
Institutionen för datavetenskap
Department of Computer and Information Science

Final thesis

GPU-accelleration of image rendering and
sorting algorithms with the OpenCL framework

by

Anders Söderholm & Justus Sörman

LIU-IDA/LITH-EX-G—15/064—SE

 2016-02-03

Linköpings universitet
SE-581 83 Linköping, Sweden

Linköpings universitet
581 83 Linköping

Linköping University
Department of Computer and Information Science

Final Thesis

GPU-accelleration of image rendering and
sorting algorithms with the OpenCL

framework
by

Anders Söderholm & Justus Sörman

LIU-IDA/LITH-EX-G—15/064—SE

2016-02-03

Supervisor: Unmesh Bordoloi

Examiner: Unmesh Bordoloi

Abstract
Today’s computer systems often contains several different processing units aside from the CPU.
Among these the GPU is a very common processing unit with an immense compute power that
is available in almost all computer systems. How do we make use of this processing power that
lies within our machines? One answer is the OpenCL framework that is designed for just this, to
open up the possibilities of using all the different types of processing units in a computer system.
This thesis will discuss the advantages and disadvantages of using the integrated GPU available in
a basic workstation computer for computation of image processing and sorting algorithms. These
tasks are computationally intensive and the authors will analyze if an integrated GPU is up to the
task of accelerating the processing of these algorithms. The OpenCL framework makes it possible
to run one implementation on different processing units, to provide perspective we will benchmark
our implementations on both the GPU and the CPU and compare the results. A heterogeneous
approach that combines the two above mentioned processing units will also be tested and discussed.
The OpenCL framework is analyzed from a development perspective and what advantages and
disadvantages it brings to the development process will be presented.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 1
1.3 Research questions . 1
1.4 Delimitations . 2

1.4.1 Sorting . 2
1.4.2 Image processing . 2

2 Background 3
2.1 Hardware limitations . 3
2.2 Craving for performance . 3
2.3 Computationally intensive algorithms . 3

2.3.1 Sorting . 3
2.3.2 Image processing . 4

3 Theory 5
3.1 Hardware Differences . 5

3.1.1 CPU . 5
3.1.2 GPU . 5
3.1.3 Integrated VS discrete . 5

3.2 Parallel computing . 6
3.2.1 Multithreading . 6
3.2.2 Specialized hardware . 6
3.2.3 Clusters/Supercomputers . 6

3.3 Parallel problems . 7
3.3.1 Data parallel . 7
3.3.2 Task parallel . 7
3.3.3 Embarrassingly parallel . 7

3.4 OpenCL . 8
3.4.1 Model . 8
3.4.2 Platform . 8
3.4.3 Context . 8
3.4.4 Device . 9
3.4.5 Command queue . 9
3.4.6 Memory . 10
3.4.7 Events . 11

3.5 Performance optimizations . 11
3.5.1 Memory management . 11
3.5.2 Workgroups and work-items . 11
3.5.3 Algorithm design . 12
3.5.4 Conclusion . 12

4 Method 13
4.1 Algorithm selection . 13

4.1.1 Sorting algorithm . 13
4.1.2 Image processing algorithm . 14

4.2 The hardware . 14
4.2.1 Intel i7-4790 CPU . 14
4.2.2 Intel HD Graphics 4600 GPU . 15

4.3 The software . 16
4.4 Implementation . 16

4.4.1 Merge sort . 16
4.4.1.1 Recursive . 16
4.4.1.2 Iterative with swap . 17
4.4.1.3 Parallel implementation . 17
4.4.1.4 Parallel implementation optimization . 19

4.4.2 Image processing . 20
4.4.2.1 The basics of image convolution . 21
4.4.2.2 Parallel image convolution . 22

5 Results 25
5.1 Merge sort . 25

5.1.1 Sorting benchmark . 27
5.1.2 Sequential merge sort benchmark . 28

5.2 Image convolution . 28
5.2.1 The benchmarking . 29
5.2.2 Conventional sequential CPU implementation . 29
5.2.3 multi-core implementations . 29
5.2.4 General results . 30

6 Discussion 32
6.1 Heterogeneous computation . 32
6.2 Results . 32

6.2.1 Merge sort . 32
6.2.2 Image convolution . 34

6.2.2.1 Optimizations . 34
6.2.2.2 Results . 35

6.2.3 Caching in local/private memory . 35
6.3 Method . 35
6.4 The work in a wider context . 36
6.5 The OpenCL framework . 37

6.5.1 Operating system timeouts . 38

7 Conclusions 40
7.1 Merge sort . 40
7.2 Image convolution . 40
7.3 Future work . 41
7.4 Final thoughts . 41

8 Glossary 43

9 References 44

Appendices 46
A Source code of the basic image convolution kernel . 46
B Source code of the Merge kernel with chunking . 48
C Source code of the copy kernel . 49
D Source code of the Merge kernel with cooperation . 49
E Source code of the Copy kernel with cooperation . 51
F Table of run times in milliseconds for different merge sort kernels 52

List of Figures

1 OpenCL model abstraction . 9
2 OpenCL memory hierarchy . 10
3 A sharpness filter of varying size applied to an image (public domain image used) 14
4 Recursive merge dividing sequence . 16
5 Iterative merge sort with swap . 17
6 5x5 box blur filter applied to an image (public domain image used) 22
7 Convolution performed on a very large resolution image (original photo by Justus Sörman) 24
8 GPU multi-core execution times with different list sizes 26
9 CPU multi-core execution times with different list sizes 26
10 Performance test with 1 to 1 thread execution with different workgroup sizes 27
11 Comparison of CPU,GPU and Hybrid execution times in the different merge sessions . . . 28
12 Average execution times of varying filter sizes on a 480p resolution image 31
13 Average execution times of varying filter sizes on a 8K resolution image 31

Listings

1 Basic parallel merge sort pseudocode . 18
2 Chunking parallel merge sort with external copy pseudocode 19
3 Parallel copy to the swap buffer pseudocode . 20
4 Basic image convolution pseudocode . 21
5 High resolution image splitting pseudocode . 24

List of Tables

1 Sequential CPU execution times with varying filter sizes applied to images of resolution
ranging from 480p to 4K . 29

2 Execution times in seconds on multi-core CPU without zero-copy 30
3 Execution times in seconds on multi-core CPU with zero-copy 30
4 Sequential CPU execution times in seconds with varying filter sizes applied to 8K images 30

1 Introduction

This thesis report is the culmination of a bachelor thesis work on GPU-acceleration with the OpenCL
framework, at Linköping University. In this thesis the authors will examine the potential benefits of
applying GPU-acceleration to common types of algorithms with a focus on performance when using a
lower end GPU, the Intel HD Graphics 4600. This is in effort to determine and analyze how significant, if
at all the gains in terms of performance are in a commodity desktop computer. The discussion section of
this report will also contain an analysis of common hurdles and best practices that should be considered
before one chooses to apply GPU-acceleration to a development project.

1.1 Motivation

As software development advances and programs require more and more computational capabilities the
hardware side of things and more specifically the CPU has been struggling to keep up. In terms of
clock frequency hardware designers has gotten closer to the threshold of what is realistically feasible
on a single processor core, prompting the rise of multi-core processors [1]. All the while in commercial
settings a significant source of processing power goes unused, the GPU. If more software developers made
efficient use of the GPUs available in modern computers it would likely be possible to greatly increase
computational performance when running everyday programs. Increased performance which in turn will
lead to more advanced software as well as a better user experience.

1.2 Aim

The purpose of this thesis is to provide a proof of concept, that is showing that there is a signifi-
cant increase in computational performance to be had by applying GPU-acceleration to commonly used
algorithms which are computationally demanding. The intention is to find and select appropriate al-
gorithms that normally has a singlethreaded sequential implementation and develop our own versions,
GPU-accelerated multithreaded versions. This report will provide a detailed analysis of the results as
the different versions are compared to each other both in terms of performance and difficulty of imple-
mentation.

1.3 Research questions

• Can GPU-acceleration be used to increase computational performance of merge sort algorithms
when using an integrated GPU available in a commodity desktop computer?

It has already been well established that for specific types of algorithms which lends themselves to be
parallelized to a considerable degree GPU-acceleration will provide performance improvements. A topic
which has not yet received much attention from researchers is the effect in terms of performance when
applying GPU-acceleration to algorithms that while parallelizeable might not be so to an optimal degree.
The same holds true for the question of to which extent a common office workstation with an integrated
GPU benefits from GPU-acceleration.

• Can GPU-acceleration be used to increase computational performance for image processing algo-
rithms when using the integrated GPU available in a commodity desktop computer?

Image processing algorithms tend to be very suitable for parallel execution and can often benefit from
being run on a highly parallel processing unit like a GPU. It is already known that using a high-end
GPU to perform tedious filter processing or similar algorithms is beneficial but is an integrated GPU up
to the task.

1

• When does the potential benefits of utilizing the GPU for general purpose computation warrant
the increased complexity introduced to the development process?

While many algorithms has at least some minor potential for increased performance when implemented
with GPU-acceleration some can not be parallelized or doing so would come with such a great amount of
overhead that any gain in performance would immediately be lost. When determining the added value
of GPU-acceleration one also needs to account for the added complexity that multi-core programming
in general and GPU-acceleration in particular introduces to the software development process.

1.4 Delimitations

This report and the analyses herein will be limited to specific algorithms selected for the purpose of this
research. While the algorithms in question will be selected based on qualifications believed to allow for
extrapolation, variance in terms of how efficiently a given algorithm can be parallelized will still exist.
The authors of this report will make use of GPU-acceleration via the OpenCL framework to implement
two distinct type of computationally intensive algorithms, sorting and image processing algorithm(s).

1.4.1 Sorting

The results and conclusions of the sorting algorithm found in both the discussion and the results section
will be focused on how our GPU-accelerated sorting compares to our sequential implementation. The
authors does not intend to compare the implementation to any existing GPU-accelerated implementa-
tions.

1.4.2 Image processing

Much like the sorting delimitations, in the image processing part of the result section the focus will be
on comparing a GPU-accelerated image convolution algorithm to our sequential implementation. The
type of image processing that will be performed will be limited to image convolution with filters.

2

2 Background

This report is written as part of a bachelor thesis work at Linköping University at the Department
of Computer and Information Science(IDA). The work was conducted at Mindroad AB in Linköping,
Mjärdevi.

2.1 Hardware limitations

As has already been mentioned in the introductory section of this report, hardware designers are rapidly
approaching the limits of the processing power that can be harnessed from a single core [1]. In fact, when
talking about what is actually feasible in a home or office computer in terms of heat dissipation and
component size the aforementioned limit has already been reached. Up through the late 1990s processor
chip performance increased by roughly 60 percent annually, about 40 percent in the early 2000s and
down to about 20 percent by the year 2004 [1]. This steadily rapid decline in processing power gained
for the amount of time and resources spent developing new chips led CPU manufacturers down the path
of multi-core processors.

With multi-core CPUs comes the potential for increased performance, however not all programs and
their underlying implementation algorithms lend themselves well to being parallelized [2]. One of the
more prominent challenges facing software developers in the years to come will be to efficiently implement
their programs, taking advantage of all resources available to them. However an important aspect of
software development is being able to recognize when not to make excessive use of multithreading and
GPU-acceleration, as doing so could result in performance decrease instead of performance gain [2].

2.2 Craving for performance

With the great advances in single core computational performance that was had all the way up through
the 1990s consumers came to expect a certain amount of performance gain when purchasing new hardware
[2]. This consumer expectation coupled with previous years performance gains led to a very competitive
market where increased performance by any means necessary became the standard [1].

2.3 Computationally intensive algorithms

The barrier for how fast a human can calculate advanced mathematical problems was reached a long time
ago, computational hardware was needed to progress beyond this limitation. An historic example of using
computer algorithms to solve problems that required so much computation that they could not be solved
manually is the code breaking that occurred during the second world war [3]. This involved cracking
ciphers produced by the infamous enigma machine, a task that would not have been possible without
using early computers to sift through the millions of possible combinations. Since then computers have
evolved and their computational power increased enormously but even more calculation heavy problems
emerged as endless possibilities were discovered when employing this new type of hardware.

2.3.1 Sorting

A recurring problem in computer science is taking a list of unordered elements and generating a sorted
list containing those same elements [6]. While this could appear to be an relatively simple task when
the list contains a limited number of elements, creating an algorithm that remains efficient even as the
list grows in size is quite challenging. There are many types of sorting algorithms available, all different
from each other but there are some common principles that are followed.

One of the simpler sorting algorithms is bubble sort [7] which iterates from the beginning of the
list and pushes the larger elements back in the list by swapping the elements. If we find that the

3

element we are comparing with is larger than the one we are currently pushing back we stop pushing
the element forward and start pushing the larger element instead. This type of sorting algorithm is
called an “exchanging algorithm” because it exchanges an element in the list every iteration if needed.
Another type of sorting algorithm which is very similar is the insertion type of sorting algorithm. Instead
of continuously swapping elements it will iterate over the list and find the most suitable place for an
element and insert it at that place. The selection type of sorting is also quite similar. It iterates over
the list, finds the smallest element and puts it at the beginning of the list. This process is repeated with
the second smallest element and so on until the list is sorted.

The Divide and conquer [7] method on the other hand differs from the previously mentioned methods
in that it does not iterate over the list. It will instead repeatedly split the list up into several smaller
lists until the sorting problem becomes trivial, then it will gather the sorted pieces to form bigger and
bigger sorted pieces until we have a complete sorted list. The last common type of sorting algorithms are
the so called distribution sorting algorithms, they are usually not meant to sort a list by themselves but
they can be used to speed up another sorting algorithm by dividing the work into smaller problems. The
divide and conquer principle is the currently the most popular sorting method because it is a lot faster
than the other sorting methods mentioned above [7], although it is much more complex to implement
than for example a simple insertion sort algorithm.

2.3.2 Image processing

Image processing is computationally heavy because the datasets that needs to be iterated over are often
quite large [4]. When processing an image we often need to know information about each individual
pixel as well as the pixels surrounding it. The image manipulation performance problem is a non-trivial
one because the amount of pixels that needs to be iterated over can grow to an enormous amount rather
quickly. Luckily these kind of problems are usually very parallelizable but they are still computationally
heavy even if parallelized [5].

4

3 Theory

In this chapter the authors attempts to provide an overview of parallel computing, parallelizable al-
gorithms and the OpenCL framework as well as a brief look at the CPU and GPU. All of these are
important concepts to understand in order to appreciate the findings and analysis portions of this report
later discussed in the section 6.

3.1 Hardware Differences

Some combinations of hardware might perform better than other combinations depending on the type of
workloads involved. The reason for this is that the architectural design will differ from vendor to vendor
and even between product lines from the same vendor. Some hardware is designed to work efficiently
with large datasets, performing the same instructions on the whole set. Others are optimized for smaller
datasets, being able to perform more advanced instructions on them very rapidly.

3.1.1 CPU

The CPU is a processing unit using the Single Instruction Multiple Data (SIMD) [8] architecture, this
means that the processing unit can perform a single instruction on multiple data inputs. This type of
processor is often very fast when it comes to performing sequential instructions, it is not uncommon
to have clock frequencies of over three gigahertz(GHz). The drawback of the CPU design is that it is
a general purpose processor, i.e. it should be able to perform many different kinds of processing fairly
well. The downside of such a general purpose processing unit is that it likely will not perform as well as
optimized hardware even if it running at a faster clock frequency [9]. On the other hand however it is
very easy to develop for due to its versatile performance.

3.1.2 GPU

The other major type of processing unit is the GPU, which uses the Multiple Instruction Multiple Data
(MIMD) [8] architecture instead of the SIMD employed by the CPU. This architecture can perform
multiple instructions over multiple data inputs during a single clock cycle. Processors with this type
of architectural design are usually called vector-processors because they are optimized to work with
vectorized data structures. The clock frequency of this type of processor is generally not as fast as
that of a SIMD processor, typically about five hundred to one thousand megahertz(MHz) depending
on the manufacturer. The GPU is not as general purpose as the CPU but will often perform very
well in its dedicated areas, these consists of handling large datasets and performing parallel tasks. The
parallelization level that can be achieved on a GPU is far greater than that of the CPU and herein lies
the strength of GPU-acceleration. A caveat of this being that poorly parallelized algorithms will often
be slower on the GPU than a sequential implementation of the same algorithm on the CPU.

3.1.3 Integrated VS discrete

GPUs comes in two form factors, integrated and discrete. The integrated GPU is usually placed inside
the CPU die to form an APU [10]. It should be noted that while APU is the proper term for this type
of hardware where the CPU and GPU exists on the same die, some vendors, most notably Intel will still
refer to this type of product simply as a CPU. The smaller integrated GPU is typically not meant to be
particularly powerful, instead they are designed for low power consumption and to be small enough to
fit on the same die space as the CPU. On the other hand the discrete GPU has the whole die to itself
and can therefore be designed to be able to do more advanced and faster calculations compared to an
integrated GPU.

5

The type of memory used also differ between the two [10], the integrated GPU is primarily using the
systems own memory resources and will therefore often have a larger albeit not as fast a memory pool as
the discrete GPU to work with. The discrete GPU is more often than not supplied with specialized high
bandwidth, low latency memory. This memory is expensive and that is the reason for the integrated
GPU memory pool not being as big as the system memory. When developing software one needs to be
aware of one’s target audience and what type of system this group will use to run the program. This is
because the optimizations and design of the program differ a lot depending on what hardware the end
user has in their machines.

3.2 Parallel computing

The term “Moore’s law” was coined in 1965 and describes the advancements in computational perfor-
mance and how it will double every two years. Up until the late 1990s this performance increase came
in the form of putting more transistor onto a single chip [1]. As it turns out however it is not feasible
to keep on adding more transistors forever. When hardware manufacturers began to push against the
limits of how much performance could be had from a single core multi-core development really caught
on. This trend lead to the ubiquitous adoption of parallel computing we see today and the massive
increase in compute power available.

There are two main methods for utilizing multi-core processors, the first is having a Message Passing
Interface(MPI) [8], which is very scalable, allowing the program to distribute the workload over several
different machines. This is because the messages are passed between the connected computers via a
network interface that is very easy to scale up and distribute, the computers does not even have to be in
the same buildings to be able to cooperate efficiently with each other. The second method is the Shared
Memory Architecture(SMA) [8], this method shares some of the data between the threads running in
the system. The data is shared via a global memory which all threads can access. This method does
not scale as well when using multiple interconnected systems [8].

3.2.1 Multithreading

To get greater performance out of a multi-core processor a programmer can make use of multiple threads
to perform different operations. One of the problems inherent to multithreading is two or more threads
manipulating the same data at the same time. This is solved by means of concurrency control which
is crucial for any application using more than one thread [8, 10]. To implement concurrency control a
software developer places locks and semaphores around data that several threads will want to access as
this could potentially cause problems if these threads were to access the same data simultaneously.

3.2.2 Specialized hardware

The general purpose CPU is as its name indicates made for general purpose computations, which means
that it is not specialized to only do one thing like for example an accelerator card specialized for physics.
Therefore it will often not perform as well as a dedicated hardware solution like a Nvidia Tesla card [11]
when performing computation for large scale physics simulations. These massive parallel calculations
would take a much longer time to execute on the CPU. Some of these dedicated hardware cards can
accelerate all manner of scientific applications, from protein folding to advanced physics simulations.

3.2.3 Clusters/Supercomputers

When a single machines compute power is not enough, not even if the system contains multiple powerful
cores, a cluster can be made to boost the performance. A cluster is a group of computers [8] connected
via a network that allows them to communicate with each other and thereby form a supercomputer

6

that consists of multiple compute cores and that has a tremendous amount of primary memory. Due to
the separate nature of the systems a message passing interface is required to allow parallel programs to
utilize all the available compute power[8].

As an example a cluster can easily perform massive weather simulations where the map is divided
into sections and one computer in the cluster might have one or more sections of the map that it is
responsible for. The computers then send their results to its neighbors and depending on what their
response is decide how the weather should change in its own section for the next iteration of the process.

3.3 Parallel problems

Solving problems faster without upgrading one’s hardware is possible. You can sometimes split a larger
problem down into several smaller problems which can then be solved concurrently instead of sequentially.
This is what is referred to as a parallel problem, but not all problems are as inherently parallel as others.
Some problems can not even be effectively parallelized due to the subtasks involved being strongly
dependent on information about each other [10]. There are two main groups of parallel problems, data
parallel problems and task parallel problems [10].

3.3.1 Data parallel

These types of algorithms can be executed in parallel due to how the data that is iterated over is
structured. The data has to be structured in a way so that each parallel process does not write to
another processes data without them being synchronized. Examples of algorithms that are generally
data parallel in nature are image processing algorithms and vector math algorithms. One of the hurdles
associated with these types of problems are memory constraints [10]. In fact when implementing efficient
data parallel algorithms one will often find that so many operations can be done in parallel that the
memory bandwidth is the limiting factor.

3.3.2 Task parallel

When an application run more than one algorithm and these algorithms do not rely on shared data, these
tasks can be run in parallel to achieve better performance. The problems with these types of algorithms
is that they usually need to be synchronized with each other at some point [10]. This is where load
balancing comes into play. Load balancing refers to the act of actively distributing the workload over
the available resources in an effort to avoid bottlenecking the performance. This means that the order
in which the tasks are being run is a limiting factor in regards to performance [2, 10]. Finding the right
sequence in which to run the tasks for maximum performance is left to the developer optimizing the
implementation.

3.3.3 Embarrassingly parallel

Some algorithms are referred to as being embarrassingly parallel, the embarrassing part in these algo-
rithms comes from the fact that they are well suited to a parallel implementation and does not necessarily
relate to the amount of developer time spent implementing the algorithm [2, 10]. Generally what makes
an algorithm embarrassingly parallel is a very limited need for communication between processes.

When we have a problem that could be solved with an embarrassingly parallel algorithm the new
limiting factor is the supporting hardware [2]. In this case one need to consider how large a portion
of the problem that is allocated to each process so that the hardware can work at an optimal level, if
the portion is to big the level of parallelization is to low and we can not fully utilize the hardware. On
the other hand if the portion is to small there will be overhead caused by the excessive scheduling and
launching of threads[10].

7

3.4 OpenCL

The need for a common standard of how to handle heterogeneous systems were needed as it became
increasingly common to have multiple processing elements in a single computer [1, 10]. The development
of OpenCL [12] began in June 2008 by the Khronos group and representatives from CPU, GPU and
embedded-processor companies [12]. About 14 months later in August of 2009 version 1.0 of the OpenCL
framework was released for public usage. The standard is meant to make development of programs that
utilizes heterogeneous systems easier. The concept of the OpenCL framework was conceived by Apple
who has retained the rights to the OpenCL trademark. Today’s systems contain all sorts of different
hardware, ranging from GPUs to field programmable gate arrays(FPGAs), hardware that often is not
utilized to its fullest. The framework API is based on the C99 standard but wrappers exists for many
other popular programming languages like C++, Python and Java [12].

As of today, the 1.2 version has gained widespread support among several major hardware vendors
such as AMD, Nvidia and Intel, with most devices released by said vendors being compatible either
with it or the previous version 1.1. Driver support for a new version is sometimes released a little slow.
Currently OpenCL version 2.1 is released but support for this version is still lacking. Version 2.0 is
supported by AMD, which are at the forefront when it comes to having OpenCL compatibility for their
hardware. Intel now supports OpenCL version 1.2 on most of their new devices and has some prototype
drivers for version 2.0 while Nvidia is only supporting version 1.1 on most devices and version 1.2 on
some newly released devices.

3.4.1 Model

The OpenCL model provides a visualization of the computer system [10, 12]. In this visualization the
CPU is referred to as the host, the coordinator of the computer system. The other hardware components
in the system are devices, like graphics cards or other forms of dedicated accelerator cards. Each device
has one or many compute units which can run a workgroup. Each of these workgroups consists of several
work-items and each work-item represents the thread that actually executes on the device. The compute
units contain one or many processing elements which the work-items utilizes. The source code for the
operations performed by a work-item is called a kernel. This kernel code is compiled at runtime, while
this runtime compilation does add some overhead to the application, it gains the ability to dynamically
adapt to its environment and the same application can run efficiently on different types of hardware. An
abstraction of this model is shown in figure 1.

3.4.2 Platform

OpenCL is a framework for enabling multi-core acceleration of CPUs, GPUs and other types of accel-
erators. While there is a defined C-style language API available when developing software that makes
use of this framework the backend implementations of these API calls are left up to each individual
hardware vendor [5, 10, 13]. A platform in the simplest sense is this vendor specific implementation of
the OpenCL framework and it is through this layer that the host will communicate with the available
devices. Because of this all platforms may not be compatible with all devices, this is especially true for
devices manufactured by a vendor other than the platform developer [10]. Once the correct platform for
the device one wishes to target has been selected it will be used in the creation of a context.

3.4.3 Context

This structure is the bridge between the host and the device in terms of memory [10, 13]. Here we can
manipulate what data is allocated on the device and also get information about the current configuration
of the devices in the context. Setting up the kernel arguments and output memory is also done in this

8

Figure 1: OpenCL model abstraction

structure. The context can be configured in several different ways. If we have several devices in the
system we can create a context for all of them at the same time if they are in the same platform otherwise
this is impossible to do. The other choice is to have different contexts for each of the different devices.
Having either a single or multiple contexts is dependent on the design of the kernels and how they are
run. If we need the CPU and GPU to cooperate we create a context containing both these devices[10]
if it is possible. To have them in the same context often makes the development process easier because
now we do not need to move data between the two if we were to share data.

3.4.4 Device

In OpenCL a device is the physical hardware represented as an abstract data structure [10, 13]. The
information in this structure includes but is not limited to, the number of compute units it contains, the
prefered workgroup size multiple and the maximum number of work-items per workgroup it supports.
A device is primarily used to initialize the command queue and context. The information contained in
this structure can used by programmers to optimize the algorithm for specific hardware [10, 13].

3.4.5 Command queue

To utilize the devices accessible in a given context we need a separate command queue for every device
in the context [10, 13]. With this structure we can queue up kernels to be executed as well as setting
the allocated buffers in the context to contain data of our choosing or send commands to the device to
activate different features such as out-of-order execution if the device supports this feature. The benefit
of performing out-of-order execution is that it improves load balancing by maximizing the utilization of
the GPUs functional units. The drawback of out-of-order execution being that the developer manually

9

has to ensure that operation dependencies are satisfied before execution [10]. When the execution of a
kernel is completed we can then retrieve the data from the buffers to which it was allocated.

3.4.6 Memory

There are four different types of memory in OpenCL [10, 13, 14]. These four types are global, constant,
local and private memory, this memory hierarchy and its connection to the host memory is illustrated
in figure 2. All these types are found in different locations on the hardware and are handled in different
ways. First is the global memory which is the shared memory buffer that all work-items are able to
access. This memory is the slowest in terms of access speed but just because it is the slowest of the four
does not mean it should not be used. Big data structures can be saved in this memory as well as data
that needs to be shared between all the work-items. Second is the constant memory which is a special
type of global memory. The data stored there can as the name indicates only be read from and not
written to. In some hardware declaring a data structure as a constant will allow caching of the data and
speedups may be gained compared to only using standard global memory.

Local memory, the third type, is much smaller than the global memory and is only shared between
work-items in the same workgroup. The benefit of using this memory is speed, it is much faster than
the global memory. The problem here is that if the workgroup uses too much of this memory it will be
cached in the global memory and will therefore lose most of the speed that we were trying to gain by
using it. The fourth and final type of memory is the private memory which is used exclusively by the
work-item itself. This memory can not be shared in any way and usually consists of several different
registers close to the physical core. Much like local memory, private memory is quite limited in terms of
size, a work-item attempting to use more memory than is available will result in a loss of performance due
to data being cached to global memory instead. Because of this the kernel should not use an excessive
amount of private memory as this could have a severely negative impact on performance [10].

Figure 2: OpenCL memory hierarchy

10

3.4.7 Events

Events in OpenCL is a feature that allows the developer to ensure proper synchronization for operation
execution [10, 13]. When one of several different enqueue commands is issued via a command queue an
event is created, after the enqueued operation has been carried out the event will call back to inform that
the operation has been completed. The OpenCL enqueue commands all take an optional parameter of
event type. Utilizing this parameter when issuing commands via the command queue we can inform the
host that the issued command is dependent on another operation and should not be executed before the
callback from that operations event has received. This method of synchronization is referred to as event
chaining and should primarily be used when the command queue is set to run out-of-order executions.

3.5 Performance optimizations

Implementing an algorithm with OpenCL is often not particularly difficult but making it run fast and
efficiently in a manner that utilizes the available hardware resources to its full potential is another matter.
There are currently several vendors with many different pieces of computational hardware available on
the market. All of which prefers different types of optimizations be it in how they handle memory
operations or in what data type is used in calculations.

3.5.1 Memory management

The first problem a developer faces when implement an algorithm in OpenCL is choosing how to handle
the memory access patterns of the algorithm. The hardware might prefer reads of a specific size and
pattern to perform at peak capacity. In order to utilize the memory efficiently, techniques such as data
padding were useless junk data is interspersed together with the real data in order to ensure optimal
read access might be used. Such techniques are very hardware dependent but should be considered if the
application is only targeted to run on specific hardware. If one manages to find the ideal implementation
for the targeted system, a substantial speedup may be gained. Using data types that are vectorized can
also boost performance [10]. The memory bus is often capable of transferring large amounts of data as
long as it is contiguous. The positioning of the data is also important, if you can use a memory module
closer to the core then it is usually better to move data to it and use it from there if the data is to be
accessed many times. Otherwise it will just bog the performance down. Another thing that is crucial
to remember is that if we have a discrete GPU we do not want to use the systems own memory due to
it being slower compared to the accelerator cards dedicated memory. However if the GPU is integrated
within the CPU we can perform a so-called zero-copy [13] and thereby not creating an extra instance of
the data in memory just for the GPU, minimizing the startup and teardown time of the operation.

3.5.2 Workgroups and work-items

Problem number two is determining an optimal workgroup size. The hardware manufacturer will recom-
mend a preferred workgroup size multiple for all OpenCL compatible products. While this workgroup
size is unlikely to be the optimal one for any given algorithm it will often perform decently well regardless
of what hardware and kernel program you might be using. There are instances where the default pre-
ferred workgroup size multiple will greatly underperform [15], in these cases the design of the algorithm
being used is most likely the main cause of this. The hardware usually performs well when using a
workgroup size close to the recommended one, one power up or down usually results in a minor increase
or decrease in performance. Setting the workgroup size to be at or close to the available minimum or
maximum is usually a bad idea as this will often cause the algorithm run slow or not at all depending
on the implementation [14].

11

3.5.3 Algorithm design

The third and final problem is the design of the algorithm itself. When first writing the loops and
statements the code might look good on the screen but the compiler could have trouble optimizing the
algorithm for the hardware [16]. The performance might be decent but if one more thoroughly inspects
the degree to which the ALUs are utilized, one sometimes realize that the processing unit is only using
a fraction of the compute power at its disposal. This could mean that the algorithm is memory bound
and an alternative implementation, possibly using manual loop unrolling might be preferable [10]. The
choice here is to either alter the way memory is handled or rethink how the algorithm works on the data.
Changing to a more preferable data type like a vectorized one might be beneficial as doing so makes
better use of the wide memory bus that is often available for data transfer between the global and local
memory. Thereby having more data for the ALUs to process which will often lead to a higher utilization
level of the device [10, 13].

3.5.4 Conclusion

Writing a parallel algorithm using OpenCL is often not exceedingly hard depending on the problem. To
write an algorithm that utilizes the hardware’s resources in an effective way requires extensive knowledge
of the hardware used and many of the features in OpenCL. Although depending on the algorithm the
most common way to have the algorithm run fast is just to choose a good workgroup size that will
perform well on the targeted hardware.

Some other things to consider when designing an algorithm is that IF statements should be used
with care because the GPU is not as good at handling branch misses as the CPU because of the lower
clock frequency and therefore the penalty is much bigger [10]. A branch miss is when the processing unit
makes a faulty guess on what code is supposed to be executed which happens often with IF statements.
There are some other things that one should keep in mind as well and that is to unroll loops if possible,
store small variables in local or private memory if possible because it is much faster than the global
memory.

12

4 Method

In this section the authors will describe in detail the approach taken both in the algorithm selection
process as well as in the implementation of said algorithms. A rundown of the hardware utilized for the
implementation and benchmarking as they pertain to this thesis work will also be provided.

4.1 Algorithm selection

In order to provide a varied and representative analyses of GPU-acceleration on traditionally sequentially
executed algorithms two distinctly different types of algorithms have been selected. The first type is
a sorting algorithm, this type of algorithm was chosen as the sorting of data is a common problem in
software development and computer science in general as many algorithms will make use of and depend
on an efficient sorting component. At the behest of the company for which these analyses are carried
out at least one of the selected algorithms should relate to either signal or image processing. Therefore
the second type of algorithm chosen relates to image processing. The reason for this being that this type
of algorithm is expected to provide significant performance improvements if implemented in parallel [4]
even on an integrated GPU.

4.1.1 Sorting algorithm

Finding a sorting algorithm that could not only be parallelized but also stands to benefit from a parallel
implementation was the first task of the selection process. Finding sorting algorithms that could be
parallelized proved not to be particularly difficult. Almost all divide and conquer type algorithms can be
parallelized in some manner but finding an efficient way to maximize the number of concurrent threads
working on the same list is more challenging.

The first algorithms that were considered were bucket sort and merge sort [6, 7]. Bucket sort was
considered a good fit for parallelization due to its distributed nature. The algorithm employs a distribu-
tion type of sorting which as the name implies distributes the list into smaller lists that can then later be
sorted more efficiently. Bucket sort is usually implemented together with another sorting algorithm that
sorts the buckets(the smaller lists), because it is less efficient when implemented by itself as it consumes
too much memory due to recursion. Merge sort is a divide and conquer type of sorting algorithm. The
essence of how it functions is dividing the list into equally sized smaller pieces until the sorting becomes
trivial e.g. the pieces are split to the point where they only contain a single element. Then the algorithm
starts to merge the elements in a tree like structure starting with the two first elements in the list. These
two elements now form a small list of sorted elements. It will do the same to the next two elements in
the list and merge them together to form a list of four elements, and so on until the list is completely
sorted.

The problem with parallelizing the bucket sorting algorithm is the insertion into buckets. These
buckets can only be accessed by one thread at a time, there may be many buckets and there needs
to be synchronization when inserting into them. This will hinder the performance of the algorithm
substantially. Merge sort on the other hand is a better fit for parallelization. As already mentioned
the algorithm is a divide and conquer type algorithm which works by splitting the problem into smaller
chunks that are easier to solve. Each of these small chunks can be run concurrently and thereby we can
achieve a high level of parallelism.

During the literature study as we came to understand the pros and cons of the algorithms we con-
cluded that bucket sort was not an ideal algorithm to parallelize. We turned our attention instead to
merge sort that while more challenging to implement showed more potential for parallelism. There are
already existing parallel merge sort algorithms, a prominent example of which is bitonic merge sort [17].
Bitonic merge sort is a parallel sorting algorithm that uses a fixed comparison network to sort the list,

13

otherwise the sorting algorithm is very similar to the standard merge sort algorithm. In the end the
standard merge sorting algorithm was selected to be implemented because of the time spent on the prior
study of the algorithm and thought that had gone into it when trying to figure out how to utilize the
memory properly when parallelizing the algorithm.

4.1.2 Image processing algorithm

The type of image processing algorithm select is with image convolution with filters [10, 18], a form of
image processing that lends itself very well to being parallelized. The reason this type of algorithm is
so well suited for a parallel implementation is that operations are performed on each individual pixel
of the image and only limited information about the surrounding pixel values are needed. How limited
is decided by the size of the filter matrix employed, for certain types of filters a simple 3x3 matrix
will suffice, for others either a fixed larger masking matrix or one of varying size may be preferable.
Oftentimes using a larger size filter can enhance the desired effect. This is illustrated in figure 3 where
a sharpness filter of varying size is applied to an image.

(a) Original image (b) 3x3 sharpen filter (c) 5x5 sharpen filter (d) 11x11 sharpen filter

Figure 3: A sharpness filter of varying size applied to an image (public domain image used)

The size of the filter used in combination with the resolution of the image it is applied to will
determine the execution time of the algorithm. With the image resolution determining the amount of
pixels and the filter size how many operations per pixel need to be performed.

The effect of the filters will also depend on the resolution of the image to which it is applied, a 3x3
box blur filter matrix will provide a slight uniform blurring of a 480p resolution image that is even more
subtle than the effect shown in figure 6. Using the same filter on a 4K resolution image will make for a
much more minute effect meaning that with some types of filters the filter size needs to increase in step
with the image resolution. For other types of filters such as edge detection the application of a small
filter on a large resolution image will still yield the expected result.

4.2 The hardware

In order to provide the reader with the requisite information needed to either replicate the findings
presented in section 5 or to facilitate drawing their own conclusions, the authors will give a brief rundown
of the systems used for this thesis work.

4.2.1 Intel i7-4790 CPU

The Intel i7-4790 CPU [19] is one of the fourth generation i7 processors from Intel. This model is a
desktop variant with a locked clock frequency of 3.6 GHz but can boost up to 4.0 GHz when needed,

14

although not all cores at once due to thermal limitations. The stepping schema of the processor is
2/3/4/4 which represents how many extra multiples the cores can boost compared to the Front-Side
Bus(FSB). The first number represents how many extra multiples all cores can have, the second is how
many half of the cores can have i.e. 4 cores on this particular processor, the rest of the schema follows the
same pattern. The processor is equipped with 4 physical cores and Intel’s Hyper-Threading Technology
so the core count the user actually sees are 8. The memory configuration on the chip is an 8 megabytes
of level 3 cache that is shared across all cores. The level 2 and level 1 cache is separate to each physical
core with a size of 256 kilobytes and 32 kilobytes respectively. The level 2 cache is the cache that
OpenCL sees as the local memory of each compute core and the first and third level is only handled by
the hardware itself.

The OpenCL implementation for this processor sees 8 compute cores that has a maximum number
of 8192 work-items in a workgroup per compute core [20]. The recommended workgroup size multiple is
128, which is quite high compared to that of discrete graphic cards.

4.2.2 Intel HD Graphics 4600 GPU

The Intel HD Graphics 4600 GPU [19, 21] is an integrated graphics processor designed to be a low power
unit that runs at a clock frequency of 350 MHz. The processor will dynamically boost its clock frequency
when needed, up to 1.2 GHz. Thereby making the chip perform better when needed while at the same
time keeping power consumption to a minimum during low utilization. The are a total of 20 compute
units in the GPU and each compute unit contains two Floating-Point Units(FPUs) which can perform
one addition and one multiplication concurrently. The FPU handles both integers and floating-point
values equally efficient. The SIMD width is the number of concurrent instructions that can be performed
on GPUs. The Intel HD Graphics 4600 has a SIMD width of 4 but Intel has implemented an advanced
SMT architecture that allows for dynamic scaling up to a width of 32. The memory on the GPU is
divided into three levels of cache that is accessed via a 128 bit wide bus which makes transfers of 64
byte data reads and writes in a single clock cycle possible. The first and second levels of cache the
programmer has no control over as they just cache data that is often accessed. The third level of cache is
a 256 kilobyte cache that stores data for each separate slice. A slice is a subdivision of the GPU’s total
compute units which is a group containing 10 compute units. The Intel HD Graphics 4600 as a whole
contains two slices and other models can have up to 4 slices. These two slices share a common cache
of 64 kilobytes per slice making for 128 kilobytes of common storage for the Intel HD Graphics 4600
model. The hardware supports up to 7 threads per compute unit which means that for each slice there
is support for up to 70 hardware threads to be run concurrently. So on the whole chip 140 threads can
execute concurrently. Each hardware thread can run up to 32 different software threads e.g. work-items
in OpenCL this enables us to run a total number of 4480 work-items concurrently.

Taking all these specifications into consideration when implementing the algorithm is vital as they
impose a number of limitations on our implementation. The first limitation is the memory size, a good
data fit is crucial so that the cache can work as optimally as possible without needing to bounce data
to a higher level of memory. Because of this each workgroup should not use more than 256 kilobytes
of local memory. The transport of data back and forth from global to local memory can also be made
more efficiently by moving data 64 bytes at a time. Workgroup size needs to be carefully selected, a
workgroup size of 32 would likely be preferable due to the hardware limitations and the multithreading
capabilities of each compute unit. Although depending on the design of the algorithm this number
could be adjusted to better fit the implementation. The last limitation to consider is to ensure that
there are enough work-items executing concurrently. Using a number of work-items that is a multiple
to the number of hardware threads is likely a good choice to ensure an even load across all cores. So the
workload needs to big enough and heavily parallelized to be run efficiently.

15

4.3 The software

The algorithms that were selected for this thesis work and which implementations are described in this
report was developed on machines running the Windows 7 operating system with all essential updates
released until this point in time installed.

The C/C++ compiler used during the development of the aforementioned applications is the 64-bit
MinGW compiler version 4.9.2 with posix threads [22].

Intel’s OpenCL Code Builder[23] version 1.4.0.25 64-bit version was used extensively to compile and
analyze the performance of the kernel code. The reason behind using a third-party program to compile
and test kernel code is that an OpenCL application always builds its kernels during runtime, meaning
that a kernel either executes or it does not, with no way for the developer to know why it did not. This
proved very useful for catching common mistakes such as syntax errors and to verify that the kernels
behaved as expected during execution time.

The implementation of the image convolution algorithm makes use two third-party libraries, CImg
[24] and Image Magic [25] in order to facilitate loading of file formats such as jpg and png into memory
as well as enabling the writing of the processed images to disk.

4.4 Implementation

In this section the authors will describe in detail how the selected algorithms functions and how they were
implemented with the OpenCL framework. When applicable several different versions of the algorithm
will be brought forward to have its pros and cons examined together with an explanation of why it was
deemed either suitable or unsuitable for a parallel implementation.

4.4.1 Merge sort

The main principle behind merge sort is that we divide the sorting problem into smaller parts until the
sorting problem is trivial to solve, i.e. the small sublists are of size one and then the sublist is sorted by
definition. When we have many smaller lists we can now merge them in pairs in a tree like structure and
put the smallest element of each merging pair first. Doing this for all the pairs will result in an sorted
list. The implementation of this can be done in several different ways, below are some examples of how
we implement the merge sort algorithm.

4.4.1.1 Recursive

Figure 4: Recursive merge di-
viding sequence

One of the simplest and probably most näıve way to implement a se-
quential merge sort is by utilizing recursion. To implement this we need
two different functions, the first function divides the list into smaller
sublists if the sublists are not of size 1 because then they are considered
to already be sorted. We divide the list into left and right tree branches
with their own memory pools as demonstrated in figure 4.

When we have divided down to the bottom of the tree and we
have sorted sublists of length 1 we need to merge them. Here comes
the second function of the implementation, this function merges two
sublists together. The merging is pretty straight forward, we allocate
a result list that has space for both of the lists and goes through both
lists and picks the smallest element in each list and inserts it into the
result list. Continue this procedure until one of the lists are empty and then insert the rest into the
resulting list. Then due to the recursion we will bounce up the whole tree of functions and after the last
bounce we have a sorted list.

16

The implementation of the recursive method is not hard to follow or to implement if you are familiar
with how recursion works. The main downside to the algorithm is that it uses a lot of extra memory
compared to the amount of memory needed for the original list. The constant allocation of new memory
space will take some time and the utilization of the CPU will not be very high because this algorithm is
mostly bound by the speed of the installed main memory on the system and how the operating system
allocates memory to the process. Also some overhead will occur as a result of the many nested function
calls.

4.4.1.2 Iterative with swap

An iterative version that utilizes nested loops instead of recursion is usually beneficial because it avoids
the overhead of multiple function calls caused by a recursive algorithm. Also an iterative algorithm is
much easier to parallelize than a recursive algorithm.

Figure 5: Iterative merge sort with swap

Now we will describe an iterative version of merge
sort. In this iterative version we maintain a swap buffer
that is used for storing the first half of all the merge
sections. A merge section is a part of the list that is
going to be merged into one bigger sorted section as
shown in figure 5. It consists of two smaller individually
sorted equally sized lists.

Step 1: The algorithm copies the elements in the
first half of the merge section and puts the them into the
swap buffer at the same index they had in the original
list. Then the same procedure is done for all the others
merge sections in the list.

Step 2: After the copying is finished we begin with
the first merge section and merge the element from
the swap buffer with the second half the merge sec-
tion. This process is repeated until there are no merge
sections left to merge.

Step 3: Then this process is repeated but the
length of the merge sections are now doubled. This loop is run until the procedure has been per-
formed with a merge section that has the same length as the complete list at which point the whole list
is sorted.

By using this swap buffer instead of repeatedly allocating new memory for the merge sections the
performance will increase and the memory usage decrease significantly. Although implementing the swap
buffer rather than just allocating new memory is a little challenging, having the memory set up in this
way will facilitate the implementation of the parallel algorithm.

4.4.1.3 Parallel implementation

By using the iterative version with swap as a base for the parallel version we can distribute all the merge
section operations over the dispatched work-items. Thereby having a parallel algorithm where all merge
sections are merged in parallel instead of sequentially. The merge section that a work-item is supposed
to work with is calculated by having its thread id multiplied by two. A check is performed and if the
offset corresponds to the index of the first element in a merge section we will perform a merge otherwise
the thread will terminate its execution and do nothing this merge session. This is to ensure that only
one thread merges the section.

The swap buffer is implement in the same manner as in the iterative version but we now can directly
get the offset that we are supposed to work by using the one we just calculated. When the first half of

17

the merge section is copied to the swap buffer we can start to merge the sections together. This is also
fairly simple just like the swapping due to the already designated offset. Then after we have merged, all
work-items needs to be synchronized to be able to begin the next run of swapping and merging with a
greater length of the merge section. How the kernel is implemented is shown in listing 1.

ba s i c merging ke rne l ()
{

i f (my p o s i t i o n i s f i r s t in the merge s e c t i o n)
{

copy f i r s t h a l f o f the merge s e c t i o n to swap b u f f e r

while (s u b l i s t s are not empty)
{

merge the s u b l i s t s and i n s e r t i n to the l i s t
}

while (swap b u f f e r i s not empty)
{

put r e s t i n to the l i s t
}

}
}

Listing 1: Basic parallel merge sort pseudocode

This was the first implementation of our parallel merge sort. The problem that we encountered
was that the kernel execution time can not exceed two seconds otherwise the Timeout Detection and
Recovery (TDR)[26] daemon process will reset the drivers for the GPU and our kernel will halt its
execution. Because of this we need to divide the later merge sessions into smaller chunks. The maximum
number of merges that were allowed to be performed without hindering the performance of the earlier
merge sessions but still prevent the halting of the later ones needed to be calculated. This was done by
measuring the time each merge session took when performed with the basic implementation. After some
measuring we decided to set the maximum number of elements that could be merged in a single chunk
to 1/128 of the total list size. The merge chunk then took a little under half a second to be performed.
This allows us to perform the merging within the time limit imposed by the TDR even on lower end
hardware.

This solved the calculation part of the problem, during the first iteration of every chunk session we
copied all the needed data to the swap and this took a considerable amount of time and we constantly
hit the execution time limit even when having a relatively small merge size. The final version of the
implementation takes the copy problem into account by using a separate kernel that only is used for
copying the needed elements to the swap buffer. This can be done in parallel by having knowledge of
the thread id and the current length of the merge sections. By doing this we minimize the time spent
copying, also the kernel execution time goes down as it does not need to handle the copying. This
enabled us to use a larger the chunk size, this will increase the performance by not having to save the
state of the sorting as many times. The pseudocode of the final version is shown in listing 2.

One benefit with having the implementation in OpenCL is that we are not confined to only use the
GPU. It is also possible to use the CPU in parallel, although the parallelism in this implementation is
too fine-grained for the CPU to execute efficiently in the first merge sessions, but this implementation
will work on both processing units.

18

chunking merge ke rne l with e x t e r n a l copy ()
{

i f (my p o s i t i o n i s f i r s t in the merge vec to r)
{

i f (we are in a chunk)
{

get where we stopped l a s t time
}

while (swap b u f f e r i s not empty)
{

merge the s u b l i s t s and i n s e r t i n to the l i s t
}

while (we have not i n s e r t e d the chunk s i z e number o f e lements from swap)
{

put e lements o f swap in to l i s t
}
save our s t a t e in the s o r t i n g proce s s

}
}

Listing 2: Chunking parallel merge sort with external copy pseudocode

4.4.1.4 Parallel implementation optimization

The choice of workgroup size is one of the first optimizations that should be done when the kernel code
is finished, Intel recommends a workgroup size of 32 for the Intel HD Graphics 4600 which should be a
good starting point. Although after some testing with the workgroup sizes we found that 32 runs well
compared to most other sizes, a workgroup size of 16 runs faster with the implementation of our merge
sort kernel on this specific hardware. The copy kernel on the other hand did not run as well with a
workgroup size of 16 but performed very well with a workgroup size of 32. The execution time of the
copy kernel is very short compared to that of the merge kernel so optimizing this kernel is not a priority
as the impact will not be very significant.

The copy kernel is a solution that takes care of the problem with halting kernels caused by the
sheer amount of copying that had to be done during the later merges. It is also a minor accidental
optimization as it increases the parallelism of the copy sequence. The most basic merge kernel handled
the copying to the swap buffer per work-item that were going to execute a merge. The copy sequence
quickly became a bottleneck but it was not that hard to parallelize the copy across all work-items. The
only catch is that the copying needs to be synchronized across all work-items and the only way to do this
is to queue up multiple kernels where all work-items are synchronized between the executing threads as
there is no way to synchronize between workgroups. The number of threads dispatched for this kernel is
equal to half the size of the original list. The kernel copies two elements from the list to the swap if the
thread’s id is within the first sublist in a merge section. Thereby the kernel is running highly parallel
and when a whole workgroup is within a sublist they combined copy 64 bytes of contiguous data which
is what the hardware prefers, this will result in an efficient and fast copy. Pseudocode for this kernel
implementation is shown in listing 3.

19

copying ke rne l ()
{

i f (my p o s i t i o n i s in f i r s t part o f the merge vec to r)
{

copy 2 elements from the l i s t to the swap b u f f e r
}

}
Listing 3: Parallel copy to the swap buffer pseudocode

Most of the execution time spent in the merge sort is in the last few merge sessions when we can not
utilize the whole GPU to its full extent, about 7% of the total execution time is spent when the GPU is
performing at its peak and the remaining 93% is when it is underutilized. These numbers were calculated
from the execution times presented in appendix F. This underutilization is the implementation’s main
bottleneck and it is a problem that as to be solved if the GPU is to competitively compete with the
CPU. One possible solution is the use of cooperative merging in the later merge sessions. This would
mean that the GPU would be utilized to a higher degree and this would greatly improve performance.
The cooperation can be done in several different ways, some more complex than others. A version of
cooperative merging has been described in [27]. In this thesis we implement a slightly modified version of
this algorithm, below we will describe our implementation and the modifications made as well as briefly
explain the standard cooperative merge sort algorithm.

The algorithm described in [27] works by splitting up the list into equally sized chunks that are then
sorted. Then we use binary search to find where the splitting elements can be inserted into the other list
and save that position. When we have done this for the complete list we have pairs of small sublists that
can be individually sorted, with this algorithm many threads can concurrently operate on one merge
section. The problem is that it is hard to understand and too complex to implement for this project.
Our modified cooperating merge only uses two threads in one merge section instead of many. By having
this simplification we can get a merge kernel that merges the two sublists from both the front and the
back concurrently. The two threads will merge until they have processed half of the merge section each.

This optimization raised the degree of parallelism in the kernel which in turn lead to a huge perfor-
mance increase. The copy kernel also needed to have some modifications done to it in order to be used
with the cooperation kernel. The copy kernel is now copying the whole list to the swap buffer because
of concurrency issues introduced by the cooperation. This is a problem in the multithreaded merging of
the cooperation algorithm as there will be two threads writing to and reading from the list at the same
time during the merge. By having the entire list in the swap buffer both threads can safely write to
their own half of the merge section while remaining sure that the data read from the swap buffer is not
modified by the other thread.

To conclude the optimization of the kernels the choice of workgroup size can largely dependent on
the hardware and how the algorithm is designed. The use of local or private memory is in most cases
be a good way to minimize the amount of reads and writes to global memory. The biggest improvement
that can be achieved in most cases is to raise the degree of parallelism if it is possible.

4.4.2 Image processing

Using image convolution with filters we can manipulate an image using a constant algorithm to achieve a
plethora of different outcomes based almost entirely on the filter being applied. Because of this potential
diversity almost all modern image manipulation software these days allows the user to apply these types
of filters to their images, this allows the users to instantly and drastically alter their images in a uniform
manner. To demonstrate this technique we present an image passed through a 5x5 box blur filter in
figure 6.

20

4.4.2.1 The basics of image convolution

There are a multitude of ways to store images in memory depending on the basic format used, which
kinds of compression techniques are applied etc. As image compression and storage is not the focus of
this report the following explanation of image convolution with filters will assume that images are stored
as an array containing pixels with each pixel containing a red, a blue and a green color value ranging
from 0 to 255.

for (each p i x e l)
{

red = 0 ;
green = 0 ;
blue = 0 ;
for (each p i x e l in the f i l t e r matrix)
{

red += f i l t e r P i x e l . red ∗ co r r e spond ingF i l t e rVa lue ;
b lue += f i l t e r P i x e l . b lue ∗ co r r e spond ingF i l t e rVa lue ;
green += f i l t e r P i x e l . green ∗ co r r e spond ingF i l t e rVa lue ;

}
newPixel . red = red ;
newPixel . green = green ;
newPixel . b lue = blue ;

}
Listing 4: Basic image convolution pseudocode

As described in listing 4 above, to perform a basic image convolution one iterates over every single
pixel of an image and for every iteration the red, green and blue color values of the pixels surrounding it
are aggregated and will be used as the color values of the corresponding pixel for the new filtered image.
This, the act of calculating a new color value based on the value given in a filter matrix multiplied by
the corresponding surrounding pixels color values is the essence of image convolution with filters [28].

What quickly becomes apparent after one understands the basics of this algorithm is that a straight-
forward sequential implementation will be done with four nested for loops, rarely a sign of a quickly
executing algorithm. An observant reader comfortable with multi-core programming might also soon
realize that the pixels for the new filtered image need not be calculated in sequence to produce the same
result, which is why this type of algorithm lends itself so well to a GPU-accelerated approach.

For the sake of simplicity there are some notable omissions and simplification in this section that
would need to be accounted for in an actual implementation of this algorithm. Among these we find
such things as:

• Image constraints, how do we calculate the color values of pixels that are outside the image bound-
aries i.e. pixels that do not exists.

• Newly calculated color values that exceeds the minimum(0) or maximum(255) allowed color values.

• The brightness of the new pixels and by extension the whole new image will depending on the filter
used often be significantly higher or lower than the original image.

The image boundaries problem is most efficiently dealt with in one of two ways, either you implement
a check to see if the currently selected pixel in the filter is outside of the image before its color values
are added to the calculation of the new pixel. We then either ignore these nonexistent pixels or use the
color values of the next closest pixel e.g. a pixel with the position x=5 y=-2 would return the value of

21

the closes existing pixel x=5 y=0. Because of a built-in feature in the OpenCL framework the latter
option is used in our implementation of the algorithm.

To ensure that our new pixel only has color values within the 0 to 255 range we clamp them, first
the maximum of their current value and 255 then the minimum of their current value and 0.

The issue of inconsistent brightness can be corrected by calculating the sum total of all the values
in the filter and if this sum is greater than 1 we divide 1 by this sum and multiply the result by the new
red, green and blue values, this should be done before the RGB value clamping.

(a) Original image (b) Filtered image (c) 5x5 box blur filter matrix

Figure 6: 5x5 box blur filter applied to an image (public domain image used)

4.4.2.2 Parallel image convolution

So far we have established that image convolution is a very compute heavy operation, exactly how long
it takes to perform sequential and parallel image convolution with varying filter sizes and images of
different resolutions will be thoroughly covered in section 5.2 of this report. How does one go about
implementing a GPU-accelerated version of the same algorithm? In this section an implementation using
the OpenCL framework will be presented.

As was briefly mentioned in the previous section much if not all of the compute heavy portions of
the algorithm can be done in parallel. The OpenCL kernel code will not differ much from the code of
sequential implementation but there are a few key points to be aware of.

• When queuing up a kernel in the host code the global workgroup size has to be a power of 2 e.g.
if one wants to dispatch say 100 work-items the global workgroup size has to be at least 128. This
means that an additional 28 unwanted work-items will have been dispatched.

• Operating system timeouts, several modern operating systems will automatically trigger a reset of
the graphics driver if it deems your application to be hogging the GPU for too long.

• How to store an image using the OpenCL Image2D memory object. OpenCL features data-
structures specifically designed to hold both 2D and 3D graphic objects for passing data to and
from kernels.

Large workgroup sizes
The fact that the global number of work-items dispatch must conform to a certain scale, i.e power of
2 will likely not cause a significant decrease in overall performance if the number of work-items needed
to perform an operation is relatively low. For example dispatching 32 work-items instead of 27 will
probably have an unnoticeable performance impact. When however we start to deal with more com-
putationally intensive kernels coupled with large global workgroups the overhead becomes greater. To
help visualize this consider the image convolution of a 4K resolution image that is 3840x2160pixels, in
an ideal scenario the NDrange object used to represent the global workgroup size would be initialized
as NDRange(3840,2160). That is a total of 8294400 work-items, however those values(the width and

22

height of the image) are not a power of 2 so one must calculate the closest valid workgroup size. In
this case this means initializing the NDRange object to a total of 16777216 work-items, leaving us with
8482816 unwanted work-items, more than double the amount needed. The most common way to deal
with these unwanted work-items is the one employed in the kernel source code for our implementation,
simply perform a check at the beginning of the kernel code to see if the current work-item actually has
some work to perform and if it does not then exit the kernel immediately. This solution comes at a
surprisingly low overhead cost.

System timeouts
The operating system’s daemon process intended to make sure no one application excessively hogs the
GPU to the detriment of the rest of the system can indeed cause problems for software developers
wishing to unload computationally heavy work onto the GPU. The authors’ experience of and solutions
to this problem will be covered in section 6.5.1 which is dedicated to the issue of working around this
background process.

Memory restraints
A problem that emerged after the basic GPU-accelerated implementation of the image convolution al-
gorithm was with the processing of very large images. In order to provide as detailed an analysis as
possible the authors had planned to compare the execution times of filters of varying sizes applied
to images ranging in resolution from fairly small at 480p(853x480) all the way up to the very large
8K(7680x4320) resolution including the most common resolutions between the two extremes. For up to
4K(3840x2160) resolution images the application performed as expected, however the 8K images would
not come out of the filtering process looking as expected.

After verifying that the fault did not lie with the algorithm or its implementation it was hypothesized
that the unexpected result was a side effect of memory limitations of the OpenCL Image2D memory
object used to store the images. While this did turn out to be the case it was not entirely obvious as
to why. The OpenCL SDK comes with a handy application called CLinfo.exe which will provide the
developers with printouts of very important information about their system including but not limited to
preferred workgroup size multiple, maximum work-items, available platforms and devices etc. Among
these important statistics one will find the maximum Image2D width as well as maximum Image2D
height, both of these were reported as 16384. Looking at the OpenCL specification provided by Khronos
[12] one will find that an Image2D object should support image resolutions of at least 8192x8192 pixels, as
it turns out however the hardware vendors does not always comply with these numbers in their platforms
implementation of the OpenCL framework. This in conjunction with the fact that the numbers shown
in the CLinfo applications were incorrect meant that it took until a command for manually printing the
systems maximum Image2D width and height was found until the actual limitation of our systems were
discovered to be 4013x4014 pixels.

This problem was solved by having the application split the very large images into smaller sub-
sections and perform the convolution on each piece separately before combining them back to a single
cohesive image, the pseudocode for this process is presented in figure 5. This of course introduces
some unwanted overhead but as becomes evident in section 5.2 Results of this report is still very much
warranted.

23

i f (image . width > 4000 or image . he ight > 4000)
{

imagePart1 = Image (0 ,0 , image . width ()/2 , image . he ight () / 2) ;
imagePart2 = Image (image . width ()/2 , 0 , image . width () , image . he ight () / 2) ;
imagePart3 = Image (0 , image . he ight ()/2 , image . width ()/2 , image . he ight ()) ;
imagePart4 = Image (image . width ()/2 , image . he ight ()/2 , image . width () , image . he ight ()) ;

a p p l y F i l t e r (imagePart1) ;
a p p l y F i l t e r (imagePart2) ;
a p p l y F i l t e r (imagePart3) ;
a p p l y F i l t e r (imagePart4) ;

for (each p i x e l in the o r i g i n a l image)
{

r e p l a c e with i t s f i l t e r e d counter part from imagePart1 , 2 , 3 or 4 ;
}

}
Listing 5: High resolution image splitting pseudocode

As shown in the pseudocode above, our implementation works around the issue of storing large
images in a single memory object by splitting it into 4 equally large parts and performing the image
convolution on each sub-image individually. As illustrated in figure 7 these four parts are then combined
to create a complete filtered version of the original image.

An observant reader might realize that this solution coupled with the fact that as was described in
section 4.4.2.1 color values for pixels outside the boundaries of the image are clamped to those of the
closest pixel inside the image will likely cause artifacts in the new image along the edges of where the
sub-images meet. To avoid this the actual implementation code creates the sub-images with 100 pixels
worth of padding on the sides of the image that will be next to another sub-image. This padded section
containing unwanted artifact will then be ignored during the combinatory step, resulting in a filtered
version of the original image without unwanted artifacts.

(a) Original image (b) Split filtered image (c) Complete filtered image

Figure 7: Convolution performed on a very large resolution image (original photo by Justus Sörman)

24

5 Results

In this section of the report the authors will review the result and how the implementations performed
on the hardware described in section 4.2. Some performance tests has been run on other systems with a
more powerful GPU to show how much of a difference it can make as well as to allow for extrapolation
for possible future work.

5.1 Merge sort

The total execution time of the merge sort algorithm differed a lot depending on the implementation
and what hardware it was running on. The basic implementation that we described in section 4.4.1.3
and presented as pseudocode in listing 1 was not able to finish the computation in time before the TDR
stepped in and reset the drivers for the GPU so the results from the basic kernel will not be present in
this section. The setup time for the OpenCL framework will not be accounted for in the execution time
of the different kernels partly because the setup must only be made once. This setup is not only very
short compared to the total execution time it also remains the same for all the different kernels which is
why the authors decided to omit this portion of time from the results. The last thing to mention is that
all kernels described in this section uses zero-copy and no results for implementations without zero-copy
will be presented. This is because the total execution time with and without zero-copy was not that
different.

The normal chunking kernel and the optimized variant had very similar execution times when
running on the CPU (about a 2% reduction in execution time for the optimized version with the largest
list size of 16,777,216 elements). When running on the GPU the optimized variant was about 13-15%
faster depending on the list size used, this can be seen in figure 8. The optimized cooperation kernels
however had a significant performance increase compared to the normal chunking kernel. The speedup
on the GPU was very impressive at about 112-115 % faster compared to the chunking implementation
but the performance of the CPU with the cooperating kernel was about the same as the normal optimized
kernel. The performance of the CPU can be seen in figure 9.

A modified version of the chunking merge sort where the amount of threads dispatched is the
same as the amount threads needed to perform the computations was written. The intentions of this
variant was to speed up performance by removing the overhead caused by dispatching more threads than
needed. The early merges took longer and longer to execute until hitting a peak which was followed by a
plunging execution time. This plunge was at a certain point in the merge sequence when the 512 threads
were executing concurrently and the major peak when 16384 threads were executing concurrently. The
execution time of this kernel is shown in figure 10 where different workgroup sizes were also examined.

The optimized variant with cooperation implemented has when compared to the normal optimized
kernel a significantly faster execution time because the cooperation elevates the level of parallelism in
the algorithm. Therefore execution is faster on the GPU where we can benefit substantially from the
elevated level of parallelism while the CPU that is not very parallel at all does not gain as much from
the cooperation optimization. In figure 8 the execution times of the different kernels are shown when
executed on the GPU and in figure 9 on the CPU. The graphs takes into account different list sizes to
show how the kernels scales when the workload goes up.

The execution times of the sorting on the GPU differed a lot depending on which implementation
was used. The normal chunking algorithm performed well in the earlier merge sessions when the GPU
was fully utilized but when underutilized the performance dropped significantly. This behavior can be
seen in figure 11 along with some other kernels execution times. Otherwise the sorting algorithm scaled
very well with different list sizes. We can see this represented in figure 8 where the execution times are
compared to the list sizes.

25

Figure 8: GPU multi-core execution times with different list sizes

Figure 9: CPU multi-core execution times with different list sizes

The performance of the CPU followed the same pattern as the GPU when handling different list
sizes as we can see in figure 9 and 8 but when comparing how they handled the different merge sessions
of the algorithm the difference starts to show. The CPU is actually performing worse than the GPU in
the first sessions of the execution due to not being able to handle the high degree of parallelism as well
as the GPU. However in the later sessions when the number of elements that are being merged goes up
the performance of the CPU goes up as well.

26

Figure 10: Performance test with 1 to 1 thread execution with different workgroup sizes

The hybrid solution where we use both the GPU and the CPU to perform the sorting is using one
of the key features in OpenCL, which allows us to switch between the processing units. The hybrid
approach is that we perform the sorting on the GPU when the number of executing threads is fairly
large and when the GPU starts to get underutilized we start using the CPU instead to maximize the
performance of each processing unit.

The performance of this implementation does not get a better total execution time than the multi-
core CPU only execution as seen in figure 11. However if we only use the GPU for the first three merge
sessions when it is performing better than the CPU and then switch to the CPU for the rest of the merge
sessions we get a better result than the CPU for all merge sessions. This is because we use the GPU
for the copying instead of the CPU which is performing better with this highly parallel kernel. If we
compare the normal hybrid and the one that only uses the GPU for the first merge sessions they both
have very good results compared to both the sequential and multi-core CPU.

To summarize, the GPU alone never beat the CPU in total execution time, not even when the
CPU was only executing sequentially. The total execution times for the different implementations can
be seen in appendix F. However the GPU during the merge sessions when it was fully utilized did beat
the execution times of the sequential CPU during those same sessions. The multi-core CPU execution
was the fastest when merging but not when copying. The hybrid kernel where the CPU merged and the
GPU copied elements to the swap buffer performed better than the multi-core CPU only kernels even if
the latter was using cooperation.

5.1.1 Sorting benchmark

The execution times of the sorting when performed with OpenCL varied slightly between test runs.
Which is why during the benchmarking the same test was performed several times in order to get a
representative average time. More than 100 test runs with all the different list sizes were performed.
The benchmarks were done by having the main loop in the sorting program call the independent sorting
functions with information about what device it was supposed to be running, the CPU and/or the GPU
and if it was to use the optimized variant or not.

When the program had run the five different sorting algorithms 100 times each we divided the list

27

Figure 11: Comparison of CPU,GPU and Hybrid execution times in the different merge sessions

in half and re ran the test again with the new list size. This was repeated six times so the smallest list
tested was only 1/32 of the original list size. The different list sizes were tested because we wanted to
examine how well the algorithm scaled with different workloads. The total execution times were recorded
as were the times of each merge session so that we could examine when the algorithm started to get
inefficient and where it was efficient in its execution.

The largest list size on which the sorting was performed was 16,777,216 elements, this would result
in the program taking up about 140 megabytes of RAM for both the list and swap buffer combined.
This list size was chosen because the execution time was long enough to give us accurate benchmark
result for all implementations. The total execution times that were recorded with this list size differed
between 12 seconds to a little under 1 second depending on what processing unit(s) it was executed on.

5.1.2 Sequential merge sort benchmark

The benchmarking of the conventional sequential merge sort was performed in similar fashion with 100
sorting cycles for each list size. The sequential sorting on the CPU without the OpenCL framework did
not fluctuate in execution time as much as the other benchmarks.

5.2 Image convolution

The performance of 5 different takes on an image convolution algorithm where measured and this section
we will describe how well these implementations perform when compared to each other.

28

5.2.1 The benchmarking

Initial performance testing showed a propensity for significant variance in execution time when mea-
suring the implementations for performance. To deal with this a script was written to execute each
implementation with the same filter on an image of the same resolution one hundred times. To gain
insight into if and when GPU-acceleration started to become viable this test was performed on all five
implementations with five different sharpening filter matrices ranging in size from 3x3 to 11x11 on im-
ages of resolution 480p(853x480), 720p(1280x720), 1080p(1920x1080), 1440p(2560,1440),4K(3840,2160)
and 8K(7680,4320). This benchmarking was performed once on two hardware/software wise identical
systems. This made for a total of 30000 test runs which took several hours to perform on the systems
described in section 4.2 this as will become evident further on in this section was in no small part thanks
to the execution speed of the sequential implementation.

The tests measure time via the C++ standard library Chrono and the high resolution clock available
therein, the test does not measure the time needed to configure OpenCL and building the kernels. This
is because the time needed to do so was found in early testing to be negligible in all test but those with
the smallest resolution images using the smallest filter matrices. This means that even when accounting
for setting up the necessary OpenCL components every multi-core implementation still outperforms the
sequential version. In an actual development scenario it is also not unreasonable to assume that the
OpenCL setup would be done once at the start up of an application and then used multiple times before
the application is shut down. For images larger than 4K in resolution the time needed to workaround
both the TDR watchdog process and the limiting size of Image2D memory objects is included. That is
the time needed to split up the image into four parts, apply the filter to each part and combine these
parts back together.

5.2.2 Conventional sequential CPU implementation

This is an implementation of the basic image convolution algorithm described in section 4.4.2.1. This
implementation serves as a baseline to which all other implementations are compared with the intent of
answering the pertinent question ”did we actually gain any increase in performance for the effort spent
using GPU-acceleration?”.

In table 1 the average execution times for the sequential CPU implementation is shown. Two things
become very clear after reviewing these numbers, the first is that as expected the execution time does
vary significantly depending on the size of the filter matrix. The second is that when one compares these
results with those of the multi-core implementations, be it with the GPU or the CPU version we can see
that they both outperform this sequential implementation

filter 480p 720p 1080p 1440p 4K
3x3 0.13762 0.3697 0.8278 1.7195 3.9876
5x5 0.31707 0.7560 1.7411 3.5143 7.8614
7x7 0.58897 1.3837 3.1234 6.1221 13.4873
9x9 0.97617 2.2955 5.0577 9.8043 21.7752
11x11 1.42849 3.3663 7.4389 14.2130 31.7865

Table 1: Sequential CPU execution times with varying filter sizes applied to images of resolution ranging
from 480p to 4K

5.2.3 multi-core implementations

The basic multi-core CPU version is identical to the basic GPU-accelerated implementation except for the
fact that the OpenCL setup part of the program creates the context with the CL DEVICE TYPE GPU

29

filter 480p 720p 1080p 1440p 4K
3x3 0.0299 0.0608 0.1251 0.2205 0.4915
5x5 0.0368 0.0776 0.1595 0.2822 0.6202
7x7 0.0457 0.1006 0.2141 0.3783 0.8064
9x9 0.0609 0.1315 0.2810 0.4822 1.0435
11x11 0.0764 0.1684 0.3590 0.6166 1.3403

Table 2: Execution times in seconds on
multi-core CPU without zero-copy

480p 720p 1080p 1440p 4K
0.0251 0.0479 0.1098 0.1909 0.4158
0.0311 0.0633 0.1448 0.2520 0.5456
0.4524 0.0898 0.1999 0.3418 0.7236
0.0570 0.1209 0.2649 0.4509 0.9717
0.0732 0.1569 0.3415 0.5841 1.2665

Table 3: Execution times in seconds on
multi-core CPU with zero-copy

flag instead of the CL DEVICE TYPE GPU one. They also have their threads dispatched to run the
exact same kernel code. Both basic multi-core implementations has a local workgroup size of 16x16.

In an optimized version some minor changes has been made to improve the performance of the
multi-core CPU implementation, most important of which is the use of zero-copy to avoid unnecessary
overhead. The kernel code remains the same as it was in the basic GPU and CPU implementations.
When analyzing the result of the benchmarking this small change consistently proved to provide a
measurable advantage as shown in tables 2 and 3.

5.2.4 General results

To provide a good overview of how well the GPU-accelerated implementations fared against their CPU
counterparts we provide two graphs that illustrates the average execution times of the different imple-
mentations. First on a 480p resolution image with filters of sizes varying from 3x3 to 11x11 in figure 12.
This graph includes the execution time of the sequential CPU implementation which clearly deviates
from the others, with the smallest size filter the sequential version is more than twice as slow as the
slowest multi-core implementation.

Figure 13 illustrates the performance of the four multi-core implementations as it measures execution
times on an 8K resolution image with filters ranging in size from 3x3 to 11x11. The execution times of
the sequential implementation has been omitted in this graph simply because it would pull focus away
from the other more pertinent implementations, for the sake of completeness these omitted execution
times are shown in table 4.

filter size: 3x3 5x5 7x7 9x9 11x11
execution time: 15.9748 32.1769 55.9010 88.8090 130.220

Table 4: Sequential CPU execution times in seconds with varying filter sizes applied to 8K images

During the implementation stage when the earliest of tests where ran it was noted by both authors
that using the system while running an OpenCL application could in some cases significantly affect per-
formance. This could be a potential issue for developers wishing to deploy general purpose applications
that makes use of OpenCL, a topic which is discussed in more depth in section 6.5. For the purpose of
getting the most stable and unbiased results possible the benchmarking results presented in this section
were gathered from a system where the benchmarking script was executed and then left uninterrupted
for the duration of the tests.

The bulk of the performance testing was carried out on the systems described in section 4.2, this
includes the over final 30000 tests runs that produced the data presented in this section. To verify that
the results gathered during these final tests runs are viable for extrapolation a few thousand test runs
were performed on systems with discrete graphics cards. The results of these tests are not included in
this section as they are not truly relevant to this thesis work, although they did provide some insight
into how one can optimize OpenCL for different hardware. This will be discussed further in section 6.5.

30

Figure 12: Average execution times of varying filter sizes on a 480p resolution image

Figure 13: Average execution times of varying filter sizes on a 8K resolution image

31

6 Discussion

The results presented in section 5 will be analyzed and compiled, with the authors providing their
reasoning and opinions as to why the data looks the way it does. The research question regarding the use
of GPU-acceleration in general and the OpenCL framework in particular will be answered in this section
based on the experiences gained by the authors during the literature study, algorithm implementation
and result compilation and analysis.

6.1 Heterogeneous computation

The possibility to use both the CPU and the GPU together in a computation is a compelling thought.
The implementation of the merge sort with both CPU and GPU executing parts of the code did not
perform as well as we had anticipated that it would. The GPU performed at its peak when having more
than 128 threads running concurrently and therefore we decided to use the GPU during the early merge
sessions and then use the CPU for the later merge sessions. This because the CPU performed almost
the same no matter which merge session it was in, although the early merge sessions are a little bit
slower than the later ones. This algorithm is not task parallel so we could not run the CPU and the
GPU concurrently. The performance of the hybrid version was faster than only running the GPU and
slower than only running the CPU but not by much. This tells us that with a highly parallel workload
the GPU if fully utilized is almost on par with the CPU when it comes to performance.

We realized fairly early on in the implementation process that the GPU would never perform better
or even on par with the CPU when it came to parallel merge sort. We did however still anticipate that
the GPU accelerated image convolution would prove to be more comparable. This is because of how
well image convolution lends it self to a parallel implementation as have been mentioned many times
throughout this report. As it turns out however not even the inherent parallelism of image convolution
could make the GPU perform better than the multi-core CPU version.

If one has an algorithm that is task parallel then using OpenCL to make use of both the CPU
and GPU in the computer system to perform the needed calculations will often provide some sort of
performance increase. Depending on the task this speedup can vary from almost none to very high if
there are specific parts of the tasks that are beneficial for the different types of processing units.

6.2 Results

The result of parallelizing an algorithm is not always what one might expect it to be. In most cases
performance is gained as long as the overhead of conditional branches are minimized and the algorithm
is well suited to be run in parallel.

6.2.1 Merge sort

The performance differences of the merge sort when optimized and not optimized were not that big or
nonexistent when the workload was small. This is because the performance impact of the optimizations
were so small as a result of none of the standard optimization techniques having any sort of positive
impact on the performance. Although this might be because all the optimization techniques tested are
designed for discrete graphics cards and not integrated ones. The Intel HD Graphics 4600 have some
inherited caching hardware from the CPU that likely solved most of the read and write bottlenecks that
usually occur when writing to a kernel. The only optimization technique that actually did have some
impact was zero-copy. By not doing unnecessary copying from the host memory to a dedicated GPU
memory buffer we reduced the memory consumption of the program by almost half but the execution
times of the work-items was not significantly affected by zero-copy.

32

One optimization that was implemented was the usage of private memory caching. This optimization
reduces the number of reads and writes to global memory. This was implemented by storing a small part
of the list in the work-items own private memory, not the local memory because the private memory is
faster and there was no need to share data between work-items. The cache size is preferable set to a
multiple of 16 elements (64 bytes) because the hardware has a memory bus that supports this size of
reads and writes in one clock cycle. Therefore when we fetch a part of both the swap buffer and the list
into the kernel we fetch at least a multiple of 16 elements from each. Thereby filling the memory bus to
its full width which is useful for hiding memory latency from the global memory. The same procedure
was done when writing back a part of the list that we stored in private memory. This implementation
removed some of the unnecessary reads and writes to global memory but inserted some minor overhead
with conditional branches.

The performance after these optimizations was actually worse than without them. This is probably
due to the sequential reading and writing to global memory that has a high chance of being cached by
hardware caches. Therefore the caching from the lists was not enough to speed up the execution and the
overhead bogged down the performance. Another attempt to optimize the kernel was to only use a small
cache for the resulting list and write it back to global memory in batches of 64 bytes. This is generally
a good idea but in our case inserted too much overhead and we did not gain enough by utilizing the bus
to a higher degree.

The final optimized variant only has some arithmetic optimizations that were fairly simple to imple-
ment. Unexpectedly the overhead of conditional branches had a much bigger impact on the performance
than we first thought when implementing the algorithm.

An implementation that was expected to have a large performance impact was attempted, merge
sort with cooperation. This cooperation technique described in section 4.4.1.4 was used when running
one of the multi-core non-hybrid implementations i.e. when using only a single device. This optimization
was a great success when using the GPU that thrives on having a more parallelized workload. The CPU
on the other hand did not see this major performance increase. This is due to the fact that the CPU is
not a very parallel processing unit with only 4 physical cores. This means that it can only benefit from
having this cooperation in very few of its final merges unlike the GPU which can utilize this technique
for many merges.

The hybrid merge sort presented in figure 11 is a good comparison between the CPU and the GPU
because it shows where during the sorting process the two devices performs at their peaks. Unfortunately
the GPU could not keep up with the CPU even when the workload was highly parallel and optimized
for the GPU. The performance of the optimized hybrid implementation is very close to the one using
only the CPU as is illustrated in figure 11. The reason why the hybrid merge sort is faster than the
CPU when both are actually using the CPU to merge is because the hybrid sort is using the GPU for
the copying to the swap buffer which the GPU is much faster at doing than the CPU. Therefore the
hybrid implementation where the GPU is used for copying and the CPU for merging is faster than the
implementation where the CPU is responsible for both tasks.

An optimization that took the problem of launching a lot more threads than we needed into con-
sideration was a fairly easy optimization. The only changes that were needed to be performed on the
already existing kernel with chunking was the change in how the kernel found out which elements it
was supposed to iterate over. This range we find by multiplying the work-item’s global thread id with
the size of the merge section. Another thing that needed changing was the host code so that the host
only launches the correct number of threads, this number is the list size divided by the current size of
the merge section. The performance of this kernel again was unexpected, we thought that this would
increase the performance of the kernel by skipping the overhead of many threads just initializing their
variables and then realize that they are not going to perform any merging and return. The performance
was much worse than the arithmetically optimized kernel when we had an workgroup size of 16. The
odd thing here is that when we minimized the workgroup size down to 1 the performance was almost

33

on par with the arithmetically optimized kernel. A workgroup size of 1 is in almost all cases one of the
most under performing workgroup sizes that you could choose. The reason behind this behavior the
authors could not figure out because the hardware should have a much better performance when having
a workgroup size of at least 4 as each compute unit has 4 ALUs. The most likely answer as to why the
hardware acts this way with the kernel is that the scheduler gets some sort of hiccup when the threads
wants to execute in this way.

The performance scaling on both the CPU and GPU was surprisingly linear when sorting with
different list sizes. This is probably due to merge sort only needing a total number of comparisons of
log2(n) per list element which is not growing very fast compared to the size of the list.

The setup overhead of OpenCL is not that significant when compared to the execution time of
the whole algorithm. As with all the OpenCL implementations the execution time differed some, the
minimum setup time was 0.11 seconds and sometimes the system got an hiccup and the setup time
spiked to 0.34 seconds, the average setup time was 0.115 seconds. These setup times are not included
in the performance numbers in the result section because they are so small and if one were to reuse the
kernels and buffers that is already declared then the setup time is close to zero.

6.2.2 Image convolution

The main focus of the image processing portion of this thesis work is on the GPU-accelerated implemen-
tation of the image convolution with filters algorithm. The host code begins with standard boilerplate
code to setup the OpenCL framework. The image is then loaded into memory and converted into a
format preferred by the OpenCL Image2D memory object, an array of cl float4s. One element in this
array represents a pixel with red, green, blue and alpha color values. The Image2D memory object is
then enqueued to the command queue, the same goes for a 1D array representation of the filter. The
kernel is built and all its arguments are assigned before being enqueued to the command queue. The im-
age is then read back via the enqueueBufferRead command into a buffer containing an array of suitable
size. At this point we force the command queue to synchronize via the finish command. Now with the
completed filtered image stored as a 1D array of cl float4s we convert them back into an image. Since
we are working with a 2 dimensional image we use a 2 dimensional NDRange object when enqueueing
the kernel to the command queue. Doing so allows one to fetch a given threads global x and y values
inside the kernel code, these values are then used to represent a single unique pixel in the image. this
also allows us to check if a thread is representing a non-existing pixel i.e one that is out of bounds of the
image. If that would be the case the thread simple exits the kernel to avoid doing unnecessary work.

6.2.2.1 Optimizations

In an attempt to further increase performance an application based on the existing host code was
developed. this new version utilizes zero-copy, a concept discussed earlier in section 3.5.1. The basic
image convolution kernel accesses the image to which the filter will be applied as a function parameter to
the kernel in the form of an Image2D memory object. This image data is then stored in global memory.

When performing the convolution with a 3x3 filter matrix every single work-item thread will make
9 access calls to this shared global memory. As the filters grow in size so will the amount of accesses to
global memory, with an 11x11 filter performing 121 memory accesses during the convolution stage of the
kernel. In section 3.4.6 the authors detail the different types of memory available to work-items, with
global memory being the least error prone and simplest to manage though slowest in terms of memory
access speeds.

A new version of the convolution kernel was developed in an attempt to minimize the amount of
global memory accesses. This was achieved by having each work-item in the 16x16 workgroup fetch 4
pixels from global memory and then cooperatively create a 32x32 pixels large image that they all share
in their local memory. The though behind this approach is that the image convolution part of the kernel

34

never has to access the global memory. When applying a 3x3 size filter matrix each thread would then
make 4 access calls to global memory and 9 to the local memory. This was not expected to provide
significant performance gains, however for a 11x11 size filter matrix with only 4 access calls to global
memory instead of 121 noticeable execution time speedup was anticipated. The decision to make the
local image 32x32 pixels large was made to avoid any potential artifacts at the edges of the sub-images
represented by the workgroups’ local images in the final complete image.

6.2.2.2 Results

When analyzing the results presented in section 5.2.2 and in figure 12 in particular there are a few
obvious conclusions to draw. Firstly if there was any doubt before about the parallelity of the image
convolution algorithm seeing that even the smallest image with the smallest filter applied the sequential
CPU version is handily outperformed by all other implementations should be enough to convince you
otherwise. We can clearly see how poorly the sequential CPU implementation scales with increased filter
sizes. In contrast the parallel implementations all scales better with increased filter sizes.

Secondly we can conclude that the multi-core CPU implementation always performs better than
its GPU counterpart, looking at figure 13 we can see that even with the GPU fully utilized for a long
period of time it still can not compete with the CPU. We came to this conclusion fairly early on in
the testing process, the integrated Intel HD Graphics 4600 GPU is simply less powerful than the Intel
i7-4790 CPU. The GPU did however have execution times many times faster than the sequential CPU
implementation meaning that there is a definite possibility of being able to find algorithms suitable for
a GPU-accelerated approach.

6.2.3 Caching in local/private memory

One of the most common optimizations to OpenCL kernels is the use of local or private memory to
reduce the amount of reads and writes to the slower global memory. In both the merge sort and
the image convolution kernels caching to the local or private memory was implemented but neither of
these optimizations yielded any performance increase. This left the authors somewhat perplexed as the
local and private memory is supposed to be significantly faster than the global memory so why did the
implementations utilizing local and private memory not produce any performance increases? The answer
could be that this type of optimization is one of the more complex ones to do properly. The use of the
local or private memory for caching is hard to implement without introducing too much overhead and
the same goes for the usage of IF statements in kernels it is therefore recommended to not overuse them.
A branch miss on the GPU is very costly compared to one on the CPU.

6.3 Method

The most obvious limitation of our method as described in section 4 is the fact only one form of image
processing and one method of sorting is evaluated. We believe that the results are suitable for general
extrapolation of GPU-acceleration and the basic strengths and weaknesses of the OpenCL framework.
Although one could argue that more research on many different kinds of algorithms applicable to a
broader range of problems should be assessed before answering the research questions posed in section
1.3. The main reason behind limiting ourselves to these two types of algorithms is as with most thesis
works a lack of time. In section 7.3 and 6.1 report we describe the heterogeneous approach, developing
applications that simultaneously makes use of both the CPU and GPU. After this thesis work we can
conclude that were we to redo this thesis work we would have put a larger emphasis on this sort of hybrid
implementation.

Information about the systems on which the applications were developed have been presented in
section 4.2 and 4.3, these sections contains detailed information about both the hardware and software

35

employed during this thesis work for both development and benchmarking. Provided as appendices to
this thesis report is the kernel code used by the OpenCL framework when running the applications. The
host code used is in most cases omitted from this report, the reason for this is that this code does contain
some boilerplate setup code for the OpenCL framework and also the fact that the actual application
code has little impact on the execution time of the application. The basic theory behind the OpenCL
framework and its components has been described in section 3.4 and their use has been described in the
implementation sections of this report. With the above mentioned facts in combination with the rest of
this report we are confident that any one attempting to replicate our applications will do so with great
success.

As our performance tests has been run on multiple systems of the same specifications mentioned
above with little to no discernible differences in results we believe that similar results would be had if
one tried to replicate our performance tests.

The sources cited throughout this thesis report was for the most part selected during the literature
study with a few exceptions added during the implementation stage when unforeseen gaps in knowledge
became apparent e.g. Windows 7 timeout detection and recovery of GPUs daemon process. As many
as possible of the sources cited comes from what we have deemed to be credible journals when dealing
with papers and reports and, in the case of books ones that come highly recommended by the multi-
core/OpenCL development communities. Also cited are several websites, among these are the Khronos
group which has to be seen as the authority on the OpenCL framework, we also cite Intel and their
specifications of the Intel HD Graphics 4600 GPU and the Intel Core i7-4790 CPU. Our thesis work
is based on the assumption that the information provided specifically from these first party sources is
correct and up to date. Some of the sources found in the reference section of this thesis report might
not have an obvious connection to the research questions that we attempt to answer. In these cases the
sources are used to provide an overview, both of why multi-core processors and GPU-acceleration exists
as well as how they function.

6.4 The work in a wider context

This study has shown that the integrated the Intel HD Graphics 4600 GPU can compete with the Intel
i7-4790 CPU if used correctly. In light of these findings and as an attempt to answer our third research
question regarding when GPU-acceleration is applicable to software development we will give an example
of one of the possible uses for GPU-acceleration. Distributed computing, distributed computing is the
process of taking a workload that for various reasons can not be computed locally on a single computer
or even a small cluster and distributing it onto a network of participating computers.

There are currently hundreds of projects utilizing this distributed computing model, the most suc-
cessful of which are research projects that distributes a massive computational workload onto a network
of participating volunteers [29]. A prominent example of these research projects is the folding@home
project at Stanford university, they utilize distributed computing to simulate protein folding in an effort
to understand and find cures for various diseases such as Alzheimer, Huntington’s, Parkinson’s among
others. In this case the workload is not computed locally because of the prohibitively high cost of hard-
ware and electricity as well as the complications involved with heat generation of large server farms [29].
It is estimated that this distributed approach allows the project to compute a workload 100 to 1000
times higher than could ever be done locally at a fraction of the cost [29].

The folding@home project currently have over 400.000 participating volunteers, with each volunteer
computing a small portion of the total workload on their own private systems, these volunteers can
choose to perform the computations on their CPUs, GPUs or even on their Playstation 3 consoles [29].
Out of these options the GPU has the most available raw compute power when measured in TFLOPS
but most volunteers do not use their GPUs for these computations. One of the reasons for this is the
varying quality of the client programs and the lack of support for individual graphics cards. Developing

36

general purpose computational applications for the GPU has been a real obstacle as one would often have
to support the many available GPUs on an individual basis[29]. This is an area where a framework such
as OpenCL could really shine by providing a unified platform that would allow for a single application
to support the majority of all computational devices used by the volunteers.

6.5 The OpenCL framework

An important aspect of this thesis work that has not been directly addressed thus far is the one of
when GPU-acceleration in general and the OpenCL framework in particular should be used in software
development. The pros and cons described in this section as well as the conclusions drawn by the authors
will be based in its entirety upon the authors’ own empirical experiences acquired during the research
and implementation stages of the thesis work.

This thesis work started with the expectation of there being significant performance gain to be had
by utilizing GPU-acceleration. Even on the less powerful GPU described in section 4.2.2 performance
more or less equal to that of the CPU was more or less expected, causing the authors to plan for the
majority of time to be spent in the implementation stage of the work optimizing and refining the basic
implementation. As it turns out however using the Intel HD Graphics 4600 GPU to compete with the
Intel i7-4790 CPU proved to be a tall order. Plainly put in our workstations the CPU is much more
computationally powerful than the GPU.

The GPU-accelerated merge sort implementation even with a significant amount of time and effort
spent on optimization could not truly compete with the standard sequential CPU implementation with
an execution time almost half as long. This does not necessarily mean that the conclusion to draw here
is that GPU-acceleration is not worth the time and effort to implement, the execution time while almost
double that of the single-core CPU approach is still decent. If a situation occurs where the developer
knows that the CPU will be fully utilized, getting the desired results even at twice the execution time
might be more desirable than adding additional workload to the already busy CPU. In general though
the real takeaway from the merge sort implementation is that any software developer should carefully
consider how well the computational work that he or she needs to do can be executed in parallel. What
seemed like a fairly good fit in the merge sort algorithm proved to have a significant bottleneck that was
not feasible to workaround as well as having to be specially designed as not to incur the wrath of the
Windows 7 TDR watchdog process.

The image convolution algorithm fared better in the sense that even on the smallest resolution
image (480p) with the smallest filter matrix (3x3) the basic implementation outperformed the sequential
CPU implementation by having an execution time almost three times faster. This was of course very
encouraging as one would expect the GPU-accelerated approach to be faster at convolution with very
large resolution images and very large filter matrices but perhaps struggle to perform competitively with
the single core CPU implementation when dealing with smaller images and filters. Again proving that
the type of computational work to be done is a very if not the most important factor to consider when
utilizing GPU-acceleration.

A common theme that both of the authors encountered during the implementation and bench-
marking stages of the work was that of the incredibly fast multi-core CPU approach. Using the CPU
to execute the same kernels as the multi-core GPU it was established that the multi-core CPU imple-
mentation outperformed both the single-core CPU and multi-core GPU versions. This coupled with the
fact that the OpenCL framework after some minor additions to the setup code on the host allows for
dispatching of threads to execute the kernel code on both the CPU and the GPU interchangeably adds
a great amount of flexibility for developers. Work could potentially be offloaded from the CPU and be
assigned to the GPU dynamically or a heterogeneous approach like the one described in section 6.1 could
be employed. It is also easy to imagine a scenario where the OpenCL framework is employed without
the intention to utilize GPU-acceleration at all but just to implement a multi-core CPU algorithm.

37

One caveat to the benefits of using the OpenCL framework is that the applications produced might
differ significantly in execution time depending on the system it is run on. This is because optimizations
that provides increased performance on one system might result in a performance decrease on another.
This was experienced during this thesis work when the merge sort implementations were tested on
systems with discrete GPUs. On some systems it performed as expected, that is the more powerful
discrete GPU outperformed the integrated Intel HD Graphics 4600. On another system with a discrete
GPU however the execution time was markedly worse than on Intel’s APU.

The conclusion to draw from this is that OpenCL works well when the target audience and the
capabilities of their systems are well known and fairly uniform. In a similar vein if the target audience is
the general public their system specifications will vary significantly. As discussed in section 3.4 different
hardware vendors supports different versions of the OpenCL framework with Nvidia currently supporting
version 1.1 on their discrete GPUs. This means that unless the target systems specifications are known
beforehand an application targeting a wide audience would have to be developed using the lowest common
denominator, that is version 1.1 of the OpenCL framework.

6.5.1 Operating system timeouts

For larger more complex kernels the execution time can be of considerable length. This does generally
not hamper the application if the system running it has a discrete GPU dedicated to computational work
and process acceleration. If however the GPU is providing output in the form of graphics rendering to
one or more monitors the extensive execution time could prove quite problematic. The reason kernels
with long execution time often prove to be problematic in a real world scenario is that today’s operating
systems carefully keeps tabs on the hardware in order to prevent the system from freezing or crashing.
For the average user this is probably a good thing as it provides a more consistent and less frustrating
user experience but for software developers it introduces restriction on their applications. An example
of this type of restriction that was encountered early on in the implementation process was a Windows 7
watchdog/daemon process named ”Time out Detection and Recovery” or TDR [26]. In essence what this
process does is monitoring the amount of time the GPU takes to execute a given task and if it exceeds
an operating system defined limit it will determine that the process executing on the GPU has timed out
and reset the graphics driver. In Windows Vista and later iterations of the Windows operating system
this timeout limit is set to 2 seconds [26]. It should be noted that this timeout limit applies to a single
work-item and not to the application as a whole. Both authors of this report encountered TDR in their
efforts to implement their respective algorithms. For the image convolution algorithm using very large
filter matrices triggered the graphics driver reset and for the parallel merge sort the final few merges of
very large lists proved time-consuming enough to activate TDR. When the graphics driver is reset during
the execution of an active instance of our processes it effectively crashes the application, an unacceptable
outcome for any software developer. This is an obstacle that has to be considered and dealt with for
any GPU-accelerated software that does not exclusively target platforms where a dedicated accelerator
card is guaranteed.

Several possible solutions were considered and tested in order to get around this problem, the first of
which was to limit the number of simultaneously executing threads to a maximum of 128. This number
was not arbitrarily chosen but based on the fact that the Intel HD Graphics 4600 supports 140 hardware
threads. We had anticipated that imposing such a restriction would serve as an acceptable workaround,
trading some performance in exchange for a guaranteeing that the GPU would always have some threads
available and thus never timeout. As it turns out OpenCL will actively override manual attempts to
limit the number of simultaneously executing kernels and try use all available resources and thus block
the GPU, meaning that this approach was not a viable solution to our problem.

After consulting the available documentation a second solution was considered, by using an OpenCL
concept known as device fission a device can be split into sub-devices. If some of these sub-devices were

38

to be left unused by the applications it would likely leave the GPU with cores available for graphics
rendering and solve our timeout problem. Sadly it was discovered that the Intel HD Graphics 4600 does
not support this particular feature of the OpenCL framework meaning that this also was not a viable
solution. The lack of hardware support for certain OpenCL features also implies that software developers
should have a firm grasp of the types of systems employed by their target audience in order to not rely
to heavily on framework features that might not be available on all platforms.

It should be noted that it is possible to manually override this 2 second timeout limit by editing
certain registry keys in the Windows operating system, so although it is not impossible to workaround
this issue we decided against manually editing these registry key values in effort to stay as close to a real
life scenario as possible. A scenario where having our program changing these values would be at best
seen as intrusive and at worst as malicious. Microsoft also specifically states that these values should not
be edited outside of targeted testing and application debugging. In the end we came to the conclusion
that the only truly effective way to guarantee that the TDR watchdog process would not cause problems
is to significantly reduce the execution time of our work-items.

39

7 Conclusions

This section will contain the conclusions made by the authors about their respective algorithm imple-
mentations based upon their software development experience with the OpenCL framework during this
thesis work. By its very nature any thesis work will be limited in scope, this fact will inevitably leave
authors with unanswered questions and ideas that were never tested either due to time constraints or
because they were deemed to be outside of the scope of the research question the work is based on. We
will present some of these ideas and unanswered questions in section 7.3.

7.1 Merge sort

The solution to the problem with the diminishing numbers of merge sections in the later merge sessions
is to implement the full cooperation algorithm when the number of merge sections becomes less than
the number of available processing elements on the GPU. The only catch to this algorithm is that it
is very complex and hard to implement. The execution times of the early merge sessions using the
full cooperation implementation will be a little slower than those of the merge sort with chunking
implementation but it will be a lot faster once the latter is unable to fully utilize the GPU. This
implementation on the hardware we are testing on would likely not yield enough of a performance
increase to beat the multi-core CPU but it would probably beat a sequential implementation.

The optimal execution strategy we found to be running the first sessions on a highly parallel GPU
and when the number of processing elements in the GPU exceeds the number of merge sections a faster
CPU with fewer cores could take over the execution. This strategy only works if the GPU is actually
faster at merging the smaller sublists than the CPU. This was the case of our study but only in the
first couple of sessions because the high powered CPU became faster compared to the GPU as the
length of the merge sections became greater. However when using the GPU for the copying to the swap
buffer and using the CPU for the merging the performance is actually better than that of the CPU only
implementation. This is because the CPU is much slower than the GPU when performing the copy as
seen the figure 11.

To answer the question of if it is viable to use the integrated Intel HD Graphics 4600 GPU for
speeding up the execution time of a merge sort and offloading the CPU we unfortunately found that the
GPU alone will not have enough compute power to speed up the execution time for this type of algorithm.
But if we use both the GPU and CPU to execute the merge sort we can gain more performance out
of the system than we could have using only the CPU. So yes we can say with certainty that a hybrid
solution can gain performance by using the GPU in a smart way to handle smaller more efficiently than
the CPU could.

7.2 Image convolution

In section 4.1 we described the image convolution algorithm and why we believe it made for such a
good candidate for GPU-acceleration. Looking at the data resulting from our benchmark testing we
can conclude that we were right in this assumption. It may have been overly optimistic to think that
the integrated Intel HD Graphics 4600 GPU could perform competitively compared to the Intel i7-4970
CPU but as indicated by the data the vital portions of which are presented in section 5.2 it was not that
far-fetched after all. All things considered the GPU performed admirably and showed what we believe
to be satisfactory enough execution times to warrant further exploration and demonstrated that there
truly is viable computational power going unused even in systems with comparatively weak GPUs.

The implementation stage of this thesis work in general and the optimization process in particu-
lar provided great insight into the OpenCL framework and its place in software development. If the
application being developed performs a lot of computationally intensive work one should ask one self

40

if the work could be done in parallel as described in section 3.3.1 and 3.3.2. If the algorithm could fit
into one of those two camps then the next question should be GPU or CPU, how to decide between the
two is dependent on how the application is to be deployed i.e. what is known about the intended user
base. What kind of hardware will they have and how important is it to maintain a consistent execution
time, as was discussed in section 6.5 the GPU-accelerated implementations tend to have a significant
variations in execution times depending on the actions of the end users during run time.

7.3 Future work

After having completed the implementation, compiled and analyzed the results what immediately comes
to mind as an area for future work is a more heterogeneous approach to parallel algorithm implementa-
tion. This sort of hybrid approach did receive some attention in the sorting portions of this report with
some interesting results. These results as presented in figure 11 show that dividing the workload over
both the CPU and the GPU can make for a viable implementation. In this case deciding when in the
implementation to switch from the GPU to the CPU was quite straightforward, as was seen in figure 11
there is a point when the GPU implementations takes a huge performance hit. Depending on the type
of algorithm that is to be implemented this breaking point might not always be as static as in the hybrid
merge sort example, being able to dynamically determine when to switch from one device to another
could prove to be of tremendous importance in the future if one wishes to achieve peak performance.

As a possible example referencing the work performed in this thesis report it could be possible to
take a similar approach to that of the image convolution performed on very large images. In this sort
of convolution as was described in section 4.4.2.2 the image is divided into several parts which are then
individually filtered before being joined back together. In this thesis work this was not done with the
intention to improve performance but as a means to workaround the width and height limitations of
images inherent to the GPU and OpenCL platform available to us. One potential method of increasing
performance could be to apply the same type of logic i.e. image splitting and performing small individual
filter convolutions although modified to dispatch some portions of the workload to be done on the GPU
and others on the CPU. As became evident in the benchmarking comparison of the GPU-accelerated and
the CPU multi-core versions presented in section 5.2 and illustrated in figure 13 the two versions does
differ in execution time by several seconds. Because of this dividing the workload at a straightforward
50:50 ratio is likely not the best solution, again hinting that a dynamic approach for workload allocation
which is able to take the system’s specifications into account is the way forward with heterogeneous
computing.

7.4 Final thoughts

One of the main points that the OpenCL framework has going for it is widespread support amongst
the major hardware vendors, although the degree to which they support OpenCL varies. After the
initial learning curve that comes with any new framework or library we both found OpenCL to be fairly
straightforward when it comes to the basic implementation of data parallel algorithms. We where also
pleasantly surprised by the ease of which OpenCL allows for switching between the GPU and the CPU,
allowing for smooth heterogeneous implementations.

We found that a less powerful integrated GPU most definitely can be used to improve the perfor-
mance of compute heavy image processing algorithms. Our performance evaluations show that when
comparing a basic sequential CPU implementation to its GPU-accelerated counterpart the latter will
always outperform the former. Though the multi-core CPU version still reigns supreme it was proven to
our satisfaction that the GPU, even if integrated will have a role to play in general purpose computation.

The answer is a lot less clear-cut when it comes to the question of using GPU-acceleration to
improve the performance of sorting algorithms. The type of sorting algorithm implemented during this

41

thesis work was merge sort, at first glance a good algorithm to parallelize but later showed itself to
have major bottlenecks in how much it could be parallelized during the later merge sessions. Therefore
the implementation of an hybrid solution that takes this phenomenon into consideration and uses the
processing unit that is the best suited for the current workload should be the next logical step.

42

8 Glossary

CPU: Central Processing Unit, used for general purpose processing in computer systems.
GPU: Graphics Processing Unit, traditionally used for calculations involved with graphics rendering.
GPGPU: General Purpose computing on Graphics Processing Units, the concept of using the GPU to
perform calculations not related to graphics rendering.
APU: Accelerated Processing Unit, a CPU with added processing functionality, most often seen as a
CPU with a GPU included on the same die.
GPU-acceleration: Making use of the GPU to perform processing calculations.
ALU: Arithmetic logic unit, a core part of the CPU that performs operation on integer values.
FPU: Floating-Point Unit, same as the ALU except it operates only on floating-point values.
OpenCL: Open Computing Language, a framework that enables developers to use the GPU for general
purpose processing.
SIMD: Single Instruction, Multiple Data, a description of a processing unit that is able to perform a
single operation on a larger dataset.
MIMD: Multiple Instruction, Multiple Data, multiple processors able to simultaneously perform oper-
ations on separate datasets.
SMT: Simultaneous multithreading, is an advanced hardware scheduling procedure that Intel has im-
plemented under the name Hyper threading
Moore’s law: In 1965 Gordon Moore observed that the amount of transistors on a single chip roughly
doubled every two years, this has since come to known as the law that state that processing power will
double every two years.
MPI: Message Passing Interface, a method for interprocessor communication.
SMA: Shared Memory Architecture, a method for interprocessor communication.
Singlethreaded: An application or part of an application that is executed sequentially on a single
thread.
Multithreaded: An application or part of an application that is executed in parallel on multiple
threads.
Pixel: The building blocks of digital images, an 128*128 resolution image is composed of 16384 or
128*128 pixels.
Vectorized data: Data that is now seen as an array that usually is not in the array format.
API: Application Programming Interface, the interface through which a programmer accesses function-
ality of a framework.
Cache: Small and fast memory for storing often accessed data to speedup memory access.
TDR: A Windows watchdog process that resets the graphics driver if an application timesout, Time
out Detection and Recovery.
Framework:A support structure which an application is built around.
Zero-copy: A technique that skips unnecessary copying of data.
Heterogeneous computing: The usage of different type of processing units in a system.
SDK: Software Development Kit, is a sett of tools and APIs to help developers in the program devel-
opment process.
FLOPS: FLoating-point Operation Per Second, an old form of benchmarking when the number of
FLOPS were a good reference point in how a chip was performing.
FPGA: A Field Programmable Gate Array is a circuit configurable via a hardware description language.
FSB: Front Side Bus, an interface that allows the CPU to communicate with the northbridge
RGB: Red, Green and Blue, often used to describe the color value of a pixel.

43

9 References

[1] Geer, David. 2005. “Industry Trends: Chip Makers Turn to multi-core Processors.” Computer 38
(5): 11–13. doi:10.1109/MC.2005.160.

[2] Matloff, Norm. 2012. “Programming on Parallel Machines”
https://archive.org/details/ProgrammingOnParallelMachines (accessed May 22, 2015)

[3] O’Regan, Gerard. 2009. A Brief History of Computing. Vasa. doi:10.1007/978-1-4471-2359-0.

[4] Park, In Kyu, Nitin Singhal, Man Hee Lee, Sungdae Cho, and Chris Kim. 2011. “Design and Per-
formance Evaluation of Image Processing Algorithms on GPUs.” IEEE Transactions on Parallel and
Distributed Systems 22 (1): 91–104. doi:10.1109/TPDS.2010.115.

[5] Trabelsi, A, and Y Savaria. 2013. “A 2D Gaussian Smoothing Kernel Mapped to Heterogeneous
Platforms.” In 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS),
1–4. IEEE. doi:10.1109/NEWCAS.2013.6573641.

[6] “The Art of Computer Programming: Volume 3: Sorting and Searching (2nd Edi-
tion): Donald E. Knuth: 9780201896855: Amazon.com: Books.” 2015. Accessed May 21.
http://www.amazon.com/The-Art-Computer-Programming-Searching/dp/0201896850.

[7] Mark Allen Weiss. 2006. Data Structures And Algorithm Analysis In C++. Vasa. doi:10.1002/1521-
3773(20010316)40:6¡9823::AID-ANIE9823¿3.3.CO;2-C.

[8] Hwang, Kai. 1993. ”Advanced Computer Architecture”. John Wiley & Sons, Inc., Hoboken, New
Jersey

[9] Schenk, Olaf, Matthias Christen, and Helmar Burkhart. 2008. “Algorithmic Performance Studies
on Graphics Processing Units.” Journal of Parallel and Distributed Computing 68 (10): 1360–69.
doi:10.1016/j.jpdc.2008.05.008.

[10] Gaster, Benedict, Lee Howes, David R Kaeli, Perhaad Mistry, and Dana Schaa. 2012. “Heteroge-
neous Computing with OpenCL.” Heterogeneous Computing with OpenCL. doi:10.1016/B978-0-12-
387766-6.00027-X.

[11] Nvidia Tesla ”Nvidia Tesla Overview” http://www.nvidia.com/object/tesla-servers.html (accessed
May 22, 2015)

[12] Khronos group. ”OpenCL Reference” khronos.com. https://www.khronos.org/opencl/ (accessed
May 21, 2015).

[13] AMD. 2013. “AMD Accelerated Parallel Processing OpenCL Programming Guide,” devel-
oper.amd.com http://developer.amd.com/wordpress/media/2013/07/AMD Accelerated Parallel Processing
OpenCL Programming Guide-rev-2.7.pdf (accessed May 22, 2015).

[14] Tompson, Jonathan, and Kristofer Schlachter. 2012. “An Introduction to the OpenCL Programming
Model.” http://www.cs.nyu.edu/ lerner/spring12/Preso07-OpenCL.pdf (accessed May 22, 2015)

[15] Lawlor, Orion Sky. 2011. “Embedding OpenCL in C++ for Expressive GPU Programming.” First
International Workshop on DomainSpecific Languages and HighLevel Frameworks for High Perfor-
mance Computing. WOLFHPC 2011, September.

44

[16] Komatsu, Kazuhiko, Katsuto Sato, Yusuke Arai, Kentaro Koyama, Hiroyuki Takizawa, and
Hiroaki Kobayashi. 2010. “Evaluating Performance and Portability of OpenCL Programs.” Sci-
ence And Technology 2: 52. http://vecpar.fe.up.pt/2010/workshops-iWAPT/Komatsu-Sato-Arai-
Koyama-Takizawa-Kobayashi.pdf.

[17] Peters, Hagen, Ole Schulz-Hildebrandt, and Norbert Luttenberger. 2011. “Fast in-Place,
Comparison-Based Sorting with CUDA: A Study with Bitonic Sort.” Concurrency Computation
Practice and Experience 23 (7): 681–93. doi:10.1002/cpe.1686.

[18] Payne, Br, So Belkasim, and Gs Owen. 2005. “Accelerated 2D Image Processing on GPUs.”
Science–ICCS 2005, 256–64. http://link.springer.com/chapter/10.1007/11428848 32.

[19] Intel Corporation ”Intel Core i7-4790 specification” ark.intel.com
http://ark.intel.com/products/80806/Intel-Core-i7-4790-Processor-8M-Cache-up-to-4 00-GHz
(accessed May 22, 2015)

[20] AMD ”AMD OpenCL SDK” http://developer.amd.com/tools-and-sdks/opencl-zone/amd-
accelerated-parallel-processing-app-sdk/ (accessed june 5 2015)

[21] Intel corporation. ”The Compute Architecture of Intel R© Processor Graphics Gen7.5”
software.intel.com
https://software.intel.com/sites/default/files/managed/f3/13/Compute Architecture of Intel Processor
Graphics Gen7dot5 Aug2014.pdf (accessed May 22, 2015)

[22] MinGW ”Minimalist GNU for Windows”. http://www.mingw.org/ (accessed June 1, 2015)

[23] Intel corporation. ”OpenCL Code Builder”. https://software.intel.com/en-us/opencl-code-builder
(accessed June 1, 2015)

[24] CImg ”The CImg Library is an open-source C++ tool” http://cimg.eu/ (accessed June 1, 2015)

[25] Image magic, ”Image format conversion” http://www.imagemagick.org/script/index.php (accessed
June 1, 2015)

[26] Microsoft corporation. ”Timeout Detection and Recovery of GPUs (TDR)” msdn.microsoft.com
https://msdn.microsoft.com/en-us/Library/Windows/Hardware/ff570088%28v=vs.85%29.aspx (ac-
cessed June 1, 2015)

[27] Satish, Nadathur, Mark Harris, and Michael Garland. 2009. “Designing Efficient Sorting Algorithms
for Manycore GPUs.” Proceedings of 23rd IEEE International Parallel and Distributed Processing
Symposium, 1–10.

[28] ”Standard implementation and explanation of sequential image convolution with filter matrices”
http://lodev.org/cgtutor/filtering.html (accessed July 04, 2015)

[29] Beberg, Adam L., Daniel L. Ensign, Guha Jayachandran, Siraj Khaliq, and Vijay S.
Pande. 2009. “Folding@home: Lessons from Eight Years of Volunteer Distributed Comput-
ing.” In 2009 IEEE International Symposium on Parallel & Distributed Processing, 1–8. IEEE.
doi:10.1109/IPDPS.2009.5160922.

45

Appendices

A Source code of the basic image convolution kernel

1 k e r n e l void convo lut ion (r e a d o n l y image2d t input , const i n t imageWidth
, const i n t imageHeight , g l o b a l i n t ∗ i n F i l t e r , const i n t f i l t e rWidth ,

const f l o a t f a c to r , g l o b a l f l o a t 4 ∗ output)
2 {
3 /∗∗∗∗
4 A sampler i s used to s e t the formatt ing f o r how an Image2D
5 memory ob j e c t i s read , d i s a b l i n g normal ized coords a l l ows
6 us to a c c e s s the p i x e l s o f the image by abso lu t e x and y
7 coo rd ina t e s e . g . 852 ,436 . Address clamping means that i f
8 we s e l e c t a p i x e l ou t s id e the boundar ies o f the image the
9 c l o s e s t p i x e l i n s i d e the image w i l l be s e l e c t e d in s t ead .

10 ∗∗∗∗/
11 const sample r t smp = CLK NORMALIZED COORDS FALSE | CLK ADDRESS CLAMP |

CLK FILTER NEAREST;
12
13 //The g l o b a l id r e p r e s e n t s p i x e l c oo rd ina t e s in 2D space
14 in t2 pos = { g e t g l o b a l i d (0) , g e t g l o b a l i d (1) } ;
15
16 /∗∗∗∗
17 Because the number o f enqueued work−i tems has to be a power o f 2 the re
18 w i l l almost always be s u p e r f l u o u s work−i tems . We t h e r e f o r e check that
19 the cur rent work−item ”pos” a c t u a l l y r e p r e s e n t s a p i x e l in the image
20 i f i t does not we immediately e x i t the ke rne l .
21 ∗∗∗∗/
22 i f (pos . x < imageWidth && pos . y < imageHeight)
23 {
24 //Take 1D f i l t e r r e p r e s e n t a t i o n and convert to 2D
25 i n t f i l t e r [1 5] [1 5] ;
26 f o r (i n t x = 0 , counter = 0 ; x < f i l t e r W i d t h ; ++x)
27 {
28 f o r (i n t y = 0 ; y < f i l t e r W i d t h ; ++y , ++counter)
29 {
30 f i l t e r [x] [y] = i n F i l t e r [counter] ;
31 }
32 }
33
34 f l o a t red = 0 . 0 ;
35 f l o a t green = 0 . 0 ;
36 f l o a t blue = 0 . 0 ;
37
38 /∗∗∗∗
39 With the ”pos” p i x e l as the cente r we t r a v e r s e the surrounding
40 p i x e l s with in the f i l t e r rad iu s and c a l c u l a t e new RGB va lues
41 f o r the ”pos” p i x e l .

46

42 ∗∗∗∗/
43 f o r (i n t f i l t e r X = 0 ; f i l t e r X < f i l t e r W i d t h ; ++f i l t e r X)
44 {
45 f o r (i n t f i l t e r Y = 0 ; f i l t e r Y < f i l t e r W i d t h ; ++f i l t e r Y)
46 {
47 i n t imageX = (pos . x − f i l t e r W i d t h / 2 + f i l t e r X + imageWidth) %

imageWidth ;
48 i n t imageY = (pos . y − f i l t e r W i d t h / 2 + f i l t e r Y + imageHeight)

% imageHeight ;
49 f l o a t 4 c u r r e n t P i x e l = read image f (input , smp , (i n t2) (imageX ,

imageY)) ;
50
51 red += c u r r e n t P i x e l . x ∗ f i l t e r [f i l t e r X] [f i l t e r Y] ;
52 green += c u r r e n t P i x e l . y ∗ f i l t e r [f i l t e r X] [f i l t e r Y] ;
53 blue += c u r r e n t P i x e l . z ∗ f i l t e r [f i l t e r X] [f i l t e r Y] ;
54 }
55 }
56
57 // mult ip ly the RGB va lue s by the f i l t e r f a c t o r in order to maintain

b r i g h t n e s s c o n s i s t e n c y .
58 red = red ∗ f a c t o r + 0 . 0 0 ;
59 green = green ∗ f a c t o r + 0 . 0 0 ;
60 blue = blue ∗ f a c t o r + 0 . 0 0 ;
61
62 //clamp RGB va lues to the 0−255 range
63 i f (red < 0 . 0 0)
64 red = 0 . 0 0 ;
65 i f (red > 255 .00)
66 red = 2 5 5 . 0 0 ;
67
68 i f (green < 0 . 0 0)
69 green = 0 . 0 0 ;
70 i f (green > 255 .00)
71 green = 2 5 5 . 0 0 ;
72
73 i f (b lue < 0 . 0 0)
74 blue = 0 . 0 0 ;
75 i f (b lue > 255 .00)
76 blue = 2 5 5 . 0 0 ;
77
78 // Assign a p i x e l with the new RGB va lues to the output array .
79 f l o a t 4 mod i f i edP ixe l ;
80 mod i f i edP ixe l . x = red ;
81 mod i f i edP ixe l . y = green ;
82 mod i f i edP ixe l . z = blue ;
83
84 output [imageWidth ∗ pos . y + pos . x] = mod i f i edP ixe l ;
85 }
86 }

47

B Source code of the Merge kernel with chunking

1 k e r n e l void merge sort chunk opt imized (g l o b a l i n t ∗ i n p u t l i s t , g l o b a l
i n t ∗ swap space , g l o b a l i n t ∗ merge s i ze , g l o b a l i n t ∗

compute chunk of f set , g l o b a l i n t ∗ max compute size)
2 {
3 i n t my item = g e t g l o b a l i d (0) ∗ 2 ;
4 i n t merge length = ∗merge s i z e ;
5 i n t s u b l i s t s i z e = merge length /2 ;
6 i n t swap counter = 0 ;
7 i n t l i s t c o u n t e r = 0 ;
8
9 i n t c h u n k o f f s e t = ∗ compute chunk of f se t ;

10 i n t max chunk size = ∗max compute size ;
11 i n t c u r r e n t c h u n k s i z e = (s u b l i s t s i z e <= max chunk size ?

s u b l i s t s i z e : max chunk size) ; // get the s m a l l e s t o f them .
12
13 i n t r e s u l t o f f s e t = 0 ;
14 i n t l i s t o f f s e t = 0 ;
15
16 // The swap b u f f e r i s a l r eady f i x e d f o r us so j u s t c a l c u l a t e the merge
17 i f (my item % merge length == 0)
18 {
19 i f (c h u n k o f f s e t != 0)
20 {
21 // We are in a chunk f e t c h the s t a t e from l a s t s e s s i o n
22 r e s u l t o f f s e t = swap space [my item + c h u n k o f f s e t − 1] ;
23 l i s t o f f s e t = r e s u l t o f f s e t − c u r r e n t c h u n k s i z e ∗ (

c h u n k o f f s e t / max chunk size) ;
24 }
25
26 // Merge the two chunks toge the r .
27 whi l e (swap counter != c u r r e n t c h u n k s i z e && l i s t c o u n t e r +

l i s t o f f s e t != s u b l i s t s i z e)
28 {
29 // Compare the e lements .
30 i f (swap space [my item + swap counter + c h u n k o f f s e t] <=

i n p u t l i s t [my item + s u b l i s t s i z e + l i s t c o u n t e r +
l i s t o f f s e t])

31 {
32 i n p u t l i s t [my item + r e s u l t o f f s e t] = swap space [my item +

swap counter + c h u n k o f f s e t] ;
++swap counter ;

33 }
34 e l s e
35 {
36 i n p u t l i s t [my item + r e s u l t o f f s e t] = i n p u t l i s t [my item +

s u b l i s t s i z e + l i s t c o u n t e r + l i s t o f f s e t] ;
37 ++l i s t c o u n t e r ;

48

38 }
39 ++r e s u l t o f f s e t ;
40 }
41 // put the r e s t o f the swap chunk in to the l i s t i f any
42 whi l e (swap counter != c u r r e n t c h u n k s i z e)
43 {
44 i n p u t l i s t [my item + r e s u l t o f f s e t] = swap space [my item +

swap counter + c h u n k o f f s e t] ;
45 ++swap counter ;
46 ++r e s u l t o f f s e t ;
47 }
48 // save the s t a t e o f the s o r t in the swap
49 swap space [my item + swap counter + c h u n k o f f s e t − 1] =

r e s u l t o f f s e t ;
50 }
51 }

C Source code of the copy kernel

k e r n e l void copy to swap (g l o b a l i n t ∗ i n p u t l i s t , g l o b a l i n t ∗
swap space , g l o b a l i n t ∗ merge s i z e)

{
// Concurrent copy to swap .
i n t my item = g e t g l o b a l i d (0) ∗ 2 ;
i n t merge length = ∗ merge s i z e ;

i f ((my item % merge length) / (merge length /2) == 0)
{

swap space [my item] = i n p u t l i s t [my item] ;
swap space [my item+1] = i n p u t l i s t [my item +1] ;

}
}

D Source code of the Merge kernel with cooperation

1 k e r n e l void merge sor t coop (g l o b a l i n t ∗ i n p u t l i s t , g l o b a l i n t ∗
swap space , g l o b a l i n t ∗ merge s i ze , g l o b a l i n t ∗
compute chunk of f set , g l o b a l i n t ∗ max compute size)

2 {
3 i n t my item = g e t g l o b a l i d (0) ∗ 2 ;
4 i n t merge length = ∗merge s i z e ;
5 i n t s u b l i s t s i z e = merge length /2 ;
6 i n t swap counter = 0 ;
7 i n t l i s t c o u n t e r = 0 ;
8
9 i n t c h u n k o f f s e t = ∗ compute chunk of f se t ;

49

10 i n t max chunk size = ∗max compute size ;
11 i n t c u r r e n t c h u n k s i z e = (s u b l i s t s i z e <= max chunk size ?

s u b l i s t s i z e : max chunk size) ; // get the s m a l l e s t o f them .
12
13 i n t r e s u l t o f f s e t = 0 ;
14
15 // The swap b u f f e r i s a l r eady f i x e d f o r us so j u s t c a l c u l a t e the merge
16 i f (my item % merge length == 0)
17 {
18 i f (c h u n k o f f s e t != 0)
19 {
20 // We are now in a chunk f e t c h the r e s u l t and l i s t o f f s e t from

l a s t s e s s i o n
21 r e s u l t o f f s e t = c h u n k o f f s e t ;
22 swap counter = swap space [my item] ;
23 l i s t c o u n t e r = r e s u l t o f f s e t − swap counter ;
24 }
25
26 // Merge the two chunks toge the r .
27 i n t o l d o f f s e t = r e s u l t o f f s e t ;
28 whi l e (r e s u l t o f f s e t != c u r r e n t c h u n k s i z e + o l d o f f s e t)
29 {
30 // Compare the e lements .
31 i f (swap space [my item + swap counter] <= swap space [my item +

s u b l i s t s i z e + l i s t c o u n t e r])
32 {
33 i n p u t l i s t [my item + r e s u l t o f f s e t] = swap space [my item +

swap counter] ;
34 ++swap counter ;
35 }
36 e l s e
37 {
38 i n p u t l i s t [my item + r e s u l t o f f s e t] = swap space [my item +

s u b l i s t s i z e + l i s t c o u n t e r] ;
39 ++l i s t c o u n t e r ;
40 }
41 ++r e s u l t o f f s e t ;
42 }
43 // Save the cur rent s t a t e o f the merging
44 swap space [my item] = swap counter ;
45 }
46 e l s e i f (my item % s u b l i s t s i z e == 0)
47 {
48 i f (c h u n k o f f s e t != 0)
49 {
50 r e s u l t o f f s e t = c h u n k o f f s e t ;
51 swap counter = swap space [my item + s u b l i s t s i z e − 1] ;
52 l i s t c o u n t e r = r e s u l t o f f s e t − swap counter ;
53 }

50

54
55 // Merge the two chunks toge the r .
56 i n t o l d o f f s e t = r e s u l t o f f s e t ;
57 whi l e (r e s u l t o f f s e t != c u r r e n t c h u n k s i z e + o l d o f f s e t)
58 {
59 // Compare the e lements .
60 // swap >= l i s t
61 i f (swap space [my item − 1 − swap counter] >= swap space [my item

+ s u b l i s t s i z e − 1 − l i s t c o u n t e r])
62 {
63 i n p u t l i s t [my item + s u b l i s t s i z e − 1 − r e s u l t o f f s e t] =

swap space [my item − 1 − swap counter] ;
64 ++swap counter ;
65 }
66 e l s e
67 {
68 i n p u t l i s t [my item + s u b l i s t s i z e − 1 − r e s u l t o f f s e t] =

swap space [my item + s u b l i s t s i z e − 1 − l i s t c o u n t e r] ;
69 ++l i s t c o u n t e r ;
70 }
71 ++r e s u l t o f f s e t ;
72 }
73 // Save the cur rent s t a t e o f the merging .
74 swap space [my item + s u b l i s t s i z e − 1] = swap counter ;
75 }
76 }

E Source code of the Copy kernel with cooperation

1 k e r n e l void copy to swap coop (g l o b a l i n t ∗ i n p u t l i s t , g l o b a l i n t ∗
swap space)

2 {
3 i n t my item = g e t g l o b a l i d (0) ∗ 2 ;
4 swap space [my item] = i n p u t l i s t [my item] ;
5 swap space [my item+1] = i n p u t l i s t [my item +1] ;
6 }

51

F Table of run times in milliseconds for different merge sort kernels

merge session GPU opt GPU coop CPU coop Hybrid Hybrid opt CPU merge GPU copy CPU singel-core
1 27 27 50 27 27 41 125
2 26 27 45 26 26 38 122
3 29 29 43 29 29 39 127
4 40 40 41 40 43 39 148
5 46 46 40 46 38 33 153
6 46 47 38 46 36 32 154
7 47 47 37 47 35 30 154
8 47 47 37 47 32 30 150
9 47 47 37 47 31 29 133
10 47 47 37 47 30 28 112
11 47 48 36 47 29 27 94
12 48 48 35 48 27 26 85
13 48 49 33 48 24 24 80
14 51 51 30 51 22 23 78
15 53 53 29 52 21 21 77
16 55 55 28 55 20 21 76
17 57 55 29 24 21 21 76
18 95 56 29 23 21 22 76
19 177 93 30 23 22 22 76
20 344 171 30 23 22 22 76
21 673 331 30 24 22 23 76
22 1327 636 33 23 19 19 76
23 2600 1238 30 24 25 24 76
24 4976 2384 29 33 33 34 76

total: 10953 5672 836 900 655 668 2476

52

Linköping University Electronic Press

Upphovsrätt

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – från
publiceringsdatum under förutsättning att inga extraordinära omständigheter
uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för icke
kommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan be
skrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form
eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller
konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se för
lagets hemsida http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet – or its possible
replacement – from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for
anyone to read, to download, or to print out single copies for his/her own use
and to use it unchanged for non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional upon the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its www home page: http://www.ep.liu.se/.

© Anders Söderholm and Justus Sörman

http://www.ep.liu.se/
http://www.ep.liu.se/

