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Sammanfattning på svenska

Bakgrund:

Skandionkliniken är Sveriges nya anläggning för protonterapi med behandlingsstart 2015. En svept
stråle används exklusivt. Eftersom Skandionkliniken i samband med att The Svedborg-laboratoriet
stängdes ned för kliniskt bruk är den enda anläggningen av sitt slag i Sverige är stråltid en dyr vara.
Med mer omfattande QA-mätningar generellt än vad som brukas vid konventionellt fotonbaserade
anläggningar eftersöks en metod som kan minimera mängden stråltid som behövs vid QA-mätningar.
Syftet med detta examensarbete var att ta fram en strålmodell som kan beskriva strålen vid Skandion-
klinikens gantry 1 samt utföra enkel validering av denna. Strålmodellen i kombination med loggfiler som
beskriver hur en bestrålning faktiskt gick till används då som indata till en Monte Carlo-simulering
som då förhoppningsvis slutligen kan ge en tillförlitlig bild av den levererade dosfördelningen, utan
behov för mätning.

Metod:

GATE, baserat på Geant4, användes som Monte Carlo-kod. Den strålmodell som togs fram är en
enkel parametrisering av fasrymden vid nozzle-utgången där samtliga simuleringar börjar. För att ta
fram strålmodellen användes det databibliotek som togs fram i samband med inmätning av systemet.
Detta komplementerades i sin tur av data från loggfilerna som genererades under dessa mätningar.
För att köra simuleringar baserade på loggfiler skrevs en MATLAB-kod som konverterar loggfiler till
en behandlingsplan som GATE kan läsa. Därefter gjordes en mängd mätningar av 2D-dosfördelningar.
Från mättillfällerna togs loggfilerna som då simulerades och senare kunde jämföras med mätresultaten.
Gammaindex användes för att jämföra dosfördelningarna.

Resultat:

Strålmodellen kan i de flesta fall förutspå spotstorleken på strålen inom 0,2 mm. Den kan också förutspå
range inom 0,2 mm. Energispridningen i strålen var något svårare att modellera, men fanns ändå
vara inom klinisk acceptabel osäkerhet. Resultaten från utvärdering av gammaindex vid jämförelse
av dosfördeningarna komplicerades av olika faktorer, men man kan argumentera att efter viss rimlig
datamanipulering fås acceptabla resultat.

Slutsats:

Bortsett från de komplikationer som uppstod under vissa delar av valideringen av strålmodellen verkar
strålmodellen i sig kapabel till att producera goda resultat. Mer genomgående validering måste utföras
innan strålmodellen kan brukas klinisk. En absolutkalibrering av något slag är också nödvändigt.
Vidare optimering av metoden som helhet för att öka hastigheten kan också vara nödvändigt för
kliniskt bruk. Att använda sig av GPU eller investera i ett datorkluster kan vara nödvändigt.
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Abstract

Background and purpose:

Although proton therapy is becoming increasingly common as a radiotherapy modality, facilities of-
fering proton therapy are still scarce in comparison to photon therapy. Sweden’s new proton therapy
facility, Skandionkliniken, is scheduled to being operation during August 2015, employing the pencil
beam scanning technique. Given Skandionklinikens unique stance as the only facility offering proton
therapy in Sweden as of this writing, it is important to minimize the need for measurements during
quality assurance to free up beam time for patients and other endeavors. It is the purpose of this work
to create a foundation for a method whereby dose distribution verification is done via Monte Carlo
simulation by developing and performing simple validation of a beam model. As input for simulating
a dose distribution, log files storing a wide variety of data on how the dose distribution was delivered
were used.

Method:

GATE, an open source Monte Carlo code and built on top of Geant4, was used for all simulations. A
beam model parameterizing phase space at the nozzle exit was developed. The beam model develop-
ment process made use of the beam data library and log file data. Using an in house developed code
to convert log file data to treatment plans readable by GATE allowed simulation of delivered dose
distributions. For validation, gamma index tests were performed comparing measured and simulated
dose distributions.

Results:

The beam model was found able to predict the spot size in almost all cases within 0.2 mm. Likewise, the
beam model was able to predict the proton range within 0.2 mm. The energy spread was found to be
more difficult to estimate; comparisons of simulated and measured curves for at six points around the
Bragg peak yielded a maximum deviation of 0.86 mm. Several difficulties prevented easy interpretation
of the results of the gamma index tests. If allowance is made for certain data manipulation, pass rates
of 90% or above using the global method can be achieved for all depths and for both treatment plans
scanned.

Conclusion:

Although some complications arose during validation, the beam model performance appears capable
of producing accurate results. To produce a full product suitable for routine patient specific quality
assurance, further work will be necessary. Significant computing power would also be mandatory for
routine use, necessitating the acquisition of a dedicated computer cluster or using GPUs.
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Chapter 1

Introduction

It is generally held that Wilson[1] was the first person to suggest usage of protons for radiotherapeutical
applications. The short paper mentions the favorable characteristics of the well known proton Bragg
curve with its sharp Bragg peak. Although the first attempts at proton therapy, taking place at the
Lawrence Berkeley Laboratory, California, did not make use of the Bragg peak, its utilization was
finally implemented at the Gustav Werner institute in Sweden[2]. Ever since these pioneering steps,
the number of proton therapy facilities around the world have increased exponentially[3]. The sharp
Bragg peak of the protons translates into a greater concentration of dose into a smaller region, relative
to photons. Since the position of the Bragg peak is a function of proton kinetic energy, which can be
controlled, it is possible to ensure that the target, typically a tumor, is at or around the location of
the peak.

Beyond a certain range the dose deposition is virtually zero for protons. No such range can be ascribed
to photons. There are multiple proton range metrics in the literature; some of these are summarized
in Table 1.1. In this work statements about range, unless otherwise specified, will be referring to the
projected range. The finite range of protons is beneficial in the sense of allowing for reduction of the
total energy deposited during treatment by more than half, but the very sharp post-Bragg peak fall
off necessitates that the range be known with considerable accuracy during treatment planning[4, 5].
Overestimating the range of the protons may lead to parts of the target receiving little or no dose,
whereas underestimating it may lead to a high dose to nearby healthy tissue. Noise in the treatment
planning CT images may contribute significantly to range uncertainties[6]. This follows from the use
made of Houndsfield Units (HU) to calculate the relative stopping power; the latter ultimately controls
the proton range.

A reduction in range uncertainty can potentially be achieved using a dual energy CT scan as opposed
to the more conventional single energy CT; further, using Monte Carlo techniques where HUs are
converted to material composition rather than relative stopping powers the effects of uncertainties in
HUs can to some degree be mitigated[5]. Ultimately uncertainties in the proton range may force the
treatment planner to increase the margins, resulting in a larger high dose region[7]. Furthermore, the
costs involved in the construction of a proton therapy facility are far greater than for more conven-
tional photon based radiotherapy, the former requiring a cyclotron or a synchrotron and possibly large
gantries; these make out the most expensive components[8]. A proton therapy treatment may cost

5



CHAPTER 1. INTRODUCTION 6

Table 1.1: A summary of a few range metrics found in the literature.

Range metric Description

Projected range The average range of the protons, projected along the beam direction axis,
ignoring protons that have undergone nuclear interactions. Approximately

equal to the depth of the distal 80% dose point.

CSDA range Continuous Slowing Down Approximation. The path length of the protons,
obtained by integrating the reciprocal of the total stopping power. To good
approximation equivalent to the projected range in the clinically relevant

energy interval.

Practical range The depth of the distal 10% dose point.

twice that of a photon therapy treatment[9]. Eventually technological advances may reduce costs for
proton therapy to levels comparable with advanced forms of photon therapy[10, 11, 8, 12].

The general goal of radiotherapy is to cure patients, typically by delivering a conformal dose distribution
to a target. Modern radiotherapy utilizing photons typically use techniques such as intensity modulated
radiotherapy (IMRT) or volumetric arc therapy (VMAT) to deliver conformal dose distributions. The
photon beam is modulated in 2D by use of a multileaf collimator (MLC), allowing the incident photon
beam to take on a variety of irregular shapes, limited by the resolution of the MLC. In proton therapy,
passive scattering has traditionally been the most widely used technique. In passive scattering, the
narrow proton pencil beam emerging from the beam line is spread out laterally by scattering foils.
This laterally spread out beam may then similar to photon based therapy pass through beam shaping
devices such as an MLC to provide a conformal dose distribution. Given the narrow width of a Bragg
peak,it is also necessary to spread it out in depth as the target is typically larger than the width of
the peak. In passive scattering, this is accommodated for by using a modulator wheel. The modulator
wheel thickness varies along its circumference, and as it rotates, the kinetic energy of the protons
having passed through it will vary with the wheel thickness. This results in a spread out Bragg peak
(SOBP); an example case is shown in Figure 1.1.

An important new trend in proton therapy is the use of so called pencil beam scanning, employed for
clinical use first at the pioneering Paul Scherrer Institute (PSI)[13]. Pencil beam scanning is currently
the most advanced proton therapy delivery technique, allowing for the proton therapy equivalent of
IMRT, called intensity modulated proton therapy (IMPT)[14, 15]. Pencil beam scanning uses the
narrow pencil beams that emerge from the beam line without subjecting them to scattering foils as
in passive scattering. The pencil beams are scanned across the target and due to their narrow width
the technique requires no mechanical beam shaping at all. The superposition of all these pencil beams
may then result in a to the target homogeneous and conformal dose distribution. As noted above, the
concept of range is not suitable when describing photon-matter interaction. Modulation in depth is
therefore not possible with photons, but since protons do have a finite range that depends on the kinetic
energy of the protons, controllable by the user, modulation in all three dimensions is possible. This
added dimension may allow the treatment planner greater flexibility, and hopefully, a more conformal
dose distribution.
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Figure 1.1: Illustrating a 2 cm wide spread out Bragg peak (SOBP). It is the result of a superposition
of a number of quasi-monoenergetic beams of various energies and weights.

In passive scattering, the spreading out of the proton beam both laterally and in depth allows simul-
taneous irradiation of the entire target. In pencil beam scanning on the other hand, the target is
divided into a number of layers, each layer corresponding to a certain proton kinetic energy. Each
layer is divided into a number of spots, or pencil beam positions. One layer is scanned at a time, and
once it is completed, the energy is changed and the next layer is scanned. A pencil beam scanning
treatment plan may be expressed as a number of spot positions which is the position of the pencil beam
at isocenter, the energy for the spot positions, as well as spot weights, typically expressed in monitor
units (MU). Although pencil beam scanning as noted above may ultimately yield more conformal dose
distributions, one of the advantages of the passive scattering technique is its reduced sensitivity to
patient movement; with pencil beam scanning, only a small part of the target is being irradiated at
any one time. If the target were to move during the scanning of a certain layer, parts of the target
may not receive the planned dose. Since movement may occur as central parts of the target is being
scanned, increasing the margins will not help. Various techniques have been suggested to deal with
this difficulty, such as target tracking, gating and rapid re-scanning[16].

Peripherally around the central axis direction of a pencil beam is a low dose region often referred
to as the halo, consisting of the particles having undergone nuclear interactions; the latter usually
cause large angle deflection relative the incident primary particle direction of the secondary particles.
Neglecting the halo in dose calculations may introduce non-negligible errors, as it may contribute up
to 15% of the total dose of a treatment[17]. The extent of the halo relative the spot size is large; for
field sizes of 20x20 cm2 the halo may affect the beam output[18]. Lin et al. has published a series of
papers in which a method to experimentally characterize the halo was developed[19, 20, 21]. Following
the central limit theorem the spatial extent of the primary protons in a pencil beam may to good
approximation be described by a single Gaussian, as these have exclusively undergone electromagnetic
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interactions, characterized by continuous low angle deflections and small kinetic energy loss. Nuclear
interactions are much rarer, and as indicated above, may yield large angle deflections and large loss of
kinetic energy of the incident primary proton. To accurately model this behavior, using a combination
of a triple Gaussian or a double Gaussian and a Cauchy-Lorentz function has been suggested[22, 23].
Since a treatment plan may consist of thousands of individual spots, an accurate characterization of the
individual pencil beam, including the halo, is important for the calculation of the dose distribution.[22]

In order to obtain an accurate view of the delivered dose distribution following irradiation of a patient,
these complexities must be handled by the treatment planning system (TPS). At the same time,
the TPS must be fast enough for clinical applications, allowing for interactive work. The necessary
compromise between these ideals leads to the TPS employing various simplifications, with some loss of
accuracy in its dose calculations as a necessary result. Differences in the calculated dose distribution
contra the actually delivered dose distribution need not only result from inaccuracies in the TPS,
however; the translation of the treatment plan into a series of instructions, and the subsequent execution
of these instructions by the entire treatment system (including the cyclotron and all components along
the beam line) may also contribute to uncertainties in the delivered dose distribution. For these reasons,
a patient specific quality assurance(QA)-process is necessary, where the delivered dose distribution is
confirmed so as not to deviate too much from the planned dose distribution. Typically, this is done
by performing measurements in a water phantom. Given the current paucity relative photon based
alternatives of proton therapy centers, beam time is an expensive commodity. Any efficient QA-process
therefore ought to minimize the beam time necessary to perform said validation.

A recent development in patient specific QA methods is the use of log files[24, 25, 26, 27]. Since moni-
toring systems are mandatory equipment for most radiotherapy systems, linacs as well as cyclotrons, it
is possible to have them report the parameters they measure continuously throughout an irradiation.
In proton therapy, examples of parameters measured include gantry angle, the position of the spot
at the monitor chamber, the charge produced in the monitor chamber per spot etc. For linacs, the
positions of the MLC leafs would also likely be recorded in the log files. Since the log files contain data
on how the treatment plan was actually delivered as opposed to how it should have been delivered, it
allows reconstruction of the delivered dose distribution.

An inherent weakness of the method is that it can only be performed after an irradiation. In fraction-
ated treatment however only a part of the the planned dose is delivered during the first irradiation,
whereby possible errors during the first fraction are hopefully small and correctable for subsequent
fractions. More serious errors may be caught by interlocks, shutting the beam down for instance if the
monitoring chamber readings differ by too much. Ultimately, it does solve the problem of beam time
by minimizing the need for measurements as the log file data can be used as input to a TPS or other
dose-calculation engine to calculate the delivered dose distribution, and this could be compared to the
original, planned dose distribution.

1.1 The beam line at Skandionkliniken

Skandionkliniken is the name of Sweden’s, at the time of this writing, newly built proton therapy
facility. It is an Ion Beam Applications (IBA) powered facility, exclusively using the pencil beam
scanning technique. Proton therapy has previously been available in Sweden, albeit employing the
passive scattering technique, and for relatively few patients (typically in the order of 100/year); only
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a single, fixed beam room was available. At Skandionkliniken, there are currently two gantries, with a
third being planned. An isochronous cyclotron is used for accelerating the protons up to 230 MeV, after
which a degrader and an energy selection system is available to provide a wide selection of energies.
The protons are transported through the beam line consisting of a vacuum pipe, slits, quadrupoles
and dipoles.

At the end of the beam line is the nozzle, the proton therapy equivalent of the gantry head. A
schematic illustration of the nozzle is found in Figure 1.2. It is an IBA pencil beam scanning (PBS)
dedicated nozzle. It contains two ionization chambers: IC1 at the nozzle entrance which is operated at
a lower air pressure (200 mbar) to minimize scattering, and IC2/3 at the nozzle exit which is vented
and thus operated at room temperature and pressure. These are for beam monitoring, and apart from
the chambers and entrance and exit foils the nozzle interior is held at vacuum, making the cumulative
amount of material in the beam path in the nozzle uniquely small. For final beam steering and shaping
there are two dipoles and two quadrupoles. Upon leaving the nozzle, the protons enter the treatment
room air, in which they will travel until striking the patient/phantom surface.

A basic understanding of the accelerator and beam line is necessary to understand the so called optical
and energy properties of the beam (see Chapter 2), as the description of these is the prime objective
of the beam model. Only a basic review will be presented here; for more in depth reviews, the reader
may consult the following publications and their bibliographies[28, 29, 30]. Figure 1.3 shows a simple
drawing of a cyclotron. Two electrodes are situated in a vacuum chamber. A magnetic field is applied,
perpendicular to the plane of the left side of the image in Figure 1.3. The shape of the metallic pieces
are reminiscent of the letter D, whence they are often referred to as “dees”. The dees are connected
to a high voltage AC power supply. An ion source is placed near the center of the vacuum chamber,
in between the dees. An electric field is thus created between the dees, and the ions will therefore be
accelerated toward one of them. Inside the dees, the electric field is zero. The direction of the resultant
Lorentz force will be perpendicular to the direction of the ions at all times, forcing the ions into a
circular path. Once the ions leave the dee again, the alternating current will have switched signs so as
to accelerate the ions across the gap to the other dee again, and the process is repeated.

An ion traveling in a circular path in a dee will experience both a centrifugal and a centripetal force,
both being equal. Therefore

Q(E + v ×B) =
mv2

r

where Q is the charge of the ion, E is the electric field strength and B is the magnetic field strength.
Since E = 0 inside the dees

Q(v ×B) =
mv2

r
=⇒ QBr = mv (1.1)

At this point, it is easy to calculate the kinetic energy of the particles as

Q2B2r2

2m
=
mv2

2
(1.2)

Furthermore, the time it takes the ions to complete one turn is constant, as shown by
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Figure 1.2: A schematic illustration of the nozzle. The beam travels in the positive z direction, from left
to right, as indicated by the dashed line. x is up and y is perpendicular to the plane of the illustration,
i.e. out of the page. The IC1 ion chamber is denoted by 1, held at 200 mbar air pressure (indicated in
light gray). Denoted by 2 and 3 are quadrupoles providing focusing in x and y respectively. Denoted
by 4 and 5 are the dipoles steering the beam in x and y respectively. The final component of the
nozzle in the illustration, denoted by 6, is the IC2/3 chamber, held at room temperature and pressure
(indicated in gray). Upon leaving the nozzle after IC2/3, the beam enters the treatment room air
(indicated in gray). The dot at 7 marks the isocenter. The nozzle overall is roughly 2 meters long,
and the air gap from the nozzle to isocenter is roughly 50 cm.
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Figure 1.3: Illustrating the basic components of a cyclotron. From the original patent application by
Ernest O. Lawrence, inventor of the cyclotron. Now in the public domain.

v =
2πr

t
=⇒ t =

2πr

v
=

2πm

QB
(1.3)

where the last equality follows from Equation 1.1. By setting the frequency of the alternating current
to half this time, the protons will be accelerated every time they cross the gap between the dees.

Notable is that the kinetic energy of the particles at a given radius is independent of the strength
of the electric field. The strength of the magnetic field and the radius of the cyclotron determines
the maximum kinetic energy a cyclotron is capable of providing, as given by Equation 1.2. However,
although Equation 1.3 suggests a constant magnetic field is appropriate, it fails to take relativistic
effects into account. The isochronous cyclotron at Skandionkliniken accelerates protons up to a kinetic
energy of 230 MeV. At this energy, protons are traveling at v

c ≈ 0.6 times the speed of light, and the
Lorentz factor γ ≈ 1.25. Therefore, as the protons are accelerated they will gain mass and the time
per turn in Equation 1.3 is not a constant. An isochronous cyclotron deals with this problem by using
a magnetic field strength that varies with the radius r to ensure that t is kept constant.

All protons leaving the cyclotron at Skandionkliniken will have a kinetic energy of around 230 MeV.
If a treatment plan calls for another, lower energy, the protons may pass through a degrader. Low
Z materials are preferable for degraders, as their scattering power is low; the cumulative, or multiple
scattering angle of a proton relative the incident direction having passed through a low Z material
is therefore in general lower than for a high Z material.[31] Due to the random, statistical nature of
proton electromagnetic interactions in an absorber, not all protons will lose exactly the same amount
of energy, nor will the multiple scattering angle be the same for all protons. Following the degrader, the
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protons will pass through the rest of the beam line consisting of various slits, dipoles and quadrupoles.
The dipoles are necessary to steer the beam along the beam pipe, to prevent the protons from crashing
into the pipe wall. In combination with the slits, it is possible to make sure only a narrow band of
energies are able to pass through the beam line to the nozzle, and protons with energies deviating too
much from the requested are effectively prevented from reaching the nozzle.

To ensure that the size of the pencil beam does now grow too large due to the different angle of travels
of all the protons in the beam, quadrupoles, generally in doublets, are located along the beam line. It
can be shown that quadrupoles in multiplets have a net focusing effect on the beam in the sense of
decreasing the spatial extent of the beam, even though a single quadrupole only has a focusing effect
in one dimension and defocusing in another.[32] The beam finally entering the nozzle will therefore
hopefully be characterized by a small angular and energy spread. Its position and spatial spread, or
size, will be measured by the ionization chambers in the nozzle. The collected charge in the chambers
will also allow for a measure of the intensity of the beam. Standard correction (i.e. for temperature and
pressure etc) factors are applied and the collected charge may be presented as MUs, the unit by which
the TPS designates the weight, or amount of dose, per pencil beam. Through reference dosimetry
measurements the dose delivered at a reference depth per monitor units may be determined so as to
enable the TPS to convert the planned dose distribution into monitor units for each specified beam
spot. Finally, two dipoles direct the beam as required by the treatment plan.

It is the objective of the beam model as developed in this thesis to describe a set of properties of the
beam at the nozzle exit, i.e. once it has passed through the entire beam line as described above as to
enable calculation of further beam propagation by Monte Carlo transport code. The beam model is
further described in Chapter 2.

1.2 Monte Carlo

1.2.1 Basic method

The MC method may be considered a very accurate method for dose calculations[33]. The dose
calculation methods used by TPS are as noted above commonly different, utilizing semi-analytical
algorithms to ensure calculations are fast enough to allow the planner to work interactively. The
implied weakness of the MCmethod currently is thus its speed, being in general significantly slower than
other alternatives. In the future this may be remedied by gains in computational power. Significant
acceleration of dose calculations using MC is possible however by fully utilizing the potential in present
day graphics processing units (GPU), widely available; some promising results have been published[34,
35, 36, 37]. Readers unfamiliar with the MC method in radiotherapy and transport theory may consult
the following short article and its references[38].

The MC method derives its accuracy by working from first principles, considering the interactions of
each simulated particle in some detail. Indeed, in so called analog MC every interaction is considered
individually, and the transport solved as exactly as our theories of particle interaction allow. Given the
large number of interactions charged particles may undergo as they pass through an absorber, analog
MC is not always a feasible option[39, 38]. A solution to this problem is so called condensed history
transport, where several interactions taking place during a chosen simulation step size s are bundled
together[40]. The processes of scattering, energy loss and streaming or drifting, may be considered
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separately; as such, it is an operator-split method. It has been shown that the result of such an
operator-split, condensed history method is a solution to the Boltzmann equation in the limit of the
step size s→ 0[41].

In the case of scattering, the property of interest is the accumulated scattering angle relative its
incident direction, after having undergone a number of interactions in a medium, where in most cases
a single scattering interaction only contributes a small deviation of the particle direction. Cases where
the number of scattering interactions is large is usually referred to as multiple Coulomb scattering
(MCS), and several theories have been developed to provide probability distributions for the multiple
scattering angle. These include theories by Moliere[42], Lewis[43],Goudsmit & Saunderson[44] and
Fermi-Eyges[45]. Energy loss, or stopping, is typically handled by dividing incident particle-electron
collisions into two categories; hard and soft. In the latter case, the incident particle loses energy
continuously, and no secondary particles are generated; in this case the energy loss due to collisions
with electrons (bremsstrahlung may be neglected for protons in the clinically relevant energy interval)
may be described by the Bethe-Bloch equation

−dE
dx

1

ρ
= 0.3072

Z

A

1

β2
z2
(

1

2
ln

2mec
2β2Wmax

1− β2
− β2 − ln I − C

Z
− δ

2

)
(1.4)

where the following notation has been used:

ρ Absorber material mass density

Z Absorber material atomic number

A Absorber material atomic mass

β = v
c where v is the speed of the incident particle

z Incident particle charge

me Electron mass

c Speed of light in vacuum

Wmax Maximum energy transfer in a collision

I Mean excitation energy

δ Density correction
C
Z Shell correction.

The correction terms may safely be ignored in the clinically relevant energy interval. In Figure 1.4 the
linear collisional stopping power using Equation 1.4 is plotted for water, with Z

A = 0.55 and I = 75 e
V and with the corrections neglected.

In hard collisions, secondary particles are generated and tracked; dose deposition does not occur on the
spot as in soft collisions. Given the large mass difference between protons and electrons, Wmax ≈ 0.55
MeV for 230 MeV protons. The range in water for 0.55 MeV electrons is on the order of 2 mm, which is
approximately the size of a pixel element in a CT image, wherefore ignoring tracking of electrons may
lead to speed gains with acceptable loss of accuracy for most clinical applications[46]. The threshold
for hard collisions must otherwise be set appropriately. Decreasing thresholds increase CPU time as
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Figure 1.4: Linear collisional stopping power, according to the Bethe-Bloch equation without the
higher order correction terms.
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more time is spent on tracking secondary particles. Increasing them will speed the simulation up, but
with some loss of accuracy.

Equation 1.4 is accurate for proton kinetic energies throughout the clinically relevant range, except
for kinetic energies below 1 MeV where the Born approximation is no longer valid [47]. One of the
main areas of uncertainty when applying Equation 1.4 is I, the mean excitation energy. It cannot be
derived from first principles, and must be measured. Since I enters in a logarithmic expression, the
impact of uncertainties in its numerical value is relatively weak, but it is still significant: a study by
Andreo indicated that for a 122 MeV proton beam in water, the Bragg peak position may vary by as
much as 3 mm using different values of I found in the literature[48].

Actual implementations of these techniques in the form of computer software are available in various
forms. Some widely used MC codes include FLUKA[49], Geant4[50, 51] and MCNPX[52]. These
codes are versatile with applications well beyond the boundaries of the medical physics field, which
may cause difficulties for the medical physicist new user. Geant4 in particular requires substantial
knowledge of C++ for usage. Several options that cater more exclusively to the medical physics field
have subsequently been developed, with a more user friendly interface. These include TOPAS[53],
GAMOS [54] and GATE[55, 56, 57]. These examples are all based on Geant4; however, instead of
C++ simpler macro languages are used to define such things as simulation geometry, physics processes
and particle source. As detailed further in Section 2, work for this thesis has been carried out using
GATE.

1.2.2 Geant4/GATE

Since GATE is built on top of Geant4, some understanding of Geant4 is necessary to understand
GATE. As previously noted, Geant4 is a versatile tool, intended for use in a wide variety of fields. It
deals with this by making available a substantial set of models, simulating various physics processes
such as Coulomb scattering and nuclear interactions, for various particles. Most of these models are
limited in their applicability. As such, a user interested in high energy physics simulations, as for
instance with the Large Hadron Collider at CERN, would be simulating physics processes with models
appropriate for a certain relevant energy interval and particles. For medical applications, other physics
processes and another energy interval will be more relevant, and in Geant4 it is the responsibility of
the user to make appropriate choices for his or her particular simulation.

The standard package for electromagnetic processes is implemented as a number of classes known as
options which the user may call to construct a physics list, which is a list of all particles and models
for the physics processes the user wishes to simulate. When the standard package is called, it sets up
a number of models to model various electromagnetic processes, as well as a number of parameters
pertinent for these models. As an example of a model, the default MCS model is the Urban model,
which in turn is based on the Lewis MCS theory[58].

An example of a parameter is the threshold for hard and soft collisions as described above. It is
determined in Geant4 by production cuts whereby a user may chose to have particles tracked if they
fulfill certain criteria. An example of a production cut is a range cut. A range cut of 2 mm for electrons
means that a collision yielding an electron with CSDA range greater than 2 mm will be considered
hard, and the produced δ-electron will be tracked. If the range would be less than 2 mm, the collision is
considered soft and the energy is deposited locally in accordance with Equation 1.4. For the standard
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electromagnetic package, the default range cut for electrons is 1 mm, although the user is able to set
it to an arbitrary value, with the added caveat that lower values will require more central CPU time.

1.2.2.1 Step size

As previously stated, in the limit as the step size approaches 0, the condense history method approaches
an exact solution to the Boltzmann equation. The step size is therefore an important parameter. What
follows is thus a short review of the step size issue; the reader may consult the relevant documentation
for further details[59]. Geant4 differentiates the so called geometrical path length, which is the shortest
distance between the end points of a step (which is a straight line, unless a magnetic field is present),
and the true path length, which is the actual path length as traveled by the particle in between the
end points. The latter is thus in general longer than the former. The Geant4 transportation system
uses the geometrical path length, i.e. the particle is transported in a series of straight lines. However,
since physics processes such as scattering and energy loss are sensitive to the true path length traveled
by the particle, a transformation must be performed to go from one to the other.

The step size selection works by first looping over all pertinent physics processes; the model assigned
to each of these will propose a true path length as a step size. The minimum of these is selected. It
is then compared to other limits set by the user. An example of such a limit in the default option of
the standard electromagnetic package is that the step size may not exceed 20% of the residual range
of the particle. Of the minimum true path length compared again with other limits, the minimum is
again selected. This is then transformed into a geometrical path length. The resultant geometrical
path length is then compared to the distance to the nearest boundary, to make sure that the particle
cannot cross into a different volume without stopping at the boundary. The minimum of these is
again selected, transformed back into a true path length, and this true path length is then used when
calculating the multiple scattering angle and the energy loss during the step. The particle is then
transported a distance equal to the geometrical path length.

Integrating equation 1.4 is computationally expensive. Therefore, before particle tracking begins,
Geant4 evaluates it at a certain number of energies, controllable by the user, and fills tables with the
resultant values. These tables may then be interpolated appropriately for a specific energy, and the
energy loss ∆E for a certain true path length t of a single step is

∆E = −dE
dx
· t (1.5)

where dE
dx is evaluated using the kinetic energy of the particle at the beginning of the step. Therefore

equation 1.5 is valid for small true path lengths t and where the gradient of dE
dx is small. Figure 1.4

indicates the latter is valid for most of the clinically relevant energy range in water; it breaks down,
however, for lower energies. To make Equation 1.5 yield more accurate results at these lower energies,
typically encountered in the dosimetrically very important Bragg peak, the user may set a so called
linear loss limit. The latter is a fraction threshold; if the fraction of the particle kinetic energy lost
during a step is greater than the linear loss limit, integration of Equation 1.4 is performed. Also
available is a so called step limiting function, which gradually reduces the maximum step size as the
particle loses energy.

The true path traveled by a charge particle is in general different from a straight line due to the
large number of scattering interactions undergone, even during a typical step size of 1 mm. A MCS
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Step

Lateral displacement

Figure 1.5: The difficulties of charged particle transport with a finite step size can be understood from
this simple illustration. The black line is equivalent to a geometrical step size in Geant4 where the
angle of travel is updated at the end of the step, with the new angle of travel shown in green. The
purple line is the same but with the angle of travel updated at the beginning of the step. The blue
line is the true path travelled by the charged particle, indicating that neither method will provide an
accurate value for the spatial displacement.

model used in a simulation ought therefore not only to provide a probability distribution for the
resultant multiple scattering angle following a step, but the lateral displacement of the particle. Of
the MCS theories mentioned previously, only Lewis theory provides the first couple of moments of
spatial displacement, and the Urban model, based on Lewis theory, exploits these to calculate the
spatial displacement. The spatial displacement problem is usually the largest source of uncertainty in
condensed history simulations[60].

Consider Figure 1.5. The black line corresponds to the transportation of a particle during a single
step. The new direction of the particle at the end of the step, as a result of the number of scattering
interactions during the step as calculated by the MCS model, is shown in green. The blue line corre-
sponds to the true path of the particle along the step. Simply updating the particle direction at the
end of each step will in general underestimate the scattering. Inversely, if the particle is transported in
the scattering angle calculated for the end of the step as shown in purple in Figure 1.5, the scattering
will be exaggerated. For a review of methods employed by various algorithms to solve this problem,
see [61].

1.2.2.2 GATE actors

GATE is built on top of Geant4, and all of the above said of Geant4 also applies to GATE. However,
in order to facilitate usage for the medical applications specialist, a set of additional medically oriented
tools was introduced to GATE, besides the already mentioned use of a simple macro language instead
of C++. These include a variety of so called actors that allows for the calculation and subsequent
extraction of useful information from a simulation. For example, the dose actor can be attached to
any volume in a simulation geometry, and the dose to that volume, either as a whole or to each voxel
following a voxelization, can be provided after a simulation. Also important is the phase space actor,
allowing extraction of the phase space at a given position. This lets a user focus on the practical
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aspects of a simulation, as opposed to having to write accurate and efficient code and consider issues
such as voxel tracking (see [62] for details on this area).

1.3 Purpose

It is the purpose of this thesis to construct a simple beam model for the pencil beam scanning system
at Sweden’s new proton therapy facility, Skandionkliniken, for use in Monte Carlo (MC) simulations
and perform basic validation of it. This would in turn allow for what Meier et al. refers to as level
3 and level 4 independece checks of the treatment system[63]. These tests may be implemented in
a patient specific QA process that might save precious beam time by performing a validation of the
delivered dose distribution by means of MC simulation, using the system log files as input. Details on
the method is found in Chapter 2.



Chapter 2

Method

2.1 Overview

Any MC simulation of a particle beam requires a starting point, as well as a set of input parameters
describing the particle beam at that point. Options for starting points found in the literature include
the beginning of the beam line where the beam exits the accelerator[64], or the nozzle entrance[65, 66],
or the nozzle exit[67]. Earlier starting points necessitates modeling the geometry of a greater number of
beam line components, such as ion chambers, magnets and scatterers or degraders. The feasibility of the
nozzle exit approach has been argued specifically for pencil beam scanning, where beam manipulation
within the nozzle is significantly smaller than in passive scattering[46, 68]. Furthermore, significant
savings in the necessary CPU time per simulation is also possible in neglecting transporting the protons
through the nozzle[15], although this effect will be mitigated for the nozzle at Skandionkliniken which
is mostly vacuum. Therefore, the nozzle exit approach was selected as the only realistic option that
would allow completion during the time frame of a master thesis work.

A beam model is a function or set of functions that supplies the necessary parameters of the beam at
the starting point. As this work was carried out during the commissioning of the site, it was necessary
to minimize the need for additional measurements. The method to find a beam model broadly followed
was originally developed and validated by Grevillot et al.[69, 70]. Preserving the basic philosophy of
this method has in the following been attempted in the sense that nothing but the beam data library
(BDL) is necessary to construct the beam model. In practice, the BDL data set was complemented
with data from IC2/3 (see Section 2.2). However, this data is automatically generated by the system
during irradiation and is thus recoverable without having to perform additional measurements.

The method uses eight parameters to describe the beam at the nozzle exit. Six of these are so called
optical parameters, and two are energy parameters. Letting the direction of the beam be along the
z-axis, the optical parameters are the spot size in x and y, angular spread in x and y and emittance in
x and y. The spot size and angular spread parameters are each described by single Gaussian standard
deviations. The two energy parameters are the energy spread, also described by a Gaussian standard
deviation, and the mean energy. By finding appropriate values for these parameters by analysis of
the BDL for a selection of kinetic energies at the nozzle exit, ideally covering the energy range that
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will be used at facility, a polynomial fit as a function of kinetic energy for each found parameter set
is performed. Provided that each parameter varies reasonably smoothly with energy, evaluating the
polynomials for an arbitrary energy within the energy interval to which the polynomials were fitted
should yield accurate values of the eight parameters at the simulation starting point, i.e. the nozzle
exit.

For the beam originally modeled by Grevillot et al., the beam size as a function of air depth was
linear for all energies, allowing extraction of the angular spread by a fitting a straight line through the
measured beam sizes for all energies and obtaining the slope. At Skandionkliniken, the beam size is a
more complicated function of air depth. This followed from the fact that the nozzle at Skandionkliniken
is, apart from the ion chambers, kept at vacuum, whereas the nozzle for Grevillot et al. was filled
with air. This difference necessitated a generalization of the method presented by Grevillot et al.
This generalized method also provides an analytical method to calculate the emittance, based on
Fermi-Eyges theory. In the subsections below, the details of this generalized method will be presented.

Except when otherwise stated, all fits and numerical calculations were performed in Octave[71], a high
level programming language for numerical calculations.

2.2 Data

Two kinds of data were used during beam modeling. The first is the BDL data collected during
commissioning of Gantry 1 by the commissioning physicists, as required by Eclipse, the TPS used at
Skandionkliniken. The BDL data pertinent for the beam model include beam profile measurements in
air and IDD (integral depth dose) curves. The second kind of data is provided by the log files, recording
a wide variety of set and monitored beam line parameters during the course of an irradiation. More
details on the how the log files were used as input for simulations are given in Section 2.5.2.

2.2.1 Beam profile measurements

The beam profile measurements in air were performed by the commissioning physicists for Eclipse
using the Lynx, a scintillator with a 30x30 cm2 active surface area. Following measurement, beam
profiles were obtained as 600x600 matrices, with a resolution of 0.5 mm. Beam profile measurements
were carried out for 18 different proton kinetic energies, from 60 to 220 MeV in intervals of 10 MeV,
as well as a measurement for the maximum energy at isocenter, 226 MeV. The energy of a beam is
defined for the BDL data as the energy at isocenter in air. An initial set of measurements of beam
profiles for a variety of gantry angles was performed at isocenter. Based on these data, it was decided
to perform a complete set of measurements for a single gantry angle of 315°. The complete set consists
of, for each of the 18 energies, beam profiles measured at five different air depths: isocenter -19 cm,
isocenter -10 cm, isocenter, isocenter +10 cm and isocenter +20 cm. The negative and positive signs
designate upstream and downstream of the isocenter respectively.

The spot size was characterized by a Gaussian standard deviation, and thus 2D Gaussians were fitted
to each beam profile matrix. The fitting was done in ROOT[72] after converting the matrices to ROOT
2D histograms. The central 40x40 beam profile matrix, corresponding to the central 2x2 cm2 of the
sensitive area of the Lynx, was used for all energies. The 40x40 beam profile matrix was selected to
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ensure a simple, consistent method to calculate the spot size, facilitating comparison with simulated
beam profiles, whilst avoiding the low bin count and non-Gaussian region further from the center of the
Lynx for all energies. The standard deviations in x and y following the fit was extracted. Grevillot et
al. estimated a 0.1 mm uncertainty for spot sizes following fits of the Lynx data; this uncertainty, after
having been confirmed by IBA, was also accepted for the present work. This uncertainty primarily
reflects the Lynx instrumental uncertainty. The statistical uncertainty in a fit to the data is an order
of magnitude or more smaller and is thus assumed to be negligible.

2.2.2 IC2/3 data

Grevillot et al. [69] performed beam profile measurements at six depths for each energy, including the
nozzle exit. An extra measurement at the nozzle exit is important, as the position of the nozzle exit
is approximately at isocenter -54 cm, some 35 cm from the nearest data point. Since the simulations
utilizing the beam model intend to start at the nozzle exit, and all optical parameters depend on the
beam size at this point (see Section 2.3), the distance to the nearest data point will cause unnecessary
uncertainties in the optical parameters. However, a measurement at the nozzle exit at Skandionkliniken
was hard to achieve during the commissioning phase of the facility. To overcome this problem, the
beam size reading from IC2/3 was extracted from the log files, generated during the beam profile
measurements. IC2/3 is a stripped ionization chamber located inside the nozzle at the exit. IC2/3
does not have as high resolution as the Lynx. A conservative estimate for the spot size uncertainty as
measured with IC2/3 was given by IBA as 0.5 mm. Examples of spot sizes following 2D Gaussian fits
to the data is plotted in Figures 2.1 and 2.2. The upstream most data point is that given by IC2/3; the
next five result from fits to the Lynx measurements. The position of the IC2/3 data point is different
in the two dimensions due to the separation of the strips in IC2/3; the spot size in x is measured some
four centimeters before the spot size in y. The plots well illustrate the spot size variation with air
depth is a more complicated function of energy and dimension than that for Grevillot et al.

2.2.3 IDD curves

The integral dose depth (IDD) curves were measured by the commissioning physicists for Eclipse in
the IBA BluePhantom, a water phantom allowing for a 0.1 mm steps in ion chamber movement. IDD
is, for a given depth, defined as the integral of dose given to a large plane perpendicular to the incident
pencil beam direction. The curves were measured using the PTW 34070 plane parallel ionization
chamber. Its entrance window diameter is 84 mm, making it among the larger available on the market
and thus suitable for IDD-measurements. It has however been noted that even the PTW 34070 is
not large enough to capture significant portions of the halo, and therefore an MC-based method was
used by which the ion chamber readings may be corrected to provide a true IDD curve[73]. This
correction was applied to the measured IDD curve, following a conversion from ionization to dose.
Conversion from ionization to dose was necessary since the water-air stopping power ratio cannot
be taken as constant in the clinically relevant proton energy range, necessitating application of the
following equation (equation B.13 from the TRS-398[74])

sw,air(z) = a+ bRres +
c

Rres
= a+ b(Rp − z) +

c

Rp − z
(2.1)
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Figure 2.1: The spot sizes against air depth for 60 MeV protons. The errors in the spot sizes as shown
in the errorbars were provided by IBA as 0.1 mm for the Lynx data and 0.5 mm for the IC2/3 data.
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Figure 2.2: The spot sizes against air depth for 180 MeV protons. The errors in the spot sizes as shown
in the errorbars were provided by IBA as 0.1 mm for the Lynx data and 0.5 mm for the IC2/3 data.
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where a = 1.137, b = −4.265 · 10−5 and c = 1.84 · 10−3 was applied to each measured ionization curve.
Rres = Rp− z is the residual range, where Rp is the practical range (see Table 1.1) and z is the depth
of interest.

2.3 Optical parameters

In order to extract the angular spread from the measured data, the original method as presented
by Grevillot et al. was found not to be applicable due to the added complexity of a non-linear
beam divergence/convergence. Instead, a new method had to be found. To extract a first order
approximation of the optical parameters, it will first be assumed that the beam is propagated through
vacuum before striking the patient. Following that, a method will be presented to correct for air.

Angular and spatial distributions are per Fermi-Eyges theory assumed to be Gaussian, and Gottschalk’s
[75] notation is mostly followed; his paper may also serve as an introduction to the subject of Fermi-
Eyges theory, applied to proton therapy. Consider a proton beam entering a slab of a certain material
at the origin (0,0,0) of a coordinate system (X,Y, Z). Let the beam travel along the Z-axis. The basic
equation of Fermi-Eyges theory, derived in a short note by Eyges[45] parametrizes the probability
density of the protons’ position X and direction of travel X ′ at depth Z in the slab as

P (X,X ′) =
1

2π
√
B

e−
1
2

A0(Z)X2−2A1(Z)XX′+A2(Z)X′2
B dXdX ′ (2.2)

where A0 is the variance of the angular distribution, A1 is the covariance of X and X ′ and A2 is the
variance of the spatial distribution; each An is the nth moment of T , the scattering power of the slab.
Equation 2.2 is then completed to a standard 2D Gaussian probability density function by setting B
as

B = A0A2 −A2
1

The discussion below will exclusively deal with the X spatial dimension, but all equally applies to Y ,
for which there is a corresponding equation 2.2. The set of all X,X ′ such that

A0(Z)X2 − 2A1(Z)XX ′ +A2(Z)X ′2 = B (2.3)

makes out an in general elliptical shape in X,X ′-space, and the area enclosed by it is ε, which also
provides an interpretation of B.

ε = π
√
A0A2 −A2

1 = π
√
B. (2.4)

A0, A1 and A2 are all functions of Z, but for convenience this notation has been dropped in the
equation above, and this practice will continue throughout this section. The area ε in X,X ′-space
is known as the emittance, and is a measure of the correlation of the spatial position and angle or
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Figure 2.3: A beam ellipse of a convergent beam, illustrating some of the notation in the text. X ′
is the angle, and X is the spatial position. || is used in the sense of “or”, to indicate two different
notations for the same property.

direction of the protons. For a beam with a certain variance in its angular distribution and in its
spatial distribution, the maximum possible emittance will occur when there is no correlation in spatial
position and angle of travel, i.e. A1 = 0. The ellipse as made out by the set of X,X ′ satisfying
equation 2.3 is usually referred to as the beam ellipse.

Consider the beam ellipse in Figure 2.3. If the beam characterized by the beam ellipse is propagated
through vacuum where the scattering power T = 0, all points on the beam ellipse curve would be
moving strictly horizontally along the X-axis since no scattering will occur to change the direction
of the protons (in Figure 2.3, all the points above the X-axis would be moving right and all points
below would be moving left). In this case, it follows from Liouville’s theorem that dε

dZ = 0, or in other
words that the emittance remains constant. Furthermore, the area of the ellipse may be calculated as
π ·X ′int ·Xmax, where X ′int is the point where the ellipse intercepts the X’-axis and Xmax is the X-
coordinate of the maximum spatial spread in the ellipse, which corresponds to the standard deviation
of the spatial distribution in X; this is also illustrated in Figure 2.3. It follows thus that when the
beam characterized by the beam ellipse in Figure 2.3 is propagated through vacuum, it will initially
converge. This is necessary because X ′int will initially increase, whilst Liouville’s theorem holds that
the emittance must be constant; the only way for these two statements to be valid simultaneously is
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Figure 2.4: In a), two protons are traveling at a certain angle relative the Z-axis with their directions
being represented by the red lines. If no steps were taken to prevent it, the spot size of this two
proton beam would increase indefinitely. Suppose rather that these two protons then pass through a
quadrupole in which a force Lorentz force F is applied along the X-axis, whose magnitude is propor-
tional to the distance of the proton from the center of the X-axis. In that case, we may end up with
the case as shown in b); the two protons retain their angle of travel but their spatial positions are
exchanged, yielding a beam whose spot size will decrease.

for Xmax, the standard deviation of the spatial distribution, to decrease.

A convergent beam characterized by the ellipse in Figure 2.3 may be created by the use of magnets. The
simple illustration in Figure 2.4 may help in understanding how this is accomplished for a hypothetical
two proton beam. The magnitude of one of the proton’s X coordinate would determine the magnitude
of Lorentz force F applied to it by the magnets. The direction of force along the X-axis would hold
the opposite sign to the proton’s X coordinate. By fine tuning strength of the magnetic field provided
by the quadrupoles, it is possible to have the protons in a) exchange positions, whilst still retaining
the direction of travel relative to the Z-axis. This new situation is shown in b). This two proton beam
will, if allowed further undisturbed propagation, decrease its spot size. At some point however, the
distance between the protons will start increasing again. The point at which the spot size of the beam
is at its smallest is known as the beam waist.

The beam waist for a proton beam must, by necessity, as noted above, occur when X ′max intersects the
X ′-axis. Moreover, it is also deducible from inspection of the beam ellipse that the convergence will
slow down as the beam approaches the beam waist. This happens since some protons cross the X ′-axis
sooner than others, and once across these protons will contribute to the divergence of the beam. As
the distance from the beam waist position goes to infinity, all protons will have crossed the X ′-axis,
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Figure 2.5: Illustrating spot size variation with vacuum depth for a convergent beam as a hyperbola
in the form of Equation 2.5.

and since there is no scattering in vacuum, the protons will increase their distance to one another with
a constant speed proportional to X ′max. At this point, the beam size as a function of air depth should
be linear with a constant derivative, much like the beam modeled by Grevillot et al.

The above description of spot size variation with distance from the beam waist fits well the mathe-
matical function known as the hyperbola, i.e. that the spot size σX variation with vacuum depth Z
can be described as

σ2
X

a2
− (Z − c)2

b2
= 1. (2.5)

where a, b and c are constants determining the the shape of the hyperbola. An example of a hyperbola
with constants a = 1, b = 1, c = 0 is shown in Figure 2.5.

Some simplification and rearrangement of equation (2.5) yields

σX = a

√
1 +

(Z − c)2
b2

(2.6)

Two important properties of the hyperbola are evident from Equation 2.6. First, the minimum of
the hyperbola will occur when Z = c. Second, as Z → ∞ the slope of the hyperbola approaches a

b .
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By fitting equation (2.5) to the six measured spot sizes for a given energy, with a, b and c as fitting
parameters, a

b should yield a first order approximation of the angular spread of the beam for that
particular energy. c might also be considered a first order approximation of the beam waist position.
As noted above and illustrated in Figures 2.1 and 2.2, the uncertainty in the IC2/3 data point is larger
than that for the Lynx. This difference in uncertainty warrants a weighted fit. Weights were set to
1
U , where U is the uncertainty associated with the data point. This translates to a weight of 2 to
the IC2/3 data and a weight of 10 to the Lynx data. The spot size at the nozzle exit was given by
evaluating the fitted hyperbola at the nozzle exit Z-coordinate, yielding a first order approximation of
the spot size. The emittance thus remains. Recalling Equation 2.4, A0, A1 and A2 must all be known
to calculate the emittance. By setting A0 =

(
a
b

)2and
A2 = a²

(
1 +

(d− c)2
b2

)

where the latter follows from squaring equation Equation 2.6 and setting setting A2 = σ2
X and where

d is the Z-coordinate of the nozzle exit (or whatever Z-coordinate described by the beam ellipse), A1

remains to be found. The coordinate of the point in the beam ellipse corresponding to the maximum
angular deviation is

(
∓ A1√

A0
,±√A0

)
. The triangle in Figure 2.6 may facilitate visualization of the

situation, and from it a simple trigonometric relation may be derived to obtain A1. Returning to
the beam ellipse in Figure 2.3, the beam waist must occur at the Z-coordinate when the protons
at the

(
∓ A1√

A0
,±√A0

)
-point reach the

(
0,±√A0

)
-point, as already established. Supposing the beam

waist position is known by using the c-parameter of the fitted hyperbola, the distance along the Z-axis
to the beam waist is (c− d); the angle at which they travel is also known, which is

√
A0 relative to the

Z-axis, orπ2 −
√
A0 relative to the X-axis. Therefore

tan(
π

2
−
√
A0) =

(c− d)
A1√
A0

=⇒ A1 =
(c− d)

√
A0

tan(π2 −
√
A0)

(2.7)

Having thus found A1, it is possible to calculate the emittance in X. Since a corresponding method
may be employed in Y , all six optical parameters may be found using the method described for the 18
energies.

The accuracy of the method thus far is limited to the extent that air can be approximated as vacuum,
since it is assumed that the beam is propagated in a material characterized by a scattering power T = 0.
Measurements however were carried out in air. The effect of this is likely that a hyperbola fit to the
measurement data will yield a a

b higher than expected, leading to an overestimation of the angular
spread. This is illustrated in Figure 2.7. Two beams characterized by identical beam parameters and
having been propagated through vacuum are shown after the beam waist. At absorber depth 1, one
of the beams enters an air absorber and the other continues in vacuum. The blue line illustrates the
latter case and how the spot size would vary in vacuum where T = 0; after a slight curvature in the
beginning following the beam waist it approaches a constant slope some distance away from the beam
waist. The red line on the other hand shows spot size variation in air where T 6= 0; there is a slight
upwards curvature that arises due to scattering. Since the measured data will be following the red
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A1√
A0

d c

π/2−√
A0 Z

Figure 2.6: A triangle demonstrating the technique to find the emittance. The protons with maximum
angle within the beam ellipse travel with an angle

√
A0 relative to the Z-axis, or π

2 −
√
A0 relative

the X-axis, since it is perpendicular to the Z-axis. The projected distance along the Z-axis they will
cover before reaching the beam waist is c− d. The distance to the Z-axis is A1√

A0
.

Figure 2.7: Illustrating the effect of air on the spot size variation with absorber depth after the beam
waist. The red curve, corresponding to a spot size curve in air, has a slight upwards curvature, leading
to an ever increasing slope; the blue line, corresponding to a spot size curve in vacuum, approaches a
constant slope.
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Figure 2.8: The hyperbola fits to data corrected for air for a proton beam with kinetic energy 60
MeV.The errors in the spot sizes as shown in the errorbars were provided by IBA as 0.1 mm for the
Lynx data and 0.5 mm for the IC2/3 data.

curve, the fitted hyperbola will as noted above give a too large a
b -value. To overcome this, a correction

taking air into account was performed by simulation.

A simulation was run in air with the optical parameters calculated as outlined above. A second
simulation, with the same optical parameters, was then performed in vacuum. In both simulations,
the spot size at the position of the Lynx data points was calculated. The difference between the
spot size in air and the spot size in vacuum was subsequently calculated. This difference was then
subtracted from the spot sizes calculated from the Lynx data to give a reasonable estimation as to
what the spot size would have been, had the beam profile measurements been carried out in vacuum.
The method to calculate the optical parameters was then repeated using this modified Lynx data, and
the resultant optical parameters were accepted as final.

This correction is computationally expensive. To accomplish it in a feasible time frame, the Uppsala
Multidisciplinary Center for Advanced Computational Science (UPPMAX) computer cluster, provided
by the Swedish National Infrastructure for Computing (SNIC), was used. 18 CPU cores were utilized
for a total of 400 CPU-hours, each core simulating 5 million protons for one of the energies as described
in Section 2.2 in air. Simulations in vacuum are significantly quicker and could be performed using a
single CPU in a few hours for all 18 energies. Examples of the weighted least square hyperbola fits to
the data corrected for air are shown in Figures 2.8 and 2.9. The complete set of plots of the fits for all
energies is found in the Appendix.
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Figure 2.9: Showing the hyperbola fits to data corrected for air for a proton beam with kinetic energy
180 MeV.The errors in the spot sizes as shown in the errorbars were provided by IBA as 0.1 mm for
the Lynx data and 0.5 mm for the IC2/3 data.

2.4 Energy parameters

In order to simulate a treatment plan based on log file data a method to transform the range at the
nozzle entrance to kinetic energy at the nozzle exit is necessary, since the log files only provide the
former and not the latter. To do this, log files for the IDD curve measurements were obtained. From
these the nozzle entrance range corresponding to each curve was extracted. Following this, the distal
d80 range was calculated for each measured curve. This is the range corresponding to 80% of the
Bragg peak dose on the distal side of the Bragg peak. This distal d80 range value was used as an
approximation of the proton range at isocenter. This range was subsequently translated into an energy
using an equation supplied by IBA as follows:

E = e0.001685 lnR3−0.004901 lnR2+0.561372 lnR+3.464048

where E is the energy and R is the distal d80 range. Having thus found the energy at isocenter
corresponding to a range at the nozzle entrance, a smaller correction is necessary to account for the
∼ 50 cm air gap between the nozzle exit and the isocenter. This was performed by a power law fit to
the PSTAR[76] range-energy data for air. The appropriateness of using a power law to describe particle
range as function of energy is generally known as the Bragg-Kleeman rule, and is still advocated in
recent literature[77, 78, 79]. Justification may also be gleaned from a log-log plot of range vs energy,
as shown in Figure 2.10

Using a power law of the form
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Figure 2.10: Since the data points line up on straight line on a log-log plot, a power law is a good
choice to fit the data. The blue crosses are range data from NIST, and the red liue is a power law
(Equation 2.8) fit to the range data.
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R = aEbiso (2.8)

where a and b are fitted parameters thus allows accurate conversion of the energy in water at isocenter
to range at isocenter in air. The energy at the nozzle exit should thus correspond to the range R at
isocenter in air as given by Equation 2.8, plus an additional range r equal to the air gap length. Taking
the inverse of Equation 2.8 and adding r thus yields

Enoz =

(
R+ r

a

) 1
b

(2.9)

which should provide the energy at the nozzle exit. Having performed this for all energies, cubic spline
interpolation is used to obtain the energy at nozzle exit for an arbitrary range. The energy is thus the
only parameter that does not depend on a single, fitted polynomial. The mechanics behind this will
be further detailed in section 2.5.

Of the two energy parameters, the more difficult and time consuming to find is the energy spread. An
algorithm was devised to automatize the process that may summarized by the following steps. Given
the kinetic energy at the nozzle exit and three initial values of energy spread

1. Calculate the range in water for the proton kinetic energy, add one centimeter to the found
range and round it upwards to the nearest integer to ensure a sufficient margin. Create a water
phantom with a thickness using this value. Set the dose actor resolution to score dose in planes
of 0.1 mm. Adjust the position of the water phantom such that the distance from the start of
the simulation until the surface of the water phantom is equal to the air gap distance from the
nozzle exit to isocenter.

2. Using the geometry found in step 1., create three macro files run by GATE with the three different
energy spreads. Run three simulations, one for each macro file.

3. Using the three resultant dose depth curves from GATE from step 2., compare each with the
measured curve for that energy. Find the absolute value of the relative difference from the
proximal d50, d80 and d90 ranges between measured and simulated curves. Also calculate the
absolute value of the average relative dose deviation in the plateau region between measured and
simulated curves. Sum all these deviations together for each energy spread, and fit a second
degree polynomial to the sums as a function of energy spread. Find the minimum by taking the
derivative of the polynomial.

4. Create three new values of energy spread, using the minimum found in step 3. as the central
value, and two outer values equal to the central value ±0.05. Run three more simulations using
these energy spreads. Repeat step 3. Then

(a) If new minimum found is within the interval of the three new energy spreads, accept this
minimum as the best energy spread and exit.

(b) If new minimum found is not within the interval of the three new energy spreads, create a
new energy spread interval with the new minimum as the central value and the two outer
values equal to the central value ±0.10. Run three simulations using the three energy
spreads, and move to step 3.
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This method is computationally expensive in the sense of requiring at least six simulations per energy
to find the energy spread. The computational expense was further increased by the fine resolution
of the measurements, occasionally dropping to measurements in depth increments of 0.1 mm, thus
necessitating the resolution calculated in step 1. Matching this precision whilst keeping statistical
fluctuations on the simulated dose depth curve within reasonable limits, necessary for the range finding
algorithm used in step 3. above, required setting some parameters (see Table 2.2) to values that
significantly increased the time per simulated primary proton. To accommodate this, UPPMAX was
again used. 18 CPU cores worked for some 800 CPU hours in total, running 100 000 protons per
simulation to ensure an uncertainty of around 0.5% or less up until the Bragg peak. Having thus found
the energy spread and the energy at nozzle exit, all parameters relevant for the beam model have been
found.

The range finding algorithm in step 3 begins by first finding the data point of the dose depth curve
closest to the relative dose sought (i.e. 80%). Following this, depending on if the found point has a
greater or smaller relative dose than that sought, it will find the nearest data point on the other side
of the sought relative dose value. It will then perform a linear interpolation between these two data
points and solve the resulting linear equation for the range.

2.5 Simulations

2.5.1 GATE configuration

2.5.1.1 Geant4 related settings

All simulations were run in GATE 7.1, compiled on top of Geant4.10.01. Geant4 materials were
used for all simulations as per the recommendation of the GATE collaboration group. Some studies
of appropriate physics lists for proton therapy have been published[80, 81, 82]. Although there is a
general agreement in using option3 of the standard electromagnetic package, there is disagreement
with regards to model for nuclear interactions. Kurosu et al. suggests the precompound model or
the Bertini cascade; Grevillot et al. finds the precompound model to give the best results, whereas
Jarlskog & Paganetti favors the binary cascade. In running the algorithm for finding the energy spread
as outlined in Section 2.4, all three of these models were tested for a single energy; no model of the
three was found to yield results substantially different from another, and ultimately the precompound
model, combined with the binary cascade (see below), was chosen.

ICRU49 gives a value of the mean excitation energy as 75±3 eV[83]. The Geant4 collaboration group,
in order to better accommodate carbon ion transport, set the excitation energy to 78 eV[84, 85] for
the G4_WATER material. For all simulations, the mean excitation energy for G4_WATER was set
to 76.5 eV, which was found to give the best fit to the measured projected ranges. As a base for the
physics list, the modular QGSP_BIC_EMY_HP was called, meaning the standard electromagnetic
package with option3 for electromagnetic processes was used, as well as the HP (high precision) package
for neutron modeling. The precompound model was used for nuclear interactions up until 170 MeV,
after which it is no longer applicable; for higher energies the binary cascade was used. Tables 2.2, 2.3
and 2.4 list parameter values different from default ones for the various simulations, with Table 2.1
holding the default values.
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Table 2.1: Default electromagnetic package, option3 parameters.
Parameter Value

Range cut for protons electrons, positrons and gamma rays 1 mm
Linear loss limit for protons and electrons 0.01

dE/dx bin range 100 eV - 100 TeV
Number of dE/dx in bin range 220

Table 2.2: This table contains the non-default value parameters for the simulations run to find the
energy spread.

Parameter Value
Range cut for protons, electrons, positrons and gamma rays 0.01 mm

Linear loss limit for protons and electrons 0.0001
dE/dx bin range 1 eV - 1 GeV

Number of dE/dx in bin range 1200
Maximum step size in water phantom 0.04 mm

Table 2.3: This table contains the non-default value parameters for the simulations run to perform the
gamma index test.

Parameter Value
Range cut for protons, electrons, positrons and gamma rays 0.1 mm

Linear loss limit for protons and electrons 0.001
dE/dx bin range 1 eV - 1 GeV

Number of dE/dx in bin range 1200
Maximum step size in water phantom 0.4 mm

Table 2.4: This table contains the non-default value parameters for the simulations run to find the
optical parameters.

Parameter Value
dE/dx bin range 1 eV - 1 GeV

Number of dE/dx in bin range 1200



CHAPTER 2. METHOD 36

In general, increasing the number of dE/dx bins increases simulation precision with only a minimal
increase in simulation time for simple geometries; for more complicated geometries including a large
number of materials the increase may not be negligible. For the energy spread simulations, the dose
was scored in 0.1 mm thick planes. Since the stopping power is almost constant throughout the clinical
energy range as illustrated in Figure 1.4, significant fluctuation in the dose may be observed in the
dose scored in each plane in the plateau region and well into the proximal rise of a Bragg curve. This
introduces difficulties for the range finding algorithm as described in Section 2.4. In an attempt to
reduce these fluctuations, a maximum step size was introduced in the water phantom that would force
at least one full step to take place entirely within a plane.

This maximum step size could be relaxed somewhat without introducing unnecessary fluctuation for the
gamma index simulations, where each voxel was 0.95x0.95x1 mm3 in size. For the optical parameters,
the entire simulation geometry consisted of air and vacuum. Dosimetrical precision was of little concern,
and thus the parameters could be kept at default values.

2.5.1.2 GATE beam profile simulation geometry

To obtain beam profiles in simulations, the phase space actor was used instead of the dose actor. The
world volume material was set to G4_AIR. Inside the world volume, six volumes, also of material
G4_AIR, were constructed. The last five were positioned so as to have their proximal surface coincide
with the air depth positions of the Lynx data measurements; the first one was positioned with its
proximal entrance at the nozzle exit. To each of these six volumes, a phase space actor was attached.
The phase space actor by default registers the position of all particles entering it. Starting the sim-
ulation at the nozzle exit, the phase space actor failed to register a significant portion of the protons
in the first phase space volume. For this reason, a 0.5 mm vacuum gap was introduced between the
starting point of the simulation and the first phase space volume entrance. The simulation geometry
is illustrated in Figure 2.11.

The output from each phase space actor was provided as a .root-file. It was thus imported into ROOT
and the same method to calculate spot sizes as detailed in section 2.2 was utilized. It was found that
electron contamination had a significant impact on the spot size obtained. The Lynx is specified as
being sensitive to electrons in the range 4-25 MeV. Since the maximum electron energy protons at
Skandionkliniken are able to generate is ∼ 0.55 MeV, and the distribution of of secondary electrons is
proportional to 1

E² , filters were introduced into the simulation in order to make the phase space actor
only consider protons.

2.5.1.3 Proton beams

Individual Pencil beams, used in the IDD curve and beam profile simulations, were simulated using
the PencilBeam source type. Pencil beam properties, along with the start position, are specified in this
source type using the eight parameters described in Section 2. In addition to these eight parameters, a
beam may be set as either convergent or divergent in x and y respectively. Information on whether the
beam is convergent or divergent is provided by the sign of (c−d)-term in Equation 2.7; if it is negative,
the beam is divergent and if it is positive the beam is convergent. However, since A1 is squared in
equation 2.4, the sign is not contained in any of the eight parameters of the beam model, wherefore it
must be set separately.
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Figure 2.11: The simulation geometry for the beam profile simulations. The world volume is delineated
by the black lines and the phase space actor volumes are shown in green. The tracks of ten simulated
protons, traveling from left to right, are shown in blue. In red are the tracks of δ-rays, ignored by by
the phase space actor.
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Treatment plans were simulated using the TPS PencilBeam source type. Unlike the PencilBeam source
type, the TPS PencilBeam source type cannot handle beams with different convergence/divergence
settings in x and y. Rather, the beam must be set as convergent or divergent for the entire treatment
plan in both dimensions. A glance at Figure 2.8 seems to indicate a clearly divergent beam in x, if one
were to use isocenter -19 cm as the simulation starting point whereas in y, it seems to be convergent.
By having the simulation starting point further upstream, at the nozzle exit, it was possible to ensure
the beam was convergent or nearly convergent for all energies in both x and y.

The TPS PencilBeam source type is dependent on two input files: the source file and the plan file.
The latter contains the treatment plan in the form of a list of spot positions and weights, as well as
the energy for each layer. The basic method to transform the log files to a GATE plan file is detailed
in Section 2.5.2. The source file consists of the eight polynomials that, evaluated for the energy given
for each layer in the plan file, gives the eight parameters that describe the proton pencil beam.

2.5.2 Log file to GATE plan file conversion

During the course of an irradiation, the IBA beam delivery system records the current value of a wide
variety of parameters throughout the entire beam line. These log files do not store the mean kinetic
energy at isocenter of the beam, but rather the range in water at the nozzle entrance through use of
an internal energy-range conversion table. In order to serve as a basis for simulations, this had to be
translated into a kinetic energy at the nozzle exit. The method employed is detailed in Section 2.4.
Having performed this for all 18 energies, cubic spline interpolation was used to provide the energy at
nozzle exit for arbitrary ranges. This energy is then used for evaluating the eight polynomials stored
in the GATE source file; the source file also contains the nozzle exit to isocenter distance, as well as
the virtual source positions. The polynomials describing the optical parameters and the energy spread
used were polynomials fits to the data as detailed in the Sections above; the mean energy polynomial
however was a simple first degree polynomial, with the coefficient set to 1 and the constant to 0.

The log files are originally stored in an IBA proprietary format. IBA staff at Skandionkliniken sub-
sequently converted the log files into a comma separated values text format. To ensure speed and
efficiency in handling the data, only the data relevant for the construction of a GATE plan was ex-
tracted from the log files.

The pertinent parameters to reconstruct a treatment plan are the spot positions, the spot weights in
terms of MUs, the energies for each layer and the gantry angle. The spot position at IC2/3 and the
charge generated in the monitor chamber are logged every 250 μs. Whenever the beam is switched off,
a value of -10000 is recorded for spot position. Whenever the beam is switched on, positive values are
given. When a spot is complete, -10000 is again recorded until the next spot begins. For each spot,
an average was calculated over all positions logged for the duration of the spot. All charge generated
in the monitor chamber for the duration of the spot was summed. The collected charge during a
spot was multiplied with a correction factor given in the log files, and then divided by a constant
a = 3.9 · 10−9C to yield the MUs for that spot; the value thus given is associated with an uncertainty
of 3-5%, according to IBA.

The log files store spot positions at the location of the IC2/3 strips only. These are are located at
isocenter at isocenter -59 cm in x and isocenter -55 cm in y respectively. Since treatment plans are
generally characterized by spot positions at isocenter, as is the GATE input file, the spot positions
at IC2/3 must be projected forward to isocenter. For this purpose, the virtual source positions were
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VSX

IC2/3X

ISO

Figure 2.12: VSX=virtual source position in x, IC2/3X=position of IC2/3 reading of the spot position
x-coordinate, ISO=isocenter. Since the x coordinate of the spot position at VSX and IC2/3X is known,
it is possible to fit a first degree polynomial through these and extrapolate, yielding the x-coordinate
at isocenter. The same method is used in y.

used. Assuming x = 0 and y = 0 in the IC2/3 coordinate system at the virtual source position in x
and y respectively, it is possible to fit a first degree polynomial to the two data points in x and y, and
by extrapolation it is possible to obtain the spot position at isocenter. The method is depicted in x in
Figure 2.12. Due to the limited resolution of IC2/3, the spot position coordinate is, as is the spot size,
subject to an uncertainty of ±0.5 mm. Assuming a negligible uncertainty in the virtual source position,
this projects to an uncertainty of ±0.72 mm uncertainty at isocenter in x; for y, the uncertainty is
±0.68 mm. Adding the uncertainty in the x and y in quadrature leads to a total uncertainty in the
spot position of ±1.00 mm.

A current limitation in the log file to GATE input file code written to perform the conversion is that
it can only handle a single field. Adding multiple field capabilties will be left to future work.
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2.6 Beam model validation

To validate the beam model, comparison with measured data is necessary[86]. The methods employed
for this purpose will be presented in the following subsections.

2.6.1 Optical parameters

After having obtained a set of optical parameters for each of the 18 energies, polynomial fits were
performed. Each polynomial was evaluated for the 18 different energies to obtain 18 sets of optical
parameters. A GATE macro file was created for each of the 18 sets using its parameters as input for
the PencilBeam source type. 400 000 protons were simulated for all 18 sets using UPPMAX, requiring
in total some 40 CPU hours. Spot sizes were calculated as detailed in Section 2.2.1. Maximum and
mean deviations for each of the Lynx depths were subsequently calculated.

2.6.2 Energy parameters

As for the optical parameters, having found 18 sets of energy parameters, these were subjected to
polynomial fits and evaluated to create 18 GATE macro files. Each GATE macro was run on UPPMAX
using 100 000 protons per simulation, requiring about 60 CPU hours. Comparisons between the
measured and simulated IDD curves were performed by comparing distal and proximal d50, d80 and
d90.

2.6.3 MatriXX measurements

As further validation, a fresh set of measurements were performed that would allow testing the perfor-
mance of the beam model against 3D dose distributions. In the following sections following established
terminology the reference distribution will refer to the measured dose distribution and evaluated dis-
tribution will refer to the simulated distribution.

2.6.3.1 Hardware

Dose distribution measurements were carried out using the MatriXX, a 32x32 array of plane parallel ion
chambers. The ion chambers in the MatriXX have a diameter of 4.2 mm and a height of 2 mm. With
the distance between chambers at 7.619 mm, only part of the active measurement area of 24.4x24.4
cm2 is sensitive to the incident proton beam.

The MatriXX was used in the IBA Digiphant water phantom, a slightly smaller water phantom than the
BluePhantom and dedicated for use with the MatriXX, allowing the latter to be accurately positioned
at different depths. Since the Digiphant wall and the outer protective layer of the MatriXX have a
certain thickness, the water equivalent thickness (WET) depth was used rather than the geometrical
depth in the Digiphant. To allow the IBA OmniPro software that was used during the measurements
to move the MatriXX in the Digiphant and to convert from geometrical depth to IBA WET depth, a
known WET depth for one geometrical depth must be entered. IBA supplied a WET depth as 102.6
mm for a geometrical depth of 100 mm.
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Table 2.5: Parameters for the measured treatment plans. The energy interval gives the highest and
lowest proton kinetic energies at the nozzle exit.
Treatment plan number 1 2 3

Range (cm) 25 16 8
SOBP length (cm) 2 3 2

Energy interval (MeV) 197.32-188.27 152.06-136.43 103.71-89.19
Number of layers 4 6 8

2.6.3.2 Treatment plans

Measurements were carried out for three different treatment plans detailed in Table 2.5. All three plans
were 10x10 cm² square fields in the xy-plane. Each treatment plan was repeated multiple times to allow
the MatriXX to be positioned at different depths. The log files were obtained for the measurements.
Since the measurement had to be repeated for each MatriXX depth position, a set of log files was
generated for each treatment plan. Neglecting differences in the delivery for the same treatment plan,
a single set of log files, corresponding to a single delivery with the MatriXX at a certain depth, was
converted to a GATE plan file for each treatment plan. This GATE plan was then used as input for
a simulation, yielding a 3D dose distribution covering the entire range of the treatment plan.

2.6.3.3 Normalization

The MatriXX following calibration at a standard laboratory is able to report dose distributions in units
of mGy. GATE reports the dose to each voxel in units of Gy for the number of incident particles simu-
lated. Since a massive amount of computing power would be necessary to simulate the actual number
of protons striking the MatriXX during measurements, normalization is necessary. For normalization,
the mean dose Mr of all points of the reference distribution above 80% of the max dose was calculated
at the smallest measured IBA WET depth for each treatment plan where the dose gradient may be
expected to be at its lowest. The same procedure with the same fraction and depth was repeated for
the evaluated distribution yielding Me. Then the entire 3D evaluated distribution for the treatment
plan was multiplied with the fraction Mr

Me
.

2.6.3.4 Gamma index test

A quantitative comparison of the simulated and measured dose distribution was performed in the
form of a gamma index test[87, 88, 89]. Although the AAPM TG 119[90] used the so called Van
Dyk or global method, whereby the dose difference criteria is calculated relative to a single point of
the reference distribution (typically the maximum dose point is used in the global method), a strong
case can be made for using the local method whereby the dose difference criteria is defined relative
the reference point under consideration[91]. Each reference 2D distribution was compared with the
3D simulated distribution; for the the global method, this means that the reference distribution was
sought for its maximum value for each depth. Entering 3% thus as a dose criteria means 3% of this
maximum value.



CHAPTER 2. METHOD 42

For efficiency a limited search method was employed whereby only a cube, centered on the reference
point, with sides equal to twice the distance criteria was sought for each reference point in the evaluated
distribution. All points outside this cube (and even for some within) in the evaluated distribution
necessarily have a Γ > 1, which means failure. However, since

γ(Rr) = min{Γ(Rr,Re)}∀{Re}

where Rr is the reference point and Re is the evaluated point, the used limited search method may not
find the true value of γ(Rr) when it is greater than unity. For this reason, the true gamma distributions
will not be presented, but rather what shall be referred to as semi-gamma distributions γs(Rr). The
difference may be described formally as

γ(Rr) = γs(Rr)∀{γ(Rr) ≤ 1}

γ(Rr) ≤ γs(Rr)∀{γ(Rr) > 1}

Points of the reference distribution with a dose lower than 30% of the maximum dose were ignored in
the gamma index test. Appropriate standard criteria for a gamma index test in proton therapy have
yet to become established in the literature. For VMAT photon therapy, 3%/3mm criteria are standard
with a 90% tolerance limit for the pass rate[92] or 95%[93], using the global method. Pass rates for
both the global/Van Dyk (with the dose difference criteria defined relative the maximum dose in the
reference distribution) and the local method was calculated for each treatment plan.
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Results

3.1 Optical parameters

Figures 3.1, 3.2 and 3.3 demonstrate the resulting six polynomials that followed a fit to the obtained
optical parameters for the 18 different energies, as described in Section 2.3. Evaluated for a given energy
at nozzle exit, they yield the six optical parameters at the nozzle exit. In Table 3.1 the maximum
measured-simulated differences are presented. These were calculated by evaluating the polynomials
shown in the Figures at the proton kinetic energies of the data points and taking the absolute value
of the difference between this value and the value of the data point, and then finding the maximum.
These six polynomials make out the optical part of the beam model. All six polynomials are of the
4th order. To compute the error bars, the error propagation formula was used with errors as provided
by the covariance matrix of the hyperbola fit.

Figure 3.4 shows the results of a comparison in the form of measured-simulated spot size differences at
isocenter using optical parameters as provided by the polynomials illustrated in Figures 3.1, 3.2 and
3.3. The error bars were computed by adding the uncertainties for the Lynx spot size data and the
statistical fit error for the simulated spot sizes as given by ROOT in quadrature. Except for an outlier
at 60 MeV in x, the beam model seems able to predict the spot size within 0.2 mm for all energies at
isocenter. The outlier warrants an explanation. For 60 MeV in x, the beam waist is found somewhere
in IC2/3, i.e. before the nozzle exit (see Figure 2.8). It is thus divergent. However, as noted in Section
2.5 the TPS PencilBeam source type in GATE can only simulate beams that are either convergent or
divergent in both dimensions. 60 MeV in x was thus simulated as a convergent beam even though it
is divergent, resulting in a smaller simulated spot size.

Table 3.1: The maximum differences between the polynomials and data points in Figures 3.1, 3.2 and
3.3 along with χ2 and the number of degrees of freedom (ndf).

Parameter Spot size Angular spread Emittance
Dimension x y x y x y

Absolute max difference 0.16 mm 0.22 mm 0.18 mrad 0.22 mrad 1.87 mm mrad 6.04 mm mrad
χ

2/ndf 47.4/13 7.88/13 10.3/13 3.14/13 25.2/13 4.90/13

43
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Figure 3.1: 4th order polynomial fits to the spot sizes at nozzle exit, found as described in Section 2.3
by evaluation of Equation 2.6, as a function of the energy at the nozzle exit.

Figure 3.2: 4th order polynomial fits to the angular spread at nozzle exit, found as described in Section
2.3 by taking the a

b -value from Equation 2.6, as a function of the energy at the nozzle exit .
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Figure 3.3: 4th order polynomial fits to the emittance at nozzle exit, found by applying Equation 2.4
as described in Section2.3, as a function of the energy at the nozzle exit.

Table 3.2: The goodness of fit indicators of the simulations using the optical parameters as given by
the beam model.

Statistic
x-dimension y-dimension

Iso-19 Iso-10 Iso Iso+10 Iso+20 Iso-19 Iso-10 Iso Iso+10 Iso+20

Mean difference (mm) 0.01 -0.01 -0.03 -0.02 0.01 0.02 -0.02 -0.03 -0.03 0.00

Absolute max difference (mm) 0.20 0.26 0.33 0.29 0.29 0.28 0.24 0.19 0.23 0.23
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Figure 3.4: The measured-simulated spot size differences at isocenter. The errorbars were computed
by adding the uncertainties in the Lynx spot size data and the statistical fit error for the simulated
spot sizes in quadrature

A summary of the data for isocenter and the other air depths is found in Table 3.2. Overall, the
accuracy provided by with which the beam model is able to predict the spot size at a given depth is
sufficient for clinical applications and thus validates the optical part of the beam model.

3.2 Energy parameters

Figure 3.5 illustrates the cubic spline interpolation used to convert the range at nozzle entrance provided
by the log files to kinetic energy at the nozzle exit, used in the simulations. As noted previously in
Section 2.5.2 it effectively replaces the mean energy polynomial of the beam model. The polynomial for
the energy spread as a function of energy at the nozzle exit is shown in Figure 3.6. As an assessment of
the uncertainty associated with the polynomial, the maximum deviation from a point to the polynomial
curve is 0.026 MeV.

Figures 3.7, 3.8 and 3.9 are examples of simulated vs measured IDD curves, where the simulated curves
use the kinetic energy as found by the cubic spline interpolation and with an energy spread as found
by the algorithm detailed in section 2.4.

As a summary of the results for the energy part of the beam model, Table 3.3 houses the maximum
measured-simulated range differences. The differences for all energies and ranges are plotted in Figure
3.10. The ranges d50, d80 and d90 are the ranges corresponding to relative doses of 50%, 80% and
90% of the maximum dose, i.e. the Bragg peak dose. Since there is a 50%, 80% and 90% relative
dose point on both sides of the Bragg peak, these will be distinguished by referrence to the proximal
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Figure 3.5: Spline interpolation of range at nozzle entrance vs energy at nozzle exit data.

Figure 3.6: The energy spread beam model polynomial. The polynomial is 4th order.
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Figure 3.7: The measured and simulated curves for a 60 MeV proton beam in water.

Figure 3.8: The measured and simulated curves for a 120 MeV proton beam in water.
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Figure 3.9: The measured and simulated curves for a 200 MeV proton beam in water.

Table 3.3: The absolute maximum differences in the proximal and distal d50, d80 and d90 ranges
between the measured and simulated dose depth curves. In brackets are the energies at which these
maximum differences occur.

Proximal Distal
d50 (190 MeV) d80 (220 MeV) d90 (220 MeV) d50 (226 MeV) d80 (210 MeV) d90 (210 MeV)

0.86 0.61 0.52 0.50 0.18 0.10

or distal d50, d80 or d90 ranges. The distal d80 as noted in Table 1.1 is a good approximation of the
projected range and thus relatively insensitive to the energy spread; the maximum deviation at -0.18
mm indicates that the method used to find the energy at the nozzle exit is accurate. Overall, only for
five cases in Figure 3.10 is the absolute value of the difference greater than 0.5 mm.

3.3 Gamma index test

Due to a serious set up error the 16 cm range plan measurements were discarded. For the other
two plans, henceforth referred to as the high and low energy plan, it was found that the MatriXX
distribution was shifted relative to the simulated distribution. The latter geometry assumes a perfect
experimental set up. An example of a semi-gamma distribution illustrating the shift is found in Figure
3.11.

A translation of the high and low energy measured distributions significantly increased the percentage
of points that passed the set criteria. It was found that in order to yield high pass rates, the shift in
x had to be increased with increasing depths. This would be consistent with a set up error where a
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Figure 3.10: Measured-simulated range differences at the various ranges in water.

certain rotation around the y-axis was introduced. The assumed set up error is illustrated in Figure
3.12. It was found that assuming an angle of rotation around the y-axis of 0.9 degrees, and a constant
shift in x of -0.1 mm, along with a constant shift in y of +1.8 mm, consistently predicted translations
that provided higher pass rates throughout the range of both treatment plans.

Furthermore, a shift was found in the z-direction. For both treatment plans, the measured data
seems to indicate a range greater than the simulated data. This is shown for the higher energy plan in
Figure 3.13. Subsequent measurements performed by the commissioning physicists at Skandionkliniken
indicated that the standard IBA WET value used for the geometrical to WET depth transformation
is exaggerated, i.e. that the entire measured dose depth curve should be shifted to the left. For both
the high and low energy measured curve, by shifting the measured curve 2 mm to the left brought it
in line with the simulated curves.

The semi gamma distribution for the same simulated depth as in Figure 3.11, with the 2 mm subtracted
from the depths of the MatriXX distributions, and with the translations in x and y as described above,
is illustrated in Figure 3.14.

In Figures 3.15 and 3.16 the pass rates against depth plots are shown. Pass rates for both the global
and local method are presented. In general, the minimal pass rates occurs at small depths; once passed
that, the global method is consistently yielding pass rates above the 95% limit, and at all depths for
both plans above the 90% limit. The local method struggles with the 90% limit at the shallow depths,
but following an initial rise consistently stays above the 90% limit and fluctuates around the 95% limit.
As a measure of the efficiency of the gamma index code using the limited search method, a MatriXX
and a simulated distribution comparison took on average two seconds to complete.

To provide a sense of the distribution of γ(Rr), γs(Rr)-distributions were collected for each depth for
both treatment plans and for both the local and global methods. They were subsequently binned to



CHAPTER 3. RESULTS 51

Figure 3.11: The darkest shade of blue, surrounding the square of lighter shades of blue are points
of the MatriXX receiving less than the set 30% threshold of the maximum dose. The two rightmost
and down-most lines are lit up, indicating that the most severe failures are concentrated in these two
regions and possibly resulting from a shift in the distribution position relative the simulated. The
showed distribution is for a IBA WET depth/water geometrical depth of 68.8 mm for the high energy
treatment plan.

Z

X

α

Figure 3.12: A simple schematic overview of the assumed set up error. The black lines indicate the
ideal position of the MatriXX and the simulated coordinate system, with the beam traveling along the
positive z-direction. The black dots show positions with identical x-coordinates. Introduced during
set up of the MatriXX, a certain angle of rotation α around the y-axis perpendicular to the plane of
the image of the Digiphant would cause the MatriXX to take on positions indicated by the red lines,
yielding an increasing magnitude of the shift along the x axis with depth. In this set up coordinate
system, red dots indicate points with identical x coordinates.



CHAPTER 3. RESULTS 52

Figure 3.13: An unshifted dose depth curve for the high energy, 25 cm range treatment plan. At
the normalization depth, the pixels with a dose greater than 80% of the maximum depth were found.
Using the voxels with the same coordinates as these a mean was calculated for each depth. The points
in the curves represent these mean values. The depth is IBA WET depth for the measured curve and
geometrical water depth for the simulated curve. The spacing between points of the simulated curve
was 1 mm at all times; for the measured curve, it was 1 cm. In the Bragg peak region it decreased to
2 mm. The apparent increase in the dose at the very end of the measured curve is noise.
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Figure 3.14: Semi-gamma distribution for the same data as in Figure 3.11, having now applied all
appropriate translations.

Figure 3.15: The gamma index pass rate vs depth for the high energy plan. Lines are drawn through
each data point to facilitate visualization only. 90% and 95% lines are likewise drawn showing the
common tolerance limits.
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Figure 3.16: The gamma index pass rate vs depth for the low energy plan. Lines are drawn through
each data point to facilitate visualization only. 90% and 95% lines are likewise drawn showing the
common tolerance limits.

create a histogram, whose area was normalized to 100. The resulting differential histograms are shown
in Figures 3.17 and 3.18, with cumulative histograms in Figures 3.19 and 3.20. So as to not bias the
histograms to greater depths where the number of measurement points is greater, each set of γs(Rr)
for a given depth and method was multiplied by the distance to the subsequent measurement point.
All points with γs(Rr) ≥ 1 are gathered in the rightmost bin, since γs(Rr) cannot be taken to be
equal to γ(Rr) in this region.
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Figure 3.17: The differential distribution of γ(Rr) for all the depths for the high energy plan, using
the global method on the left and local on the right.

Figure 3.18: The differential distribution of γ(Rr) for all the depths for the low energy plan, using the
global method on the left and local on the right.
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Figure 3.19: The cumulative distribution of γ(Rr) for all the depths for the high energy plan, using
the global method on the left and local on the right.

Figure 3.20: The cumulative distribution of γ(Rr) for all the depths for the low energy plan, using the
global method on the left and local on the right.
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Discussion

4.1 Results

A glance at Figures 3.1, 3.2 and 3.3, as well as Table 3.1, indicates a reasonably smooth variation with
energy in all cases for the optical parameters. The χ2 values found in Table 3.1 does indicate, given the
errors as plotted in the Figures, that variation with energy is not very smooth for the emittance and
spot size in x. These high χ2-values are probably caused by the initial data points where the error bars
are small, and thus relative to the size of the error bars the distance to the polynomial curve is large.
Although the uncertainty associated with a data point might be small this does not guarantee that the
data points will vary smoothly with energy. The latter is very much effected by beam tuning. Some
low χ2-values were also reported in Table 3.1, indicating the error bars may be too large. Possibly a
lower order polynomial would yield better χ2-values. The maximum measured-simulated differences
are relatively small however, and Figure 3.4 and Table 3.2 indicates clinically acceptable accuracy in
terms of spot size prediction.

Given that the lower energies means more degrader material in the beam line, the parameter values
decreasing with increasing energy is reasonable and what would one expect. The very slight rise or
flattening of the polynomial curves for the top energies may be a result of tuning. The spot size at
isocenter may still be smaller, or tuning for these energies were less successful. It is worth noting
that IBA has performed their own spot size measurement and fits, and these may conflict with those
presented above due to differences in the measurement and fitting methods. A comparison of the results
would suggest that the optical beam parameters as found in this work provides a level of accuracy
roughly equal to that of Grevillot et al.

The basic method to compute the energy at nozzle exit from the range at nozzle entrance seemed to
produce accurate results, with a maximum noted deviation of 0.18 mm in the projected range from the
measured, as noted for distal d80 in Table 3.3. For the remaining ranges where the differences were
evaluated, a glance at Figure 3.10 would suggest that the found values of the energy spread parameter
using the method detailed in Section 2.4 are reasonable. For certain cases, the ranges differed by more
than 0.5 mm, with a maximum of 0.86 mm. It may be noted that all of the deviations > 0.5 mm ended
up on the proximal side of curves. A possible explanation may be found in the statistical fluctuations
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in the simulated dose depth curves. The size of these fluctuations seems to be the greatest at high
energies on the proximal side of the Bragg peak.

These fluctuations inhibit the range finding algorithm’s ability to accurately find the range for a certain
dose. This is especially prominent at the proximal d50 level where the proton kinetic energy is the
greatest of all the six considered ranges, and hence dE/dx the flattest as indicated in Figure 1.4.
During development of the general algorithm to find the energy spread, it was also found that the
Geant4 physics models were in general unable to model both the plateau region and the proximal rise
accurately simultaneously. An accurate modeling of the plateau region often meant underestimating
the d50, d80 and d90, whereas an accurate modeling of the latter three often lead to an underestimation
of the dose in the plateau region. If the measured-simulated range difference for certain dose levels is
deemed excessive, fine tuning of the energy spread is possible for these cases.

The γ-index test was as indicated in the Section 3.3 complicated by a series of factors. By introducing
corrective shifts based on the assumption of a set up error, acceptable pass rates could be achieved. A
case for the validity of these corrective shifts can be made as follows.

First, the increasing translation necessary in the x-direction to provide reasonable pass rates suggested
a rotation around the y-axis. This axis is the only axis that could reasonably accept a rotation, since
the Digiphant was resting on the treatment couch, whose flatness would prohibit rotation around the
other axes. Second, the high and low energy treatment plan measurements were performed back to
back without modifying the experimental set up. The fact that the same angle of rotation and constant
shifts could be used to model the translation for both the high and low energy treatment plan suggests
a set up error. It should further be noted that the beam model itself is not involved in positioning a 2D
dose distribution in a given coordinate system. Therefore, if a simulated dose distribution by a simple
translation can be made to match the measured dose distribution, it should constitute validation.

The resolution of the MatriXX is far from ideal. It provides little opportunity for a comparison of the
penumbra; the latter is effectively measured by a single row or column on the MatriXX as is evident
from Figure 4.1. Film for instance could provide a much improved resolution relative to the MatriXX,
and would be useful for further measurements seeking to validate the beam model. With increased
resolution follows an increase in computation time needed to perform the gamma index test, even
using the limited search method. For a film resolution of 0.1 mm, and for the same number of depths
per treatment plan, the gamma index test would take hours. Speed gains may be sought in using a
compiled programming language such as C++ as opposed to a scripted language like Octave.

In depth, along the z-axis, the beam model is very much involved in the sense of setting the energy
at the nozzle exit and thus controlling the proton range. Since the energy at nozzle exit seems to
be a very smooth function of the range at the nozzle entrance as indicated by Figure 3.5 and the
projected range (distal d80) in Table 3.3 suggests the beam model should be able to accurately predict
the range, and if anything, slightly overestimate it, the issue may be as hinted in Section 3.3 related
to the translation from geometrical depth to IBA WET depth. Evidence in favor of this conclusion
would be that the simulated range for both the high and low energy is a constant 2 mm shorter than
the corresponding measured ranges. Measurements performed by commissioning physicists indicated
that the IBA WET was overestimated by around 1.1 mm, not enough to explain the full 2 mm, but
indicative of an systematic error that would push the measured curve in the direction observed in
Figure 3.13 relative to the simulated curve. The nature of this shift warrants further investigation in
future work.
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Figure 4.1: An example of a dose distribution as measured by the MatriXX.
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4.2 Method

A potential weakness of the beam model as described in this work is its dependence on the beam pa-
rameters varying smoothly with energy. If this is not the case, the errors introduced by the polynomial
fit may become unacceptable for clinical applications. Whether the parameters does vary smoothly or
not with energy is very much dependent on beam tuning. At Skandionkliniken tuning was performed
for each energy individually by IBA. During tuning, keeping the spot size small at isocenter takes pri-
ority over keeping beam waist variation with energy smooth; the latter is important for the emittance
parameter. If the smoothness with energy cannot be achieved for a system, a different approach will
be necessary.

Five of the eight parameters are modeled as single Gaussians. As noted the Introduction, more
advanced functions such as triple Gaussians or a double Gaussian and a Cauchy-Lorentz function have
been suggested to provide more accurate modeling of the spot size. The Gaussian approximation
follows naturally as a consequence of the central limit theorem when considering the numerous, small
scale electromagnetic interactions as a proton penetrates an absorber. However, nuclear interactions
do not follow this pattern with their large angular deflections and possible generation of neutrons and
ions. By using a single Gaussian to approximate the spot size at the nozzle exit, in effect the halo as
generated in the nozzle is ignored or underestimated. The path traveled by the protons through the
as of this writing unique nozzle at Skandionkliniken consists mostly of vacuum; the ion chambers are
exceptions, but IC1 is held at 200 mbar. The WET of the nozzle and the ∼ 50 cm air gap between
nozzle exit and isocenter is around 2 mm, although there is a slight dependency on energy. This is
illustrated in Figure 4.2.

As already argued in 2.1, the nozzle exit as a starting point for simulation is particular attractive for
pencil beam scanning in general for this very reason. The reduced amount of material in the beam
path reduces the number of interactions inside the nozzle. From this of course follows a reduced halo.
However, in [68] it is suggested that a full geometrical reconstruction of the nozzle might be necessary
however for studies of out of field dosimetry, with simulation starting at the nozzle entrance. For
paedriatic patients and and other cases where long term secondary effects are especially important,
this might be of particular interest.

Since it was not possible to procure Lynx measurements closer to the nozzle exit than isocenter -19
cm, IC2/3 data had to be resorted to. The IC2/3 reading of the spot size cannot match the accuracy
provided by the 2D Gaussian fits to the Lynx data. Ideally, a number of Lynx measurements in the
interval between the nozzle exit and isocenter -19 cm would have been preferable and might have
increased the accuracy of the optical parameters.

An issue with MC in general is, as has already been noted, the high demands on computing power
to complete tasks in a reasonable time frame. Some steps in the method outline in Chapter 2 would
require a single computer weeks to finish. In principle, the air correction method detailed in Section
2.3 could be replaced by an analytical and thus computationally cheaper method using a scattering
power model such as that given by [94]. Let ziso+20 be the air depth at isocenter +20 cm, and let the
origin z = 0 be at the nozzle exit. If the a

b -value resulting from the hyperbola fit to the data can be
taken to provide the numerical value of the angular spread at some point 0 < z < ziso+20, then the
angular spread σθ at the nozzle exit can be calculated as

σθ =
a

b
−
ˆ z

0

T (z′)dz′
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Figure 4.2: The nozzle and air gap WET as a function of range. Data and polynomial fit as supplied
by IBA.
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where T (z′) is the scattering power as a function of depth z′.

The method to find the beam model will only have to be run once, however. A more serious issue is
the time needed to run the actual simulations. To obtain an uncertainty of around 1-2% in the central
region of the dose distribution for the treatment plans run for the gamma index test such as that shown
in Figure 4.1, it was necessary to simulate about 50 million protons. For the high energy plan, some 30
primary protons were simulated per second per CPU core, rising to 50 primary protons per CPU core
for the low energy plan. To be able to finish the high energy simulation in 24 hours, 20 cores had to
be used. Even though Geant4 as of version 10.0 supports multi-threading this has yet to be extended
to GATE, wherefore each of the core ran its own instance of the simulation, simulating 2.5 million
protons, and once all cores had finished the results were combined. For routine clinical use as a part of
the patient specific QA procedures, a dedicated computer cluster will be necessary to provide sufficient
computing power. Some gain in speed may be achieved once GATE attains multi-threading support,
as will the ever increasing performance of available computer hardware. GPU based simulation is also
an option.



Chapter 5

Conclusion

It has been shown that the method used can be generalized to provide optical parameters handling
beams that are convergent after the nozzle exit by application of simple Fermi-Eyges theory. This
generalization is still achievable using BDL measurements only, complemented by log file data that
can be retrieved without having to perform additional measurements. The algorithm devised to find the
energy spread was able to keep the proximal and distal d50, d80 and d90 differences between simulated
and measured IDD curves below 0.5 mm in most cases, with the more difficult cases concentrating to
the proximal side at higher energies. Spot size prediction was within 0.2 mm for the vast majority of
cases, with few outliers. The projected range in terms of the distal d80 was within 0.2 mm for all cases.
Problems with the gamma index tests necessitated certain data manipulation to provide reasonable
results; a case can be made for the validity of these manipulations. Further work is necessary before
routine use in QA. More detailed dose distribution measurements, preferably with equipment of higher
resolution than the MatriXX would be necessary to verify the data manipulations and test beam
model performance in high dose gradient regions. Introducing metallic or other objects into the
water phantom would allow testing of the beam model’s capabilities for dealing with inhomogeneities.
Adding capabilities for simulating multiple-field treatment plans is also necessary. Securing additional
computing power on a permanent basis would also be mandatory to be able to perform simulations
on a daily basis with sufficient accuracy. If that is not an option, exploring GPU-powered simulation
would be a possibility.
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Appendix

In this appendix, plots the weighted least square hyperbola fits to the air corrected data as described
in Section 2.3 for all energies are shown.
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Figure 5.1:
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Figure 5.3:
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Figure 5.13:
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Figure 5.15:
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Figure 5.17:
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List of abbreviations

BDL-Beam Data Library

CPU-Central Processing Unit

CSDA-Continous Slowing Down Approximation

CT-Computed Tomography

GPU-Graphics Processing Unit

HP-High Precision

HU-Houndsfield Unit

IBA-Ion Beam Applications

IDD-Integral Depth Dose

IMPT-Intensity Modulated Proton Therapy

IMRT-Intensity Modulated Radiotherapy

MC-Monte Carlo

MCS-Multiple Coulomb Scattering

MLC-Multileaf Collimator

MU-Monitor Unit

PBS-Pencil Beam Scanning

PSI-Paul Scherrer Institute

PTV-Planning Target Volume

QA-Quality Assurance

SNIC-Swedish National Infrastructure for Computing

SOBP-Spread Out Bragg Peak

TPS-Treatment Planning System

UPPMAX-Uppsala Multidisciplinary Center for Advanced Computational Science

VMAT-Volumetric Arc Therapy

WET-Water Equivalent Thickness
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