
Parallel Algorithms and Library Software
for the Generalized Eigenvalue Problem

on Distributed Memory Computer Systems

Björn Adlerborn

Licentiate Thesis

DEPARTMENT OF COMPUTING SCIENCE
UMEÅ UNIVERSITY, SWEDEN



Department of Computing Science
Umeå University
SE-901 87 Umeå, Sweden

adler@cs.umu.se

Copyright c© 2016 by Björn Adlerborn
Except Paper I, c© SIAM J. Scientific Computing, 2015

Paper II, c©Björn Adlerborn, Bo Kågström, and Lars Karlsson, 2016
Paper III, c©Björn Adlerborn, Bo Kågström, and Daniel Kressner, 2015

ISBN 978-91-7601-491-2
ISSN 0348-0542
UMINF 16.11

Printed by Print & Media, Umeå University, 2016



Abstract

We present and discuss algorithms and library software for solving the generalized
non-symmetric eigenvalue problem (GNEP) on high performance computing (HPC)
platforms with distributed memory. Such problems occur frequently in computational
science and engineering, and our contributions make it possible to solve GNEPs fast
and accurate in parallel using state-of-the-art HPC systems. A generalized eigenvalue
problem corresponds to finding scalars λ and vectors x such that Ax = λBx, where
A and B are real square matrices. A nonzero x that satisfies the GNEP equation is
called an eigenvector of the ordered pair (A,B), and the scalar λ is the associated
eigenvalue. Our contributions include parallel algorithms for transforming a matrix
pair (A,B) to a generalized Schur form (S,T ), where S is quasi upper triangular and
T is upper triangular. The eigenvalues are revealed from the diagonals of S and T .
Moreover, for a specified set of eigenvalues an associated pair of deflating subspaces
can be computed, which typically is requested in various applications. In the first
stage the matrix pair (A,B) is reduced to a Hessenberg-triangular form (H,T ), where
H is upper triangular with one nonzero subdiagonal and T is upper triangular, in a
finite number of steps. The second stage reduces the matrix pair further to generalized
Schur form (S,T ) using an iterative QZ-based method. Outgoing from a one-stage
method for the reduction from (A,B) to (H,T ), a novel parallel algorithm is devel-
oped. In brief, a delayed update technique is applied to several partial steps, involving
low level operations, before associated accumulated transformations are applied in a
blocked fashion which together with a wave-front task scheduler makes the algorithm
scale when running in a parallel setting. The potential presence of infinite eigenvalues
makes a generalized eigenvalue problem ill-conditioned. Therefore the parallel algo-
rithm for the second stage, reduction to (S,T ) form, continuously scan for and robustly
deflate infinite eigenvalues. This will reduce the impact so that they do not interfere
with other real eigenvalues or are misinterpreted as real eigenvalues. In addition, our
parallel iterative QZ-based algorithm makes use of multiple implicit shifts and an ag-
gressive early deflation (AED) technique, which radically speeds up the convergence.
The multi-shift strategy is based on independent chains of so called coupled bulges
and computational windows which is an important source of making the algorithm
scalable. The parallel algorithms have been implemented in state-of-the-art library
software. The performance is demonstrated and evaluated using up to 1600 CPU
cores for problems with matrices as large as 100000× 100000. Our library software
is described in a User Guide. The software is, optionally, tunable via a set of param-
eters for various thresholds and buffer sizes etc. These parameters are discussed, and
recommended values are specified which should result in reasonable performance on
HPC systems similar to the ones we have been running on.

iii



iv



Preface

The Licentiate Thesis consists of the the following three papers and an introduction
including a summary of the papers.

Paper I Björn Adlerborn, Bo Kågström, and Daniel Kressner. A parallel QZ algo-
rithm for distributed memory HPC systems1. In SIAM J. Scientific Com-
puting, 36(5), pages 480–503. 2015.

Paper II Björn Adlerborn, Bo Kågström, and Lars Karlsson. Distributed One-
Stage Hessenberg-Triangular Reduction with Wavefront Scheduling. Re-
port UMINF 16.10. Dept. of Computing Science, Umeå University, Swe-
den, 2016 (to be submitted).

Paper III Björn Adlerborn, Bo Kågström, and Daniel Kressner. PDHGEQZ User
Guide. Report UMINF 15.14. Dept. of Computing Science, Umeå Uni-
versity, Sweden, 2015.

1 Reprinted by permission of Society for Industrial and Applied Mathematics.

v



vi



Acknowledgements

First of all, I would like to thank my supervisors Bo Kågström and Lars Karlsson, for
their great enthusiasm, inspiration, and encouragement, and for providing exceptional
knowledge and support, and for always making so much of their time available.

Thanks go to Meiyue Shao, Daniel Kressner and Robert Granat for fruitful discus-
sions on parallel QZ algorithms.

Thanks also to the colleagues and staff at the High Performance Computer Center
North (HPC2N), for access to the HPC systems Abisko and Akka and for their excel-
lent user support.

I also would like thank Anna for being there for me, making me a better person,
making my life valuable, and giving birth to and being such a great mother and inspi-
ration for our dearest daughter Emelie.

Financial support has been provided by the Swedish Research Council (VR) under
grant A0581501, and by eSSENCE, a strategic collaborative e-Science programme
funded by the Swedish Government via VR. This work was also partly funded from
the European Unions Horizon 2020 research and innovation programme under the
NLAFET grant agreement No 671633.

Umeå, May 2016

Björn Adlerborn

vii



viii



Contents

1 Introduction 1
1.1 Background 2
1.2 Data distribution 4
1.3 Memory hierarchies and operations 5
1.4 Redundant computing 6

2 Summary of papers 9
2.1 Paper I 9
2.2 Paper II 10
2.3 Paper III 10

3 Future work 13

Paper I 21

Paper II 53

Paper III 83

ix



x



Chapter 1

Introduction

Solving large-scale problems efficiently and effectively on modern parallel high
performance computing (HPC) platforms requires both a good parallel algo-
rithm for the considered problem as well as very good knowledge of the under-
lying computer architecture. To facilitate the use of such parallel HPC systems,
it is important to provide various software tools so that engineers and scien-
tists can focus on solving their applications. With long tradition, numerical
software libraries that include ready to use computational routines provide a
well-functioning tool for this purpose. In this way, the burden of handling the
architecture issues is mainly laid on the developers of parallel algorithms and
software.

Today’s parallel HPC architectures are hierarchical and are getting more
and more heterogeneous in several dimensions (e.g., multicore processors, ac-
celerators, high-speed interconnect networks). In this thesis, we focus on dis-
tributed memory architectures with multicore nodes, but common for all par-
allel HPC systems is that they have a complex memory hierarchy that must
be utilized and given special attention in order to obtain a high portion of the
theoretical peak performance. How to succeed is highly dependent on what
problems to solve. Some of them lead to algorithms that are straightforward
to parallelize, while many have strong dependencies between computational
steps and associated data flows; the latter is the case for the dense matrix
computational problems studied in this thesis.

One paramount issue concerns the management of complex memory hier-
archies, which aim at avoiding unnecessary data movements between memory
layers defined by on chip multi-level caches and local as well as remote memory.
In practice, this means that matrix elementwise computations are restructured
(or new algorithms are designed) so that blocked (submatrix) operations are
used as much as possible. Ideally, if most computations can be expressed as
matrix-matrix operations, it makes it possible to reuse data as much as pos-
sible at the different memory layers and thereby obtain near to optimal per-
formance. Equally important is to balance the computational load (defined

1



by tasks) across all participating processes, keep them active and avoid them
from going idle. To restructure and rebalance the computational load during
execution, which even may include redundant computations, can be an efficient
way of reducing communication and idle time.

In this thesis, we investigate and propose parallel algorithms for solving the
generalized non-symmetric eigenvalue problem (GNEP)

Ax = λBx (x 6= 0), (1.1)

for dense real square matrices A and B, using a two-stage method, execut-
ing on distributed memory machines. GNEPs emerge frequently, for example
when solving differential-algebraic equations, in model reductions, and in the
linearization of (non-linear) quadratic eigenvalue problems, and boil down to
finding eigenvalues, eigenvectors and deflating subspaces of a general matrix
pair (A,B). In many applications, e.g., in control system design and analysis,
eigenvectors are not needed and it is enough to know a pair of deflating sub-
spaces associated with a specified spectrum. An example is stable subspaces
associated to all eigenvalues within the unit circle (or in the left complex plane).

When B is nonsingular, equation (1.1) can be transformed to a standard
eigenvalue problem Cx = λIx with C = B−1A, but this is not recommended
since if B is close to singular (i.e. ill-conditioned) the computation of C may
affect the conditioning of other well-conditioned finite eigenvalues. Moreover,
if B is a singular matrix, the GNEP has one or several infinite eigenvalues and
in finite precision arithmetic there is a big risk that large finite and infinite
eigenvalues are mixed up. Therefore, in practice the GNEP formulation is kept
and (A,B) is treated as a matrix pair in all computations.

The two-stage method, illustrated in Figure 1 for 10 × 10 matrices, first
reduces the matrix pair to an upper Hessenberg-triangular form (H,T ), where
H is an upper Hessenberg matrix (has one nonzero subdiagonal below the
main diagonal) and T is an upper triangular matrix. The second stage further
reduces the pair (H,T ) to generalized real Schur form (S, T ), where S is an
upper quasi-triangular matrix, possibly with 2×2 blocks along the diagonal, and
T remains upper triangular. Each 2×2 diagonal block of (S, T ) corresponds to a
complex conjugate pair of eigenvalues and each 1×1 block (si,i, ti,i) corresponds
to a finite eigenvalue λi = si,i/ti,i for ti,i 6= 0 and to an infinite eigenvalue
∞ when ti,i = 0. The two-stage reductions are performed using novel parallel
two-sided transformation based algorithms, where each algorithm computes two
sequences of matrix transformations that are applied to the matrix pair (A,B)
from left and right, respectively.

1.1 Background

Already in 1973, Moler and Stewart [24] presented a two-stage transforma-
tion based algorithm, that follow the description above, for solving the dense
generalized eigenvalue problem. In the first stage, the matrix pair (A,B) is

2



→ →

(A,B) (H,T ) (S, T )

1

Figure 1: Reduction of a general matrix pair (A,B) to generalized real Schur
form (S, T ) using a two-stage method. In the first stage, (A,B) is reduced
to upper Hessenberg-triangular form (H,T ). In the second stage, the pair
(H,T ) is further reduced to (S, T ) with 1× 1 and 2× 2 blocks along the main
diagonal, corresponding to infinite or real eigenvalues and complex conjugate
pair of eigenvalues, respectively.

reduced to HT form in a finite number of steps; the columns of A and B are
reduced from left to right where a crucial step is to remove the undesirable
fill-in caused by left and right transformations. In the second stage, the pair is
further reduced to generalized real Schur form (S, T ) by an iterative method,
known as the QZ algorithm, which is a generalization and extension of the QR
algorithm, independently proposed by Francis [15] and Kublanovskaya [23] for
the standard eigenvalue problem. Throughout the years, several improvements
have been proposed, and here follows a brief description of the most relevant
for our study.

A cache-blocked approach was proposed by Dackland and K̊agström, [12],[13],
dividing the HT reduction into two separate sub-stages, first to a block HT
form (H-part has several nonzero subdiagonals, algorithm is rich in matrix-
matrix operations), followed by a procedure based upon Givens rotations that
completes the reduction to proper upper HT form. Another one-stage cache-
blocked approach using mainly level-3 BLAS, i.e. matrix-matrix operations,
was proposed by K̊agström, Kressner, E.S. Quintana-Ort́ı, and G. Quintana-
Ort́ı [22]. The latter showed that dividing the HT reduction into two separate
stages is not always better than to keep it as a single stage.

A blocked approach for the QZ algorithm, was proposed by Dackland and
K̊agström [14], that showed a speedup of 2–5 obtained over the unblocked
algorithm. The QR algorithm, used to reduce a Hessenberg matrix to real
Schur form when solving the standard eigenvalue problem, extended with im-
proved use of several shifts and a technique for speeding up convergence, called
aggressive early deflation(AED), was proposed by Braman, Byers, and Math-
ias [10, 11]. The multishift and AED techniques were later extended to the QZ
algorithm by K̊agström and Kressner [21], which greatly increased the perfor-
mance when comparing with previous blocked and unblocked versions.

My master thesis, a parallel formulation for the reduction from a block
HT form to proper upper HT form, together with [13] formed the first, to
our knowledge, parallel reduction of a general matrix pair (A,B) to HT form,

3



see [1]. This parallel two-staged HT reduction approach shows that although
the first stage involves much more flops than the second stage, the latter dom-
inates the overall execution time. However, the second stage scales somewhat
better than the first stage.

In [2, 4], we propose a parallel solution for the complete reduction of a gen-
eral matrix pair to generalized Schur form. The parallel QZ reduction stage is
based on and extend [14] but, despite having a more favorable flop count, it
dominates the total execution time, leaving room for improvements. However,
this implementation is significantly faster than the corresponding parallel QR
implementation [20], despite that the flop count for QZ is about two times
more than for QR. This is explained by the preliminary use of AED, efficient
multishift strategies and accumulated updates applied in a matrix-matrix man-
ner. However, the parallel QR algorithm did later undergo a complete revision,
adopting the new efficient multishift strategies and AED, resulting in an effi-
cient parallel solver on (hybrid) distributed memory machines, see [18, 19].

The Papers I–III, in this thesis, present further novel contributions (al-
gorithms and software) to the parallel solution of the generalized eigenvalue
problem.

1.2 Data distribution

The target parallel platform is distributed memory machines, where each pro-
cess has it own set of memory, and the problem is split among the participat-
ing processes. However, in practice and in most modern HPC systems, the
processes are grouped into compute units which have some shared memory,
leading to so called hybrid distributed memory machines. The programming
model used in this thesis is message passing and any available shared memory
at the CPU nodes is treated and allocated as separate memory units to each
process.

Using a two-dimensional block-cyclic data distribution schema of the ma-
trices A and B ensures that each process has a part, of roughly the same size,
of the problem data and the computational workload. The P processes are
logically arranged into to a Pr × Pc grid, not necessarily square. Moreover,
the N × N matrices A and B are partitioned into Nb × Nb sized blocks, and
scattered cyclically across the Pr × Pc grid, see Figure 2 for an illustration.

ScaLAPACK [9], a state-of-the-art library of high-performance linear alge-
bra routines for parallel distributed memory machines, uses the two-dimensional
block cyclic distribution schema, generalized such that the data blocks need
not be square, where each distributed object is represented by two objects—a
pointer to the local data and a globally defined descriptor to define the parti-
tioning and a communication context.

ScaLAPACK is based upon, and includes, the software package BLACS
for handling communication and offers point-to-point non blocking send and
blocking receive, as well as broadcast send and receive and global summation

4



(0,0) (0,1) (0,2) (0,0) (0,1) (0,2)

(1,0) (1,1) (1,2) (1,0) (1,1) (1,2)

(2,0) (2,1) (2,2) (2,0) (2,1) (2,2)

(0,0) (0,1) (0,2) (0,0) (0,1) (0,2)

(1,0) (1,1) (1,2) (1,0) (1,1) (1,2)

(2,0) (2,1) (2,2) (2,0) (2,1) (2,2)

Figure 2: Block cyclic data distribution of a matrix exemplified using a 3 × 3
grid, where the residence for each of the 36 matrix blocks is given by its process
coordinate (pr, pc) with 0 ≤ pr < 3 = Pr and 0 ≤ pc < 3 = Pc.

routines. Our algorithms and software are designed to fit into the ScaLAPACK
suite of routines, and is therefore restricted to use the communication primi-
tives offered by BLACS. The lack of a non blocking receive limits the degree
of algorithmic freedom a bit, but in general, communication via BLACS and
operating on distributed objects in ScaLAPACK is straightforward.

Operations on distributed data typically requires communication, for exam-
ple, when one process holds part of data that other processes need to complete
an operation. In order to reduce communication, the data can be reorganized,
temporarily, to a subgrid before the computation is performed. Using less pro-
cesses, means that each process that participates in the computation, will own
more data, and potentially reduce the need for communication. After complet-
ing the computation, data is typically restored to the original grid to continue
using all allocated processes for the remaining computation. ScaLAPACK pro-
vides a redistribution routine, and is used in our software, for example, to
perform parallel AED, where the AED computational window is spread over
several processes. Our heuristics show that it is beneficial to use less compu-
tational power by performing the AED computation on a subgrid. The redis-
tribution routine is efficient, but should be used with caution as it increases
the memory load, and de facto decreases the core utilization leading to poor
scalability in the long run.

1.3 Memory hierarchies and operations

The memory hierarchy of a typical CPU core consists of registers, levels of
caches and main memory. However, all computations are performed at the

5



very top of the hierarchy, i.e. in the registers, and an operation on data stored
in the main memory requires data to be transferred and copied all the way
up to the top. Once stored at the top, we should try to utilize this data
as much as possible before copying another set of data to work on, as this
copy procedure is time consuming; each memory level has a latency and a per
item cost associated to a memory transfer. Put into practice, (cache-)blocked
code is used, where the software is written in such a way that it works on
optimized sized chunks of data, performing several operations on one chunk at
a time, before the next chunk is addressed. As there are often several layers
of cache memories, of different sizes, several layers of blocked code are also
common. Instead of performing several elementwise operations, operations can
often be bundled and applied in an accumulated way. A simple example is a
list of numbers added to each element of a vector; instead of adding numbers
individually to the vector, compute the sum once, and then add the sum to the
elements of the vector. Another example is the usage of accumulated Givens
rotations. A Givens rotation is an orthogonal matrix G ∈ Rn×n that applied
to another matrix makes a rotation with angle θ in the plane (i, j) spanned by
two coordinates axes (here j = i+ 1):

Gij(θ) =




Ii−1

c s
−s c

In−j


 ,

where c2 + s2 = 1 (c = cos(θ), s = sin(θ)) and I is the identity matrix of
size (i − 1) × (i − 1) and (n − j) × (n − j), respectively. The main use of
Givens rotations in numerical linear algebra is to zero out, annihilate, elements
in vectors or matrices: given a, b find c and s such that

[
c s
−s c

] [
a
b

]
=

[
r
0

]
,

and r > 0 does not over- or underflow. We use this annihilation technique
to reduce a matrix pair (A,B) to HT -form, where several Givens rotations
are bundled, i.e. accumulated into one matrix and subsequently applied to
blocks in (A,B). This bundling process enables more coarse-grained matrix-
matrix operations which greatly improve the arithmetic performance compared
to applying the rotations one by one.

1.4 Redundant computing

Increasing the amount of arithmetic work and let a few processes repeat and
do the same work can often be beneficial from a total execution time point of
view. Consider the matrix operation

U · V,

6



where U ∈ Rm×m, V ∈ Rm×n. Partition V =

[
V0
V1

]
and let it be distributed

over a 2× 1 process grid (most likely a subgrid), such that process p0 holds V0
and process p1 holds V1. We assume that U is stored on both p0 and p1.

To perform the operation, p0 and p1 need to exchange data. One approach
is to let p0 receive V1 from p1, perform the matrix multiplication, and then
send updated V1 back. p1 will be idle during the computation, waiting for the
updated V1. In a non blocking receive communication environment, p1 could
however perform other tasks, that are independent of V1. Another approach
is to let p0 and p1 exchange data such that both have enough to perform the
complete operation. This requires some extra workspace, but the upside is that
the exchange can be performed, almost perfect, in parallel; both perform non
blocking send of their parts of V , and enter the receive mode to receive the
data, which is already on the way. Both compute U ·V , but only save the part
of the product they own, that is p1 discards updated V0, and vice versa for p0.
This technique requires extra work but has one synchronization point less and
reduce idling processes, and is successfully used in our two-stage reduction of
a matrix pair (A,B) to generalized Schur form, for example, when applying
bundled Givens operations.

7



8



Chapter 2

Summary of papers

In the following, a brief summary of each paper in the thesis is given.

2.1 Paper I

Paper I [5] concerns the parallel reduction of a matrix pair in Hessenberg, tri-
angular form (H,T ) to generalized real Schur form (S, T ). The paper begins
with an overview of the generalized Schur decomposition and the structure
of the QZ algorithm before moving on to discussing the multishift and AED
techniques, with focus on aspects related to the parallel algorithms and imple-
mentations. The potential presence of infinite eigenvalues in the generalized
eigenvalue problem makes a fundamental difference compared to the standard
one. Infinite eigenvalues need to be dealt with, i.e. identified and deflated, be-
fore other actions are taken in order to preserve them as infinite, or not having
them inflicting damage to other eigenvalues, due to round off errors. A serial
and a novel parallel algorithm are discussed and exemplified where the infinite
eigenvalues are moved to the top-left or bottom-right corner of the matrix pair,
whichever is nearest.

Performance is evaluated using several different problems, on two different
parallel HPC systems. Interesting and applicable real world benchmark exam-
ples from Matrix Market [8], some with a large fraction of infinite eigenvalues,
together with constructed problems of three different types demonstrate exe-
cution times for different grid configurations. The problem size n ranges from
4000 to 32000, and up to 100 cores are utilized to solve the problems in paral-
lel, demonstrating increasing speedup as the problem size and number of cores
increases. These problems are however rather small in a context of what mod-
ern HPC systems are capable of, so in order to utilize more compute power,
a constructed 100000 × 100000 benchmark problem is solved in parallel using
up to 1600 cores, and performance is evaluated and compared with the par-
allel solver for standard eigenvalue problems [19] for a similar problem. Even

9



though the standard eigenvalue problem requires less than half of the number
of operations to complete compared to the generalized eigenvalue problem [17],
execution time ratios show that our solver takes substantially less than twice
the time to complete.

2.2 Paper II

Paper II [3] concerns the parallel reduction of a general matrix pair (A,B) to
Hessenberg-triangular form (H,T ). Based on the sequential cache-blocked al-
gorithm [22], this parallel formulation makes use of Givens rotations to reduce
the matrix pair with a novel static wavefront scheduling algorithm. The sequen-
tial algorithm and its blocking strategy are briefly described, before moving on
to a discussion on how different parts of the algorithm have been redesigned
to work in parallel. Since a straightforward parallelization strategy proves to
be poorly scalable, due to a high fraction of idle time among the participating
processors, a scheduler is implemented with the aim to maximize process uti-
lization and execute the shortest possible sequence of parallel steps. At each
step, the scheduler select a parallel task to execute such that

• the degree of parallelism is maximized,

• tasks with more remaining work is chosen over tasks with less work.

Two different HPC systems are used to evaluate the parallel performance;
weak and strong scaling is measured, visualized and discussed. Results, using
up to 961 mpi-processes, indicate that our implementation scales but suffers
from bottlenecks, related to synchronization points, in two of its major sub-
routines.

2.3 Paper III

Paper III [6] is a User Guide for the PDHGEQZ software; library software routines
to solve the generalized eigenvalue problem for dense and real matrix pairs
(A,B) in parallel on multicore HPC systems. The guide mainly describes
software and parameters related to Paper I, but also includes a description of
routines related to Paper II and routines from other earlier work. Installation
and building instructions, for a Linux like system, are presented, followed by a
software hierarchy overview of how routines are related and called.

The calling sequences for the main driver routines with input and output
parameters are described in detail. Moreover, the set of tunable parameters
and a description of their usage and default values are discussed. The default
value for parameters may need tuning to reach the best possible performance
of the PDHGEQZ software executing on a new target architecture, however, the
defaults should give reasonable performance on systems similar to the ones we
have been running on.

10



During the build process, internal tests are performed to make sure the soft-
ware work as intended. Both sequential and parallel tests are performed, with
validation of the computed results. System software requirements are listed
so users can prepare their systems before the build process and installation is
initiated.

11



12



Chapter 3

Future work

Our solution to the generalized eigenvalue problem provides eigenvalues and
deflating subspaces, but presently does not compute eigenvectors. Given a
matrix pair in generalized Schur form, LAPACK [7] offers serial routines for
computing both left and right eigenvectors. Combining those with the acceler-
ating techniques proposed by Gates et al. in [16] and our own experiences will
be a good base for formulating a parallel distributed memory algorithm.

Our parallel algorithms for computing the generalized Schur form scale
with the number of processors, but there is room for improvements. A great
challenge is to develop novel architecture-aware algorithms that expose as
much parallelism as possible in today’s and future extreme-scale HPC sys-
tems. This and many other challenges will be investigated within the Horizon
2020 project Parallel Numerical Linear Algebra for Future Extreme-Scale Sys-
tems with acronym NLAFET, coordinated by Ume̊a University. The NLAFET
overall aim is to enable a radical improvement in the performance and scalabil-
ity of a wide range of real-world applications relying on linear algebra software
for future extreme-scale systems. For more information see the NLAFET web-
site: http://www.nlafet.eu

13



14



Bibliography

[1] B. Adlerborn, K. Dackland, and B. K̊agström. Parallel two-stage reduc-
tion of a regular matrix pair to Hessenberg-Triangular form. In T. Sørevik,
F. Manne, A. H. Gebremedhin, and R. Moe, editors, Applied Parallel
Computing, PARA 2000, LNCS 1947, pages 92–102. Springer Berlin Hei-
delberg, 2000.

[2] B. Adlerborn, K. Dackland, and B. K̊agström. Parallel and blocked algo-
rithms for reduction of a regular matrix pair to Hessenberg-Triangular and
generalized Schur forms. In J. Fagerholm, J. Haataja, J. Järvinen, M. Lyly,
P. R̊aback, and V. Savolainen, editors, Applied Parallel Computing, PARA
2002, LNCS 2367, pages 319–328. Springer-Verlag, 2002.

[3] B. Adlerborn, L. Karlsson, and B. K̊agström. Distributed One-Stage
Hessenberg-Triangular Reduction with Wavefront Scheduling. Report
UMINF 16.10, Dept. of Computing Science, Ume̊a University, Sweden,
2016.

[4] B. Adlerborn, B. K̊agström, and D. Kressner. Parallel variants of the mul-
tishift QZ algorithm with advanced deflation techniques. In B. K̊agström,
E. Elmroth, J. Dongarra, and J. Waśniewski, editors, Applied Parallel
Computing, PARA 2006, LNCS 4699, pages 117–126. Springer Berlin Hei-
delberg, 2006.

[5] B. Adlerborn, B. K̊agström, and D. Kressner. A Parallel QZ Algorithm
for distributed memory HPC-systems. SIAM J. Sci. Comput., 36(5):C480–
C503, 2014.

[6] B. Adlerborn, B. K̊agström, and D. Kressner. PDHGEQZ User Guide.
Report UMINF 15.12, Dept. of Computing Science, Ume̊a University, Swe-
den, 2015.

[7] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. C. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA, third
edition, 1999.

15



[8] Z. Bai, D. Day, J. W. Demmel, and J. J. Dongarra. A test matrix
collection for non-Hermitian eigenvalue problems (release 1.0). Techni-
cal Report CS-97-355, Department of Computer Science, University of
Tennessee, Knoxville, TN, USA, March 1997. Also available online from
http://math.nist.gov/MatrixMarket.

[9] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel,
I. Dhillon, J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stan-
ley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. SIAM,
Philadelphia, PA, 1997.

[10] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. I.
Maintaining well-focused shifts and level 3 performance. SIAM J. Matrix
Anal. Appl., 23(4):929–947, 2002.

[11] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. II.
Aggressive early deflation. SIAM J. Matrix Anal. Appl., 23(4):948–973,
2002.

[12] K. Dackland and B. K̊agström. Reduction of a Regular Matrix Pair (A,B)
to Block Hessenberg Triangular Form. In J. Dongarra, K. Madsen, and
J. Waśniewski, editors, Applied Parallel Computing, PARA 1995, LNCS
1041, pages 125–133. Springer Berlin Heidelberg, 1995.

[13] K. Dackland and B. K̊agström. A ScaLAPACK-Style Algorithm for Re-
ducing a Regular Matrix Pair to Block Hessenberg-Triangular Form. In
B. K̊agström, J. Dongarra, E. Elmroth, and J. Waśniewski, editors, Ap-
plied Parallel Computing, PARA 1998, LNCS 1541, pages 95–103. Springer
Berlin Heidelberg, 1998.

[14] K. Dackland and B. K̊agström. Blocked algorithms and software for re-
duction of a regular matrix pair to generalized Schur form. ACM Trans.
Math. Software, 25(4):425–454, 1999.

[15] J. G. F. Francis. The QR Transformation. A Unitary Analogue to the LR
Transformation - Part 1. The Computer Journal, 4(3):265–271, 1961.

[16] M. Gates, A. Haidar, and J. Dongarra. Accelerating computation of eigen-
vectors in the dense nonsymmetric eigenvalue problem. In M. Daydé,
O. Marques, and K. Nakajima, editors, High Performance Computing
for Computational Science, VECPAR 2014, LNCS 8969, pages 182–191.
Springer International Publishing, 2015.

[17] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, MD, 4th edition, 2012.

[18] R. Granat, B. K̊agström, and D. Kressner. A novel parallel QR algorithm
for hybrid distributed memory HPC systems. SIAM J. Sci. Comput.,
32(4):2345–2378, 2010.

16



[19] R. Granat, B. K̊agström, D. Kressner, and M. Shao. Parallel library soft-
ware for the multishift QR algorithm with aggressive early deflation. ACM
Trans. Math. Software, 41(4), 2015.

[20] G. Henry, D. S. Watkins, and J. J. Dongarra. A parallel implementation
of the nonsymmetric QR algorithm for distributed memory architectures.
SIAM J. Sci. Comput., 24(1):284–311, 2002.

[21] B. K̊agström and D. Kressner. Multishift variants of the QZ algorithm
with aggressive early deflation. SIAM J. Matrix Anal. Appl., 29(1):199–
227, 2006.

[22] B. K̊agström, D. Kressner, E. S. Quintana-Ort́ı, and G. Quintana-Ort́ı.
Blocked algorithms for the reduction to Hessenberg-triangular form revis-
ited. BIT, 48(3):563–584, 2008.

[23] V.N. Kublanovskaya. On some algorithms for the solution of the complete
eigenvalue problem. USSR Computational Mathematics and Mathematical
Physics, 1(3):637 – 657, 1962.

[24] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix
eigenvalue problems. SIAM J. Numer. Anal., 10:241–256, 1973.

17



18


