip)

∣∣ exp
(
−

λip

λD

)
� 1. (2.15)

If Λ� 1 is valid, it follows that e |φD| � kBTe.

A fully ionized plasma is non-collisional as long as the second plasma criterion is fulfilled
[4].

In the solar wind at the orbit of Earth and in the Jovian magnetosphere at Callisto’s
orbit, the plasma parameter has approximate values of about Λ = 5 ·109 and Λ = 1 ·1013

respectively, and thus satisfy the second plasma criterion.

2.1.3 Plasma frequency

Some plasmas, like the Earth’s ionosphere, are not fully ionized [4]. If the charged
particles collide too often with neutrals, they will be forced into equilibrium with the
neutrals. Then the medium will no longer behave as a plasma, but rather as an electrically
conducting neutral gas.

If the quasi-neutral plasma is locally perturbed by some external force or any other
fluctuation, the highly mobile electrons will become accelerated and attempt to restore the
charge balance. Due to their inertia they will move back and forth around their equilibrium
position. By solving the electron fluid continuity equation with momentum conservation
and applying Poisson’s law for a small perturbation of electron density, the solution will
result in what is called a Langmuir oscillation, given by the dispersion relation:

ω
2 = ω

2
p,e ≡

n0e2

meε0
, (2.16)

where ωp,e is the (electron) plasma frequency, and me the electron mass. Here the electrons
will perform an oscillation around the position of the ions.

For the electrons to be unaffected by collisions with neutrals, the average time between
collisions, τn,e, must be much larger than the reciprocal of the plasma frequency,

ωp,eτn,e� 1. (2.17)

This is the third plasma criterion.
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In a lower frequency regime, ion inertia can no longer be neglected, and ion oscillations
also become apparent. Their characteristic oscillation frequency is given by the dispersion
relation:

ω
2 = ω

2
p,i ≡

Zn0e2

miε0
, (2.18)

where ωp,i is the ion plasma frequency, and mi the ion mass. For the plasma to be
completely decoupled from the neutrals, the same criterion as in Equation 2.17 must apply
to the ions as well, ωp,iτn,i� 1.

In the intermediate range, ωp,iτn,i . 1�ωp,eτn,e, the ions will couple to the neutrals while
the electrons are free [4].

2.2 Single particle motion

Charged particles govern the evolution of electromagnetic fields, and the fields in turn
determine the dynamics of the particles. This system has to be solved self-consistently. If,
instead, the macroscopic electromagnetic fields are known for all points in space at all
times, the dynamics of any particle can be solved. This is called single particle motion. In
this section, the equation of motion is solved analytically for a plasma with homogeneous
fields. This gives a very useful approximation for the plasma interaction with resistive,
inert (plasma absorbing) solar system objects, e.g., the Moon, Dione and Rhea. In reality,
the plasma affects the fields, but an approximation of homogeneous fields around an object
is sometimes a good assumption. With this knowledge, macroscopic parameters such as
number density and flux can be derived for any point in the plasma (most interestingly
close to the surface of an object).

2.2.1 Field equations

We define a net space densities in charge, ρ , and current, J,

ρ = ∑
s

nsqs, (2.19)

J = ∑
s

nsqsvs, (2.20)

where s denotes different charged species, and vs their velocities. Since charges and
particles cannot be destroyed, we have the fundamental charge and current conservation
equation,

∂ρ

∂ t
+∇ ·J = 0. (2.21)
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2.2. SINGLE PARTICLE MOTION

Charged particles at rest are the source of the electric field, E. On the other hand, charged
particles moving with a velocity are current elements generating a magnetic field, B [4].
The field equations (Maxwell’s equations) have the form:

ε0 ∇ ·E = ρ, (2.22)

∇ ·B = 0, (2.23)

∇×E+
∂B
∂ t

= 0, (2.24)

1
µ0

∇×B− ε0
∂E
∂ t

= J. (2.25)

In most space plasmas the displacement current, ∂E/∂ t, can be neglected for low-
frequency phenomena (magnetostatics) [10]. In a model without the transverse (divergence-
free) part of the displacement current, no light waves are created, and is called the Darwin
approximation, or the non-radiative limit [35, 20].

2.2.2 Equation of motion

The equation of motion for a test particle (denoted ‘t’) of mass, mt, and charge, qt, where
electromagnetic forces are dominating, i.e. the Lorentz force, can be written as

v̇t =
qt

mt
(E+vt×B) , (2.26)

where the velocity, vt (t), is the time derivative of the position, rt (t):

ṙt = vt. (2.27)

The motion of a charged particle is governed by the electromagnetic fields, which in turn
are governed by the dynamics of the ensemble of charged particles. From a physical
point of view, the macroscopic electric and magnetic fields are just representations of the
average charge and current density distributions in space.

If the macroscopic fields are known for a system and constant in time, one can use
so-called test particles to find the motion of any particle.

The change of energy of a particle can be achieved by taking the inner product of Equa-
tion 2.26 with v, resulting in

d
dt

(
mtv2

t

2

)
= qt (E ·vt) , (2.28)

9
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and noting that (vt×B) ·vt = 0. The energy of a charged particle can only change when a
component of its velocity is along the electric field. Summing over all particles (ions and
electrons) and averaging over volume gives us the equation

dW
dt

= E ·J, (2.29)

where W is the average energy of all particles per unit volume [4].

2.2.3 Analytical solution to the equation of motion

In the rest of this section, an analytical solution of the equation of motion is derived
for homogeneous electromagnetic fields that are constant in time, and then applied by
immersing a resistive inert body in the plasma and achieving the velocity distribution for
any point on its surface. This can be used as an approximate but fast way of solving particle
trajectories around a body in space, instead of self-consistently solving the equation of
motion for particles and the field equations by other numerical methods.

The derivation of the Lorentz force is found in many textbooks, e.g., in Baumjohann
& Treumann, 1996 [4]. There, the solution for the electric field and magnetic field are
solved separately and later combined with a Lorentz transformation. In what follows, the
derivation containing both fields is presented.

Consider a non-collisional plasma homogeneously distributed in space, of any velocity
distribution, moving with a constant bulk velocity, u, where the magnetic field, B, and
electric field, E, are constant in time and space. The particles will behave as test particles
and the equation of motion will only depend on the particles’ own velocities, vt.

Coordinate system

Consider a right-handed coordinate system where the unit vectors are

ẑ = x̂× ŷ. (2.30)

The bulk velocity is set to
u = ux x̂. (2.31)

Now, one can always find a coordinate system where

B = Bx x̂+Bz ẑ, (2.32)

with its magnitude as B.

10
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There are neither curls nor divergences of homogeneous fields. Since there are no density
gradients or collisions either, the force acting on a particle moving with the bulk velocity,
u, is zero, i.e. E+u×B = 0, and the electric field is the convective electric field and
given by

E =−u×B. (2.33)

Note that E = Ey ŷ.

Derivation

The equation of motion (Equation 2.26) can be written as

v̇t =
qt

mt
[(vt−u)×B] , (2.34)

where the dot, ,̇ represents the time derivative operator, d/dt. Now dropping the denotation
of each test particle, and expanding Equation 2.34 into each coordinate:

v̇x =
q
m

[vyBz] , (2.35)

v̇y =
q
m

[vzBx− (vx−ux)Bz] , (2.36)

v̇z =
q
m

[−vyBx] , (2.37)

where only vx, vy, and vz depend on time. Taking the time derivative of Equation 2.36
gives

v̈y =
q
m

[v̇zBx− v̇xBz] , (2.38)

which is simplified by using the expressions of v̇x and v̇z from Equations 2.35 and 2.37:

v̈y =−
(

qB
m

)2

vy. (2.39)

Recognizing the characteristic gyrofrequency as ω = |q|B/m [4] and solving Equa-
tion 2.39 yields

vy = A1 cosωt +A2 sinωt, (2.40)

where A1 and A2 are constants. After applying a time derivative we get

v̇y = A2 ω cosωt−A1 ω sinωt. (2.41)

The values of A1 and A2 can be expressed as the initial values of the velocities (denoted
‘0’). Equation 2.40 at t = 0 gives

A1 = vy0 , (2.42)

11



CHAPTER 2. SPACE PLASMA PHYSICS

and combining Equations 2.36 and 2.41 yields

A2 = sign(q)
vz0Bx− (vx0−ux)Bz

B
, (2.43)

where sign(q) = q/ |q|.

Using the expression of vy from Equation 2.40, one can solve the acceleration along each
direction, in Equations 2.35, 2.36 and 2.37, resulting in:

v̇x = sign(q)
Bz

B
vy0 ω cosωt

+

{
Bx

B2 [vz0 Bz +(vx0−ux)Bx]− (vx0−ux)

}
ω sinωt, (2.44)

v̇y = sign(q)
vz0Bx− (vx0−ux)Bz

B
ω cosωt

− vy0 ω sinωt, (2.45)

v̇z =−sign(q)
Bx

B
vy0 ω cosωt

+

{
Bz

B2 [vz0 Bz +(vx0−ux)Bx]− vz0

}
ω sinωt. (2.46)

Now, integrating each component of acceleration, v̇, to get the velocity, v:

vx = ux +
Bx

B2 [vz0 Bz +(vx0−ux)Bx]

+

{
(vx0−ux)−

Bx

B2 [vz0 Bz +(vx0−ux)Bx]

}
cosωt

+ sign(q)
Bz

B
vy0 sinωt, (2.47)

vy = vy0 cosωt

+ sign(q)
vz0Bx− (vx0−ux)Bz

B
sinωt, (2.48)

vz =
Bz

B2 [vz0 Bz +(vx0−ux)Bx]

+

{
vz0−

Bz

B2 [vz0 Bz +(vx0−ux)Bx]

}
cosωt

− sign(q)
Bx

B
vy0 sinωt, (2.49)
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and another integration for the position, r = (x,y,z):

x = x0 + sign(q)
vy0Bz

ωB
+

{
ux +

Bx

B2 [vz0 Bz +(vx0−ux)Bx]

}
t

− sign(q)
vy0Bz

ωB
cosωt

+

{
(vx0−ux)−

Bx

B2 [vz0 Bz +(vx0−ux)Bx]

}
1
ω

sinωt, (2.50)

y = y0 + sign(q)
vz0Bx− (vx0−ux)Bz

ωB

− sign(q)
vz0Bx− (vx0−ux)Bz

ωB
cosωt +

vy0

ω
sinωt, (2.51)

z = z0− sign(q)
vy0Bx

ωB
+

{
Bz

B2 [vz0 Bz +(vx0−ux)Bx]

}
t

+ sign(q)
vy0Bx

ωB
cosωt

+

{
vz0−

Bz

B2 [vz0 Bz +(vx0−ux)Bx]

}
1
ω

sinωt. (2.52)

When averaging acceleration/velocity/position over a gyroperiod, tg = 2π/ω , this results
in the dynamics of the gyrocentre of the particle. Let us use the notation that an average
over a gyroperiod of a quantity, p, is

〈p〉= 1
tg

∫ t+tg/2

t−tg/2
pdt. (2.53)

Note that 〈cosωt〉= 〈sinωt〉= 0, and 〈t〉= t. The solution for the gyrocentre’s position,
〈r〉, becomes:

〈x〉= x0 + sign(q)
vy0Bz

ωB
+

{
ux +

Bx

B2 [vz0 Bz +(vx0−ux)Bx]

}
t, (2.54)

〈y〉= y0 + sign(q)
vz0Bx− (vx0−ux)Bz

ωB
, (2.55)

〈z〉= z0− sign(q)
vy0Bx

ωB
+

{
Bz

B2 [vz0 Bz +(vx0−ux)Bx]

}
t, (2.56)
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and taking the time derivative to get the gyrocentre velocity:

〈vx〉= ux +
Bx

B2 [vz0 Bz +(vx0−ux)Bx] , (2.57)

〈vy〉= 0, (2.58)

〈vz〉=
Bz

B2 [vz0 Bz +(vx0−ux)Bx] . (2.59)

Note that the gyrocentre’s velocity is constant, and is zero in the direction of y, which is
the direction of the convective electric field. Since E · 〈v〉 = 0 (see Equation 2.28), the
energy of a single particle might oscillate, but will on average stay the same. The position
of the particle from Equations 2.50, 2.51 and 2.52 can now be simplified to:

x = 〈x〉0 + 〈vx〉 t +(x0−〈x〉0) cosωt +
vx0−〈vx〉

ω
sinωt, (2.60)

y = 〈y〉0 + 〈vy〉 t +(y0−〈y〉0) cosωt +
vy0−〈vy〉

ω
sinωt, (2.61)

z = 〈z〉0 + 〈vz〉 t +(z0−〈z〉0) cosωt +
vz0−〈vz〉

ω
sinωt, (2.62)

or in vector form,

r = 〈r〉0 + 〈v〉 t +(r0−〈r〉0) cosωt +
v0−〈v〉

ω
sinωt, (2.63)

where the two first terms represent the gyrocentre’s motion, and the other terms represent
the gyration around the gyrocentre. Now, the position for a particle at any time, t, is known
if given its initial position and velocity, and constant homogeneous electromagnetic fields.

It can be shown that the two magnitudes |r0−〈r〉0|, and |v0−〈v〉|/ω , are the same and
can be recognized as the gyroradius, also called the Larmor radius [4], rg, and given by
the expression:

ω
2 r2

g = |(v0−u)⊥|
2 = v2

y0
+

[
vz0 Bx− (vx0−ux) Bz

B

]2

. (2.64)

Furthermore the two vectors are orthogonal to each other, (r0−〈r〉0) · (v0−〈v〉) = 0,
with an acceleration always pointing towards the gyrocentre, a = ω2 (〈r〉0− r0) for t = 0.
In the frame of a particle’s gyrocentre, it is always making a circular motion.

Drifts

When looking at the average drifts of particles, consider the velocity of the gyrocentre
from Equations 2.57, 2.58 and 2.59. The gyrocentre velocity along a magnetic field line is
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given by

〈v〉‖ =
〈v〉 ·B

B2 B, (2.65)

which equals

〈v〉‖ =
vz0 Bx Bz + vx0 B2

x

B2 x̂+
vz0 B2

z + vx0 Bx Bz

B2 ẑ, (2.66)

where ∣∣∣〈v〉‖∣∣∣= |vx0 Bx + vz0 Bz|
B

, (2.67)

and is completely independent of the bulk velocity, u, and thus also the electric field, E.
The drift perpendicular to B is then

〈v〉⊥ = 〈v〉−〈v〉‖ , (2.68)

which equals

〈v〉⊥ =
ux B2

z

B2 x̂− ux Bx Bz

B2 ẑ, (2.69)

where

|〈v〉⊥|=
|ux Bz|

B
, (2.70)

and is completely independent of the initial conditions of the particle.

The parallel drift is simply the initial velocity along the magnetic field lines for a single
particle, which does not change since no force is acting on it. The perpendicular drift is
the E-cross-B drift given by 〈v〉⊥ = E×B/B2, and is a collective drift which is the same
for all particles. Note that a particle with initial velocity equal to the bulk velocity, v0 = u,
has the expected drift, 〈v〉= v = v0 = u.

Application

The analytical solution of the equation of motion for a plasma with homogeneous electro-
magnetic fields constant in time can be used to achieve an approximation of the velocity
distribution at any point on the surface of a body immersed in such a plasma.

Similar analytical approaches have been done for solar system bodies, e.g., the Moon by
Hutchinson [23, 24, 25].

Consider a highly resistive, inert, spherical object of radius, R, immersed in this plasma.
Let origo be at the centre of the object. The equation for a particle’s position (Equa-
tion 2.63) can be used to solve the motion of any particle. Now it is possible to know
the macroscopic moments at the surface of the object, such as number density and pre-
cipitating flux. When given an ambient velocity distribution (see Section 2.3), one can
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backtrack all possible velocities of the distribution, v0, where time, t = 0, represents
when the particles are at the surface. If the position of a particle is ever inside the object,
|r|< R, during its last gyroperiod, −2π/ω ≤ t < 0, that part of the velocity distribution
is removed for that position on the surface.

Since the surface is assumed to be inert (plasma absorbing), no particle should originate
from the surface. Consider an infinitesimal backtracking in time at t = 0 by Taylor
expanding r. For a particle to come from a valid origin, three conditions arise:

1. The radial velocity should be negative (going into the surface),

v0 · r0 < 0. (2.71)

2. If the radial velocity is tangential to the surface or zero, v0 · r0 = 0, the radial
acceleration has to be positive,

v̇0 · r0 > 0. (2.72)

3. If the radial velocity and acceleration are initially tangential or zero, v0 · r0 = 0 and
v̇0 · r0 = 0, then:

v̈0 · r0 ≤ 0. (2.73)

There is no point for higher derivatives, since they will be a constant times a two order
lower derivative, e.g.,

...v 0 =−ω2v̇0.

The solution for |r| < R is not analytically solvable in general for t < 0. However, if
the gyroradius is extremely small compared to the object, rg � R for all v0, one can
approximate the position of the particle with the gyrocentre, r ≈ 〈r〉. For a particle to
come from a valid origin, the three conditions in Equations 2.71, 2.72 and 2.73 reduce to
the criterion:

4. The gyrocentre radial velocity should be negative at t = 0,

〈v〉 · r0 ≤ 0, (2.74)

which is the only criterion needed if rg� R.

This might be useful when considering electrons, since they often have a much smaller
gyroradius than ions.

For an arbitrary gyroradius, however, a numerically effective algorithm can be imple-
mented using n phases, αn = ω tn, in the range −2π ≤ αn < 0. The least numerically
expensive is to choose n equally spaced phases in the given range. We get the criterion:
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5. The solutions for the distance to the centre must be positive,

r2
n > R2, (2.75)

for all n, where rn = r(tn).

That a particle comes from a valid origin, |r| > R, is checked for each phase, of all
velocities of the velocity distribution, for all positions on the surface of the object, and if
it is does not: that part of the velocity distribution is removed for that point on the surface.

In total, five criteria have been presented. Depending on the problem, different ones should
be used. For a problem where rg� R, only criterion 4 needs to be fulfilled. Otherwise
criteria 1, 2, 3 and 5 need to be fulfilled.

Testing the algorithm

Consider the moon Callisto, immersed in the Jovian magnetospheric plasma. With
plasma parameters from previous studies of Callisto [34], we can summarize the plasma
parameters as seen in Table 2.1, and use the algorithm described previously in this section.
Assume that the plasma consists of oxygen ions, O+, at thermodynamic equilibrium. The
distribution of velocities will be a Maxwellian velocity distribution (discussed in detail in
the next section). The net flux of O+ is given by Γ0 = n0 u0, where n0 is the ambient ion
number density and u0 is the ambient ion bulk speed.

Table 2.1: Table of parameters for the plasma environment of Callisto.

Parameter Notation Unit Value
Ion number density n0 [cm−3] 1.1
Ion temperature Ti [eV] 200
External magnetic field B0 [nT] (0, 0, -35)
O+ cyclotron frequency ω [rad/s] 0.21
Plasma bulk velocity u0 [km/s] (-175, 0, 0)
O+ thermal velocity vth [km/s] 49
O+ gyroradius for v = vth rg [km] 233
Callisto’s radius R [km] 2410

Assuming that the electromagnetic field are constant, the number density and precipitating
flux of oxygen ions at Callisto’s surface looks like the surface maps in Figure 2.1.
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Figure 2.1: The number density and the precipitating flux of O+ at Callisto’s surface, plotted on
a mesh of the surface, where (0◦ longitude, 0◦ latitude) corresponds to the point where the bulk
of the magnetospheric plasma hits the surface from zenith. There, the magnetic field is pointing
downwards, and the electric field to the right.
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Figure 2.2: The number density and the precipitating flux of O+ at Callisto’s surface, plotted
against the ram angle, θ = arccos(−r̂ · û). Each black dot corresponds to a value on Callisto’s
surface. The blue line corresponds to the extreme case when the thermal velocity is much
less than the bulk speed, vth/u� 1, while the red dashed line corresponds to the extreme case
of an unmagnetised plasma with a thermal velocity much higher than the bulk speed of the
magnetospheric plasma, B = 0 and vth/u� 1.
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Figure 2.2 shows the oxygen ion number density and precipitating flux dependences on
the ram angle, θ = arccos(−r̂ · û), which is the angle between the nadir direction (−r̂)
and the bulk velocity u. As black dots, the central grid values from Figure 2.1 are plotted.
Coloured lines are drawn, corresponding to the extremes: if the thermal velocity was zero
(blue solid line) and if the bulk velocity and magnetic field magnitude were zero (red
dashed line).

The interaction is quite symmetric in the ram angle, since the thermal gyroradius, rg, is
only about 1/10 of Callisto’s radius.

The algorithm demonstrated takes around 20 s (wall clock time) to initiate, run and plot.
It is useful as a first view of the different length scales and time scales involved in the
plasma interaction of a body.

2.3 Velocity space distribution

In this section, a whole set of particles are described by their positions and velocities.
By doing this, one may express the dynamics and characteristics of a collective plasma
instead of following each particle’s motion. This is achieved by expressing the set of
particles as a distribution in both velocity and space.

The so-called velocity space distribution function, f (r,v, t), is an averaged quantity of the
phase space (r,v) density, i.e. how many particles that exist within a phase space volume
element, drdv, at a certain time, t, for arbitrary positions and velocities [4].

If one integrates the distribution over all velocities, one gets the number density of the
particles,

n(r, t) =
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

f (r,v, t)dvx dvy dvz, (2.76)

where the normalized distribution function can be expressed as

f̂ (r,v, t) =
f (r,v, t)
n(r, t)

. (2.77)

2.3.1 Macroscopic quantities

The physical macroscopic quantities such as number density, n, bulk velocity, u, average
temperature, T , etc., do not depend on a single particle’s velocity but only on position and
time. The mean of any microscopic quantity, such as the velocity of particles, v, is given
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by the expression:

〈v〉(r, t) =
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

v f̂ (r,v, t)dvx dvy dvz. (2.78)

The mean, or bulk velocity, u, is defined as:

u(r, t) = 〈v〉 . (2.79)

The mean flux of particles in, e.g., the x-direction, Γx, is then

Γx = n〈vx〉 . (2.80)

The pressure tensor is defined as the contribution due to the fluctuation of the velocities
of particles around the bulk velocity, and is given by

P(r, t) = mn
〈
(v−u)2

〉
, (2.81)

where m is the mass of a single particle [4]. The temperature tensor, T, is related to the
pressure tensor as

P = nkB T. (2.82)

In an isotropic plasma, the traceless (off-diagonal) parts of P and T vanish, and what is
left is only the scalar pressure, p, defined as:

p(r, t) =
mn
3

〈
|v−u|2

〉
, (2.83)

where the kinetic temperature, T , is given by p = nkB T . The kinetic temperature can
be calculated for any distribution function, and does not necessarily need to be a true
temperature in a thermodynamic sense, which can only be calculated for plasmas in or
close to thermal equilibrium.

2.3.2 Maxwellian distribution

The velocity space distribution of a collisionless plasma in thermodynamic equilibrium is
the Maxwellian velocity distribution, or simply Maxwellian. Thermal equilibrium implies
that there are no energy exchange processes in the plasma (no free energy). The particles
are distributed randomly around the average velocity, i.e. the bulk velocity, u. In a
homogeneous and isotropic plasma at thermal equilibrium, the distribution is independent
of position and time, and takes the form

f (v) =
n(√

π vth
)3 exp

(
−|v−u|2

v2
th

)
, (2.84)
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where the thermal velocity is defined as vth = (2kB T/m)1/2, and T is the temperature of
the plasma. A Maxwellian is often used as an approximation for plasmas encountered in
our solar system (discussed in Chapter 4).

−3 −2 −1 0 1 2 3

vx/vth
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1.0

f/
f m

ax

f = fmax/e

f = fmax exp (−v 2
x /v 2

th )

Figure 2.3: A non-drifting Maxwellian velocity distribution function, f , normalized to its max-
imum value at vx = 0, fmax = n/(

√
π vth)

3, in one dimension. The points at which the black
dashed lines meet are where the distribution function amplitude has dropped to a value fmax/e, at
|vx|= vth.

A non-drifting Maxwellian velocity distribution (u = 0) is shown for one dimension (x)
in Figure 2.3. An example of a discretised Maxwellian velocity distribution, used to
characterise the ambient plasma in the application of the previous section (Section 2.2.3),
is shown in Figure 2.4, where the bulk velocity is assumed to be only in the x-direction,
u = uxx̂.
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Figure 2.4: A discretised Maxwellian velocity distribution function, f , normalized to its maximum
value at v = u = ux x̂, fmax = n/(

√
π vth)

3.

When not considering the whole velocity distribution but only parts of it, the mean value
of a quantity in this velocity domain takes the more general form:

〈v〉=

∫ vmax
z

vmin
z

∫ vmax
y

vmin
y

∫ vmax
x

vmin
x

v f (v)dvx dvy dvz∫ vmax
z

vmin
z

∫ vmax
y

vmin
y

∫ vmax
x

vmin
x

f (v)dvx dvy dvz

. (2.85)

Consider a flat imaginary plane with a normal, N̂, where two orthonormal base vectors
⊥̂1 and ⊥̂2 lie in the plane. Let the angle between the bulk velocity and the normal of the
plane be given by θ . Now the bulk velocity can be written as

uN = ucosθ , (2.86)

u⊥1 = usinθ , (2.87)

u⊥2 = 0. (2.88)

The flux magnitude through such a surface from one side to the other in the direction of N̂
is given by

ΓN+ =
∫

∞

0

∫
∞

−∞

∫
∞

−∞

vN f (v)dv⊥2 dv⊥1 dvN , (2.89)
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which can be expanded to

ΓN+ =
n(√

π vth
)3

∫
∞

−∞

exp

[
−

v2
⊥2

v2
th

]
dv⊥2

∫
∞

−∞

exp

[
−(v⊥1−usinθ)2

v2
th

]
dv⊥1

∫
∞

0
vN exp

[
−(vN−ucosθ)2

v2
th

]
dvN ,

(2.90)

The first two integrals both have the value
√

π vth, and the last integral can be solved with
a variable substitution, t = (vN−ucosθ)/vth, which results in the flux

ΓN+ = n

u cosθ

1+ erf
(

ucosθ

vth

)
2

+ vth

2
√

π
exp

[
−(ucosθ)2

v2
th

] . (2.91)

The part of the distribution which is going through the surface is given by

nN+ =
∫

∞

0

∫
∞

−∞

∫
∞

−∞

f (v)dv⊥2 dv⊥1 dvN

= n

1+ erf
(

ucosθ

vth

)
2

 . (2.92)

The mean speed through the surface along N̂ is then

〈vN+〉= ΓN+

nN+

= u cosθ +
vth√

π

[
1+ erf

(
ucosθ

vth

)]−1

exp

[
−(ucosθ)2

v2
th

]
.

(2.93)

Note that for a zero bulk velocity, or θ = 90◦, the flux through the surface is completely
thermal and is called random flux [7],

Γrandom =
nvth

2
√

π
. (2.94)

Taking the net flux through the surface will cancel all thermal contributions and one gets
the result:

ΓN = ΓN+−ΓN−

= nu cosθ .
(2.95)
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2.3.3 Neutral non-collisional outflow

Consider an object in space which has a source of neutrals on its surface, creating a
non-collisional atmosphere (exosphere) or a non-collisional plume. The total production
rate of neutrals, Q, at the exobase (bottom of the exosphere) can then be expressed as

Q =
∫

Γr+ dA, (2.96)

where r̂ is the radial component from the centre of the object, and dA an area segment.

If one knows both the production rate, source area and the Maxwellian distribution at
the exobase, it is possible to deduce the shape of the exosphere at all heights. This is
interesting in itself, but also when considering the possible ionization that the exosphere
can go through.

If neutrals are released into space from an object of negligible gravity with total production
rate, Q, at time t = 0, the number of neutrals, Nn, will follow the differential equation

dNn

dt
= Q−νd Nn, (2.97)

where νd is the destruction rate of neutrals, with destruction meaning all processes that
change the fundamental structure of the molecule, either by dissociation, recombination
or ionization. The solution of the total number of neutrals is

Nn (t) =
Q
νd

[1− exp(−νd t)] . (2.98)

The total ion production rate, Qi, becomes

Qi (t) =
dNi

dt
= νi Nn

=
νi

νd
Q [1− exp(−νd t)] ,

(2.99)

where νi is the ionization rate of neutrals and Ni the total number of ions.

The steady-state values are

Nn (∞) =
Q
νd

, (2.100)

Qi (∞) =
νi

νd
Q. (2.101)
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The probability that a single neutral particle will ionize within a time, ∆t, can be derived
by solving the above equations for Q = 0, which results in

Pn→i (∆t) =
Ni (t +∆t)−Ni (t)

Nn (t)
=

νi

νd
[1− exp(−νd ∆t)] . (2.102)

For the case νd ∆t� 1, the probability can be written as

Pn→i (∆t)≈ νi ∆t. (2.103)

Isotropic outflow

For an object such as a comet with radius, R, and negligible mass, assume an homoge-
neously distributed, isotropic production of, e.g., water vapour. The total flux of water
vapour through any spherical shell around the object at distance r will be constant. This
is called the Haser model [18]. Above the surface of the body (r > R), the total flux of
neutrals through a spherical shell is

Q = A(r)Γr+(r)

= 4π r2 〈vr+〉 n(r),
(2.104)

where n(r) = nr+ is the number density and 〈vr+〉 is the mean velocity of water vapour
in the radial direction, which is represented by Equation 2.93 for θ = 0 at the exobase,
because the neutrals might be collisional close to the surface. The number density of
water becomes

n(r) =
Q

4π r2 〈vr+〉
. (2.105)

Note that as soon as the neutrals become non-collisional, they will no longer have a
Maxwellian distribution as they continue into space [49], since without any collisions or
external forces all particles will eventually only have a radial velocity component.

Furthermore, if one accounts for losses, the flux will decrease exponentially with time,
where the time is measured as the mean time since the neutrals left the surface, i.e.
t = (r−R)/〈vr+〉. The number density becomes

n(r) =
Q

4π r2 〈vr+〉
exp
[
−νd (r−R)
〈vr+〉

]
, (2.106)

where νd is the destruction rate of water vapour. The ion production rate becomes

qi(r) = νi n(r), (2.107)

with νi as the water ionization rate.

It is possible to get an analytical solution of the number density of neutrals for an isotropic
exosphere which is Maxwellian distributed at the exobase, when including gravity [49].
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Localized sources

Often, production of neutrals are not isotropic in nature, but localized to source regions on
a planetary surface, and gravity can not be neglected. When an analytical solution cannot
be found for the number density of neutrals at all points, it is useful to use test particles
instead.

When non-collisional neutrals at the surface of a source region with area, A, are homoge-
neously created with a total production rate of Q, the neutrals can be launched in a model
according to any velocity distribution. Then, for each time step, ∆t, the probability that
particles ionize/destruct is checked, and the particles are changed accordingly.

Assuming a Maxwellian distribution for the neutrals with some temperature, T , and bulk
velocity u, the number density of the full Maxwellian distribution at the exobase, n, is
related to the production rate as

n =
Q

A〈vr+〉

 2

1+ erf
(

ucosθ

vth

)
 , (2.108)

where θ is the angle between the bulk velocity and the radial direction.

2.4 Magnetic induction

The Jovian moons Europa and Callisto both have conducting regions under their crusts,
thought to be subsurface oceans [27, 30, 53, 34]. This section gives the laws governing
magnetic induction applied to such bodies by an external time-varying magnetic field.

Consider a spherical body of radius, R, with some conductivity, σ(r), immersed in a
plasma. According to Ampère’s law (Equation 2.25), any curl of the magnetic field
is represented by a current. This current can in principle be generated by an external
change in the magnetic field, ∂B/∂ t, by Faraday’s law, or by the convective electric field
generated by the plasma itself.

2.4.1 Time-varying magnetic field

Let the body be immersed in a stationary plasma with a time-varying magnetic field. The
fundamental equation to describe the induction process in a solid body with electrical
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conductivity, σ(r), is Faraday’s law (Equation 2.24), where the electric field is given by
E = J/σ , and the displacement current, ∂E/∂ t, is neglected,

∂B
∂ t

=−∇×E =−∇×
(

1
σ µ0

∇×B
)
. (2.109)

A simple representation is a conducting shell inside the body with isotropic conductivity,
σ0. Let r1 represent the inner boundary of the shell, and r0 the outer boundary. Assuming
zero conductivity in the core and the outermost shell gives a conductivity profile with
radial distance:

σ (r) =


0, forr < r1,

σ0, forr1 < r < r0,

0, forr0 < r < R.

(2.110)

Let the external magnetic field be spatially homogeneous, with one part which is indepen-
dent of time, b0, and one which is not (called the primary field), B0, that has a temporal
variation expressed by a frequency ωB. The induced field (or secondary field) from the
body is B1, and the total magnetic field can be expressed as

B(t) = b0 +B0 (t)+B1 (t) . (2.111)

Faraday’s law (Equation 2.109) for a infinitely conducting body (σ0→ ∞, r0 = R) can
be solved [48] and the currents induced by the primary field can be represented by the
secondary field,

B∞
1 (t) =

µ0

4π r5

{
3 [r ·M∞ (t)]r− r2 M∞ (t)

}
, (2.112)

for r > R, with M as the magnetic moment,

M∞ (t) =−4π

µ0

R3 B0 (t)
2

. (2.113)

For the case of a finite conductivity, the secondary field will be weaker than the primary
field and its phase lags, but no more than a quarter of a period. The steady-state solution
can be related to the perfectly conducting sphere by

B1 (t) = AB∞
1

(
t +

Φ

ω

)
, (2.114)

where A < (r0/R)3 and −π/2 ≤ Φ < 0 [48]. This solution is valid as long as ωB �
σ0 µ0 c2, with c as the speed of light in vacuum, and if the primary field can be expressed
as a potential field, i.e. if ∇×B = µ0 J = 0 for r > r0 [48]. The currents in the plasma
must therefore be zero for the above equation to hold, and the conductivity large enough
with respect to the frequency, ωB.
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By dimensional analysis of Equation 2.109, the typical diffusion time, τD, on a length
scale of L is

τD = σ0 µ0 L2, (2.115)

where the frequency-dependent skin depth, δ , can be expressed as

δ (ωB) =

(
2

ωB σ0 µ0

)1/2

, (2.116)

which is the typical width of the current layer of the conductive shell [48].

If the skin depth is small compared to the thickness of the shell,

δ . r0− r1, (2.117)

the shell is considered conductive.

For a geometry often seen in planetary magnetospheres, where the primary field is perpen-
dicular to the flow of plasma (whose effect is neglected), the magnetic field magnitude is
increased both in front and in the wake of the body [30, 53, 48].

2.4.2 Plasma-induced currents

Let the body be immersed in a moving plasma, where the external magnetic field is
constant in time (ωB = 0). Let the body have the same conductivity profile as in Equa-
tion 2.110. The electric field can be expressed as

E =−u×B+
J
σ
. (2.118)

Faraday’s law can now be written as

∂B
∂ t

= ∇× (u×B)−∇×
(

1
σ µ0

∇×B
)
, (2.119)

with the first term being the convectional term, and the second the diffusive term. The
system at steady state without wave propagation will be electrostatic, ∂B/∂ t = 0.

The electric field in the highly conductive undisturbed plasma is only the convective
term (the field is frozen in to the plasma), while inside the body there is no plasma so
the electric field is only given by the diffusive term. A current in the direction of the
convectional electric field, −u×B, is induced in the body to balance the electric field.
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Dimensional analysis gives the typical skin depth, δ , to which extent the magnetic field
penetrates into the conducting body,

δ (u) =
2

uσ0 µ0
. (2.120)

For δ � r0− r1, the current will be almost homogeneously distributed in the body, but
the current will be extremely small, making the magnetic field easily diffuse through the
object; thus the object can be considered as resistive. If δ . r0− r1, however, the current
will travel within a thin layer under the conducting surface of thickness ∼ δ , and can be
considered as conductive.

In general, the magnetic field lines will drape around the object, and the geometry will
lead to a compression of magnetic field lines in front of the body (the ram side), and a
relaxation of the magnetic field in the wake of the body [28, 47].

2.5 Ion waves

A wave is a perturbation of the electromagnetic fields of the plasma and can be classified
by being either electrostatic (∂B1/∂ t = 0) or electromagnetic (∂B1/∂ t 6= 0), where B1
is the perturbation of the magnetic field around its mean value over time, B0. The total
magnetic field is given by

B(t) = B0 +B1 (t) , (2.121)

where B1� B0, for linear wave phenomena.

2.5.1 Electrostatic waves

In many space plasmas, the flow is supersonic, i.e. the typical bulk flow of plasma is faster
than the average thermal velocities. This is represented by the sonic Mach number, MS,
which can be expressed as

MS =
u
vS

, (2.122)

being greater than 1 for a supersonic plasma [4], where

vS =
∑s γs ps

∑s ns ms
, (2.123)

is the speed of sound, or thermal variations, and γs is the adiabatic index of each species,
which is related to the number of degrees of freedom, Ns, by:

γs =
2+Ns

Ns
. (2.124)
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For a plasma consisting of one ion species, and by neglecting the mass of the electron, the
speed of sound can be simplified to

vS =
kB (Z γe Te + γi Ti)

mi
, (2.125)

where Z represents the charge of a single ion in terms of the elementary charge, e.

In the low-frequency regime, a sound wave propagating along the magnetic field is an
ion acoustic wave where ions suffer a one-dimensional compression (along the perturbed
electric field), thus having only one degree of freedom, giving, γi = 3. The electrons
move so fast relative to these waves that they have time to equalize their temperature
everywhere: therefore, the electrons are isothermal and γe = 1 [7]. Thus, the sound speed
is not strictly constant, but will have a weak dependence on the frequency of the wave
itself, since γs (ω).

The general morphology of all atmosphereless bodies immersed in a flowing plasma is
that there will be a significant wake of particles downstream of the body. This is seen for
bodies (discussed more in Chapter 4) in both the solar wind, such as the Moon [22], and
in magnetospheric plasmas, such as Callisto orbiting Jupiter [34].

2.5.2 Electromagnetic waves

What differs greatly in different plasmas of the solar system is the speed at which magnetic
perturbations can propagate (discussed further in Chapter 4). A perturbation along the
magnetic field caused by ions is called an Alfvén wave [7], and has in the low-frequency
regime the wave speed:

vA =
B

(µ0 ∑s ns ms)
1/2 , (2.126)

which for one ion species can be simplified to

vA =
B

(µ0 mi ne/Z)1/2 , (2.127)

where the corresponding Alfvénic Mach number is

MA =
u

vA
. (2.128)

The wave propagating perpendicular to the magnetic field lines is called a magnetosonic
wave, and has in the low-frequency regime the wave speed

vMS =
(
v2

S + v2
A
)1/2

, (2.129)
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with its corresponding magnetosonic Mach number

MMS =
u

vMS
. (2.130)

In the limit of an unmagnetised plasma, B→ 0, the magnetosonic wave turns into an ion
acoustic wave.

32



All models are wrong, but some are useful.

George Edward Pelham Box

CHAPTER 3

Hybrid modelling of plasmas

In a hybrid model, ions are represented as fully kinetic macroparticles and electrons as a
fluid.

The hybrid solver has been developed by Holmström [20], and is since 2012 part of the
open FLASH software developed by the Flash Center at the University of Chicago [13].

In what follows, the general approximations and implementations of the hybrid code are
presented, along with several useful techniques when dealing with numerical simulations.

3.1 Hybrid approximations

Due to the fluid nature of electrons, a hybrid model is applicable to length and time scales
of ions. When neglecting these small-scale structures, and high-frequency phenomena,
some useful approximations can be made.

Most hybrid solvers have the following approximations [20]:

1. Quasi-neutrality. The total charge density, ρ , is zero

ρ = ∑
s

ρs = ρe +∑
I

ρI = 0, (3.1)

where I denotes all ion species. The electron charge density can be written as

ρe =−∑
I

ρI. (3.2)
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2. Ampère’s law without the transverse displacement current (also called the Darwin
approximation) provides the total current density

J =
1
µ0

∇×B, (3.3)

where the electron current density can be found as

Je = J−∑
I

JI. (3.4)

Quasi-neutrality implies that the electron velocity, ue, can be written as

ue =
Je

ρe
=
−J+∑I JI

∑I ρI
. (3.5)

3. Massless electrons, me = 0 for the inertial term, lead to the electron momentum
equation

me
d (ne ue)

dt
= 0 = ρe E+Je×B−∇ ·Pe +Ce, (3.6)

where Ce is a force term due to collisions between an electron and any type of
particle or electron-wave interactions, and Pe is the electron pressure tensor.

This provides an equation of state (Ohm’s law) for the electric field:

E =
1

∑I ρI

[(
J−∑

I
JI

)
×B−∇ ·Pe +Ce

]
. (3.7)

The electric field contains no unknowns, and can thus be calculated at all times.

4. The electron pressure is isotropic

∇ ·Pe = ∇pe, (3.8)

and polytropic
∇pe

pe
= γe

∇ρe

ρe
, (3.9)

where γe is the polytropic index of electrons, as a free parameter. This results in

pe ∝ ρ
γe
e . (3.10)

The polytropic index is often chosen as adiabatic, corresponding to Equation 2.124.

5. Faraday’s law is used to advance the magnetic field in time,

∂B
∂ t

=−∇×E. (3.11)

Note that the gradient of electron pressure does not affect the evolution of the
magnetic field, as can be seen by the vector identity ∇×∇pe = 0 in Faraday’s law.
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3.2 Hybrid equations

By the approximations from the previous section, it is possible to describe the evolution
in time for the unknowns of the model: the particles’ positions, ri, their velocities, vi, and
the discrete magnetic field, B j. The ions are fully kinetic, and the magnetic field is stored
in the centre of cubic cells on a discrete grid, where j denotes that a quantity is discretised
in the centre of a grid cell.

Let the term, Ce, represent electron collisions (with either ions or neutrals) where the
target’s momentum change is zero [4],

Ce =−ρe η J, (3.12)

where η = 1/σ , is the resistivity of the medium.

The time advance of the unknowns can be written as a set of ordinary differential equations
(ODEs) and a partial differential equation (PDE), that after discretisation become:

dri

dt
= vi, (3.13)

dvi

dt
=

qi

mi

[
E+vi×B− η

µ0
(∇×B)

]
+

Fext

mi
, (3.14)

∂B j

∂ t
=−∇ j×E j, (3.15)

where ‘∇ j×’ is a discrete curl operator, using a central difference scheme, Fext is an
external force such as gravity and the electric field is given by

E j =
1

∑I ρI

[
−∑

I
JI×B j +

1
µ0

(∇ j×B j)×B j−∇ j pe

]
+

η

µ0
(∇ j×B j) .

(3.16)

The electromagnetic fields experienced by each particle in the Lorentz force of Equa-
tion 3.14 are achieved by interpolating the fields between cell centres to the position of
each particle.

The centre of mass for collisions between like particles will remain constant [7], and will
thus give rise to very little diffusion and so is not considered here. Note that the resistive
term in the electric field cancels out in the Lorentz force for ions.

The algorithm for advancing the ODEs and the PDE in time is an explicit cyclic leapfrog
method using central differences [20, 38].
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3.3 Resistivity

If collisions of any kind occur in a plasma, electrons will have more difficulty carrying
a current through the medium, giving rise to a collective resistance represented by the
resistivity, η [Ohm m].

The resistivity of a plasma where electrons move with respect to either neutrals or ions
can be expressed as

η =
me νc

ne e2 , (3.17)

where νc is the collisional frequency [4].

3.3.1 Coulomb collisions

For a fully ionized plasma, collisions are due to Coulomb scattering between electrons
and ions, and the Coulomb collision frequency [4] may be used (not discussed further
here). This results in the Spitzer resistivity,

ηS =
1

16π ε0 ωp,e

lnΛ

Λ
, (3.18)

where Λ is given by

Λ =
4π

Z
ne λ

3
D, (3.19)

for a plasma consisting of electrons and one ion species with charge, Ze. This Λ is within
a factor 4π/Z equal to the plasma parameter introduced in Equation 2.14. The term lnΛ

is called the Coulomb logarithm and has a value around 20 for space plasmas [10]. The
Spitzer resistivity is in fact independent of the plasma density (except for the very weak
dependence in lnΛ for large Λ). In practice, the proportionality is

ηS ∝ T−3/2
e . (3.20)

In the solar wind at 1 AU, this resistivity is extremely small, ∼ 10−5 Ohm m, and as such
the plasma is extremely conducting. For all practical use, the resistivity of the plasma can
be neglected. However, it can be set as nonzero in the model as a smoothing technique for
the magnetic field (see Section 3.5).

3.3.2 Implementation

A numerical problem occurs for low plasma densities in the electric field, since it tends
towards infinity. A self-consistent, physically correct way of handling vacuum regions
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is to express the electric field as E = η J, where η → ∞ [19]. This can be handled as
setting the factor (∑I ρI)

−1 = 0 when ∑I ρI < ρmin, with ρmin chosen arbitrarily as the
condition for vacuum or being inside a body. For a spherical body of radius R, immersed
in a plasma, one can use a radial resistivity profile η (r), where η (r < R) represents the
resistivity inside the body, and η (r > R) the resistivity outside the body.

In the hybrid model, the collisional term of the electric field cancels out in the Lorentz
force, because there is no momentum transfer from the massless electrons, and thus no
direct effect on the dynamics of the ions [1]. For advancing the magnetic field in Faraday’s
law, however, the collisional term plays a role. Note that the resistivity of the plasma
can be set to a nonzero value in Faraday’s law, and thus acts as a diffusive term. In this
way, the plasma resistivity can be used as a tool to diffuse numerical oscillations in the
magnetic field of the plasma. The resistivity of vacuum, ηv, is always set as high as
possible.

In vacuum regions or inside an obstacle, Faraday’s law becomes

∂B
∂ t

=−∇×
(

η

µ0
∇×B

)
, (3.21)

as also seen in Equation 2.109 for magnetic induction [21].

Numerical scheme

For a numerical scheme of the electric field [21]: If the charge density is too low, ∑I ρI <
ρmin, and if located outside the body, r > R, it is considered as vacuum: (∑I ρI)

−1 7→ 0
and η = ηv. If inside the body, r ≤ R, the plasma density is zero and the resistivity equal
to the given profile: (∑I ρI)

−1 7→ 0 and η = η (r). Finally, if outside the body, r > R,
and the charge density is above the minimum limit, ∑I ρI ≥ ρmin, then it is considered as
plasma and the resistivity is equal to the given profile: η = η (r). To summarize:

η =

{
ηv if r > R and ∑I ρI < ρmin,

η (r) otherwise.
(3.22)

The vacuum resistivity, ηv, should nominally be set to infinity, but this would mean an
infinitely fast diffusion and is not practically possible for a simulation. This is addressed
in the coming section.
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3.4 Time step constraints

A model using finite differences will become inaccurate. or even unstable (for explicit
solvers) if information is travelling more than one cell for every time step of the simulation.
The constraints on the maximum time step allowed in a simulation are given by the
Courant-Friedrichs-Lewy (CFL) conditions [9].

In the simulation domain of the hybrid model the discrete cells are cubic with their sides of
lengths, ∆x = ∆y = ∆z. Since the fields are calculated in the centre of each cell, diffusion,
oscillations and propagation of particles and waves all have to be resolved within one time
step of the simulation, ∆t.

The general CFL condition for a propagation in a three-dimensional space of an explicit
solver is

∆t <
(
|vx|
∆x

+
|vy|
∆y

+
|vz|
∆z

)−1

. (3.23)

3.4.1 Waves

The CFL condition for any wave or oscillation with frequency ω , becomes

∆t <
k ∆x√

3ω
, (3.24)

where k is the wave number [44]. To resolve the fastest wave with phase speed vph = ω/k,
the equation takes the form

∆t <
∆x√
3vph

. (3.25)

3.4.2 Oscillations

For the fastest oscillation with frequency ωmax, the time step needs to resolve the biggest
wave number on the grid, kmax = π/∆x, giving the constraint,

∆t <
π√

3ωmax
, (3.26)

which is completely independent of the cell size and will thus be the restriction for the
time step at large cell sizes.
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3.4.3 Particles

The propagation of a collection of particles needs to be resolved with the condition

∆t <
∆x

max(〈vx+〉 ,〈vx−〉)+max
(〈

vy+
〉
,
〈
vy−
〉)

+max(〈vz+〉 ,〈vz−〉)
, (3.27)

where the mean of a speed 〈vx+〉 for a Maxwellian distribution is calculated as in Equa-
tion 2.93, which for an arbitrary direction of the bulk velocity, u, gets the maximum for
cosθ = 1/

√
3 in all directions, giving the constraint,

∆t <
∆x

√
3u+ 3vth√

π

[
1+ erf

(
u√
3vth

)]−1
exp
[
− u2

3v2
th

] . (3.28)

If the simulation also includes other types of particles that are not from a Maxwellian
distribution, their movement also has to satisfy Equation 3.23.

Pick-up ions, for instance, will move at a maximum speed 2 |E×B|/B2, and thus for
arbitrary direction of the E-cross-B drift on the grid have to satisfy

∆t <
B2 ∆x

2
√

3 |E×B|
. (3.29)

3.4.4 Diffusion

The diffusion equation for the magnetic field advancement in time in Faraday’s law
(Equation 3.21) is similar to the heat equation and gives a time step for stability of

∆t <
µ0 ∆x2

2η
, (3.30)

which will dominate the condition on the time step for high resistivities and small cell
sizes, because of its square-dependence [21]. This condition is the dominant one for
almost all modelled cases of the papers included in this thesis.

3.4.5 Massless electrons

The Hall term in in Ohm’s law (J×B) is associated with whistler dynamics. The whistler
wave spectrum is cut off at the electron cyclotron frequency, but due to the assumption
of massless electrons it is unbounded for the hybrid equations, and the frequency of
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the wave, ω , scales like ω/ωc,i =
(
kc/ωp,i

)2 for large wave numbers, k [44]. Here ωc,i
is the ion cyclotron frequency introduced in Equation 2.40, and ωp,i the ion plasma
frequency introduced in Equation 2.18. This gives the time step constraint for three spatial
dimensions

∆t <
1√

3π ωc,i

(
∆x
δi

)2

∝
qi ni

B
∆x2, (3.31)

where δi is the ion inertial length (the ion skin depth), δi = c/ωp,i = vA/ωc,i, with vA as
the Alfvén wave speed introduced in Equation 2.126.

3.4.6 Gravity

When it comes to neutrals, when neglecting collisions, the dominant force is the gravita-
tional force, which gives the acceleration of a particle,

a =
Fext

m
=−GM

r2 r̂, (3.32)

where G is the gravitational constant, and M the mass of a massive body at a distance, r,
where the unit vector r̂ is pointing from the centre of the massive object.

For a particle in such a field which does not depend on the particle’s motion and is not
averaged at the centre of a grid cell, but given an analytical solution, it is not necessary for
stability to satisfy the time step constraint in Equation 3.27. However, it is required in
order to have particle statistics for each cell.

Instead, for numerical accuracy, the gravitational field needs to be resolved, namely:

∆t <
|ar|
|ȧr|

, (3.33)

which for a collection of Maxwellian distributed particles, calculated from the maximum
force gradient at r = R, gives the constraint

∆t <
R
2
[max(〈vr+〉 ,〈vr−〉)]−1 . (3.34)

3.5 Smoothing techniques

Explicit numerical solvers are always subject to unwanted oscillations, caused by dis-
continuities in the solution or derivatives. For example, the change of the magnetic field
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over time is the negative curl of the electric field, making the magnetic field sensitive to
oscillations.

All models have different schemes to deal with these in some non-physical way. In this
hybrid model, the smoothing of numerical oscillations comes into the term ηJ, of the
electric field.

For the advancement in time for the magnetic field, Faraday’s law is used (Equation 2.119).
The magnetic Reynolds number, Rm, is used as a way to determine which term dominates
the equation, which with dimensional analysis becomes

Rm =
|convective term|
|diffusive term|

=
|∇× (u×B)|∣∣∣∇×( η

µ0
∇×B

)∣∣∣ ≈ Lu µ0

η
, (3.35)

where L is the typical length scale, u the bulk speed of the plasma, and η the resistivity.
If Rm is large, the magnetic field is “frozen in” to the bulk plasma; the magnetic field
convects with the plasma.

3.5.1 Vacuum regions

When handling vacuum regions [21], the resistivity should be chosen as high as possible,
such that diffusion dominates on the length scale of the vacuum region, making the
Reynolds number small when comparing with the convective speed, u, of the ambient
plasma.

If a vacuum region is comparable to the size of a body of radius R, the vacuum resistivity
should at least satisfy, ηv > µ0 uR, for a physical solution. The same applies to a resistive
body with its resistivity profile, η (r < R).

Physically, the vacuum resistivity should be as high as possible, but for computational ef-
ficiency the exact opposite applies because of the time step constraint from Equation 3.30.

3.5.2 Oscillations in the plasma

The plasma resistivity profile, η (r > R), can be used to smooth numerical oscillations, by
enforcing diffusion, in the magnetic field of the plasma.

To do this in the most physically correct manner possible, the resistivity should be
sufficiently small such that the magnetic field is not dominated by diffusion on the order
of the smallest length scale of the system, the cell size, i.e. the Reynolds number should
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be high. The plasma resistivity should at least satisfy the frozen-in condition

η (r > R)< µ0 u∆x, (3.36)

on the order of the cell size.

By setting the constraints for the time steps equal from the previous section, one can see
that for smoothing any wave with phase speed vph on the length scale of the cell size needs
a resistivity of

η >

√
3 µ0 vph ∆x

2
, (3.37)

being linear in cell size. By comparing Equations 3.36 and 3.37, it is easy to see that both
conditions can only be valid if vph & u, approximately. Waves travelling faster than the
bulk plasma are easy to smooth without having to make the diffusive term of Faraday’s
law large. Therefore, a fast wave can be dampened without changing the evolution of
the magnetic field as a whole. This is useful when dealing with sub-Alfvénic plasmas
(discussed in Section 3.10), where the Alfvén waves can create substantial numerical
oscillations.

Analogously, an oscillation of frequency ω needs a resistivity of

η >

√
3 µ0 ω ∆x2

2π
. (3.38)

For any oscillation though, it is clear that for smaller cell sizes, the oscillation becomes
easier to diffuse, without changing the frozen-in condition of the plasma.

3.5.3 Hyperresistivity

There are more ways of smoothing a solution, and one is to expand the resistivity into
higher order terms of the Laplacian of J [37]. By admitting one more term, the resistive
term of the electric field (and Lorentz force) becomes

η J 7→ η J−ηh∇
[2]J, (3.39)

where ∇[2] is a discrete central difference operator giving ∇[2]J =
(

∂ 2Jx
∂x2 ,

∂ 2Jy
∂y2 ,

∂ 2Jz
∂ z2

)
[21].

The higher the order of the diffusive terms one includes, the more effective they are at
erasing small-scale structures without affecting the larger scale. Hyperresistivity is a
useful tool to smooth numerical oscillations in a sub-Alfvénic plasma.

By including hyperresistivity, the maximum allowed time step due to diffusion (Equa-
tion 3.30) can become larger [37].
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3.6 Magnetic induction model

Conductive bodies in space subject to a time-varying field of constant frequency, ωB, will
get currents induced inside them, giving rise to a dipole magnetic field (see Section 2.4.1).
This is the case for bodies inside planetary magnetospheres such as Callisto [53], where
the magnetic field of the parent body rotates with a frequency of one revolution per parent
day.

Since the dipole field and its evolution with time is given by the primary field in Equa-
tion 2.114, and since Faraday’s law is a linear equation, one may split the total magnetic
field, B = b0 +B0 (t)+B1 (t) into two parts in the model.

Three model variables, GRBX, GRBY, GRBZ, contain the components of the external field,
b0 +B0 (t), and three other variables, GBX1, GBY1, GBZ1, contain the induced field,
B1 (t).

If the time scale of interest is much shorter than ω
−1
B , then the induced field can be

assumed to be constant in the model, which is the case for Callisto (see Paper I). The
magnetic dipole representing the induced currents can be specified by setting its location
and the magnetic moment (magnitude and direction).

Only the external field contained in GRBX, GRBY, GRBZ, is advanced in time by Faraday’s
law. The magnetic field used for particle motion in the Lorentz force is naturally the total
magnetic field.

3.7 Neutral release model

An “atmosphereless” body such as Callisto (Paper II) or Ceres (Paper III) will have some
production of neutrals at its surface, creating at least a tenuous exosphere (collisionless
atmosphere). The possible sources are many, but some can be due to sublimation (out-
gassing of neutrals from within the surface), sputtering (plasma hits the surface and knocks
away neutrals from the surface), or via plumes (cracks opening up to expose a collection
of, e.g., liquid water or nitrogen). This collection of neutrals can then ionize due to, e.g.,
photoionization or electron impact ionization.

These outflows of neutrals can be modelled. Assume that one knows the production rate of
neutrals, Q, over some area, A. Further assuming that the cloud of neutrals is Maxwellian
distributed in velocities, and non-collisional at the surface, one may use the expressions
described in Section 2.3 to describe the outflow.
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3.7.1 Implementation

The speed of exospheric neutrals is much slower than the average speed of the ambient
plasma. Since neutrals are not affected by the electromagnetic fields, it is useful to split
the solver into several time periods, where one first lets the neutrals reach steady state
before moving on and including the plasma and electromagnetic fields.

For each time period, the model uses different time steps, ∆t0 < ∆t1 < ∆t2:

1. The time period when letting neutrals reach steady state, using the time step ∆t2.

2. The time period when filling the simulation domain with ambient plasma keeping
fields constant, using the time step ∆t1.

3. The time period when updating fields, and ionizing neutrals, using the time step
∆t0.

Initiation

The simulation domain is periodic in two spatial dimensions, with an inflow/outflow
boundary in the other spatial dimension (usually x). New plasma is inserted at the
inflow boundary (+x) and removed at the outflow boundary (−x). The magnetic field
is extrapolated to the outflow cells, and at the inflow boundary equal to the ambient
homogeneous electromagnetic fields (given at the start of the simulation).

When the simulation is initiated, the ambient plasma is filled with macroparticles in all
cells according to a Maxwellian distribution, in order to initiate and calculate the electric
and magnetic fields during the first two time steps of the simulation, ∆t0, which has to
satisfy all time step constraints of Section 3.4. After running for two time steps, the time
periods described above (1–3) will start, beginning with (1).

Filling the domain with neutrals

The fields are set as constant and are not updating with time. The time step is increased to
∆t2, which should resolve the gravitational fields using the condition in Equation 3.33,
and should also resolve the particle motion of neutrals on the grid from Equation 3.27
to get good statistics in each cell. Now, neutrals with weight (number of real particles
per macroparticle), w, start to be launched from the given area, A. For every time step
henceforth, the probability of removing a neutral from the simulation domain is checked,

Pn→d (∆t) = 1− exp(−νd ∆t), (3.40)
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where νd is the destruction rate of neutrals (see Equation 2.102 setting νi = νd). All
neutrals moving outside the simulation domain are removed (no periodic boundaries for
neutrals because of the radial symmetry in the gravitational force).

Filling the domain with ambient plasma

When the neutrals have reached steady state, t ≈ 2ν
−1
d , the time step is increased to ∆t1

which has to satisfy the CFL condition of particle motion described in Equation 3.27, and
ambient plasma starts filling the simulation domain. The domain is filled after a time of
approximately t ≈ X/u, where X is the size of the domain in x, and u the bulk speed of
the plasma.

Ionization and updating the fields

Now the time step is lowered to its initial value ∆t0 again, and the electromagnetic fields
are updated and advanced each time step. Henceforth, each neutral particle of weight, w,
will create a new macroparticle with weight, ε w, with a probability

Pn→i (∆t) =
νi

νd

[
1− exp

(
−ε
−1

νd ∆t
)]
, (3.41)

where ε is an arbitrarily chosen positive real number, such that a satisfactory weight of
the ionized particles is achieved (preferably similar to the ambient plasma). Note that the
neutral macroparticle will not be removed from the simulation here since that is already
taken care of in Equation 3.40.

3.7.2 Neutral distribution

At every time step of the simulation, the neutrals need to be randomly generated some-
where on the source region of area, A, according to some velocity distribution.

Let origo be at the centre of the spherical body in question. The source of neutrals on the
surface is given a vector, r0, which marks the centre of the source. Now the source region
is set as a spherical cap identified by an angle, 0 ≤ θmax ≤ π , where all vectors on the
surface of the object, r, are part of the source region if r · r0 ≥ r r0 cosθmax. For example,
setting θmax = π gives the whole surface as a source region, while θ = 0 becomes a point
source.

Assuming a homogeneous production across the source region, and a Maxwellian distri-
bution of neutrals at the surface according to a constant temperature, Tn, and radial bulk
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speed, un, the neutrals can be launched with a Monte Carlo method. The total number of
macroparticles generated for each time step is N = Q∆t/w.

If instead of the production rate the number density of neutrals for the full Maxwellian is
known at the surface, the production rate can still be derived via Equation 2.108.

Particle positions

A surface of equal temperature can be assumed to have the same flux of particles, for every
infinitesimal area on the source region. Therefore, the position of a neutral macroparticle
can be randomly generated at any point on the source region. Here an algorithm is
presented that ensures that each area segment of the source region contains an equal
number of neutral macroparticles.

Let a neutral particle’s initial position on the surface, r′, be represented by the spherical
coordinate system:

x′ = R sinθ cosφ ,

y′ = R sinθ sinφ ,

z′ = R cosθ ,

(3.42)

where the source region now has its centre at z′ = R (θ = 0).

There should be an equal number of particles generated per unit area, which means that
the probability density scales with the area segment, dA. An area segment on the surface
of the object can be written as dA = r′2 sinθ dθ dφ . The integrand, dA, is constant in φ ,
but not in θ .

Let p be a random number taken from the distribution [0,1[. Since the integral of dφ is
linear, the angle φ is weighted linearly in probability and becomes

φ = φmin +(φmax−φmin) p = 2π p, (3.43)

with φmin = 0, and φmax = 2π .

Let p be another random number taken from the distribution [0,1[. Since the integral of
sinθ dθ is −cosθ , it is cosθ that is weighted linearly in probability and becomes

cosθ = cosθmin +(cosθmax− cosθmin) p = 1+(cosθmax−1) p, (3.44)

where θmin = 0.

Now sinθ =
√

1− cos2 θ , and the particle position vector, r′, is rotated such that z′→ r0,
and is now represented in the simulation coordinate system.
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Particle velocities

The neutrals on the surface can be assumed to be stationary and in thermal equilibrium
with each other. The velocity distribution can as such be described by a Maxwellian
distribution.

Since the source region by assumption has homogeneous temperature, the particles’
velocities are picked randomly from a Maxwellian distribution (see Equation 2.84), with a
bulk speed of neutrals, un = 0. The distribution is then specified only by the temperature at
the surface of the body, Tn. Only positive velocities in the radial direction are considered,
and are optimized using a Monte Carlo algorithm by Garcia [15].

3.8 Haser model

For a body with small mass and physical extension such as a comet (Paper IV), one can
assume that a non-collisional neutral cloud around such an object will have constant
velocities if their thermal velocities greatly exceed that of the escape velocity of the body,
〈v〉 � vesc =

√
2GM/R.

Even if collisions are present close to the body as is the case for a high production rate, the
cloud will eventually expand and become non-collisional. From the exobase, the neutral
number density can be calculated with the Haser model [18] from Equation 2.106, for a
destruction rate of νd, giving

n(r) =
Q

4π r2 〈vr+〉
exp
[
−νd (r−R)
〈vr+〉

]
. (3.45)

Close to the surface of the comet, 〈vr+〉 will represent the mean radial speed of a
Maxwellian given by the surface temperature of the body, and will increase further
from the comet if the production rate is high enough to make it collisional [52], thus
making the number density of neutrals higher close to the body. At the same time, the
atmosphere will become optically thicker, resulting in a decrease of the photodestruction
and photoionization rates [52].

Fortunately when modelling plasmas, this implies that the ion production rate,

qi (r) = νi n(r) , (3.46)

can be considered approximately correct for all r if 〈vr+〉 is set as a constant value equal
to the mean radial speed at the exobase.
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3.8.1 Implementation

The neutral distribution is taken directly from the analytical expression of Equation 3.45,
and neutrals are therefore not modelled as kinetic particles. This makes the model more
efficient and less time-consuming than the neutral release model from Section 3.7.

The simulation domain is filled with ambient plasma, and an initial homogeneous magnetic
field is set throughout the domain.

The time step of the simulation, ∆t is chosen such that all CFL conditions of Section 3.4
are fulfilled.

For each time step, in each cubic cell, ions are produced with the ion production rate
qi (r), where r is taken at the centre of each cell. Because of this, the simulation domain
should be chosen in such a way that origo is not placed in the centre of a cell (it should
preferably be placed in a corner) to avoid an infinite production rate. This leads to some
discrepancies for small r, and could be optimized with an integration of the ion production
rate for each cell, at the cost of efficiency.

3.9 Averaging techniques

Averaging, e.g., number densities close to a boundary which absorbs particles, such as the
surface of a body, will underestimate the real number density and flux of particles close
to that body. In this section some techniques are presented that use average quantities to
achieve a high precision interpolation.

Average quantities of the particle distribution are calculated in the centre of each grid cell,
such as charge densities and average current densities for each species, resistivity, and so
on.

Average quantities at a position which is not in the centre of a cell are interpolated between
grid cells. This can be illustrated by having an imaginary cell drawn around the position
of interest, with the position being in the centre of that imaginary cell (see Figure 3.1).
For instance, the number density at an arbitrary position is weighted proportionally to the
volume the imaginary cell has in the real simulation grid cells.

Assume that we are interested of a position in the corner of a simulation grid cell. The aver-
age quantity for this position would be an average over the values of all eight neighbouring
cells.
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Figure 3.1: An average quantity is weighted proportionally to the volume enclosed by an imaginary
cell around the position of interest. The figure only shows two dimensions. The central position is
shown as a dot. The imaginary cell is shown as dashed lines. The simulation grid is outlined in
solid lines. The cell centres of the grid are shown are shown as plus signs. The maximum number
of cells enclosed by the imaginary cell is eight.

Using the interpolation technique just explained close to an absorbing body’s surface will
only result in reliable results if one averages at a distance 3

√
3∆x/2 above the surface,

thus ensuring that no grid cell enclosed by the imaginary cell is below the surface.

Instead, in post-processing of simulation data, the volume fraction which is outside the
body of each neighbouring cell can be calculated numerically (or analytically). All macro-
scopic parameters proportional to the number density of particles are scaled proportionally
to the volume fraction which is outside the body. This makes the results reliable down
to a distance

√
3∆x/2 above the surface, which ensures that the imaginary cell around

any point is always above the surface. This technique has been used to generate number
density and precipitation maps for Callisto (see Paper I and II). Averaging closer to the
body than this is of course possible, but the grid structure then starts to be seen in the
results.

This last described technique is not implemented in the hybrid solver itself, but could be
implemented in the future to achieve greater precision of the charge density used when
calculating in the electric field close to the body.
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3.10 Sub-Alfvénic interaction

In planetary magnetospheres and extreme solar wind, the plasma flow can be sub-Alfvénic,
meaning that the bulk flow of plasma is slower than the Alfvén and magnetosonic wave
speeds, u < vA < vMS.

In this section, the implications of high wave propagation speeds are discussed. These
affect the choices of the size and boundaries of the simulation domain, and have been
taken into account when modelling the Jovian moon Callisto in Paper I and II.

For a supersonic plasma, u > vS, the hybrid model has periodic boundaries in the y-
and z-directions, and inflow/outflow boundary in x for plasma. Since the aim of most
simulations is to reach a steady state solution, the domain size in the directions of the
periodic boundaries has to be quite large compared to the flow direction of plasma in order
to avoid waves returning into the simulation domain through the periodic boundaries.

Waves can also propagate upstream, reaching the inflow boundary and creating instabilities
in the electromagnetic fields there because of the large gradients present due to the enforced
ambient values in the inflow cells. The most accurate way to solve this is to also make the
domain in +x large, at the cost of computational speed. If one is not physically interested
in the wave propagation upstream, one may set a few layers of cells close to the inflow
boundary to a higher plasma resistivity, resulting in diffusion of waves there and making
it numerically stable.

3.10.1 Subsonic interaction

In plasma environments where the thermal speed of the ambient plasma is larger or of the
same order as the bulk speed, u < vS, one can no longer use inflow/outflow boundaries.
The part of the distribution moving opposite of the bulk velocity will only be represented
initially in each cell of the simulation for such boundaries.

Instead, periodic boundaries should be used for all directions. This implies large domains
if one aims for a steady-state solution where a body is immersed in the plasma. A region
of steady-state plasma and fields would slowly expand outwards from the body in question
for such a case.
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Pure logical thinking cannot yield us any knowledge of the empirical world; all
knowledge of reality starts from experience and ends in it.

Albert Einstein

CHAPTER 4

Plasma interactions with icy bodies

This chapter briefly summarizes the present knowledge of the plasma environments related
to the icy bodies investigated in the included papers.

Characterizing the plasma around icy bodies is paramount in order to understand the
plasma interaction with the bodies in question and their internal structures. This is best
achieved by in situ measurements in the environments of the icy bodies themselves.

The Jovian system has been investigated by the spacecrafts Pioneer 10 & 11 (flybys),
Voyager 1 & 2 (flybys), Ulysses (flyby), Galileo (orbiter), New Horizons (flyby), and will
be visited again by the NASA orbiter Juno and the ESA orbiter JUICE.

The NASA orbiter Dawn is at the time of writing investigating the dwarf planet Ceres.

The comet 67P/Churyumov-Gerasimenko has been followed during its approach to and
rounding of the Sun by the ESA orbiter Rosetta; the lander Philae descended onto the
surface of the comet during the approach to the Sun.

Reaching an orbit around these bodies with a spacecraft requires lots of energy. Initially,
the gravitational well of the Earth has to be overcome. Let us assume that from this point
onwards, the spacecraft adjusts its speed such that it is momentarily kept in a circular orbit
around the Sun at all times. The gravitational well from Earth can then be illustrated as in
the diagram of Figure 4.1, which shows the accumulated speed-up (delta-v) needed in order
to maintain a circular orbit at any heliocentric distance. Friction due to any atmosphere
is not considered here. Parameters of masses, radii and distances have been taken from
the references: [10, 50, 32, 34]. The blue dots mark the surfaces and the green dots the
lowest orbit possible at the respective bodies. The red dots mark where the spacecraft is
not gravitationally bound to that body. The comet 67P/Churyumov-Gerasimenko is left
out on purpose because of its highly elliptic orbit.
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orbit around the Sun at any heliocentric distance. The blue dots mark the surfaces and the green
dots the lowest orbit possible at the respective bodies. The red dots mark where the spacecraft is
not gravitationally bound to that body. The black dot marks Callisto’s circular orbit around Jupiter.

4.1 Solar wind

The solar wind is a multi-species, almost collisionless plasma, flowing supersonically
radially outwards from the Sun at almost constant speed (from around the orbit of Venus
and outwards). It consists mostly of protons and electrons.

Outside a few solar radii (∼ 10RS) [10], the dipole structure of the magnetic field of
the Sun breaks down (called the source region). From here, only radial and azimuthal
components of the magnetic field are present. The magnetic field becomes frozen in to
the solar wind plasma, and has to convect together with it as it moves radially outwards.

Due to the rotation of the Sun around its own axis, the magnetic field will on average twist
and create a Parker spiral. The magnetic field with respect to the plasma flow becomes
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more perpendicular with increasing heliocentric distances.

The interplanetary magnetic field (IMF) far from the Sun forms an Archimedean spiral
and is given by

B =±B0

(r0

r

)2
(

r̂− r ΩS sinθ

usw
φ̂

)
, (4.1)

where r is the heliocentric distance, θ is the inclination from the Sun’s rotational axis, φ̂ is
the azimuthal unit vector, ΩS is the rotational frequency of the Sun in rad/s (2π/27 days),
and B0 is a reference radial magnetic field component at a distance r0, which at the
distance of Earth (r0 = 1 AU) has an approximate value of B0 ≈ 5 nT [10]. The sign of
the equation depends on whether one is above or below the heliospheric current sheet, and
also on the dipole direction of the Sun which changes every 11 years.

The angle between the IMF and the radial direction (IMF spiral angle), χ , is given by

tan χ =
r ΩS sinθ

usw
, (4.2)

which for a typical solar wind bulk speed (400 km/s), at Earth (θ = 90◦, r0 = 1 AU) gets
an approximate value of χ ≈ 45◦ [10].

As can be seen, the magnetic field magnitude,

B = B0

(r0

r

)2 √
1+ tan2 χ, (4.3)

has its highest value in the equatorial plane (where the planets orbit), for a given heliocen-
tric distance, r. It can be noted that this is the exact opposite of a dipole field, which has
the highest magnitude at the polar regions.

Since the solar wind bulk speed is on average constant after the orbit of Venus [10], the
number density of the solar wind, nsw, scales as 1/r2 with heliocentric distances.

The solar wind interacts with all obstacles in its way, e.g., comets, asteroids, planets and
their magnetospheres, and eventually the interstellar medium.

4.2 Comet 67P/CG

The target of the Rosetta mission, comet 67P/Churyumov-Gerasimenko (referred to as
67P/CG), is a Jupiter-family comet first detected in 1969 [8]. The orbital period of 67P/CG
and its perihelion distance changed from 9.0 years and 2.7 AU to its present day value of
6.5 years and 1.3 AU, respectively, after a close encounter with Jupiter in 1959 [17].
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As the comet approaches the Sun, a coma of vaporized ice, H2O, and dust forms. Sunlight
will break the parent water molecules apart. The end product depends on the wavelength
of the photon interacting with the water. For an unattenuated (optically thin) medium
the total rate of photodissociation of water, the photodestruction rate, νd, by the Sun at
1 AU lies in the range 1.26 ·10−5 s−1 (quiet Sun) < νd < 2.30 ·10−5 s−1 (active Sun) [11],
which also includes photoionization.

Only the extreme ultraviolet (EUV) part of the light spectrum, λ < 98 nm, yields ionized
water, H2O+, as an end product:

γ (λ < 98nm)+H2O→ H2O++ e−,

with the photoionization rate, νi, in the range 4.0 · 10−7 s−1 (quiet Sun) < νi < 9.0 ·
10−7 s−1 (active Sun) [11].

Since the intensity of solar radiation scales as 1/r2 with heliocentric distance, so will the
destruction/ionization rates of water.

Since the mass of the comet is small, the coma can be modelled with constant flux surfaces
using the Haser model (see Section 2.3.3).

In Paper IV, a long-term study of solar wind protons is conducted for heliocentric dis-
tances > 2 AU at the comet 67P/CG, where a low level of mass-loading is seen. These
observations are compared with hybrid model results using the Haser model.

4.2.1 Evolution of the comet interaction

Consider scaled values with heliocentric distances of typical solar wind conditions (see
Tables 4.1 and 4.2) [11, 10]. As the comet approaches the Sun, one can follow the
evolution of the solar wind interaction with the comet in Figures 4.2, 4.3, 4.4, 4.5 and 4.6,
where the hybrid model including the Haser model has been applied.

Table 4.1: Solar wind conditions used in the model for the comet 67P/CG.

r [AU] nsw [cm−3] usw [km/s] B0 [nT] χ [◦]
2.7 0.7 400 2.0 70
2.35 0.9 400 2.3 67
2.0 1.25 400 2.8 63
1.65 1.85 400 3.5 59
1.3 3.0 400 4.9 52
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Figure 4.2: Hybrid model results including the Haser model for comet 67P/CG at 2.7 AU. Number
density of solar wind protons (a and c) and the magnetic field magnitude (b and d). The vector
field of the solar wind proton bulk velocity is shown in (a), and the magnetic field vector field in
(d). The location of the comet is marked by black cross-hairs.
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Figure 4.3: Hybrid model results including the Haser model for comet 67P/CG at 2.35 AU.
Number density of solar wind protons (a and c) and the magnetic field magnitude (b and d). The
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Figure 4.5: Hybrid model results including the Haser model for comet 67P/CG at 1.65 AU.
Number density of solar wind protons (a and c) and the magnetic field magnitude (b and d). The
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Figure 4.6: Hybrid model results including the Haser model for comet 67P/CG at 1.3 AU
(perihelion). Number density of solar wind protons (a and c) and the magnetic field magnitude (b
and d). The vector field of the solar wind proton bulk velocity is shown in (a), and the magnetic
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Table 4.2: Cometary parameters used in the model for the comet 67P/CG.

r [AU] un [km/s] Q [s−1] νi [s−1] νd [s−1]
2.7 0.7 1.0 ·1026 8.9 ·10−8 2.4 ·10−6

2.35 0.7 2.7 ·1026 1.2 ·10−7 3.2 ·10−6

2.0 0.7 8.5 ·1026 1.6 ·10−7 4.5 ·10−6

1.65 0.7 3.3 ·1027 2.4 ·10−7 6.5 ·10−6

1.3 0.7 1.8 ·1028 3.8 ·10−7 1.1 ·10−5

The solar wind flows in the−x̂-direction, with the ambient magnetic field as a Parker spiral
in the xy-plane. The convective electric field is E0 =−usw×B0 = E0 ẑ. The simulation
domain is |x|< 6 ·103 km, |x|< 12 ·103 km and |z|< 18 ·103 km.

The solar wind deflects more and more as the comet approaches the Sun, transferring
momentum to the water ions, until eventually a bow shock is formed. Note that charge
exchange and collisions are not considered here.

4.3 Ceres

Located in the main asteroid belt between the orbits of Mars and Jupiter, Ceres has through
time been depleting the main belt of most of its original mass [41]. It is proposed that
Ceres may originally have formed farther from the Sun, given its similarities with icy
bodies in the outer solar system like Pluto [16].

Ceres has a quite low albedo of 0.090±0.003 [33], and if water ice is present on Ceres
it is probably covered by a dust layer with a thickness of about 20 m or more [46]. The
Dawn spacecraft in orbit around Ceres at the time of writing is making measurements of
Ceres’ gravity field; it is hoped that together with models, these will answer the question
of whether a subsurface ocean might exist at Ceres. This is probably the case for other icy
bodies such as Saturn’s moon Enceladus and Jupiter’s moon Europa [16].

Water vapour was detected at Ceres by the Herschel Space Observatory in 2012 and
2013 [32]. There, two regions located around Ceres’ equator, Piazzi (longitude 123◦, lati-
tude +21◦) and Region A (longitude 231◦, latitude +23◦), were identified as originators
of water vapour. Using radiative transfer modelling, the sublimation rate of water that best
fits observations is a total of 6 kg/s (2 ·1026 H2O s−1), with 3 kg/s from each source [32].
Recent studies have estimated an upper limit on the production rate of 4 ·1026 H2O s−1

[45].

The identification of more than one source suggests an outgassing from a small ice fraction
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near the surface as opposed to sporadic activity triggered by a singular event like a recent
large impact [32]. This supports the idea that Ceres possesses an icy mantle [32].

Subsurface sublimation of buried ice as first investigated by Fanale and Salvail in 1989
suggests a constant sublimation rate of the order of 1024 H2O s−1 [12]. The discovery of
the high outgassing events on the order of hours by the Herschel Space Observatory [32]
has changed our view of the physical properties of Ceres.

In contrast to comets, the masses of which are much less than Ceres’, its gravitational
field will govern the dynamics of the exosphere. The exosphere will photoionize, and
charged particles will be picked-up by the plasma flow, thus mass-loading the solar wind.
Ceres’ heliocentric distance lies in the approximate range 2.5 AU < r < 3 AU, giving
some variation of surface temperature and photoionization rates during its annual cycle.
This is the same process happening at comets, but for more eccentric orbits.

The water vapour will ionize due to radiation and start to interact with the solar wind
plasma. The interaction will depend on how the source of the water release is distributed on
the surface; this is addressed in Paper III. Since Ceres rotates with one sidereal revolution
in 9.074 hours [6], the active source regions will as well.

Close to Ceres, the large body makes an obstacle to the solar wind and creates a wake,
an asymmetric wake in fact, since the solar wind deflects to conserve momentum by the
newly inserted water ions to the solar wind flow. The interaction close to Ceres depends
greatly on the source location of water vapour, whereas far from Ceres it does not. For
a surface temperature of 235 K, the thermal velocities of the released water vapour are
comparable to the escape velocity, and ∼ 66 percent will escape Ceres’ gravitational
field when neglecting collisions and photodissociation. On a global scale, Ceres has a
comet-like interaction with the solar wind.

The global morphology of the interaction can be seen in Figure 4.7. There, the solar
wind flows in the −x̂-direction, with the ambient magnetic field as a Parker spiral in the
xy-plane. The convective electric field is E0 =−usw×B0 = E0 ẑ. The simulation domain
is −288R < x < 96R, |y|< 96R and |z|< 192R, where R = 476.2 km is Ceres’ radius.

Water ions are accelerated along the convective electric field, ẑ, and enforces a deflection
of the solar wind in the opposite direction, −ẑ. The solar wind deflects up to 15◦ as can
be seen in Figure 4.7a. The magnetic field and number density enhancements correspond
to an asymmetric shock structure. The draping of magnetic field lines can be in the vector
field of Figure 4.7d.
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Figure 4.7: Hybrid model results including the Haser model for Ceres at 2.62 AU, during a high
outgassing event corresponding to a water vapour production rate, Q = 2 ·1026 H2O s−1. Number
density of solar wind protons (a and c) and the magnetic field magnitude (b and d). The vector
field of the solar wind proton bulk velocity is shown in (a), and the magnetic field vector field in
(d). The location of Ceres is marked by white cross-hairs. Ceres has a radius of 476.2 km.

4.4 Callisto

Callisto, Jupiter’s second largest and outermost Galilean satellite, is only partially differ-
entiated. It is heavily cratered and geologically inactive. Its surface is the oldest of all the
Galilean satellites.

It possesses a thin atmosphere predominantly of CO2, with a surface number density of
∼ 4 ·108 cm−3, and atmospheric scale height of about 23 km [5].

An ionosphere has been observed at Callisto with radio occultation measurements by
the Galileo spacecraft [31]. The exosphere is ionized by both electron impacts and
photons, and it is therefore argued that the ionosphere is greatest at the time when the
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magnetospheric plasma of Jupiter hits Callisto on its sunlit side [31].

Callisto has no intrinsic magnetic field, but is conductive. We know this since Callisto’s
magnetic dipole field flips direction depending on which side of Jupiter’s magnetic lobes
it is located [27]. The induced currents are possibly due to a conductive subsurface ocean
[27, 53, 34].

4.4.1 The magnetosphere of Jupiter

The icy satellites Europa and Callisto, orbiting Jupiter, are two of the few solar system
objects where induction has been observed to take place [27, 42, 29].

The induction is generated by a time-varying field, the origin of which is primarily the
inclination of Jupiter’s magnetic dipole moment with respect to Jupiter’s spin axis by 9.6◦

[26].

Callisto is orbiting almost exactly in the equatorial plane of Jupiter’s rotation [43]. Taking
into account the prograde orbital velocity of Callisto, ∼ 8 km/s [28], the magnetic field
that Callisto encounters will change with a synodic period of 10.1 h [30], giving an angular
frequency of ωB = 1.728 ·10−4 rad/s.

For a right-handed Callisto-centred coordinate system, let −x̂ be the direction of rigid
corotation, −ŷ the direction of Jupiter seen from Callisto and with ẑ parallel to Jupiter’s
spin axis. Jupiter’s magnetic dipole field can be decomposed into a component anti-
parallel to Jupiter’s spin axis (−ẑ), and a component perpendicular to it (±ŷ). In reality,
Jupiter’s magnetic field is only a dipole field to a first-order approximation, and has in
fact higher order terms and asymmetries related to, e.g., the solar wind interaction at the
Jovian magnetopause and cusp regions, the rotation of Jupiter and the mass-loading by
the satellite Io [26].

The dipole field component anti-parallel to the spin axis is rotationally symmetric in
the equatorial plane where Callisto is situated, and will not vary with time (b0 in Equa-
tion 2.111). The perpendicular time-varying component is called the primary field (B0 (t)
in Equation 2.111), and is responsible for the induction of currents inside the conductive
Callisto.

In contrast to Earth, where most magnetospheric plasma originates from the solar wind,
most of the plasma in the Jovian magnetosphere comes from the Jovian system itself.
Io, the Galilean moon orbiting closest to Jupiter, is geologically active and its volcanic
activity is continuously filling the magnetosphere with mostly sulphuric dioxide, SO2
[39], making S+, S++, O+ and O++ the dominant species of the magnetospheric plasma
[2]. At the orbit of Callisto, oxygen is the dominant ion species [40, 3].
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The magnetospheric plasma is almost corotating with Jupiter, and is moving with a
relative velocity −192 x̂ km/s at the orbit of Callisto [28]. This means that the bulk of the
magnetospheric plasma hits the trailing hemisphere of Callisto in its orbit around Jupiter.

The ambient plasma and field parameters depend greatly on where Callisto is situated
in the magnetosphere of Jupiter. During one rotation of Jupiter, Callisto will be in the
magnetic equator twice, where the plasma density is higher [28], and the magnetic field
magnitude is lower [26], compared to the magnetic lobes. This results in a high Alfvénic
Mach number in the magnetic equator, while the opposite is true when Callisto is in the
magnetic lobe. The Alfvénic Mach number falls somewhere in the approximate range
0.02 (lobe min) < MA < 8.5 (equator max), with extreme values for bulk plasma speed,
magnetic field magnitude and ion densities from the summarized values in [28].

Magnetic lobes

In the magnetic lobes, the total magnetic field is dominated by the y-component, and thus
the primary field, especially on the night-side magnetosphere of Jupiter. Currents are
induced inside the conductive Callisto (see Section 2.4.1 and Paper I), generating a dipole
magnetic field.

Magnetic equator

In the magnetic equator, the primary field is close to zero and no dipole is induced in
Callisto (see Section 2.4.2). Currents are induced in the body in the direction of the
convective electric field of the Jovian magnetospheric plasma. A current is then carried in
the plasma along the draped magnetic field lines.

4.4.2 Supersonic interaction

The plasma environment around Callisto varies depending on where Callisto is located in
the magnetosphere of Jupiter, as previously mentioned.

In this subsection, the magnetospheric plasma interaction with the conductive Callisto
is compared for different types of plasma parameters summarized in Table 4.3, where
extreme conditions have been used to fit the study [28, 53].

We conduct a parameter study of the plasma interaction with Callisto for a supersonic
Mach number of MS = 4.1. We have one case without an induced magnetic dipole, but
with Callisto having a homogeneous resistivity, η(r < R) = 0.36 Ohm m (suggested value
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Table 4.3: Plasma parameters used in the model for Callisto. A line denotes an unchanged value.

Parameter Notation Unit a b c d
External field b0 nT (0,0,-40) (0,0,-5) (0,0,-40) (0,0,-5)
Primary field B0 nT (0,0,-40) (0,0,-5) (0,0,-40) (0,0,-5)
Ion number density n0 cm−3 0.7 - - -
Plasma bulk velocity u0 km/s 130 - - -
Ion mass mi amu 16 - - -
Electron temperature Te eV 50 - - -
Ion temperature Ti eV 50 - - -
Thermal gyroradius rg km 102 814 102 814
Gyration time tg s 26 208 26 208
Dipole amplitude A 0 0 1 1
Sonic Mach number MS 4.1 - - -
Alfvén Mach number MA 0.50 4.0 0.50 4.0
MS Mach number MMS 0.49 2.9 0.49 2.9

for a subsurface ocean [53]). In another case, Callisto has an induced magnetic dipole
of amplitude, A = 1 (within the constraint given in previous studies [53]). The magnetic
field is also varied between 5 and 40 nT, resulting in sub-Alfvénic and super-Alfvénic
cases. The simulation domain is |x|< 6R, |x|< 12R and |z|< 18R, where R = 2410 km
is Callisto’s radius.

In Figures 4.8 and 4.9 the magnetic field magnitude and number density of the magneto-
spheric plasma is shown. In the sub-Alfvénic cases (strong magnetic field), the magnetic
field is only mildly perturbed. Here, one can see that the magnetic field is enhanced both
upstream and downstream of Callisto for the case with a dipole (c), but with a lower
magnitude at the poles. For the case without a dipole (a) the magnetic field is piling up
upstream of Callisto, draping around the body, and then being relaxed downstream.

The case that fits best for when Callisto is located in the magnetic equator corresponds to
case b (weaker magnetic field and no induced dipole), where the field is draping and is
significantly enhanced. The case corresponding best to the magnetic lobes is case c (strong
magnetic field and an induced dipole), where the effect of the dipole is dominant and
the field is barely affected by the plasma flow. The structure of the ion wake is changing
between: small wake (c), elongated wake (d), broad wake (a) and a shock structure in (b).
Upstream of Callisto for the sub-Alfvénic cases (a and c), the number density increases.
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Figure 4.8: Hybrid model results of the magnetic field magnitude at Callisto. Sub-Alfvénic plasma
without magnetic dipole (a). Super-Alfvénic plasma without magnetic dipole (b). Sub-Alfvénic
plasma with magnetic dipole (c). Super-Alfvénic plasma with magnetic dipole (d). The magnetic
field is also shown as a vector field. Callisto is shown in white. The axes are given in terms of
Callisto’s radius, R = 2410 km.
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Figure 4.9: Hybrid model results of the ion number density at Callisto. Sub-Alfvénic plasma
without magnetic dipole (a). Super-Alfvénic plasma without magnetic dipole (b). Sub-Alfvénic
plasma with magnetic dipole (c). Super-Alfvénic plasma with magnetic dipole (d). The plasma
bulk velocity is shown as a vector field. Callisto is shown in white. The axes are given in terms of
Callisto’s radius, R = 2410 km.
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CHAPTER 4. PLASMA INTERACTIONS WITH ICY BODIES

4.5 Future work

4.5.1 Comet 67P/CG

We have investigated the plasma interaction with the comet during a period of low mass-
loading of water ions, using the Haser model introduced in Section 3.8.

For a really dense coma, when the comet draws nearer to the Sun, other processes like
charge-exchange need to be taken into account for all involved species:

H++H2O → H2O++H,

H2O++H2O → H3O++OH,

etc.

Collisions in general make the Haser model insufficient to explain the full dynamics of
the neutral coma and the ions.

4.5.2 Ceres

The high outgassing of water vapour from Ceres’ surface is localized to small source
regions [32], suggested to be due to subsurface sublimation [14]. Modelling the rotat-
ing sources assuming sublimation-driven outgassing and including a surface/subsurface
temperature dependence could give a better view of the interaction as a preparation for a
future plasma-dedicated mission to the asteroid main belt and Ceres.

The effects on the plasma interaction for a constant sublimation rate of the order of
1024 H2O s−1 [12], should be investigated in the future. This could be conducted using an
exosphere model including temperature-dependent cold-traps [51] and photoionization.

4.5.3 Callisto

The C30 Galileo flyby occurred when Callisto was in the magnetic equator of Jupiter,
where the effect of a magnetic dipole is weakest; this is a prime suggestion for future
research of the plasma interaction with Callisto, containing comparisons between model
and observations.

The effects on the plasma interaction by an atmosphere/ionosphere has been recently
studied [36]. A future model including both the effects of an ionosphere and the effects of
a conducting subsurface ocean could be applied and compared with observations, e.g.,
from the C30 flyby.
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4.6. CONCLUSIONS

4.6 Conclusions

The plasma interactions with icy bodies is very dynamic and complex. The icy bodies
studied in this thesis are very diverse: from the super-Alfvénic and comet-like solar
wind interaction with the large dwarf planet Ceres and the small comet 67P/CG, to the
sub-Alfvénic magnetospheric interaction with the conductive moon Callisto, orbiting
Jupiter.

The coma of comet 67P/Churyumov-Gerasimenko grows larger as the comet approaches
the Sun, mass-loading the solar wind. Increased mass-loading of water ions causes the
solar wind to deflect more, in order to conserve the total momentum.

Ceres has a comet-like interaction with the solar wind during the observed high outgassing
events of water vapour, perturbing the solar wind far downstream of the body.

We have shown that Callisto acts as a conductor in its plasma environment, perturbing
the magnetospheric plasma. Callisto has a tenuous atmosphere that will ionize, and could
thus affect the plasma interaction.
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‘Forty-two,’ said Deep Thought, with infinite majesty and calm.

Douglas Adams, The Hitch Hiker’s Guide to the Galaxy

CHAPTER 5

Summary of included papers

Paper I

Callisto plasma interactions: Hybrid modeling including induction
by a subsurface ocean

The interaction between Callisto and Jupiter’s magnetosphere for variable ambient plasma
parameters was modelled. The results were compared with magnetometer data from
the flybys: C3, C9 and C10 by the Galileo spacecraft. The magnetic field perturbations
observed by Galileo correspond to induced currents inside Callisto, thought to be related
to a subsurface ocean. Using typical upstream conditions of the magnetospheric plasma
and including a magnetic dipole corresponding to the inductive response inside Callisto,
we show that the model results agree well with the C3 and C9 flybys, but agree poorly
with the C10 flyby close to Callisto.

My contributions to Paper I

I made simulation runs and analysed them. I wrote the text and provided all figures. I
used already calibrated magnetometer data from the Galileo spacecraft which is publicly
available via the NASA Planetary Data System (PDS) archive.
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CHAPTER 5. SUMMARY OF INCLUDED PAPERS

Paper II

3D-modeling of Callisto’s sputtered exosphere environment

This paper studies the release of various surface elements caused by plasma sputtering
from an assumed icy and non-icy (i.e. chondritic) surface into the exosphere of Callisto.
Hybrid modelling is applied to evaluate precipitation maps of the magnetospheric sputter
agents H+, O+, and S+. The precipitation maps are applied to the assumed surface
composition, where the related sputter yields are calculated by means of the 2013 SRIM
code and coupled with a 3D exosphere model. The resulting exospheric particles’ motion
is modelled in Callisto’s gravitational field, until they either escape the domain or hit the
surface, where they are absorbed. The effects of collisions are discussed; these result in a
tenuous atmosphere close to Callisto’s surface.

My contributions to Paper II

I made simulation runs and provided data-sets of plasma parameters close to Callisto’s
surface, which were used as input in the study. I wrote the hybrid model description part
of the paper. I provided code on how to plot Figure 1, which was adjusted later.

Paper III

Ceres interaction with the solar wind

The solar wind interaction with Ceres is studied for a high vapour release from its
surface, as observed by the Herschel Space Observatory on 6 March 2012. We modelled
the interaction using a water vapour production rate from the surface of 6 kg/s. The
photoionized water interacts strongly with the solar wind. Close to Ceres, the large body
makes an obstacle to the solar wind and creates a wake, an asymmetric wake, since the
solar wind deflects to conserve momentum by the newly ionized water molecules that
accelerate along the convective electric field of the solar wind. The interaction close to
Ceres depends greatly on the source location of water vapour, whereas far from Ceres it
does not. On a global scale, Ceres has a comet-like interaction with the solar wind with
observable disturbances farther than 105 km downstream of the body.
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My contributions to Paper III

I made simulation runs and analysed them. I wrote the text and provided all figures.
I implemented a non-collisional exosphere model integrated in the hybrid model for
arbitrary source regions. It contains a first-order photodissociation of water molecules,
creating water ions.

Paper IV

Light mass loading of the solar wind at 67P/Churyumov-Gerasimenko

A long term study of solar wind protons as seen by the Rosetta spacecraft was conducted
as the comet 67P/Churyumov-Gerasimenko approached the Sun. Here, extreme ultraviolet
radiation from the Sun ionizes the neutral water of the comet’s coma. Newly produced
water ions get picked-up by the solar wind flow and force the solar wind protons to deflect
to conserve momentum. This effect increases steadily as the comet draws nearer to the
Sun. The solar wind is deflected, but does not lose much energy. Hybrid modelling of
the solar wind interaction with the coma agrees with the observations; the force acting to
deflect the bulk of the solar wind plasma is greater than the force acting to slow it down.

My contributions to Paper IV

I made simulation runs and analysis of the results. I wrote the model description part
of the paper and parts of the results, discussions and conclusions. I provided two of the
included figures.
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