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FULL PAPER

4D Flow MRI-Based Pressure Loss Estimation in Stenotic
Flows: Evaluation Using Numerical Simulations

Belen Casas,1,2* Jonas Lantz,1,2,3 Petter Dyverfeldt,1,2 and Tino Ebbers1,2,3

Purpose: To assess how 4D flow MRI-based pressure and
energy loss estimates correspond to net transstenotic pres-

sure gradients (TPGnet) and their dependence on spatial
resolution.
Methods: Numerical velocity data of stenotic flow were

obtained from computational fluid dynamics (CFD) simulations
in geometries with varying stenosis degrees, poststenotic

diameters and flow rates. MRI measurements were simulated
at different spatial resolutions. The simplified and extended
Bernoulli equations, Pressure-Poisson equation (PPE), and

integration of turbulent kinetic energy (TKE) and viscous dissi-
pation were compared against the true TPGnet.
Results: The simplified Bernoulli equation overestimated the

true TPGnet (8.74 6 0.67 versus 6.76 6 0.54 mmHg). The
extended Bernoulli equation performed better (6.57 6 0.53

mmHg), although errors remained at low TPGnet. TPGnet esti-
mations using the PPE were always close to zero. Total TKE
and viscous dissipation correlated strongly with TPGnet for

each geometry (r2>0.93) and moderately considering all geo-
metries (r2¼0.756 and r2¼0.776, respectively). TKE estimates

were accurate and minorly impacted by resolution. Viscous
dissipation was overall underestimated and resolution
dependent.

Conclusion: Several parameters overestimate or are not line-
arly related to TPGnet and/or depend on spatial resolution. Con-

sidering idealized axisymmetric geometries and in absence of
noise, TPGnet was best estimated using the extended Bernoulli
equation. Magn Reson Med 75:1808–1821, 2016. VC 2015 The
Authors. Magnetic Resonance in Medicine published by
Wiley Periodicals, Inc. on behalf of International Society for
Magnetic Resonance.

Key words: pressure loss; phase contrast magnetic reso-
nance imaging; aortic valve disease; aortic coarctation

INTRODUCTION

The transstenotic pressure gradient is an important param-
eter in the assessment of the severity of valvular and vascu-
lar diseases such as aortic stenosis and aortic coarctation.
The net transstenotic gradient determines the ventricular
workload required to maintain a certain arterial pressure,
and thereby reflects the hemodynamic significance of the
stenosis. This parameter has shown to be a good predictor
of adverse clinical outcome in patients with aortic stenosis
(1). Cardiac catheterization is considered the gold standard
for measuring pressure gradients, but the use of this proce-
dure is limited due to its invasiveness.

In the clinical setting, ultrasonography is the primary
noninvasive method for evaluating transstenotic pressure
gradients. The maximum transstenotic pressure gradient
(TPGmax) is estimated from the simplified Bernoulli
equation using Doppler measurements of the velocity at
the vena contracta (2). However, this approximation is
known to overestimate the actual pressure gradient,
referred to as net transstenotic pressure gradient (irre-
versible pressure drop, TPGnet). The main reason for this
discrepancy is the pressure recovery phenomenon, char-
acterized by reconversion of a certain amount of kinetic
energy into pressure downstream from the stenosis
(3–10). The amount of kinetic energy that is not con-
verted back to pressure is lost as a result of conversion
into thermal and acoustic energy. This amount is rela-
tively small in laminar flow, but increases drastically
under turbulent conditions. In the simplified Bernoulli
equation, pressure recovery is assumed to be negligible.

Improved noninvasive estimation of TPGnet can be
obtained from TPGmax by introducing a correction factor
to account for pressure recovery. This correction factor
often involves noninvasive measurements of parameters
reflecting the geometry of the stenosis and the outflow

tract. Garcia et al, for example, derived a modification of

the simplified Bernoulli equation that takes the ratio
between the effective orifice area and the cross sectional

area of the aorta into account (1).
Pressure differences can also be computed from three-

directional three-dimensional cine phase-contrast MRI

(4D flow MRI) velocity data. Using the MRI velocities as

an input, the Navier-Stokes equations provide the gra-

dients of the pressure field under laminar flow condi-

tions. Relative pressure maps can then be obtained by

integration of the computed gradients, normally by solv-

ing the Pressure Poisson equation (PPE) (11,12).
More recently, new research directions have focused

on defining alternate metrics to quantify irreversible
energy losses directly from 4D flow MRI measurements.
Dyverfeldt et al proposed volumetric integration of the
turbulent kinetic energy (TKE) in the poststenotic region
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as a potential way to estimate TPGnet (13), given that the
primary cause of energy loss in stenotic flow is turbu-
lence dissipation into heat (14). TKE can be measured
with data obtained from a conventional 4D flow MRI
acquisition (15). Alternatively, energy losses in com-
pletely nonturbulent flows can be estimated by the vis-
cous dissipation (16), a parameter that can also be
derived from 4D flow MRI velocity data.

Although a wide range of options for the assessment of
stenosis severity has been proposed and applied in stud-
ies of different pathologies (17–20), the correspondence
between the derived pressure and energy loss parameters
and the actual net transstenotic pressure gradient is
unclear. This may partly be due to the lack of reference
pressure measurements in many studies. Rather than
using catheters, in vivo comparisons are often performed
against estimations of TPGmax or TPGnet that can be
obtained noninvasively (1). For instance, Bock et al (18)
calculated pressure differences in aortic coarctation

patients based on the PPE and found a moderate under-
estimation (14.7% 6 15.5%) when comparing with
maximum pressure gradients from the simplified Ber-
noulli equation. Dyverfeldt et al found a strong linear
relationship (r2¼0.91) between the total TKE and a pres-
sure loss index in patients with aortic stenosis (13). A
strong linear relationship (r2¼0.91) was also found
between the viscous energy loss dissipation term and an
estimation of TPGnet in healthy volunteers and patients
with aortic dilation and stenosis for a wide range of pres-
sure gradients (0–60 mmHg) (16).

Spatial resolution may be critical in computing some
of these parameters, as stenotic blood flow is dominated
by high jet velocities and strong gradients at the jet
boundary. These strong gradients can only be computed
accurately when the spatial resolution is sufficient.
Nasiraei-Moghaddam et al (21) investigated the accuracy
of pressure estimations from phase-contrast (PC) -MRI
data using the PPE in a stenotic flow phantom by

FIG. 1. Schematic of the numerical flow phantoms. a: Phantom with 60% (dashed line), 75% (solid line) and 90% (dotted line) stenosis
area reduction. b: Phantom with 75% stenosis area reduction and poststenotic dilation (PSD) with diameter twice the upstream diame-

ter. Z and Y represent the distance from the center of the stenosis, normalized by the upstream diameter (14.6 mm). The main flow
direction is in the positive Z direction. Note that the length of the geometry shown here is limited to 13 unconstricted diameters from
the center of the stenosis, 21 diameters were used in the LES computations. c: Mean velocity in the axial direction (vz) along the center-

line of the phantom for geometries with 75% stenosis and Reynolds number 2000, without poststenotic dilation (solid line) and with
poststenotic dilation with diameter 2�D (dash dotted line). d: The corresponding pressures (P) along the centerline of the phantom for

these geometries and flow settings are presented. Axial velocity and pressure were obtained from the LES solution.
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comparison with pressure obtained from computational
fluid dynamics (CFD) simulations of the same geometry.
They found that the accuracy of the estimations was
affected by both the spatial resolution and the presence of
turbulence, and reported errors up to 6.9% in the esti-
mated pressure drop. This study, however, was limited to
low Reynolds numbers (< 540), which are not fully repre-
sentative of the range of stenosis found in patients with
aortic disease. Similarly, Venkatachari et al (22) investi-
gated the impact of resolution in the computation of vis-
cous dissipation through a series of in vitro experiments
in a U-shaped phantom under laminar flow conditions,
and reported that high spatial resolution is required. In
their study, for a flow rate of 1.2 L/min, the percentage
error between the viscous dissipation obtained from CFD
data and the PC-MRI estimations using in-plane resolu-
tions of 1 � 1 and 0.6 � 0.6 mm2 was 30.5 and 2.4%,
respectively.

The purpose of this study was to evaluate the ability of
current 4D flow MR-based pressure and energy loss estima-
tions to predict TPGnet within a clinically relevant range of
stenosis severity. Additionally, we sought to assess the
impact of spatial resolution in these estimations.

METHODS

Time-resolved data of nonpulsatile turbulent flow were
obtained using CFD simulations in a stenotic geometry at
different flow rates and degrees of stenosis. MRI meas-
urements were simulated from the numerical flow data
for different spatial resolutions. Three methods for the
estimation of pressure gradients were implemented: the
simplified Bernoulli equation, the extended Bernoulli

equation and the Pressure-Poisson equation. Irreversible
energy losses were estimated using two parameters: total
TKE and viscous dissipation. The relationship between
the calculated parameters and the true net transstenotic
pressure gradient, obtained directly from the CFD solu-
tion, was assessed using linear regression.

Numerical Model

The geometry consisted of a rigid pipe with an uncon-
stricted diameter of 14.6 mm and a cosine-shaped steno-
sis (23,24) that had a cross-sectional area reduction of
60, 75, and 90%. In addition, a geometry with a 75% ste-
nosis and a poststenotic dilatation (PSD) with a diameter
of two times the upstream diameter (14.6 mm) was
investigated. The range of geometries included in the
study is shown in Figure 1.

Nonpulsatile flow was simulated numerically by solv-
ing the Navier-Stokes equations in ANSYS CFX 14.5. The
computational meshes were made in ANSYS ICEM 14.5
and consisted of high quality anisotropic hexahedral cells.
The amount of cells was on the order of 10–18 million,
depending of Reynolds number (Re) (25–28). The nondi-
mensional wall distance yþ was always less than unity to
ensure a good near-wall resolution, as this is required to
resolve the near wall turbulent flow features correctly
(25–28). The thickness of the mesh cells close to the wall
grew exponentially by a factor of 1.05 until it matched the
mesh size in the center of the stenosis.

Turbulent flow fluctuations were resolved using Large
Eddy Simulation (LES), a technique that resolves the
larger energy-carrying turbulent scales and models the
smaller isotropic scales where energy dissipation occurs
(25–28). The LES technique has been validated against
both Laser Doppler Velocimetry and direct numerical
simulations (26). The simulation used the WALE sub-
grid scale model (27), and the numerical schemes were
second order accurate. The time step was 50 ms for the
simulations with Re< 4000, and 25 ms for Re¼5000 and
6000, which has been shown to be sufficient for these
kinds of flow (25–28). The convergence criteria was
1�10�6and global imbalances of mass and momentum
were always less than 0.1%, which ensured that the sim-
ulation was computed with sufficient accuracy (25–28).
Sampling of flow statistics started after initial transient
startup effects had disappeared (i.e., the standard devia-
tion of the velocity signal was constant over 0.25 s), typi-
cally after 1 s flow time.

A fully developed velocity profile was set as inlet
boundary condition, while a constant static pressure was
set at the outlet. The inlet and outlet were placed 4
unconstricted diameters upstream and 21 downstream
from the stenosis, respectively. The walls were consid-
ered rigid and to obey the no-slip condition. The fluid
was water with a constant density of 997 kg/m3 and
dynamic viscosity of 8.899�10�4 kg=ðm�s).

Simulations were performed for Reynolds numbers in
a range from 500 to 6000, resulting in TPGnet values of
6.76 6 0.54 mmHg (range 0.05–40.4 mmHg) and TPGmax

8.63 6 0.68 mmHg (range, 0.08–51.9 mmHg). The choice
of phantom geometries, Reynolds numbers and the corre-
sponding pressure gradients are summarized in Table 1.

Table 1
Geometries, flow settings and PC-MRI simulation settings consid-

ered in the study

Geometry
Reynolds

number (Re)b
TPGnet

(mmHg)
VENC
(m/s)Stenosis 1 PSDa

60% - 1000 0.05 0.1
60% - 2000 0.16 0.15

75% - 1000 0.15 0.15
75% - 2000 0.58 0.4

75% - 3000 1.23 0.5
75% - 4000 2.32 0.7
75% - 5000 3.70 1

75% - 6000 5.26 1
90% - 500 0.32 0.2
90% - 2000 4.78 1

90% - 3000 10.74 1.5
90% - 4000 19.14 2

90% - 5000 29.02 2.5
90% - 6000 40.44 4
75% 2�D 1000 0.21 0.1

75% 2�D 2000 0.77 0.2
75% 2�D 3000 1.66 0.3

75% 2�D 4000 3.07 0.5
75% 2�D 5000 4.78 0.7
75% 2�D 6000 6.79 1

aDiameter of the poststenotic dilation, defined in relation to the
upstream diameter D (14.6 mm).
bRe¼ rvD=m, where r is the fluid density, v and D the velocity and
diameter at the inlet, respectively, and m the dynamic viscosity of
the fluid.
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PC-MRI simulations

The PC-MRI signal was simulated for all voxels within
the volume, considering isotropic voxel sizes of 1, 1.5,
and 2 mm. The velocity distributions s við Þ of the velocity
components vi in three perpendicular directions
i ¼ x; y ; zð Þ were obtained by estimating the probability

density function of the velocities within the voxel, using
a 3D Gaussian point spread function (PSF). In this way,
the velocity of each cell j within the voxel was weighted
with a coefficient wj based on the cell’s distance to the
center of the voxel (29):

wj ¼
e�d2

j =2s2

W
[1]

where dj is the distance of the j-th cell to the center of
the voxel, W the sum of the weights within the voxel
(i.e., W ¼

P
j wj) and s the variance of the Gaussian

function, defined from the isotropic spatial resolution Dz
as s ¼ Dz=2:35 (30).

In simulating the PC-MRI mean velocity data, each
voxel comprised time-averaged data from a converged
LES solution. The mean velocity in each direction was
computed as the average of the velocities within the
voxel, taking into account the weights defined by the
Gaussian PSF. Voxels at the centerline of the phantom
comprised approximately 400 cells for 1 mm spatial
resolution, while voxels located in the stenosis region

and the proximity of the wall included a higher number

of cells due to the increased density of the mesh at these

locations. In simulating the PC-MRI data used for TKE

calculations, each voxel comprised data from a con-

verged LES solution with a separation of 20 ms between

consecutive time steps (31). This represents the time dif-

ference between sampling of two phase-encoding lines

in an interleaved 4D flow MRI acquisition with a 5 ms

repetition time (TR). The number of time steps included

varied between 20 and 29, depending on the expected

amount of turbulence. The PC-MRI signal Si kvð Þ for each

direction i was computed as the Fourier transform of the

velocity distribution s við Þ, defined as Si kvð Þ ¼
R1
�1 s við Þ

e�ikv vi dvi, where kv i:e: p=VENCð Þ corresponds to the

applied motion sensitivity. The intravoxel velocity stand-

ard deviation si can then be derived from the magnitude

relationship between the PC-MRI signals measured at two

different motion sensitivities, assuming a Gaussian veloc-

ity distribution within the voxel (15). A nonsymmetric

flow-encoding scheme was used to obtain measurements

at zero motion sensitivity (Si 0ð ÞÞ and motion sensitivity

kv Si kvð Þð Þ, allowing si estimations as follows:

si ¼
1

kv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ln

jSi 0ð Þj
jSi kvð Þj

� �s
ms�1
� �

: [2]

Partial volume effects (i.e., the mixture of low and
high velocity flow in the same voxel) result in mean
velocity variations that contribute to the velocity distri-
bution s við Þ and are, therefore, reflected in the estima-
tions of the mean velocity and si (31). Such effects are
often present at the vessel boundary and the jet’s periph-
ery and result in elevated values of si.

The simulations did not incorporate noise and satura-
tion effects, and ideal bipolar gradients were considered.
For each of the geometries and flow rates, kv was
adjusted to provide the maximum accuracy for sz, as
given by: kv � sz ¼ 1 (31). To calculate kv , a prior estima-
tion of sz was obtained by computing the standard devi-
ation of the velocities within the voxel. The calculated
VENC values are included in Table 1.

Parameter Computation

Simplified Bernoulli

The simplified Bernoulli equation, as applied clinically,
was used according to Baumgartner et al (32):

DPsimpBernoulli ¼ 4v2
vc mmHgð Þ [3]

where vvc was defined as the velocity at the vena con-

tracta. vvc was calculated as the maximum velocity along

the centerline of the phantom, obtained from the PC-MRI

simulations of the mean velocity field. The expression in

Eq. [3] is derived for blood, which has a density of r

¼ 1060 Kg=m3: In this study, water was considered

instead, thus Eq. [3] was modified to be applicable for

water (r ¼ 997 Kg=m3Þ. All pressure values in the differ-

ent methods are expressed in mmHg. The true value of

DPsimpBernoulli was computed from the LES data to assess

the dependence on resolution of the MR-based estima-

tion. This dependence was evaluated for the different

resolution settings, corresponding to voxel sizes of 1,

1.5, and 2 mm. The same resolution values were consid-

ered for all the methods in this study.

Extended Bernoulli

An extended version of the simplified Bernoulli equa-
tion, designed to take pressure recovery and the effect of
the poststenotic geometry into account, was applied
according to Keshavarz-Motamed et al (33):

DPextBernoulli ¼ 4v2
vc 1� EOA

AA

� �2

mmHgð Þ [4]

where EOA is the effective orifice area and AA the area
of the aorta. The value of EOA was obtained from the
continuity equation under the assumption of a flat axial
velocity profile, Apvp ¼ EOAvvc, where Ap was set to the
cross-sectional area proximal to the stenosis and vp to
the maximum velocity in the cross section (32,34).

Pressure Poisson Equation (PPE)

The Navier-Stokes equations for an incompressible New-
tonian fluid were used to calculate a pressure gradient
field:

rP ¼ �r
@v

@t
� rv � rv þ mr2v þ g [5]

where rP ¼ @P
@x ;

@P
@y ;

@P
@z

� �
is the three-directional pressure

gradient and v ¼ vx; vy ; vz

� �
the PC-MRI velocity field.

As the flow is nonpulsatile, the transient inertia term @v
@t

Pressure Loss Estimation in Stenotic Flows Using 4D Flow MRI 1811



was omitted. The gravitational force g was disregarded.
First order (rvÞ and second order (r2vÞ spatial deriva-
tives of the velocity in each voxel were calculated by
polynomial expansion (35), using normalized convolu-
tion to handle uncertainties in the boundaries of the vol-
ume of interest. The convolution kernel was defined as a
three-dimensional Gaussian function with spatial size 5
voxels and variance 0.6.

From the estimated gradients, relative pressures were
calculated by solving the PPE using a multigrid solver
(11). Especially in a flow phantom, voxels located at the
wall and the boundary of the jet exhibit large velocity
gradients, mainly in the axial direction, due to partial
volume effects. Our preliminary results indicated that
such gradients reduced the accuracy of the solution.
Therefore, similar to Riesenkampff et al (36), we did not
include these voxels in the calculations as they were not
critical in computing pressures along the centerline of
the phantom. The computational domain was set to a
rectangular volume containing the central part of the
flow, approximately three voxels along the x and y direc-
tions for a 1 mm resolution.

A PPE-based estimate of the net transstenotic pressure
gradient, DPPPEnet, was obtained from the pressure at two
points P1 and P2 along the centerline of the phantom, as
illustrated in Figure 1. Additionally, the maximum pres-
sure gradient DPPPEmax was estimated considering the pres-
sure at the center of the constriction (point P3 in Figure 1).

Viscous Energy Loss

The viscous dissipation function fv per voxel was calcu-
lated from the first order spatial gradients of the simu-
lated 3D mean velocity field:

fv ¼
1

2

X
i

X
j

@vi

@xj
þ @vj

@xi

� �
� 2

3
r � vð Þdij

	 
2

s�2
� �

[6]

where i and j represent the perpendicular directions
x; y z and dij is the Kronecker delta (37). The rate of
viscous dissipation _Eloss viscous (i.e. energy loss rate) was

then estimated by integration of the viscous dissipation
function over the phantom volume, according to:

_Eloss viscous ¼ m
XNvoxels

i¼1

fvVi Wð Þ [7]

where m is the viscosity, Vi is the volume of each indi-
vidual voxel (m3) and Nvoxels the total number of voxels
within the volume. _E loss viscous was also calculated as
proposed by Barker et al (16), thus omitting dissipation
near the wall. For each data set, voxels with viscous dis-
sipation close to the wall were visually identified and
excluded from the calculations. Similarly, _Eloss viscous

was computed from the high-resolution LES data for
comparison against the MR-based estimates.

Total Turbulent Kinetic Energy

For each voxel in the volume, the TKE was computed
from the intravoxel velocity standard deviation si in
each direction, according to Pope (38):

TKE ¼ 1

2
r
X3

i¼1

s2
i Jm�3
� �

: [8]

The voxel-wise TKE was integrated in the entire phan-
tom volume. The total TKE was also computed directly
from the LES data for comparison against the MR-based
estimates.

Statistical Analysis

Results are given as mean 6 standard error unless oth-
erwise stated. Simple linear regression was used to
assess the relationship between the estimated parame-
ters and the true TPGnet. For each parameter, regression
analysis was performed for the complete TPGnet inter-
val and the coefficient of determination (r2) was calcu-
lated. Additionally, the linear relationship between the
energy loss parameters (viscous energy dissipation and
total TKE) and TPGnet was tested for each data subset
corresponding to a specific geometry. A t-test was used

FIG. 2. The mean velocity in the axial direction (vz) from the time averaged LES solution (a) and the PC-MRI simulation from the time
averaged LES solution (b). Z and X show the distance from the center of the stenosis, normalized by the upstream diameter. The princi-

pal flow direction is in the positive Z direction. The simulation corresponds to a geometry with 75% stenosis degree and Re equal to
2000. The voxel size was set to 1 mm.
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to test the null hypothesis that the slope of the regres-
sion line is equal to zero. Bland-Altman analysis was
used to evaluate the agreement between the true TPGnet

and the pressure estimations from the simplified Ber-
noulli equation, the extended Bernoulli equation and
the PPE.

RESULTS

The mean velocity field in the axial direction obtained
from the time averaged LES solution and the PC-MRI sim-
ulation for one of the geometries are shown in Figure 2.
Figures 3 and 4 show comparisons between the TKE and
viscous dissipation function as obtained from the MR-
simulations and the corresponding values obtained from
the LES data. The PC-MRI simulation and the LES solu-
tion agreed visually for both turbulence intensity and vis-
cous dissipation, although viscous dissipation was overall
underestimated in the PC-MRI simulation. Furthermore,
partial volume effects were seen along the jet’s periphery
in both the TKE and the viscous energy dissipation maps.

These effects are most pronounced in the vicinity of the
stenosis, around Z¼0.

The pressure gradients estimated using the simplified
Bernoulli equation (DPsimpBernoulliÞ were 8.74 6 0.67
mmHg. When compared with the true TPGnet (Fig. 5),
the results of linear regression and Bland-Altman were
r2¼0.998, slope of the regression line 1.242 (P< 0.001),
bias¼ 1.979 mmHg and limits of agreement: �3.250 and
7.210 mmHg, indicating a very strong linear relationship
but overestimation of the pressure gradients. The relative
error (Fig. 5b) tended to be larger for low degrees of ste-
nosis, and was related to the stenosis geometry. For simi-
lar values of TPGnet in the pressure range 0–15 mmHg,
the relative error was higher for 60% stenosis and 75%
stenosis without poststenotic dilation.

When the maximum pressure gradient was considered
instead, the estimated gradients DPsimpBernoulli showed a
very strong linear relationship (r2¼ 0.999) and were in
close agreement with the values of TPGmax obtained
from the CFD simulations (bias¼ 0.104 mmHg and agree-
ment limits: �0.674 and 0.881 mmHg).

FIG. 3. The TKE computed from the LES data (a) and the PC-MRI simulation from the LES solution (b). Z and X show the distance from
the center of the stenosis, normalized by the upstream diameter. The principal flow direction is in the positive Z direction. The simulation

corresponds to a geometry with 75% stenosis degree and Re equal to 2000. The voxel size was set to 1 mm.

FIG. 4. The viscous dissipation function (fv) computed from the LES data (a) and the PC-MRI simulation from the LES solution (b). Z
and X show the distance from the center of the stenosis, normalized by the upstream diameter. The principal flow direction is in the

positive Z direction. The simulation corresponds to a geometry with 75% stenosis degree and Re equal to 2000. The voxel size was set
to 1 mm.
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Estimations of the pressure gradient using the
extended Bernoulli equation (DPextBernoulli) are shown in
Figure 6. The estimated gradients were 6.57 6 0.53
mmHg. A very strong linear relationship (r2¼0.999) and
strong agreement (bias¼�0.188 mmHg and limits of
agreement: �0.987 and 0.610 mmHg) was found between
DPextBernoulli and the true TPGnet. The slope of the regres-
sion line was 0.980 (P< 0.001). Similar to the simplified
Bernoulli equation, the method performed better for
pressure values in the interval 15–40.4 mmHg. The rela-
tive error was also dependent on the geometry of the ste-
nosis, and was also found to be higher for geometries
with 60% and 75% stenotic area reduction (Fig. 6b).
However, in contrast to the Bernoulli equation, the
extended Bernoulli approach underestimated the pres-
sure gradients for these geometries. The average differen-
ces between the pressure gradients computed from the

LES data and the MRI estimations were highest for a
voxel size of 2 mm, and were 0.86% for the simplified
Bernoulli equation and 0.87% for the extended Bernoulli
equation.

Figure 7 shows the estimations obtained from the PPE.
The estimations of the net transstenotic pressure gradi-
ent, DPPPEnet, showed a poor agreement with the true
TPGnet. (Fig. 7a). The slope of the regression line was
�0.052, and the estimations were close to 0 for the
whole pressure range (�0.45 6 0.03 mmHg). When the
maximum pressure gradient obtained from the PPE
(DPPPEmax) was used as an estimation of TPGnet, the
results of linear regression and Bland-Altman analysis
(coefficient of determination r2¼0.997, slope of the
regression line 1.188 (P<0.001), bias¼ 1.379 mmHg and
agreement limits: �2.787 and 5.545 mmHg) revealed an
overestimation in the entire pressure interval (Figs. 7b,c).

FIG. 5. Pressure gradient estimates using the simplified Bernoulli equation. a: Correlation between the estimated pressure gradient

DPsimpBernoulli and the true TPGnet, obtained from the LES solution. The results correspond to an isotropic voxel size of 1 mm. The solid
line represents the linear regression line and the dotted line the identity. The regression line was computed for the whole TPGnet interval.

b: Percentage error between the estimated pressure gradient DPsimpBernoulli and the true TPGnet. c: Bland-Altman plot of DPsimpBernoulli

versus true TPGnet. The solid line is the mean bias and the dashed lines represent the 6 1.96 standard deviation (SD) lines. The different
symbols indicate different geometries (size of the stenosis and presence of poststenotic dilation). For a specific geometry, increasing

pressure gradients correspond to increasing Reynolds numbers.
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The dependence of DPPPEmax on resolution is depicted in
Figure 7d. Resolution had a minor influence on the esti-
mation for voxel sizes of 1 and 1.5 mm. For these resolu-
tions, the average differences between the true TPGmax

and DPPPEmax were 5.8% and 10.9%, respectively. More
severe underestimation was found at 2 mm resolution
(average difference 31.2%), especially for the largest
pressure gradients.

The relationship between the estimations of the total
TKE and the true TPGnet for 1 mm resolution is shown
in Figure 8a. For the complete set of geometries, the
coefficient of determination was r2¼ 0.756 and the slope
of the regression line 0.057 (P< 0.001). For a given geom-
etry, the total TKE showed a very strong linear relation-
ship with TPGnet. The coefficients of determination for
the geometries represented in Figure 8a were: 0.998 for
75% stenosis without poststenotic dilation, 0.998 for

90% stenosis and 0.999 for 75% stenosis with postste-
notic dilation. The slope of the regression lines for these
cases was 0.132, 0.063, and 0.288, respectively, with a P-
value lower than 0.001 in all cases.

There was an overall good agreement between the esti-
mated total TKE and the reference value obtained from
the LES data (Fig. 8b), which did only slightly depend
on resolution for the voxel sizes considered in this
study. A slight underestimation was observed for the
highest TKE values, which decreased for increasing
voxel sizes. The average differences between the refer-
ence and the estimated total TKE for spatial resolutions
of 1, 1.5, and 2 mm were 11.3%, 8.1%, and 2%,
respectively.

The correlation between _Eloss viscous and the true
TPGnet is depicted in Figures 9a,b. When _Eloss viscous was
computed over the entire volume (Fig. 9a), the

FIG. 6. Pressure gradient estimates using the extended Bernoulli equation. a: Correlation between the estimated pressure gradient

DPextBernoulli and the true TPGnet, obtained from the LES solution. An isotropic voxel size of 1 mm was considered. The solid line repre-
sents the linear regression line and the dotted line the identity. The regression line was computed including the whole TPGnet interval. b:
Percentage error between the estimated pressure gradient DPextBernoulli and the true TPGnet. c: Bland-Altman plot of DPextBernoulli versus

true TPGnet. The solid line is the mean bias and the dashed lines represent the 6 1.96 standard deviation (SD) lines. The different sym-
bols indicate different geometries (size of the stenosis and presence of poststenotic dilation). For a specific geometry, increasing pres-

sure gradients correspond to increasing Reynolds numbers.
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relationship between both parameters was characterized
by a strong linear relationship for a given geometry, but
a weaker relationship when all geometries were consid-
ered. The coefficients of determination for the different
geometries were: 0.934 for 75% stenotic area reduction
and no poststenotic dilation, 0.965 for 90% stenotic area
reduction and 0.973 for 75% stenotic area reduction and
poststenotic dilation. The corresponding slopes of the
linear regression lines were: 0.813, 0.047, and 0.403,
with P<0.001. Excluding dissipation at near wall vox-
els (Fig. 9b), the coefficients of determination for the
given geometries were 0.776, 0.903, and 0.966, respec-
tively, and the slopes of the linear regression lines
0.069, 0.022, and 0.076 (P< 0.001). Considering all geo-
metries, the coefficient of determination between the
true TPGnet and _Eloss computed from dissipation in the

whole volume was r2¼ 0.068 and the slope of the regres-
sion line 0.029 (P¼ 0.266). If dissipation at voxels near
the wall was omitted, the coefficient of determination
was r2¼ 0.776 and the slope of the regression line 0.021
(P< 0.001).

Figures 9c,d show the estimations of _Eloss viscous for the
different voxel sizes (1, 1.5, and 2 mm) as a function of
the true _Eloss viscous. Either considering dissipation in the
entire volume (Fig. 9c) or neglecting the near wall voxels
(Fig. 9d), there is poor agreement between the estimated
and the actual values, with increasing underestimation
of _Eloss viscous values as resolution decreases. When vis-
cous dissipation was integrated over the whole volume,
the average difference between the reference and the esti-
mated _Eloss viscous for voxel sizes of 1, 1.5, and 2 mm
were 68%, 87%, and 91% respectively. Neglecting

FIG. 7. Pressure gradient estimates using the PPE and dependence of DPPPEmax on spatial resolution. a: Correlation between the esti-
mated net transstenotic pressure gradient DPPPEnet and the true TPGnet value obtained from the LES solution. b: Correlation between

the estimated maximum pressure gradient DPPPEmax and the true value of TPGnet from the LES solution. An isotropic voxel size of 1 mm
was considered. The dotted line represents the identity. In B, the solid line represents the regression line, which was computed including
the whole data set. c: Bland-Altman plot of DPPPEmax versus true TPGnet. The solid line is the mean bias and the dashed lines represent

the 6 1.96 standard deviation (SD) lines. The different symbols indicate different geometries (size of the stenosis and presence of post-
stenotic dilation). For a specific geometry, increasing pressure gradients correspond to increasing Reynolds numbers. d: Estimations of

DPPPEmax for three different voxel sizes: 1, 1.5, and 2 mm. The vertical axes show the estimated DPPPEmax and the horizontal axes show
the true TPGmax, derived from the LES data. The dotted line represents the identity.
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dissipation at the wall region, the average differences
were 54%, 67%, and 75%.

DISCUSSION

This study investigated the relationship between current
4D flow MRI-derived pressure and energy loss parame-
ters and TPGnet using numerical simulations in stenotic
geometries.

Several parameters overestimated or were not linearly
related to actual TPGnet and/or depended on spatial reso-
lution. TPGnet estimated with both the simplified and
the extended Bernoulli equation showed a very strong
linear relationship with the actual TPGnet. However, as
expected, the simplified Bernoulli equation overesti-
mated TPGnet for the whole range of pressure gradients
considered in the study (0.05–40.4 mmHg), especially for
low TPGnet values and geometries susceptible to pressure
recovery (Fig. 5b). In general, the extended Bernoulli
equation compensated for pressure recovery and per-
formed better than the simplified Bernoulli equation.
Some errors were still present, however, mainly for low
TPGnet (Fig. 6b). Estimations of TPGnet using the PPE
were approximately zero in the entire pressure interval
(Fig. 7a), while TPGmax estimations were accurate and
comparable to the values obtained with the simplified
Bernoulli equation. Total TKE and viscous dissipation
showed a very strong linear relationship with TPGnet

for each geometry (Figs. 8a, 9a). However, viscous dissi-
pation was severely underestimated and resolution
dependent for all spatial resolutions included in the
study (Figs. 9c,d).

The results from our computational study regarding
the simplified Bernoulli equation agree well with previ-
ous in vitro and in vivo studies, which reported an over-
estimation of TPGnet when compared with catheter-based

measurements (6,7,9). Such overestimation was more rel-
evant for a higher EOA=AA ratio (i.e., patients with
smaller aortas or less significant stenosis). This also

agrees with our results, which indicate increased per-

centage errors for geometries with lower cross-sectional

area reduction (increased EOA) and absence of postste-

notic dilation. In agreement with previous studies

(1,6,7), we found that the extended Bernoulli equation

improved the estimation of TPGnet, although moderate to

high underestimation (up to 65%) was present at low

degrees of stenosis. However, it should be noted that the

strong performance of the extended Bernoulli equation

might be biased by the employed phantom geometry.

The geometry consisted of a straight circular pipe and

temporal terms were negligible because the flow was

steady. This represents a best-case scenario for the appli-

cation of the extended Bernoulli equation, which

assumes a circular EOA and aortic area and negligible

acceleration terms (10,16,39). Under conditions that vio-

late these assumptions, the accuracy of the method to

predict pressure recovery might decrease. Furthermore,

the equation is susceptible to errors in the estimation of

the peak velocity and the EOA, which will increase in

vivo due to, for instance, the presence of noise.
Estimations of TPGnet using the PPE indicate the

inability of this approach to compute irreversible pres-
sure loss, because the mean velocities used as an input
to the Navier-Stokes equations do not account for energy
dissipation due to turbulence. Applying the time-
averaged Navier-Stokes equations, which include the
Reynolds shear stresses, might extend the pressure calcu-
lations to turbulent flow, thereby allowing estimation of
the net transstenotic pressure gradient. However, in vivo
measurement of the Reynolds shear stresses is still chal-
lenging (40). TPGmax, on the other hand, can be

FIG. 8. Relation between total TKE and TPGnet and dependence of total TKE on spatial resolution. a: Relationship between the total
TKE and the TPGnet values obtained from the LES solution. The results correspond to an isotropic voxel size of 1 mm. Linear regression

analysis was performed for each data subset corresponding to a specific geometry, except the geometry with 60% stenotic area reduc-
tion. The solid lines represent the linear regression lines, computed for each data subset. The different symbols indicate different geo-

metries (size of the stenosis and presence of poststenotic dilation). For a specific geometry, increasing pressure gradients correspond
to increasing Reynolds numbers. b: Estimations of the total TKE for three different voxel sizes: 1, 1.5, and 2 mm. The vertical axes
show the estimated total TKE and the horizontal axes show the true total TKE, derived from the LES solution. The dotted line represents

the identity line.
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accurately computed using the PPE, as flow is laminar
upstream from the vena contracta of the flow jet.

In computing TPGmax, the results from the PPE were
comparable to those from the Bernoulli equation. How-
ever, our results indicate that the PPE would underesti-
mate TPGmax for moderate and high pressure gradients
(TPGmax> 10 mmHg) and spatial resolution lower than
1.5 mm (Fig. 7d). At these resolutions, the velocity gra-
dients are underestimated due to partial volume effects.
Applying the simplified Bernoulli equation may help
overcome this issue, because errors in the estimation of
peak velocity due to spatial resolution were very low
(<0.37%). On the other hand, the PPE is not based on
assumptions regarding flow patterns and valve and out-
flow tract geometries, thus could be more useful than the
simplified Bernoulli equation in handling complex ves-
sel geometries. Furthermore, it also considers the veloc-

ity proximal to the stenosis, which is not accounted for
in the simplified Bernoulli equation. In our study, distal
velocities had relatively low values (less than 0.43 m/s),
but in cases where the distal velocity is higher (> 1 m/s)
overestimation using the simplified Bernoulli approach
could increase further (39).

For a given geometry, a very strong linear relationship
exists between the total TKE and TPGnet (Fig. 8a). When
considering the complete set of geometries, a strong lin-
ear relationship (r2¼ 0.756) was found between total
TKE and TPGnet. However, the results indicate that the
flow rate, the EOA and the size of the poststenotic dila-
tion influence the total TKE, which in turn contributes
to the net transstenotic pressure gradient. This agrees
well with fluid mechanics theory regarding energy loss
in aortic stenosis and previous work on TKE-based pres-
sure loss estimation with MRI (4,41). TKE was accurately

FIG. 9. Relation between the viscous energy loss rate _Eloss viscous and TPGnet and dependence of _Eloss viscous on spatial resolution. a,b:
Relationship between _Eloss viscous and the TPGnet values obtained from the LES solution. a: Viscous dissipation over the entire volume is
considered. b: Viscous dissipation at near wall voxels is not included. An isotropic voxel size of 1 mm was considered. Linear regression

analysis was performed for each data subset corresponding to a specific geometry, except the one with 60% stenotic area reduction.
The solid lines represent the linear regression lines, computed for each data subset. The different symbols indicate different geometries

(size of the stenosis and presence of poststenotic dilation). For a specific geometry, increasing pressure gradients correspond to
increasing Reynolds numbers. c,d: Estimations of _Eloss viscous for three different voxel sizes: 1, 1.5, and 2 mm. Estimations in (c) include
viscous dissipation over the whole volume, while in (d) dissipation at near wall voxels is excluded. The vertical axes show the estimated

viscous dissipation and the horizontal axes show the true viscous dissipation, computed from the LES data. The dotted line represents
the identity line.

1818 Casas et al.



obtained, with an underestimation lower than 11.3%, for
all resolutions included in the study. Nevertheless, it
appears that for higher TKE values the accuracy of the
method increases with increasing voxel sizes.

The relation between the viscous energy loss rate and
TPGnet also depends on the geometry of the stenosis and
the poststenotic dilation (Figs. 9a,b). A poor linear rela-
tionship (r2¼ 0.068) with TPGnet was seen when dissipa-
tion in the vicinity of the wall was included in the
calculations. Viscous energy loss is a laminar estimate of
dissipation, thus it is not surprising that it performs
poorly in models that contain a significant amount of
turbulence. Omitting dissipation at near wall voxels
seems to neglect the effect of a poststenotic dilation
(Fig. 9b), but the linear relationship between viscous dis-
sipation rate and TPGnet is much higher in this case
(r2¼ 0.776). Estimates of viscous energy loss rates were,
in general, underestimated. In fact, viscous dissipation
values above 4 mW could not be resolved for any of the
voxel sizes used in the study (Figs. 9c,d).

Barker et al (16) postulated a correlation between total
TKE and viscous dissipation. We found a very strong cor-
relation (r2¼0.918) between these parameters when esti-
mated directly from the LES data and when the whole
flow domain was considered (thus including near-wall
dissipation). A relation between viscous dissipation and
turbulence seems reasonable, because the high jet velocity
gradients that contribute to viscous dissipation often pre-
cede turbulence (42). However, these losses are conceptu-
ally different and cannot be seen as interchangeable.
Losses due to turbulence are higher than viscous dissipa-
tion losses (38) and occur mainly downstream from the
stenosis, while viscous dissipation mostly occurs at the
wall and in the shear layer of the jet. These differences can
be exemplified by the effect of a poststenotic dilation. The
presence of a poststenotic dilation increases pressure loss.
However, for the same degree of stenosis (75%), viscous
dissipation is higher in the absence of poststenotic dila-
tion, because losses at voxels near the wall are higher in
this case due to a larger velocity gradient. The turbulent
losses for the same stenosis degree are higher when a post-
stenotic dilation exists, as this geometry results in an
increased Reynolds number, which promotes turbulence.
Due to the inaccuracy of MR-based estimation of viscous
dissipation, the correlation was much lower when the MR-
based estimations were considered. For example, for a
voxel size of 1 mm, the correlation between MR-estimated
total TKE and viscous dissipation was r2¼ 0.524.

The number of voxels across the stenosis in the geome-
try with 90% area reduction at 1mm resolution was
only five in our study. This may cause underestimation
of the velocity gradients in the radial direction, specially
the derivatives of the axial velocity component
@vz=@x; @vz=@yð Þ, leading to estimation errors in the vis-

cous dissipation. Pressure differences along the center-
line using the PPE will probably be less affected by
underestimation of these velocity gradients, because they
are mainly determined by the velocity gradient in the
axial direction @vz=@z. Errors in viscous dissipation at
the stenosis site are, however, not critical for the compu-
tation of this parameter, as most dissipation occurs at
the poststenotic region.

This study used simplified geometries and nonpulsatile
flow and measurement noise was neglected. More realistic
geometries would presumable mostly affect the Bernoulli
and extended Bernoulli methods, as these methods esti-
mates rely heavily on assumptions that were perfectly ful-
filled in the present geometry, but seldom in a realistic
geometry. For instance, the assumption of a circular EOA
and aortic area will generally introduce errors, as these
areas are typically oval instead of circular (20). An eccen-
tric jet will further degrade the performance of the
extended Bernoulli equation (43). Measurement noise
would probably affect all estimates and especially viscous
dissipation, which depends heavily on accurate gradient
computation. In vivo, pulsatile flow and moving vessel
walls will be present. Pulsatile flow has not been consid-
ered, as it would notably increase the complexity of the
study and the presentation of the results. Also, the CFD
simulations were performed using water instead of blood.
This, however, does not affect the validity of our results.
Because the simulations were designed to obtain Reyn-
olds numbers in a specific range (500–6000), the flow
rates would have been lowered to achieve the same Reyn-
olds numbers if the viscosity of blood had been used
instead. Assuming a Newtonian fluid is also reasonable,
as non-Newtonian effects can generally be neglected in
large vessels such as the aorta (44).

The transstenotic pressure gradient was used as a ref-
erence for evaluating aortic stenosis in our study, as this
is the parameter used clinically. However, pressure gra-
dients only represent irreversible pressure losses, and,
therefore, increased ventricular workload, if the usable
mechanical energy (i.e., potential and kinetic energy) of
the system is reduced. This suggests that kinetic energy
should also be considered to determine permanent, irre-
versible losses from the stenosis. For the geometries con-
sidered here, the net pressure drop corresponds to
irreversible losses except for the geometry with postste-
notic dilation for which the kinetic energy is higher
downstream from the stenosis compared with the inlet.

Our results indicate that computation of the total TKE
and viscous dissipation does not allow estimation of the
net transstenotic pressure gradient directly, as its actual
value depends on the specific geometry. We speculate
that, in vivo, the variability in stenosis degree and post-
stenotic dilation would be lower than in our study,
allowing direct estimation of the pressure gradient. This
is consistent with the results from Dyverfeldt et al (13)
and Barker et al (16), which reported strong correlations
between these parameters and irreversible pressure
losses in normal volunteers and patients with aortic ste-
nosis with and without dilation. Moreover, the combina-
tion of TKE and viscous dissipation would be valuable
in visualizing and identifying areas of energy loss in aor-
tic disease. Further in vivo studies are needed to assess
the applicability of these methods in various pathologies
and their relation to ventricular workload.

CONCLUSIONS

Even for an idealized geometry and in the absence of
measurement noise, several parameters for the assess-
ment of stenosis severity were not linearly related to the
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irreversible pressure loss (TPGnet) and/or depended on
spatial resolution. Viscous dissipation and TKE showed
a strong linear relationship with TPGnet for a specific
geometry, although this relationship was weaker when
various different geometries were considered. While esti-
mations of TKE were accurate and almost independent
on spatial resolution, estimations of viscous dissipation
were resolution dependent and can be considered inac-
curate with commonly used spatial resolutions.

In the simple geometries considered here, the best esti-
mations of TPGnet were obtained using the extended Ber-
noulli equation. However, the geometries and flow
conditions used in this study are ideal for this method,
and lower accuracy can, therefore, be expected in vivo.
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