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Abstract—In this paper, we investigate the targeted load
frequency responses of Intentional Electromagnetic Interference
(IEMI) in low voltage power line network, which consists of
multiple junctions and branches. A disturbance that is injected
at a random position in the network is considered in our work,
and we study the impact of the position of the injection point in
the sense of probability distribution, through the Monte Carlo
method. To increase the precision, in the Monte Carlo simula-
tion model, we introduce three variance reduction techniques,
namely, complementary random numbers, correlated sampling
and stratified sampling, and we use them in combination.
Results show that they can significantly reduce the variance and
increase the simulation precision. More importantly, simulations
quantitatively show that, controlling the probability of criminal
accessing the targeted load can effectively reduce the influence
level, which is crucial for ensuring the security and robustness
of whole networks.

Index Terms—Monte Carlo, variance reduction, IEMI, fre-
quency response

I. INTRODUCTION

In this work, we study the propagation of Intentional
Electromagnetic Interference (IEMI) [1], [2] in a low voltage
power line network with multiple junctions and branches.
The point of injection of the disturbance can be randomly
distributed in the network. The probabilities of the criminal
gaining access to different regions of the network are different.
To evaluate the potential risks of the target being damaged by
the disturbance, due to the uncertainty of the point of injection
of the disturbance, the Monte Carlo method is used to analyze
the expectation value of the targeted load frequency response.

The remainder of the paper is organized as follows. In
Sec. II, we describe the scenario and formulate our problem
by showing a mathematical model. To improve the simulation
precision, which is mainly decided by the variance of the
estimated expectation value, we introduced three typical vari-
ance reduction techniques used in the Monte Carlo simulation
in Sec. III. Subsequently, a practical example with specific
simulation parameters is studied in Sec. IV. Finally, the
conclusions are drawn in Sec. V.

II. MATHEMATICAL MODEL

Among various approaches for solving the IEMI problem,
electromagnetic topology [3] is an effective and popular tool
that is based on the concept of zones.

We consider a low voltage power line network with four
junctions and eight branches, which can be divided into four
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Fig. 1. A low voltage power line network installed in the building divided
into four zones.

zones, namely, Zone 0, 1, 2 and 3, as shown in Fig. 1. From
Zone i to Zone j, i,j = 0, 1,2, 3, there are totally |i — j| zone
boundaries required to cross. Also, all the loads are general
systems, except for the system labeled as Z37, which performs
critical functions.

Assume that an EMI source appears in Zone ¢ with prob-
ability P;, carried by a criminal with the aim of destroying
the system Z3p. In each zone, EMI injection may happen
at different positions (lines) of the power line network. We
denote by FP,,; the probability of injection point occurring on
the branch; otherwise, the probability is represented by P4,
i.e., the injection point is between junctions. Here, m is the
index of zone, b is the index of branch, d =1 or d = r is the
position of the injection point that is on the left-hand side or
right-hand side of the junction in Zone m.

Preliminarily, the input, output, model parameters, and the
mathematical model are formulated as follows.

o Input:

rs denotes the distance between the interference source
and the junction which located in the same zone, and the
probability functions are given by

fi(zs) ={PF; :in Zone i, =0,1,2,3},

P, injected on branches,
fa(xs) = { Pna, injected between junctions,
P57, injected on the same branch as target.
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Fig. 2. Decomposition schematic of the network with multiple junctions.

o Output:
V' denotes frequency response of the targeted load.
e Model parameters:

fint  : frequency of the interference source,

Vs : voltage amplitude of the interference source,
I : current amplitude of the interference source,
Ze : characteristic impedance of power line,

vy : propagation constant,

Ly : length of branch line,

L.,,q : length of line between junctions,

Zmp - load impedance.

Here, m, b and d similarly define the index of zone, index of
branch and the position relative to the junction, respectively.

To simplify the problem, we assume that all the power lines
have the same characteristic parameters, which means that the
value of Z. is the same for each line, as well as ~. This can be
changed without causing large problems for the method itself.

o Mathematical model:

The mathematical model is established based on the modi-
fied BLT equation. To calculate the frequency responses of the
loads in a low voltage power line network, we used the method
proposed in [4]. The basic idea of the method is dividing the
network into several single junction networks and introducing
a virtual branch with zero length to preserve the characteristics
of single junction networks. The step-by-step decomposition
of the network studied in this paper, iteratively from Zone 3
to Zone 0, is shown in Fig. 2.

As a specific example, for the one-junction network shown

in Fig. 2d), the modified BLT equation is
R=(I+P)(I-TP) 'S, (1)

where R = [V, V5, Vs]" is the voltage vector showing
the responses of the three loads, I is the identity matrix

Input xq Output V'

Model g(x;) I

Fig. 3. Diagram of the mathematical model.

of size 3, P = diag(po1, poz, py) is the reflection matrix
with poi = (Zo; — Zc) / (Zoi + Zc), i = 1,2, denoting the
reflection coefficients at the two loads, p) is the corrected
reflection coefficient at the first junction, which is calculated
by (2). Besides, the transmission matrix I' and excitation
source vector S are respectively given by

T =
p(01)e—2’YL01

7(01) g=v(Lo1+Loz)

7(01) g=v(Lo1+Lot)

7(02) c=v(Lo1+Loz)
p(02) 6_27L02
7(02) c=v(Loz2+Lot)

(00 g—=v(Lor+Lor)
7(00) o= (Loz+Lot)
p(OZ)e_Z'YLOl

_Va=Zels o —vyas + p(Ol) Vs-l-2Zn1s e~ V(2Lo1—x5)
(01) Vs+2ZcIs e—’y(L01+L02—-’L's)
T(Ol) ‘/§+ZZI e*’Y(L01+L017IS)

Without loss of generality, for a junction with N + 1
branches, the reflection coefficient p(Oi) and transmission
coefficient 7% is given by [5]

. 1—N 4 ,
(0i) _ -~ % d T(Oz) =1 (02).
1N Tp
Particularly, in Fig. 2d), we have N =2 and i = 1,2,1[.

Besides, to calculate the load response, we need to correct
the reflection coefficient at the first junction, by using the
following equation [4]

N i)\
p =10 (1—2/10.) ~1,

i=1

©))

with
Api=1+ o= v
As the input, the distance between the interference source
and the junction zs is assumed to be a random variable,
which definitely results in random fluctuations in the frequency
responses of the targeted load. To address the issue with
a stochastic input, we apply the Monte Carlo method for
analysis.

III. MONTE CARLO METHOD

The basic idea of the Monte Carlo method is to generate a
sequence of random values of all inputs, and to produce the
corresponding random outputs. Here, we only have one input
and one output, which are s and V, respectively, as shown in
Fig. 3. The application of the Monte Carlo method is popular
in power systems [6], [7]. The objective of our work is to
apply the Monte Carlo method to our specific network and
estimate the expectation value of the output for analyzing the
average impact of IEMI.

b
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In the Monte Carlo simulations, a scenario consists of a set
of inputs. For a scenario, every input value is generated ran-
domly, using the inverse transform method [6]. For example,
given a random number u; from a U (0,1) distribution, the
random value for input x4 is generated by

zo = F; ' (ug),

where F,_ 1 is the inverse of cumulative distribution function
of the input zs.

Generally, if vq,...,v, are n independent observations of
the random variable V, the estimated expectation value of the
output V', namely, my, is expressed by

1n
IEV% = — Q.

Let T" be the number of iterations. The variance of the
estimated expectation value my, denoted by Var [my], can
be obtained by

2

1 1 &
Var[mv]z:ﬁZm%,j— szvﬂ ,
j=1 j=1

and the variance is related to the precision of the simulation.

To improve the precision, it is crucial to reduce the variance.
Hence, we take the simple sampling as a baseline, and intro-
duce three variance reduction techniques, which are widely
used in the Monte Carlo simulations and suitable for solving
the problem presented in this paper, to investigate their perfor-
mance. In what follows, we briefly introduce mechanisms of
above sampling techniques, and omit the mathematical details
due to the limited space. Interested readers can refer to the
related literature [6], [7].

A. Simple sampling

Simple sampling is the basis of other sampling methods
in the Monte Carlo simulation. It is the most straightforward
approach to collect samples, which are completely random.
Each sample unit is drawn in equal probability, and they are
completely independent of each other.

B. Complementary random numbers

To ensure that the random numbers evenly spread over the
population, such that the effect of random fluctuations can
be reduced, the technique of complementary random numbers
[6], which creates a negative correlation between samples, is
used. For each input value generated by (1), we can find the
complementary random number of u;, i.e., 1 — u;. Then, we
can generate the negative correlated random value of the input

Z'* :Fx_l(l—ui).

st .
C. Correlated sampling

By using the technique of correlated sampling [6], we can
compare two slightly different versions of the same model. For
instance, in the mathematical model presented in Section II, we
can vary the frequency distribution function f; (z5) to fi (xs),
and compare the difference of the two estimated expectation
values of the targeted load response.

Root
Py P, P, Ps
Por | | Pos Py | | Py | | Py
Py | | Pi| | P P3| | Py | | Psr

Fig. 4. Strata tree.

D. Stratified sampling

In stratified sampling, the population is divided into several
parts, which are referred to as strata. Each stratum has its
own stratum weight wy, h = 1,..., L (L is the total number
of strata), which is the probability that a randomly chosen unit
from the population belonging to the specific stratum [6]. For
the problem studied here, the strata tree is given in Fig. 4, the
total number of strata L = 11.

The expectation value my, of each stratum is estimated
independently. The estimated expectation value of the output
is weighted in terms of the stratum weight

L
my = E wpMmy,, .

h=1

3)

The variance of the estimate from (3) is minimized if the
samples distributed to each stratum n; are according to the
Neyman allocation [6]

_ thVh
Ty n,

ZII;=1 WEOV,
where oy, is the standard deviation of stratum h.

The standard deviation for each stratum is unknown, which
needs to be estimated in a pilot study, by using a fixed number
of samples per stratum. Based on the values of standard
deviation obtained in pilot study, we can calculate the optimal
sample allocation for each stratum, and distribute the rest
samples in the simulation.

IV. CASE STUDY

The mathematical model described in Section II, and the
simulation methods described in Section III are applied on a
practical case, which is used to investigate the potential risks
of the target quantitatively, when the network is exposed to
two different probability distribution functions of the position
of the IEMI source, where one has poor security and another
has good security, regarding the critical system. In the Monte
Carlo simulation, we jointly use the three variance reduction
techniques, and perform a comparison with the simple sam-
pling, which is treated as a baseline, to investigate advantages
of the joint scheme in improving the simulation precision.

4
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TABLE I
PARAMETERS OF INPUT AND MODEL CONSTANTS.
SymbOI fint V; Is Zc 2l
Value 17 MHz | 100 V 0A 50 Q2 0.36
Symbol Lmb Lmd Zmb Ts
Value 3 m 6 m 10092 | ~U(0,3) m
TABLE II
TwO PROBABILITY DISTRIBUTIONS OF IEMI SOURCE BY ZONES.
Symbol [ Po | P | P | Ps
fi(zs) | 01 ]02] 03] 04
f{ (zs) | 0.4 ] 03] 0.2] 0.1

To simplify the problem, we assume that all power lines
in each zone have same the length of 3 m, and all the
loads have the same impedance, which is a constant value
of 100 €2. The parameters of inputs and model constants are
given in Table I. Here, we consider two groups of probability
distribution function f; (zs) and f (zs) , and their values
are accordingly shown in Table II. Assume that the injected
position is uniformly randomly distributed on the power lines,
so the probability of the source injected on any power line
is the same in each zone. In this four-junction, eight-branch
network, the values of f5 (x5) are easily to obtain, as shown
in Table III.

To test the effectiveness of different simulation methods,
the model is simulated 100 times with each method. In
the stratified sampling, 1100 scenarios are generated in each
simulation, and 50 scenarios are generated for each stratum
in the pilot study, which means the total number of samples
is 550, with the rest 550 samples are distributed according to
the results of Neyman allocation. To have a fair comparison,
we also generate 1100 scenarios per simulation in simple
sampling. The results are given in Table IV. For the sake of
convenience, we have the following abbreviations:

o SS: simple sampling;

o CS: combination of complementary random numbers and

stratified sampling, with f; (zs);

e CS’: combination of complementary random numbers

and stratified sampling, with f{ (xs);

e CCS: combination of complementary random numbers,

correlated sampling and stratified sampling.

By adding the correlated sampling, CCS is used to cal-
culate the difference of the two expectation values, and the
expectation value and variance by CCS are estimated based
on the results by CS and CS’. From Table IV we can see
that, the expectation value of the load response associated with
probability distribution function f; (xs) is 53.94 V, and the
expectation value is 36.72 V when the probability distribution
function is fi (zs). The difference between them is 17.22
V, which is a reduction of approximately 32% from the
worse case. This significant reduction in voltage indicates that,
decreasing the probability of criminal accessing the innermost
room, where the critical system is deployed, helps a lot in
lowering the potential damage level on the target in the sense

TABLE III
PROBABILITY DISTRIBUTION OF IEMI SOURCE BY POSITIONS WITHIN
DIFFERENT ZONES.

Symbol | Po; | Poo | Pu | Pir | Py -
o) s [ 31513 [3 [~
Symbol | Py | Por | Pop | Par | Pay | Psp
@) 5 1 5 [ 5[ 3 [ 313
TABLE 1V
METHOD COMPARISON.

Method CS CcS’ CCS SS

Mean [V] | 53.94 | 36.72 | 17.22 | 36.60

Variance 0.05 0.01 0.02 0.96

of average.

As a comparison reference, the expectation value of the
targeted load response by SS is 36.60 V, which is almost the
same as the result 36.72 V by CS. However, CS’ provides
a much higher accuracy, since its estimated variance is 0.01,
which is one order of magnitude smaller than that of SS. Thus,
the variance reduction techniques, complementary random
numbers and stratified sampling, are proven to be valid. In
addition, the variance estimated by CCS is less than the sum
of estimated variances by CS and CS’, i.e., 0.02 < 0.054-0.01,
which validates and highlights the effect of correlated sam-
pling technique in solving the problem presented in the paper.

V. CONCLUSIONS

In this paper, based on the method of Monte Carlo, we
analyze the impact of the probabilistic interference injection,
in terms of the position in a low voltage power line network,
on the voltage frequency responses of the targeted load. The
difference of the estimated expectation value quantitatively
proves that, reducing the probability of the criminal accessing
the target is an effective way to reduce the potential risk it
might suffer. Besides, the joint use of variance reduction tech-
niques, which are complementary random numbers, correlated
sampling and stratified sampling, in this problem is useful for
enhancing simulation precision.

REFERENCES

[11 W. Radasky, C. E. Baum, M. W. Wik et al., “Introduction to the special
issue on high-power electromagnetics (HPEM) and intentional electro-
magnetic interference (IEMI),” IEEE Transactions on Electromagnetic
Compatibility, vol. 46, no. 3, pp. 314-321, 2004.

[2] W. Radasky et al., “The threat of intentional interference (IEMI) to
wired and wireless systems,” in [7th International Zurich Symposium
on Electromagnetic Compatibility (EMC-Zurich 2006). 1EEE, 2006, pp.
160-163.

[3] F. M. Tesche, “Topological concepts for internal EMP interaction,”
Science Applications, Inc., Berkeley, CA, Tech. Rep., 1978.

[4] B. Li, D. Mansson, and G. Yang, “An Efficient Method for Solving
Frequency Responses of Power-Line Networks,” Progress in Electromag-
netics Research B, vol. 62, pp. 303-317, 2015.

[5] D. Mansson, R. Thottappillil, and M. Backstrom, “Propagation of UWB
transients in low-voltage power installation networks,” IEEE Transactions
on Electromagnetic Compatibility, vol. 50, no. 3, pp. 619-629, 2008.

[6] M. Amelin, “On monte carlo simulation and analysis of electricity
markets,” Ph.D. dissertation, KTH Royal Institue of Technology, 2004.

[71 W. Li et al., Reliability assessment of electric power systems using Monte
Carlo methods. Springer Science & Business Media, 2013.

Electronic Environment 2016 I

5




